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Elements of Formal Semantics introduces some of the foundational 

concepts, principles and techniques in formal semantics of natural 

language. It is intended for mathematically-inclined readers who have 

some elementary background in set theory and linguistics. However, no 

expertise in logic, math, or theoretical linguistics is presupposed. By way 

of analyzing concrete English examples, the book brings central concepts 

and tools to the forefront, drawing attention to the beauty and value of the 

mathematical principles underlying linguistic meaning. 
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CHAPTER 1

INTRODUCTION

One of the most striking aspects of human language is the complexity
of the meanings that it conveys. No other animal possesses a mode
of expression that allows it to articulate intricate emotions, describe
distant times and places, study molecules and galaxies, or discuss the
production of sophisticated tools, weapons and cures. The complex
meanings of natural language make it an efficient, general-purpose
instrument of human thought and communication. But what are
meanings? And how does language convey them?
To illustrate one aspect of the problem, let us consider a phrase in

one of Bob Dylan’s famous love songs. The phrase opens the song’s
refrain by describing a woman, whose identity is not disclosed. It goes
like this:

(1.1) sad-eyed lady of the lowlands, where the sad-eyed prophet says
that no man comes

If we want to restate the meaning of this phrase in simpler terms, we
can do it as follows:

(1.2) There’s a lady. That lady has sad eyes. She is from the lowlands.
Some prophet also has sad eyes. That prophet says “no man
comes to the lowlands”.

Without doubt, this way of paraphrasing Dylan’s verse robs it of
much of its poetic value. But at the same time it also highlights a
remarkable property of meaning in natural language. When we hear
a long expression like (1.1), we immediately draw from it all sorts
of simple conclusions. This happens even in cases where we miss
information that is important for understanding the “true meaning”
of what is being said. Dylan’s song only gives vague clues about the
identity of the lady. Yet upon hearing the refrain we unfailingly draw

1
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from (1.1) the conclusions in (1.2). The converse is true as well: when
Dylan invented his description of the sad-eyed lady, he must have
implicitly assumed the statements in (1.2) as part of its meaning.
This kind of back-and-forth reasoning occurs whenever we think and
converse. When we hear, utter or think of an expression, we instinc-
tively relate it to other phrases that we consider obvious conclusions.
Drawing such trivial-looking inferences using our language is one of
the abilities that characterize us as linguistic creatures. No other animal
has this linguistic ability, and no current technology can accurately
mimic it.
Our effortless manipulation of meaning is highly systematic, and

relies on an ingrained ability to recognize structure in language. When
we hear the phrase in (1.1), we mentally tack its words into short
collocations like sad-eyed and the lowlands. Further, short expressions
are tacked together into longer expressions such as sad-eyed lady
from the lowlands. These syntactic dependencies between words and
expressions lead to a complex hierarchical structure. In the case of
(1.1), some main elements of this structure are represented below.

(1.3) [[ sad-eyed ] lady ] [ of [[ the lowlands ] , [ where [[ the [[ sad-
eyed ] prophet ]] [ says [ that [[ no man ] comes ]]]]]]]

The bracketed expressions in (1.3) represent constituents: sub-parts
of the description in (1.1) that act as syntactic units – noun phrases,
verb phrases, clauses etc. As the representation in (1.3) illustrates,
constituents are often embedded within one another. For instance,
the short sentence no man comes is embedded in the verb phrase says
that no man comes, which is itself embedded within the sentence the
sad-eyed prophet says that no man comes. In total, the expression in
(1.1) has no fewer than seven levels of constituents that are embedded
within each other. This complexity does not impair our ability to
make sense of the description. Furthermore, it is part and parcel
of our ability to understand it. In (1.1), the highly organized way
in which the constituents are embedded makes it possible for us to
immediately grasp Dylan’s complex vision as paraphrased in (1.2). In
the case of complicated phrases like (1.1), it is clear that we would
not be able to extract even the basic paraphrase in (1.2) if language
did not support well-organized hierarchical structures. Furthermore,
syntactic hierarchies help us to extract meaning from most other
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linguistic expressions, including ones that are much more ordinary
than Dylan’s verse.
The subfield of linguistics known as formal semantics studies how

linguistic structure helps speakers to manipulate meaning. The word
‘formal’ stresses the centrality of linguistic forms in the enterprise.
At the same time, the token ‘formal’ also expresses a motivation to
account systematically for language meanings by using precise mathe-
matical methods. Formal semanticists have benefited from the many
breakthroughs in logic and computer science, two disciplines that
constantly develop new artificial languages and address challenging
questions about their meanings and forms. The dazzling achieve-
ments that logicians and computer scientists achieved in the twentieth
century were based on a rich tradition of research in philosophy
of language and the foundations of mathematics. It is only natural
that in the 1960s, when semanticists started to systematically address
questions about meaning and form in natural language, they turned
to these neighboring disciplines in search of guiding principles. As
a result, formal semantics relies on the mathematical foundations
that were laid in major works on logic, philosophy of language and
theoretical computer science.
The mathematical foundations of formal semantics give us precise

tools for studying natural languages. Mathematical semantic models
help us see what meanings are, and, more importantly, why they can
be shared by different expressions. By examining meanings under the
powerful microscope of mathematical theories, formal semantics has
obtained effective methods for uncovering systematic regularities in
the everyday use of language expressions.
The scientific value of this linguistic endeavor is further enhanced

by recent developments in other branches of cognitive science that
study natural language. In the emerging field of cognitive neuroscience,
mathematical principles are becoming increasingly important for
harnessing recent advances in brain imaging. As a leading cognitive
neuroscientist puts it: “only mathematical theory can explain how the
mental reduces to the neural. Neuroscience needs a series of bridging
laws [. . . ] that connect one domain to the other” (Dehaene 2014,
p. 163). These laws are also needed in order to understand how the
brain enables the semantic dexterity of language speakers. Mental se-
mantic faculties are profitably described by mathematical laws. Recent
works in natural language semantics have supported many of these
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laws by statistically analyzing experimental data. As neuroscience
brings more experimental data on the workings of the brain, it is
becoming increasingly important to connect statistical generalizations
about this data with models of our mental semantic abilities.
Similar procedures of mathematical theorizing are equally critical

in current work in artificial intelligence. Recent advances in statis-
tical machine learning make it possible to exploit formal semantic
principles to enhance algorithms and computing technologies. In a
recent state-of-the-art review, the authors describe this new direction,
stating that “the distinction between logical and statistical approaches
is rapidly disappearing with the development of models that can learn
the conventional aspects of natural language meaning from corpora
and databases” (Liang and Potts 2015, p. 356). In the new domain
of computational semantics, mathematical and logical principles of
formal semantics are increasingly employed together with statistical
algorithms that deal with the parametrization of abstract semantic
models by studying distributions of various linguistic phenomena in
ordinary language.
Although these recent developments are not the focus of the current

book, they do highlight new motivations for using precise prin-
ciples and techniques in the study of natural language semantics.
The achievements of formal semantics have formed a lively area
of research, where new ideas, techniques, experimental results and
computer systems appear every day. This book introduces you to some
of the most important mathematical foundations of this field.

AIMS AND ORGANIZATION OF THIS BOOK
The two senses of the word ‘formal’ have a key role in this textbook.
The book is a systematic introduction to the study of form and
meaning in natural language. At the same time, it capitalizes on the
precise mathematical principles and techniques that underlie their
analysis. The aim is to help the reader acquire the tools that would
allow her to do further semantic work, or engage in interdisciplinary
research that relies on principles of formal semantics. Because of that,
the book does not attempt to single out any of the current versions of
formal semantic theory. Rather, it covers five topics that are of utmost
importance to all of them.
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Chapter 2 is a general overview of the major goals and techniques in
formal semantics. It focuses on the principles of natural language
semantics that support meaning relations as in (1) and (2). These
semantic relations are called entailments. They are described by
abstract mathematical models, and general principles of composi-
tionality that connect forms with model-theoretical meanings.

Chapter 3 introduces semantic types as a means of systematizing the
use of models. Typed meanings are derived from simpler ones by a
uniform semantic operation of function application. A convenient
notation of lambda-terms is introduced for describing semantic
functions. This notation is illustrated for a couple of modification
and coordination phenomena.

Chapter 4 uses the principles and tools of the two previous chapters
for treating quantification. By focusing on the semantics of noun
phrases that involve counting and other statements about quantities,
Chapter 4 directly introduces one of the best-known parts of formal
semantics: the theory of generalized quantifiers.

Chapter 5 extends the framework of the preceding chapters for treat-
ing meaning relations between expressions that appear a certain
distance from each other. A principle of hypothetical reasoning is
added to the system of Chapter 3. This principle works in duality
with function application, and complements its operation. The two
principles apply within a system of linguistic signs, which controls
the interactions between forms and meanings.

Chapter 6 treats intensional expressions: expressions that refer to atti-
tudes, beliefs or possibilities. Such expressions are treated in seman-
ticmodels containing entities that represent possible worlds. Possible
world semantics is introduced as a systematic generalization of the
system developed in previous chapters.

Part of the material in Chapters 3 and 6 was covered by early text-
books on “Montague Grammar” (see further reading at the end of
this chapter). Here, this material is introduced in a more general
setting that takes recent findings into account and capitalizes on the
mathematical architecture of type-theoretical grammars. Chapter 4 is
unique in being a detailed textbook-level introduction to the central
problem of quantification in natural language, which is fully based
on the type-theoretical framework of Chapter 3. The treatment of
long-distance dependencies in Chapter 5 is the first textbook-level
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introduction of a general theoretical configuration known as Abstract
Categorial Grammar.
At the end of each chapter there are exercises (see below) and

references for suggested further reading. Further materials can be
found through the website of Edinburgh University Press, at the
following link:

edinburghuniversitypress.com/book/9780748640430

ON THE EXERCISES IN THIS BOOK
At the end of each chapter you will find some exercises, with model
solutions to many of them. Acquiring the ability to solve these ex-
ercises constitutes an integral part of studying the material in this
book. You will be referred to exercises at various points of the text,
and further developments in the book often rely on the exercises in
previous chapters. There are two kinds of exercise:

• Technical exercises, which should be solvable by using only the
methods explained in the body of the textbook.

• More advanced exercises, which are specified at the beginning of
each exercise section. Some of these advanced exercises introduce
new notions that were not addressed in the text. These more “no-
tional” advanced exercises are listed in boldface at the beginning of
the exercises, and are especially recommended among the advanced
exercises.

Upon finishing a chapter, and before moving on to the next chapter, it
is advisable tomake sure that you can correctly solve all of the technical
exercises.

WHO IS THIS BOOK FOR?
The book is meant for any reader who is interested in human language
and its mathematical modeling. For readers whose main interest is
linguistic theory, the book serves as an introduction to some of the
most useful tools and concepts in formal semantics, with numerous
exercises to help grasp them. Readers who are mainly interested in
mathematical models of language will find in the book an introduc-
tion to natural language semantics that emphasizes its empirical and
methodological motivations.
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The book is especially suitable for the following audiences:

• general readers with the necessary mathematical background (see
below)

• students and teachers of undergraduate linguistics courses on nat-
ural language semantics, which put sufficient emphasis on its set-
theoretical background (see below)

• students and teachers of relevant undergraduate courses in artificial
intelligence, computer science, cognitive science and philosophy

• researchers and advanced students in linguistics

PRESUPPOSED BACKGROUND
To be able to benefit from this book you should have some basic
background in naive set theory. At the end of this chapter, you will
find some suggestions for further reading, as well as some standard
notation, exercises and solutions. By solving the exercises, you will
be able to practice some basic set theory at the required level before
you start reading. The book does not presuppose any prior knowledge
in logic or theoretical linguistics. However, some general familiarity
with these disciplines may be useful. Some suggestions for textbooks
that introduce this background are given in the suggestions for further
reading at the end of this chapter.

FOR THE INSTRUCTOR
The material in this book has been used for teaching undergraduate
and graduate courses in linguistics, computer science and artificial
intelligence programs. Different kinds of audiences may benefit from
different complementary materials. For linguistics students, the most
important additions should include more semantic and pragmatic
theories of phenomena like anaphora, plurals, events, ellipsis, presup-
position or implicature. In most linguistics programs, a short intro-
duction to basic set-theoretical notions would be necessary in order
to allow students to grasp the materials in this book (for materials
see the further reading section below). For computer science and
AI students, additional material on computational semantics may be
useful, especially if it is accompanied by programming assignments.
The type-theoretical semantics in this book is especially easy to adapt
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for programming in strongly typed functional languages like Haskell.
Some remarks about recommended literature are made at the end of
the further reading section below.

FURTHER READING
Background material on linguistics, set theory and logic: For a

general introduction to linguistics, see Fromkin et al. (2014). For
a classical introduction to naive set theory, see Halmos (1960).
Linguistics students may find the introduction in Partee et al. (1990,
chs.1–3) more accessible. For a useful open-source introduction and
exercises, see ST (2015). Two classical textbooks on logic are Suppes
(1957); Barker-Plummer et al. (2011).

On the history of formal semantics: For a book-length overview,
see Partee (2015). For article-length overviews, see Abbott (1999);
Partee (1996).

Other introductions to formal semantics: Chapters 3 and 6 overlap in
some critical aspects with the early textbooksDowty et al. (1981) and
Gamut (1982), which introduced formal semantics as developed in
Montague (1973). Zimmermann and Sternefeld (2013) is a friendly
introduction to basic topics in formal semantics. For some of the
topics covered in the present book, there are also more advanced
textbooks that may be consulted. Carpenter (1997) and Jacobson
(2014) are detailed introductions to compositional type-theoretical
semantics. Jacobson’s book also contains an elaborate linguistic
discussion. For introductions to formal semantics as it is often used
in generative grammar, see Chierchia and McConnel-Ginet (1990);
Heim and Kratzer (1997). For an introduction to formal semantics
in the framework of Discourse Representation Theory, see Kamp
and Reyle (1993). Readers who are interested in general perspectives
on meaning besides formal semantics may consult Elbourne (2011);
Saeed (1997).

For the instructor: On further important topics in formal semantics
that are not covered in this textbook, see Chapter 7. For a textbook
that uses theHaskell programming language to illustrate some of the
core problems in formal semantics, see Van Eijck and Unger (2010).
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Concepts and notation from set theory
x ∈ A x is an element of the set A= x is amember of A
x �∈ A x is not an element of A
∅ the empty set= the set that has no members
A⊆ B the set A is a subset of the set B = B is a superset of

A= every element of A is an element of B
A �⊆ B A is not a subset of B
℘(A) the powerset of A = the set of all subsets of A. Example:

℘({a, b})= {∅, {a}, {b}, {a, b}}
A∩ B the intersection of A and B = the set of elements that are

in both A and B
A∪ B the union of A and B = the set of elements that are in A

or B (or both)
A− B the difference between A and B = the set of elements in

A that are not in B
A the complement of A (in E )= E − A, where E is a given

superset of A
|A| the cardinality of A= for finite sets: the number of ele-

ments in A
{x∈A : S} the set of elements in A s.t. the statement S holds

Example: {x∈{a, b} : x∈{b, c}} = {a, b}∩{b, c} = {b}
{A⊆B : S} the set of subsets of B s.t. the statement S holds. Exam-

ple: {A⊆{a, b} : |A|=1} = {{a}, {b}}
〈x, y〉 an ordered pair of items x and y
A× B the cartesian product of A and B = the set of ordered

pairs 〈x, y〉 s.t. x ∈ A and y ∈ B
Example: {a, b}× {1, 2} = {〈a, 1〉, 〈a, 2〉, 〈b, 1〉, 〈b, 2〉}

A binary relation between A and B is a subset of the cartesian product
A× B .

A function f from A to B is a binary relation between A and B that
satisfies: for every x ∈ A, there is a unique y ∈ B s.t. 〈x, y〉 ∈ f . If f
is a function where 〈x, y〉 ∈ f , we say that f maps x to y, and write
f : x 
→ y or f (x)= y.

Example: the binary relation f = {〈a, 1〉, 〈b, 2〉} is a function from
{a, b} to {1, 2}, which is equivalently specified [a 
→1, b 
→2] or by
indicating that f (a)= 1 and f (b)= 2.
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B A is the set of functions from A to B .
Example: {1, 2}{a,b} = the functions from {a, b} to {1, 2}
= {[a 
→1, b 
→1], [a 
→1, b 
→2], [a 
→2, b 
→1], [a 
→2, b 
→2]}

EXERCISES
1. Which of the following statements are true?

(i) a ∈ {a, b} (ii) {a} ∈ {a, b} (iii) {a} ⊆ {a, b}
(iv) a ⊆ {a, b} (v) {a} ∈ {a, {a}} (vi) {a} ⊆ {a, {a}}
(vii) {{a, b, c}}⊆℘({a, b, c}) (viii) {{a, b, c}} ∈ ℘({a, b, c})
(ix) ∅ ∈ {{a}, {b}, {c}} (x) ∅ ⊆ {{a}, {b}, {c}}

2. Write down explicitly the following sets by enumerating their
members, e.g. ℘({a})= {∅, {a}}.
(i) ℘({a, b, c}) (ii) {a} ∩℘({a}) (iii) {{a}} ∩℘({a, b})
(iv) ℘({a, b})∩℘({b, c}) (v) (℘({a})∪℘({b}))∩℘({a, b})
(vi) ℘(℘(∅))

3. Write down explicitly the following sets by enumerating their
members.
(i) ({a, b}× {c})∩ ({a}× {b, c}) (ii) ℘({∅})×℘({a, b})
(iii) ℘({a, b}× {c})−℘({a}× {b, c})

4. Which of the following binary relations are functions from {a, b}
to {1, 2}?
(i) {〈a, 1〉} (ii) {〈a, 1〉, 〈b, 2〉} (iii) {〈a, 1〉, 〈a, 2〉}
(iv) {〈a, 1〉, 〈b, 1〉} (v) {〈a, 1〉, 〈a, 2〉, 〈b, 1〉}

5. How many binary relations are there between {a, b} and {1, 2}?
How many of them are functions?

6. Write down the functions in {no, yes}{a,b,c}. For each such func-
tion show a member of the powerset ℘({a, b, c}) that intuitively
corresponds to it.

7. Write down the functions in {a, b, c}{left,right}. For each such
function show a member of the cartesian product {a, b, c}×
{a, b, c} that intuitively corresponds to it.

8. Write down explicitly the following sets of functions:
(i) ℘({a})℘({b}) (ii) {1, 2}{a,b}×{c} (iii) ({1, 2}{c}){a,b}

9. Consider the following function f in {1, 2}{a,b}×{c,d}:
[〈a, c〉
→1, 〈a, d〉
→1, 〈b, c〉
→2, 〈b, d〉
→1].
Write down the function g in ({1, 2}{c,d}){a,b} that satisfies for
every x in {a, b}, for every y in {c, d}: (g (x))(y)= f (〈x, y〉).
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10. Write down explicitly the members of the following sets:
(i) { f ∈{a, b}{b,c} : f (b)=b} (ii) {A⊆ {a, b, c, d} : |A| ≥ 3}
(iii) {〈x, y〉∈{a, b, c}× {b, c, d} : x �= y}

SOLUTIONS TO EXERCISES
1. i, iii, v, vi, vii, x
2. (i) {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} (ii) ∅

(iii) {{a}} (iv) {∅, {b}} (v) {∅, {a}, {b}} (vi) {∅, {∅}}
3. (i) {〈a, c〉} (ii) {〈∅,∅〉, 〈∅, {a}〉, 〈∅, {b}〉, 〈∅, {a, b}〉, 〈{∅},∅〉,
〈{∅}, {a}〉, 〈{∅}, {b}〉, 〈{∅}, {a, b}〉} (iii) {{〈b, c〉}, {〈a, c〉, 〈b, c〉}}

4. ii, iv
5. 16; 4
6. [a 
→no, b 
→no, c 
→no] : ∅

[a 
→yes, b 
→no, c 
→no] : {a}
[a 
→no, b 
→yes, c 
→no] : {b}
[a 
→no, b 
→no, c 
→yes] : {c}
[a 
→yes, b 
→yes, c 
→no] : {a, b}
[a 
→yes, b 
→no, c 
→yes] : {a, c}
[a 
→no, b 
→yes, c 
→yes] : {b, c}
[a 
→yes, b 
→yes, c 
→yes] : {a, b, c}

7. [left 
→a, right 
→a] : 〈a, a〉 [left 
→a, right 
→b] : 〈a, b〉
[left 
→a, right 
→c] : 〈a, c〉
[left 
→b, right 
→a] : 〈b, a〉 [left 
→b, right 
→b] : 〈b, b〉
[left 
→b, right 
→c] : 〈b, c〉
[left 
→c, right 
→a] : 〈c, a〉 [left 
→c, right 
→b] : 〈c, b〉
[left 
→c, right 
→c] : 〈c, c〉

8. (i) {[∅
→∅, {b}
→∅], [∅
→∅, {b}
→{a}], [∅
→{a}, {b}
→∅],
[∅
→{a}, {b}
→{a}]}
(ii) {[〈a, c〉 
→1, 〈b, c〉 
→1], [〈a, c〉 
→1, 〈b, c〉 
→2],
[〈a, c〉 
→2, 〈b, c〉 
→1], [〈a, c〉 
→2, 〈b, c〉 
→2]}
(iii) {[a 
→[c 
→1], b 
→[c 
→1]], [a 
→[c 
→1], b 
→[c 
→2]],
[a 
→[c 
→2], b 
→[c 
→1]], [a 
→[c 
→2], b 
→[c 
→2]]}

9. [a 
→[c 
→1, d 
→1], b 
→[c 
→2, d 
→1]]
10. (i) [b 
→ b, c 
→ a], [b 
→ b, c 
→ b]

(ii) {b, c, d}, {a, c, d}, {a, b, d}, {a, b, c}, {a, b, c, d}
(iii) 〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, c〉, 〈b, d〉, 〈c, b〉, 〈c, d〉
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CHAPTER 2

MEANING AND FORM

This chapter introduces some of the key notions about the analysis of
meaning in formal semantics. We focus on entailments: relations
between premises and valid conclusions expressed as natural
language sentences. Robust intuitions about entailment are
distinguished from weaker types of reasoning with language. Speaker
judgments on entailments are described usingmodels: abstract
mathematical structures, which emanate from semantic analyses of
artificial logical languages. Model-theoretical objects are directly
connected to syntactic structures by applying a general principle of
compositionality. We see how this principle helps to analyze cases of
structural ambiguity and to distinguish them from other cases of
under-specification.

What do dictionaries mean when they tell us that semantics is “the
study of meaning”? The concept that people intuitively refer to as
“meaning” is an abstraction inspired by observing how we use lan-
guage in everyday situations. However, we use language for many
different purposes, and those various usages may inspire conceptions
of meaning that are radically different from one another. We cannot
reasonably expect a theory of meaning to cover everything that people
do with their languages. A more tractable way of studying meaning is
by discerning specific properties of language use that are amenable to
scientific investigation. These aspects of language use, if stable across
speakers and situations, will ultimately guide us toward a theory of
language “meaning”.

ENTAILMENT
One of the most important usages of natural language is for everyday
reasoning. For example, let us consider sentence (2.1):

(2.1) Tina is tall and thin.

12
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From this sentence, any English speaker is able to draw the conclusion
in (2.2) below:

(2.2) Tina is thin.

Thus, any speaker who considers sentence (2.1) to be true, will con-
sider sentence (2.2) to be true as well. We say that sentence (2.1) entails
(2.2), and denote it (2.1)⇒(2.2). Sentence (2.1) is called the premise , or
antecedent, of the entailment. Sentence (2.2) is called the conclusion, or
consequent.
The entailment from (2.1) to (2.2) exemplifies a relation that all

English speakers will agree on. This consistency is remarkable, and
all the more so since words like Tina, tall and thin are notoriously
flexible in the way that they are used. For instance, you and I may have
different criteria for characterizing people as being thin, and therefore
disagree on whether Tina is thin or not. We may also disagree on the
identity of Tina. You may think that Tina in sentences (2.1) and (2.2)
is Tina Turner, while I may think that these sentences describe Tina
Charles. However, we are unlikely to disagree on whether sentence
(2.2) is a sound conclusion from (2.1).
We noted that when sentence (2.1) is judged to be true, so is

sentence (2.2). However, the converse does not hold: (2.2) may be
true while (2.1) is not – this is the case if Tina happens to be thin
but not tall. Because of such situations, we conclude that sentence
(2.2) does not entail (2.1). This is denoted (2.2) �⇒(2.1). Just as with
positive judgments on entailment, rejections of entailment are also
often uniform across speakers and circumstances of use. Therefore,
we consider both positive and negative judgments on entailment as
important empirical evidence for semantic theory.
When studying simple entailments, we often pretend that our lan-

guage vocabulary is very small. Still, as soon as our vocabulary has
some simple adjectives and proper names, we can easily find entail-
ments and non-entailments by looking at their different combinations
with words like and, or, is and not. For instance:

(2.3) a. Tina is tall, and Ms. Turner is not tall⇒ Tina is not Ms.
Turner.

b. Tina is tall, and Tina is not Ms. Turner �⇒ Ms. Turner is
not tall.
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(2.4) a. Ms. Turner is tall, and Tina is Ms. Turner or Ms. Charles
⇒ Tina is tall or Tina is Ms. Charles.

b. Ms. Turner is tall, and Tina is Ms. Turner or Ms. Charles
�⇒ Tina is tall.

The examples above may look unsurprising for anyone who is familiar
with philosophical or mathematical logic. Indeed, similar entailments
in natural language have inspired well-known logical formalisms like
Propositional Logic and Predicate Logic. Readers may therefore won-
der: don’t the entailments above demonstrate puzzles that were solved
long ago by logicians? The answer is “yes and no”. Sure enough, these
entailments can be translated to well-understood logical questions.
However, logic does not traditionally focus on the details of the trans-
lation procedure from ordinary language to logical languages. This
translation step is not “pure logic”: it also involves intricate questions
about the sounds and the forms of human languages, and about the
nature of semantic concepts in the human mind. Consequently, in
modern cognitive science, the study of entailment in natural language
is not the sanctuary of professional logicians. Entailment judgments
bring to the forefront a variety of questions about language that are
also of primary concern for linguists, computer scientists, psychol-
ogists and philosophers. For instance, let us consider the following
entailments:

(2.5) a. Sue only drank half a glass of wine⇒ Sue drank less than
one glass of wine.

b. A dog entered the room⇒ An animal entered the room.
c. John picked a blue card from the pack ⇒ John picked a

card from the pack.

The entailments in (2.5) illustrate different aspects of language: mea-
sures and quantity in (2.5a); word meaning relations in (2.5b); adjec-
tivemodification in (2.5c). These kinds of entailment are very common
in natural language, but they were not systematically treated in classical
logic. By studying the whole spectrum of entailments in ordinary
language, formal semantics addresses various aspects of linguistic
phenomena and their connections with human reasoning. Ideas from
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logic are borrowed insofar as they are useful for analyzing natural
language semantics. More specifically, later in this book we adopt
concepts from type theory and higher-order logics that have proved
especially well suited for studying entailment in natural language. As
we shall see, incorporating these concepts allows formal semantics to
develop important connections with theories about sentence structure
and word meaning.
Among the phenomena of reasoning in language, entailment is

especially central because of its remarkable stability. In other instances
of reasoning with natural language, conclusions are not fully sta-
ble, since they may rely on implicit assumptions that emanate from
context, world knowledge or probabilistic principles. These lead to
meaning relations between sentences that are often fuzzier and less
regular than entailments. Consider for instance the following two
sentences:

(2.6) Tina is a bird.

(2.7) Tina can fly.

Sentence (2.7) is a likely conclusion from (2.6), and most speakers
will not hesitate too much before drawing it. However, upon some
reflection we can come up with many situations in which sentence
(2.6) truthfully holds without supporting the conclusion in (2.7).
Think of young birds, penguins, ostriches, or birds whose wings are
broken. Thus, in many natural discourses speakers may accept (2.6)
while explicitly denying (2.7):

(2.8) Tina is a bird, but she cannot fly, because ... (she is too young to
fly, a penguin, an ostrich, etc.).

We classify the inferential relation between sentences like (2.6) and
(2.7) as defeasible, or cancelable, reasoning. By contrast, entailments
are classified as indefeasible reasoning: all of the assumptions that are
needed in order to reach the conclusion of an entailment are explicitly
stated in the premise. For instance, the entailment (2.1)⇒(2.2) cannot
be easily canceled by adding further information to the premise.
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A discourse like (2.9) below that tries to contradict sentence (2.2) after
asserting (2.1) will normally be rejected as incoherent.

(2.9) #Tina is tall and thin, but she is not thin.

A speaker who wishes to support this incoherent line of reasoning
would need to resort to self-contradictory or otherwise counter-
communicative arguments like “because I am lying when saying that
Tina is tall and thin”, or “because I am not using English in the ordi-
nary way”. The incoherence of (2.9) is marked by ‘#’. Sentence (2.9) is
intelligible but nonsensical: its communicative value is dubious. This
sort of incoherent, contradictory sentence should be distinguished
from ungrammaticality. The latter notion is reserved for strings of
words that clearly do not belong to natural language, e.g. is and tall
Tina thin. Such ungrammatical strings are standardly marked by ‘*’.
Taking stock, we adopt the following notion of entailment:

Given an indefeasible relation between two natural language sen-
tences S1 and S2, where speakers intuitively judge S2 to be true
whenever S1 is true, we say that S1 entails S2, and denote it S1⇒S2.

Just as intuitive judgments about sentence grammaticality have be-
come a cornerstone in syntactic theory, intuitions about entailments
between sentences are central for natural language semantics. As in
other linguistic domains, we aim to build our semantic theory on
judgments that do not rely on training in linguistics, logic or other
scholarly disciplines. Entailments that robustly appear in ordinary
reasoning give us a handle on common semantic judgments about
language.
Entailments between sentences allow us to define the related notion

of equivalence. For instance, the sentence (2.1)=Tina is tall and
thin and the sentence S=Tina is tall and Tina is thin are classi-
fied as equivalent, because they entail each other. We denote this
equivalence (2.1)⇔S . For more examples of equivalent sentences see
Exercise 4. Another classical semantic notion is contradiction, which
was lightly touched upon in our discussion of sentence (2.9) above. See
Exercise 7 for some elaboration on contradictions and their relations
to entailment.
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MODELS AND THE TRUTH-CONDITIONALITY
CRITERION

With this background on entailments in natural language, let us now
see how formal semantics accounts for them. As mentioned above,
formal semantics relies on some central principles from traditional
philosophical and mathematical logic. Most versions of formal seman-
tics account for entailments using theoretical structures that are called
models. Models are mathematical abstractions that we construct and
use as descriptions of hypothetical situations. We call these situations
“hypothetical” because they do not necessarily correspond to actual
situations in the world. Some of our models may agree with how
we look at the world, but some of them will also describe situations
that are purely imaginary. For instance, the models that we use for
analyzing the sentence Tina is thin will describe situations in which
Tina is thin, as well as situations where she is not thin. If you know
a woman called Tina and you think that she is thin, you will consider
the first models as closer to reality than the others. However, this is
irrelevant for our purposes. For the sake of our semantic analysis we
consider all the models that we construct as hypothetical. As such, they
are all equal.
In order to encode hypothetical situations in models, we let models

link words to abstract mathematical objects. For instance, since we
want our models to describe situations in relation to the word Tina, we
let each model contain some or other abstract entity that is associated
with this word. Similarly, when we analyze the words tall and thin, we
also let our models associate these adjectives with abstract objects. In
this chapter we let models link adjectives to sets of entities. Thus, in
each model we include a set of entities that is associated with the word
tall. These are the abstract entities in that model that are considered
tall in the hypothetical situation that the model describes. Similarly,
each model associates the adjective thin with the set of entities that are
considered thin in the situation.
In addition to dealing with words, models also treat complex ex-

pressions: phrases and sentences that are made up of multiple words.
For example, let us consider the complex phrase tall and thin. Just
like we did in the case of simple adjective words, we let each model
associate this phrase with a set of entities. These are the entities that
are considered to be tall and thin in the hypothetical situation that the
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model describes. Other words, phrases and sentences are associated
with all sorts of abstract mathematical objects. The words, phrases
and sentences that we treat are collectively referred to as expressions.
In each of our models, we associate abstract objects with all the
expressions that we treat.
Summarizing, we state our general conception of models as follows:

A model is an abstract mathematical structure that we construct
for describing hypothetical situations. Models are used for analyzing
natural language expressions (words, phrases and sentences) by asso-
ciating them with abstract objects.

Associating language expressions with abstract objects is part and
parcel of a model definition. For instance, one of the models that we
use, call it M, may associate the word Tina with some abstract entity
a. In technical terms, we say that in the model M, the word Tina
denotes the entity a. In all the models that we study in this chapter,
the name Tina denotes some or other entity, and the adjective tall
denotes some or other set of entities. Given a particular model M,
we refer to those denotations as [[Tina]]M and [[tall]]M , respectively.
Similarly, [[tall and thin]]M is the denotation of the phrase tall and
thin in the model M. In general, we adopt the following notational
convention:

Let exp be a language expression, and let M be a model. We write
[[exp]]M when referring to the denotation of exp in the model M.

To have a more concrete view on models and denotations, let us
consider Figure 2.1. This figure describes two models, each of them
containing three entities: a, b and c. In model M1, the name Tina
denotes the entity a, and the adjective thin denotes the set {a, b}. In
model M2, the denotation of Tina is again the entity a, but this time,
the set denotation of thin is the set {b, c}. We formally write it as
follows:

[[Tina]]M1 = a [[thin]]M1 = {a, b}
[[Tina]]M2 = a [[thin]]M2 = {b, c}
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M1 M2
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thin
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Figure 2.1 Models map words and other expressions to abstract
mathematical objects. M1 and M2 are models with an entity denotation
of Tina and a set denotation of thin. The arrows designate the mappings
from the words to their denotations, which are part of the model
definition.

Figure 2.1 only illustrates the assignment of denotations to simple
words. However, as mentioned above, models are used in order
to assign denotations to all expressions that we analyze, including
complex expressions that are made of multiple words. In particular,
models specify denotations for sentences. There are various ideas about
what kinds of abstract objects sentences should denote. In most of this
book, we follow the traditional assumption that sentences denote the
two abstract objects known as truth-values, which are referred to as
‘true’ and ‘false’. In more technical notation, we sometimes write ‘�’
for ‘true’ and ‘⊥’ for ‘false’. Yet another convention, which is most
convenient for our purposes, is to use the number 1 for ‘true’ and the
number 0 for ‘false’.
Models assign truth-value denotations to sentences on the basis of

the denotations they assign to words. For instance, the way we use
models such as M1 and M2 in Figure 2.1 respects the intuition that
the sentence Tina is thin is true in M1 but false in M2. Thus, we will
make sure that M1 and M2 satisfy:

[[Tina is thin]]M1 = 1 [[Tina is thin]]M2 = 0

As we move on further in this chapter, we see how this analysis is
formally obtained.
The truth-value denotations that models assign to sentences are the

basis for our account of entailment relations. Let us return to the
entailment between the sentence Tina is tall and thin (=(2.1)) and the
sentence Tina is thin (=(2.2)). When discussing this entailment, we
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informally described our semantic judgment by saying that whenever
sentence (2.1) is true, sentence (2.2) must be true as well. By contrast,
we observed that the intuition does not hold in the other direction:
when (2.2) is true, sentence (2.1) may be false. For this reason we
intuitively concluded that sentence (2.2) does not entail (2.1). When
analyzing (non-)entailment relations, we take into account these pre-
theoretical intuitions about ‘truth’ and ‘falsity’. We analyze an entail-
ment S1⇒S2 by introducing the following requirement: if a model
lets S1 denote true, it also lets S2 denote true. When truth-values are
represented numerically, this requirement means that if a model lets
S1 denote the number 1, it also lets S2 denote 1.
Specifically, in relation to the entailment (2.1)⇒(2.2), we require

that for every model where sentence (2.1) denotes the value 1, sentence
(2.2) denotes 1 as well. Another way to state this requirement is to
say that in every model, the truth-value denotation of (2.1) is less than
or equal to the denotation of (2.2). Let us see why this is indeed an
equivalent requirement. First, consider models where the denotation
of (2.1) is 1. In such models, we also want the denotation of (2.2)
to be 1. Indeed, requiring [[(2.1)]]≤[[(2.2)]] boils down to requiring
that [[(2.2)]] is 1: this is the only truth-value for (2.2) that satisfies
1≤[[(2.2)]]. Further, when we consider models where the denotation
of (2.1) is 0, we see that such models trivially satisfy the requirement
0≤[[(2.2)]], independently of the denotation of (2.2).
To conclude: saying that [[(2.2)]] is 1 in every model where [[(2.1)]]

is 1 amounts to saying that [[(2.1)]]≤[[(2.2)]] holds in every model.
Accordingly, we translate our intuitive analysis of the entailment
(2.1)⇒(2.2) to the formal requirement that [[(2.1)]]≤[[(2.2)]] holds in
every model. More generally, our aim is to account for entailments
using the ≤ relation between truth-values in models. This leads to a
central requirement from formal semantic theory, which we call the
truth-conditionality criterion (TCC):

A semantic theory T satisfies the truth-conditionality criterion
(TCC) for sentences S1 and S2 if the following two conditions are
equivalent:
(I) Sentence S1 intuitively entails sentence S2.
(II) For all models M in T: [[S1]]M ≤ [[S2]]M.
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ENTAILMENT

S1⇒ S2
TCC←→

MODELS

[[S1]]M1 ≤ [[S2]]M1

[[S1]]M2 ≤ [[S2]]M2

[[S1]]M3 ≤ [[S2]]M3

. . .

Figure 2.2 The TCC matches judgments on entailment with the ≤
relation. When the entailment S1⇒S2 holds, the ≤ relation is required
to hold between the truth-value denotations of S1 and S2 in all the
models of the theory.

Table 2.1: Does x ≤ y hold?
y=0 y=1

x=0 yes yes
x=1 no yes

Clause (I) of the TCC postulates an entailment between sentences S1
and S2. This is an empirical statement about the semantic intuitions
of native speakers. By contrast, clause (II) is a statement about our
theory’s treatment of sentences S1 and S2: the formal models we use
indeed rely on intuitive notions of ‘truth’ and ‘falsity’, but they are
purely theoretical. By imposing a connection between the empirical
clause (I) and the theoretical clause (II), the TCC constitutes an
adequacy criterion for semantic theory.
By way of recapitulation, Figure 2.2 illustrates how the TCC em-

ulates the intuitive relation of entailment (‘⇒’) between sentences,
by imposing the ≤ relation on sentence denotations in the models
that our theory postulates. Table 2.1 summarizes how the requirement
x ≤ y boils down to requiring that if x is 1, then y is 1 as well. Readers
who are familiar with classical logicmay observe the similarity between
Table 2.1 and the truth table for implication. We will get back to this
point in Chapter 5.
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ARBITRARY AND CONSTANT DENOTATIONS
We have introduced the TCC as a general criterion for the empirical
adequacy of formal semantics. Obviously, we want our theory to
respect the TCC for as many intuitive (non-)entailments as possible.
This will be our main goal throughout this book. Let us start our
investigations by using the TCC to explain our favorite simple en-
tailment: (2.1)⇒(2.2). We want to make sure that the models that
we construct respect the TCC for this entailment. Thus, we need to
define whichmodels we have in our theory, and then check what truth-
values each model derives for sentences (2.1) and (2.2). The models
that we define fix the denotations of words like Tina, tall and thin. In
technical jargon, words are also called lexical items. Accordingly, we
will refer to the denotations of words as lexical denotations. Based on
the lexical denotations that models assign to words, we will define the
truth-values assigned to sentences containing them. To do that, let us
explicitly state the assumptions that we have so far made about our
models:

1. In every model M, in addition to the two truth-values 0 and 1, we
have an arbitrary non-empty set E M of the entities in M. We refer
to this set as the domain of entities in M. For instance, in models
M1 and M2 of Figure 2.1, the entity domains E M1 and E M2 are the
same: in both cases they are the set {a, b, c}.

2. In any model M, the proper name Tina denotes an arbitrary entity
in the domain E M (cf. Figure 2.1).

3. In any model M, the adjectives tall and thin denote arbitrary sets of
entities in E M (cf. Figure 2.1).

When the model is understood from the context, we often write
E for the domain of entities, suppressing the subscript M. We say
that the domains of entities in the models we define are ‘arbitrary’
because we do notmake any special assumptions about them: any non-
empty set may qualify as a possible domain of entities in some model.
Accordingly, we also treat the entity denotation of Tina as an arbitrary
element of E . Whether this entity corresponds to a real-life entity like
Tina Turner or Tina Charles is not our business here. We are not even
insisting that the entity for Tina has ‘feminine’ properties, as might be
suitable for a feminine English name. All we require is that in every
model, the name Tina denotes some entity. In a similar fashion, we let
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the adjectives tall and thin denote arbitrary sets in our models. This
arbitrariness is of course an over-simplification, but it will do for our
purposes in this book. Here we study the meanings of words only to
the extent that they are relevant for the study of entailment. Of course,
much more should be said on word meanings. This is the focus of
research in lexical semantics, which deals with many other important
aspects of wordmeaning besides their contribution to entailments. For
some readings on this rich domain, see some recommendations at the
end of this chapter.
From now on we will often use words in boldface when referring to

arbitrary denotations. For instance, by ‘tina’ we refer to the element
[[Tina]] of E that is denoted by the word Tina in a given model.
Similarly, ‘tall’ and ‘thin’ are shorthand for [[tall]] and [[thin]]: the sets
of entities in E denoted by the words tall and thin. Putting words
in boldface in this way is a convenience that spares us the use of the
double brackets [[]].Whenwewant to bemore specific about themodel
M, we write tinaM or [[Tina]]M .
In our discussion of Figure 2.1, we noted that the sentence Tina is

thin is intuitively true in M1 but false in M2. We can now see how this
intuition is respected by our precise definition of models. To achieve
that, wemake sure that the sentences Tina is thin reflects amembership
assertion. We only allow the sentence to be true in models where the
entity denoted by Tina is a member of the set denoted by the adjective.
Therefore, we analyze the word is as denoting a membership function.
This is the function sending every entity x and set of entities A to the
truth-value 1 if x is an element of A. If x is not an element of A,
the membership function sends x and A to the truth-value 0. When
referring to the membership function that the word is denotes, we use
the notation ‘IS’. Formally, we define IS as the function that satisfies the
following, for every entity x in E and every subset A of E :

IS(x, A)=
{
1 if x ∈ A
0 if x �∈ A

For example, let us reconsider the models M1 and M2 that we saw in
Figure 2.1. With our new assumption on the denotation of the word
is, we now get:

In M1: [[Tina is thin]] = IS(tina, thin)= IS(a, {a, b})= 1 since a ∈ {a, b}
In M2: [[Tina is thin]] = IS(tina, thin)= IS(a, {b, c})= 0 since a �∈ {b, c}
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Thus, in M1 the sentence Tina is thin denotes 1, and in M2 it denotes 0,
as intuitively required. More generally, in (2.10) below we summarize
the denotation that the sentenceTina is thin is assigned in everymodel:

(2.10) [[Tina is thin]]M = IS(tina, thin) =
{
1 if tina ∈ thin
0 if tina �∈ thin

When referring to denotations, we have made a difference between
the font for the denotations tina, tall and thin, and the font for
the denotation IS. There is a reason for this notational difference.
As mentioned, the denotations of the words Tina, tall and thin are
arbitrarily chosen by our models. We have presented no semantic
‘definition’ for the meaning of these words. Models are free to let the
name Tina denote any of their entities. Similarly, the adjectives tall
and thinmay denote any of set of entities. By contrast, the denotation
of the word is has a constant definition across models: in all models
we define this denotation as the membership function. We will have
more to say about this distinction between denotations in Chapter 3.
In the meantime, let us summarize our notational conventions:

Let blik be a word in a language. When the denotation [[blik]]M of
blik is arbitrary, we mark it blik. When it has a constant definition
across models we mark it BLIK.

ANALYZING AN ENTAILMENT
In order to analyze the entailment (2.1)⇒(2.2), let us now also look
at the denotation of the sentence Tina is tall and thin. Since we let the
sentenceTina is thin denote the truth-value of amembership assertion,
it is only natural to analyze the sentence Tina is tall and thin in a
similar way. Thus, we want this sentence to be true if the entity tina
is a member of a set denoted by the conjunction tall and thin. But
what should this set be? The same semantic intuitions that supported
the entailment (2.1)⇒(2.2) can guide us to the answer. Obviously, for
Tina to be tall and thin, she has to be tall, and she also has to be thin.
And vice versa: if Tina is tall, and if in addition she is also thin, there
is no way to avoid the conclusion that she is tall and thin. Elementary
as they are, these considerations suggest that if we are going to let the
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conjunction tall and thin denote a set, it had better be the intersection
of the two sets for the adjectives tall and thin. Formally, we write:

[[tall and thin]]M = [[tall]]M ∩ [[thin]]M = tall∩ thin.
Thus, we define the denotation of the word and to be the intersection
function over E . This is the function AND that satisfies the following,
for all subsets A and B of E :

AND(A, B) = A∩ B

= the set of all members of E that are both in A and in B

Now there is also no doubt about the denotation of the sentence Tina
is tall and thin. Using the same kind of membership assertion that we
used for the sentence Tina is thin, we reach the following denotation
for this sentence:

(2.11) [[Tina is tall and thin]]M = IS( tina, AND(tall,thin) )

=
{
1 if tina ∈ tall∩ thin
0 if tina �∈ tall∩ thin

In words: in every given model M, the sentence Tina is tall and thin
denotes the truth-value 1 if the entity tina is in the intersection of the
sets tall and thin; otherwise the sentence denotes 0.
We have now defined the truth-value denotations that the sentences

Tina is tall and thin and Tina is thin have in every model. These are
the truth-values specified in (2.11) and (2.10), respectively. Therefore,
we can use the TCC in order to verify that our theory adequately
describes the entailment between the two sentences. As a matter of
set theory, the truth-value (2.10) must be 1 if the truth-value in (2.11)
is 1: if the entity tina is in the intersection tall∩ thin, then, by
definition of intersection and set membership, it is also in the set thin.
This set-theoretical consideration holds for all possible denotations
tina, tall and thin. Thus, it holds for all models. This means that
our assignment of denotations to sentences (2.1) and (2.2) has been
successful in meeting the TCC when accounting for the entailment
between them.
At this point you may feel that the games we have been playing

with entities, sets, functions and truth-values are just restating obvious
intuitions. This is perfectly true. Indeed, there is reason to feel satisfied
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about it. Semantic models provide us with a general and mathemati-
cally rigorous way of capturing common intuitions about entailment.
A model is a small but precise description of a particular situation
in which different sentences may be true or false. By specifying the
denotations of the words Tina, tall and thin, a model describes, in an
abstract way, who Tina is, and what the tall entities and thin entities
are. As we have seen, and as we shall see in more detail throughout
this book, models also take care of more “logical” denotations for
words like and and is. This assignment of denotations to lexical items
enables us to systematically assign denotations to complex expressions,
including conjunctive phrases like tall and thin and sentences like
Tina is tall and thin. If we are successful in assigning denotations to
such complex expressions, we may be reasonably hopeful that our
strategies will also be useful for much higher levels of hierarchical
embedding (e.g. Dylan’s description of the sad-eyed lady on page
1). In fact, by defining truth and falsity in models for two simple
sentences, we have been forced to dive rather deep into the meanings
of conjunction, predication, adjectives and proper names, and the ways
in which they combine with each other. As we shall see in the fol-
lowing chapters, much of our elementary set-theoretical maneuvering
so far is valuable when tackling more advanced questions in formal
semantics.
When looking at a class of models that is heterogenous enough, we

can “see”, so to speak, whether one sentence must denote 1 when
another sentence does. Let us get a feel of what is going on in the
simple example we have been treating, by playing a little with some
concrete models. Let us consider Table 2.2, which summarizes our
assumptions so far and illustrates them concretely in the three models
described in the rightmost columns. Each of these models has the set
E = {a, b, c, d} as its domain of entities. In model M1, the word Tina
denotes the entity a, and the word thin denotes the set of three entities
{a, b, c}. Model M2 assigns different denotations to these words: Tina
denotes the entity b, and thin denotes the set {b, c}. In model M3, the
denotation of Tina remains the entity b, as in model M2, while the
adjective thin denotes a set of three entities: {a, c, d}. Accordingly, the
truth-values in the three models for the sentence Tina is thin are 1, 1
and 0, respectively. Similarly, using the assumed denotations for tall,
we can also verify that the truth-values in these three models for the
sentence Tina is tall and thin are 0, 1 and 0, respectively. Satisfying
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Table 2.2: Denotations for expressions in the entailment (2.1)⇒(2.2).

Expression Cat. Type Abstract denotation
Denotations in
example models with
E = {a, b, c, d}
M1 M2 M3

Tina PN entity tina a b b
tall A set of entities tall {b, c} {b, d} {a, b, d}
thin A set of entities thin {a, b, c} {b, c} {a, c, d}
tall and thin AP set of entities AND(tall, thin) {b, c} {b} {a, d}
Tina is thin S truth-value IS(tina, thin) 1 1 0
Tina is tall and thin S truth-value IS(tina, AND(tall, thin)) 0 1 0

Categories: PN = proper name; A = adjective; AP = adjective phrase; S = sentence.

the TCC means that the latter value must be less than or equal to the
former value, which is indeed the case.
Model M1 in Table 2.2 shows that the TCC is also met for the

non-entailment (2.2) �⇒(2.1). This model makes sentence (2.2) true
while making (2.1) false. This means that our theory respects the
requirement in the TCC that, if an entailment is missing, then at
least one model does not satisfy the ≤ relation between the truth-
values of the two sentences in question. In formula, model M1 satis-
fies [[(2.2)]]M1 �≤[[(2.1)]]M1 . Furthermore, model M1 also respects our
intuition of why an entailment is absent in this case. As pointed out
above, if somebody tried to convince you that Tina must be tall and
thin just because she happens to be thin, you might reasonably object
by pointing out the possibility that Tina may not be tall. Model M1
highlights this possibility.

DIRECT COMPOSITIONALITY
So far we have been paying little attention to sentence structure.
However, as mentioned in the introduction, one of our main interests
is how meanings of natural language expressions are related to the
syntactic forms of these expressions. For instance, let us consider
the following two sentences:

(2.12) a. All pianists are composers, and Tina is a pianist.
b. All composers are pianists, and Tina is a pianist.
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A. B.

S

Tina is AP

tall and thin

IS(tina, AND(tall, thin))

tina IS AND(tall, thin)

tall AND thin

Figure 2.3 Syntactic structure and compositional derivation of denota-
tions for Tina is tall and thin.

Sentences (2.12a) and (2.12b) contain the same words but in a
different order. Consequently, the meanings of these two sentences are
rather different. In particular, while (2.12a) entails the sentence Tina is
a composer, sentence (2.12b) does not. The meaning of an expression
is not a soup made by simply putting together the meanings of words.
Rather, the order of the words in a complex expression and the
hierarchical structures that they form affect its meaning in systematic
ways. Since entailment relations between sentences reflect an aspect
of their meanings, entailments are also sensitive to sentence structure.
In the framework that we assume here, entailments are explained
by appealing to model-theoretic denotations. Therefore, the question
we are facing is: how are syntactic structures used when defining
denotations of complex expressions? The general principle known as
compositionality provides an answer to this question. According to
this principle, the denotation of a complex expression is determined by
the denotations of its immediate parts and the ways they combine with
each other. For instance, in our analysis of the entailment (2.1)⇒(2.2),
we treated the denotation of sentence (2.1) (Tina is tall and thin)
as derived step by step from the denotations of its parts: the name
Tina, the verb is, and the adjective phrase tall and thin. Figure 2.3
summarizes our compositional analysis.
Figure 2.3A shows the syntactic part-whole relations that we assume

for the sentence. In this structure we group together the string of words
tall and thin into one adjectival phrase, which we denote AP. More
generally, tree diagrams as in Figure 2.3A represent the sentence’s
constituents: the parts of the sentence that function as grammatical
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units. In this case, besides the sentence itself and the words it contains,
the only syntactic constituent assumed is the adjectival phrase tall
and thin. Figure 2.3B describes how denotations of constituents are
derived from the denotations of their immediate parts. The denotation
of the adjectival phrase tall and thin is determined by combining the
denotations of its immediate parts: tall, AND and thin. The denotation
of the whole sentence is determined by the denotations of its parts:
tina, IS, and AND(tall, thin). What we get as a result is the truth-value
denotation in (2.11). The way in which this truth-value is derived
is sanctioned by the compositionality principle on the basis of the
structure in Figure 2.3A. Note that compositionality would not allow
us to derive the truth-value in any other order. For instance, on
the basis of the structure in Figure 2.3A, we would not be able to
compositionally define the denotation of the whole sentence directly
on the basis of the denotations of the adjectives tall and thin. These
words are not among the sentence’s immediate parts. Therefore,
according to the compositionality principle, they can only indirectly
affect its denotation.
Summarizing, we have adopted the following general principle, and

seen how we follow it in our analysis of the entailment (2.1)⇒(2.2).

Compositionality: The denotation of a complex expression is deter-
mined by the denotations of its immediate parts and the ways they
combine with each other.

A word of clarification should be added here about the role of
semantic formulas in our analysis. Consider for instance the formula
IS( tina, AND(tall,thin) ) that we derive in Figure 2.3B. This formula is
not a representation of some abstract meaning, independent of the
sentence structure. To the contrary, this formula is almost com-
pletely identical to the structure in Figure 2.3A, while adding only
the necessary semantic details for describing how the denotation is
derived for sentence (2.1). Most importantly, the formula specifies the
function-argument relations between the denotations of the sentence
constituents. Thus, the formula IS(tina, AND(tall, thin)) is simply the
syntactic bracketing [Tina is [tall and thin]] imposed by the tree in
Figure 2.3A, with twomodifications: (i) symbols for words are replaced
by symbols of their denotations; and (ii) symbols for denotations may
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be shuffled around in order to follow the convention of putting
function symbols to the left of their arguments. This respects the
highly restrictive nature of compositional analysis: the process only
requires a syntactic structure, denotations of lexical items, and a way
to glue the denotations together semantically. The real “semantic
action” is within these three components of the theory, not within
the semantic formulas we use. This version of compositionality is
sometimes referred to as direct compositionality . In this paradigm,
denotations in themodel are directly derived from syntactic structures,
with no intermediate level of semantic or logical representation.

STRUCTURAL AMBIGUITY
Direct compositionality helps to clarify an important issue in linguistic
theory: the phenomenon of structural ambiguity . Consider the follow-
ing sentence:

(2.13) Tina is not tall and thin.

Let us consult our intuitions with respect to the following question:
does (2.13) entail sentence (2.2) (=Tina is thin) or not? This is
much harder to judge than in the case of the entailment (2.1)⇒(2.2).
However, there is a common intuition that (2.13) entails (2.2), but
only under particular usages. A speaker who wishes to convey the
entailment (2.13)⇒(2.2) can do so by stressing the prosodic boundary
after the word tall:

(2.14) Tina is not tall, and thin.

Without such an intonational pattern, a speaker can also use (2.13)
felicitously for describing a situation where Tina is not thin. For
instance, if we tell Sue that Tina is tall and thin, she may use (2.13)
for denying the assertion, by saying something like:

(2.15) Come on, that isn’t true! Tina is not tall and thin: although she
is indeed very tall, you couldn’t possibly think of her as thin!

In this reaction, the way in which Sue uses sentence (2.13) clearly
indicates that she does not consider it to entail sentence (2.2).
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A. B.

S

Tina is AP

AP

not tall

and thin

S

Tina is AP

not AP

tall and thin

Figure 2.4 Structural ambiguity.

Because the two usages of sentence (2.13) show differences between
its “entailment potential”, we say that it is ambiguous. The “comma
intonation” in (2.14) disambiguates the sentence. Another way of dis-
ambiguating sentence (2.13) is illustrated in (2.15), using the context
of our conversation with Sue. In the former disambiguation, sentence
(2.13) is used for entailing (2.2); in the latter disambiguation, the
entailment from (2.13) to (2.2) is blocked. We refer to the two possible
usages of sentence (2.13) as readings of the sentence. One reading
entails (2.2), the other does not. Another way to describe the “two
readings” intuition is to note that sentence (2.13) may be intuitively
classified as both true and false in the same situation. Consider a
situation where Tina is absolutely not thin. Context (2.15) highlights
that sentence (2.13) may be used as true in this situation. By contrast,
(2.14) highlights that the sentence also has the potential of being false
in the same situation.
The striking thing about the ambiguity of sentence (2.13) is the ease

with which it can be described when we assume the compositionality
principle. Virtually all syntactic theories analyze sentence (2.13) as
having two different syntactic structures, as illustrated in Figure 2.4.
A simple phrase structure grammar that generates the structural
ambiguity in Figure 2.4 is given in (2.16) below:

(2.16) AP−→ tall, thin, ...
AP−→ AP and AP
AP−→ not AP



March 8, 2016 Time: 03:51pm chapter2.tex

32 ELEMENTS OF FORMAL SEMANTICS

In words: an adjective phrase (AP) can be a simple adjective, or a
conjunction of two other APs, or a negation of another AP. These rules
derive both structures in Figure 2.4. When a grammar generates more
than one structure for an expression in this way, we say that it treats the
expression as structurally ambiguous. You may think that the syntactic
ambiguity in Figure 2.4 is by itself already an elegant account of the
semantic ambiguity in (2.13). However, there is a gap in this account:
why does it follow that the structural ambiguity of sentence (2.13)
also makes it semantically ambiguous? Compositionality provides the
missing link. When the two structures in Figure 2.4 are composition-
ally analyzed, we immediately see that the same model may assign
them two different truth-values. Concretely, let us assume that the
denotation of the negation word not in (2.13) is the complement
function, i.e. the function NOT that maps any subset A of E to its
complement set:

NOT(A)= A= E−A= the set of all themembers of E that are not in A

Figure 2.5 uses the denotation NOT for illustrating the compositional
analysis of the two structures in Figure 2.4. As Figure 2.5 shows, the
compositional process works differently for each of the two structural
analyses of sentence (2.13). For each of the denotations in Figures 2.5A
and 2.5B to be 1, different requirements have to be satisfied. This is
specified in (2.17a) and (2.17b) below:

(2.17) a. IS(tina, AND(NOT(tall), thin))= 1
This holds if and only if (iff) tina ∈ tall∩ thin.

b. IS(tina,NOT(AND(tall, thin)))= 1
This holds if and only if tina ∈ tall∩ thin.

For the denotation in Figure 2.5A to be 1, the requirement in (2.17a)
must hold. When this is the case, the entity tina is in the set thin,
hence the truth-value assigned to the sentence Tina is thin (=(2.2))
is also 1. Thus, our compositional analysis of the structure in Figure
2.4A captures the reading of sentence (2.13) that entails sentence (2.2).
By contrast, the denotation (2.17b) that is derived in Figure 2.5B does
not guarantee that the entity tina is in the set thin. This is because the
entity tinamay be in the complement set tall∩ thin while being in the
set thin, as long as it is not in the set tall. Specifically, consider a model
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Figure 2.5 Compositionality and ambiguity.

M where the entities tina, mary and john are t, m and j, respectively.
Suppose further that the model M assigns the following denotations to
the adjectives thin and tall:

thin= {t, j} tall= {m, j}
The model M represents a situation where Tina is thin but not tall,
Mary is tall but not thin, and John is both thin and tall. In this model,
the denotation in Figure 2.5B is the truth-value 1, but sentence (2.2)
denotes the truth-value 0. This means that our compositional analysis
of the structure in Figure 2.4B captures the reading of sentence (2.13)
that does not entail sentence (2.2).
In compositional systems, the structure that we assume for a sen-

tence strongly affects the entailment relations that our theory expects
for it. When a sentence is assumed to be structurally ambiguous, a
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compositional theory may assign different truth-values to its different
structures. As a result, the theory may expect different entailment rela-
tions to hold for the different structures. Accordingly, when speakers
are confronted with such a sentence, they are expected to experience
what we informally call “semantic ambiguity”, i.e. some systematic
hesitations regarding some of the sentence’s entailments. Structural
ambiguity is used as the basis of our account of semantic ambiguity.
Once we have acknowledged the possibility of ambiguity, we prefer
to talk about the entailments that sentence structures show, and of
the truth-values that are assigned to these structures. However, for
the sake of convenience, we often say that sentences themselves have
entailments and truth-values. This convention is harmless when the
sentences in question are unambiguous, or when it is clear that we are
talking about a particular reading.
Semanticists often distinguish the syntactic-semantic ambiguity of

sentences like (2.13) from another type of under-specification, which
is called vagueness. For instance, as we noted above, the sentence Tina
is tall says little about Tina and her exact height. In some contexts, e.g.
if Tina is known to be a Western female fashion model, the sentence
may be used for indicating that Tina is above 1.70 meters. In other
contexts, e.g. if Tina is known to be member of some community of
relatively short people, the sentence may indicate that Tina is above
1.50 meters. However, we do not consider these two usages as evidence
that the sentence must be assigned different structures with potentially
different denotations. Rather, we say that the sentence Tina is tall is
vague with respect to Tina’s height. Further specification of relevant
heights is dealt with by augmenting our semantic treatment with a
pragmatic theory . Pragmatic theories also consider the way in which
sentences are used, and the effects of context on their use. Pragmatic
theories aim as well to account for the way speakers resolve (or partly
resolve) vagueness in their actual use of language. Classical versions
of formal semantics did not aim to resolve vagueness, but current
semantic theories often interact with pragmatics and describe the way
context helps in resolving vagueness in actual language use.
Vagueness is very prominent in the way natural languages are used,

and most sentences may be vague in one way or another. For instance,
the sentence Sue is talking tells us nothing about Sue’s voice (loud or
quiet, high or low, etc.), what Sue is talking about, who the addressee
is, etc. However, upon hearing the sentence, we may often use the
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context to infer such information. For instance, suppose that we are
at a conference and know that Sue is one of the speakers. In such a
context, we may draw some additional conclusions about the subject
of Sue’s talk and the addressees. Hearers often use context in this
way to extract more information from linguistic expressions, and
speakers often rely on their hearers to do that. In distinction from
entailment, such inferential processes which are based on contextual
knowledge are defeasible. For instance, even when the context specifies
a particular conference where Sue is a speaker, wemay use the sentence
Sue is talking to indicate that Sue is talking to a friend over the
phone. What we saw in sentence (2.13) is quite different from the
defeasible reasoning that helps speakers and hearers in their attempts
to resolve vagueness of language utterances. The comma intonation
in (2.14) illustrated that one phonological expression of sentence
(2.13) indefeasibly entails sentence (2.2). This convinced us that both
structures that we assigned to sentence (2.13) are semantically useful.
The theoretical consideration was the key for our treatment of the
sentence as semantically ambiguous, more than any “pure” linguistic
intuition. Most decisions between ambiguity and vagueness involve
similar theoretical considerations, rather than the direct judgments of
a speaker’s linguistic intuitions.

FURTHER READING
Introductory: For methodological aspects of logical semantics, in-
cluding truth-values, entailment and compositionality, see Gamut
(1982, vol. 1). For more examples and discussion of structural
ambiguity, see Zimmermann and Sternefeld (2013, ch. 3), and,
in relation to vagueness, Kennedy (2011). For further discussion
of compositionality, see Partee (1984). On defeasible reasoning,
see Koons (2014). Levinson (1983) is an introductory textbook on
pragmatics. On lexical semantics, see Cruse (1986); Murphy (2010).
Meaning relations between words and concepts they refer to are
extensively studied in the literature on categorization. See Laurence
and Margolis (1999); Smith (1988); Taylor (1989) for introductions
of these topics.

Advanced: The idea that sentences denote truth-values, and more
generally, propositions (cf. Chapter 6), was proposed as central for
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communication (Austin 1962; Searle 1969). The centrality of entail-
ment and the model-theoretic TCC was also highlighted in seman-
tic theories of non-indicative sentences, especially interrogatives
(Groenendijk and Stokhof 1984, 2011). An alternative to the
model-theoretic approach to entailment is proof-theoretic semantics
(Schroeder-Heister, 2014). In its application to natural language,
proof-theoretic approaches are sometimes referred to as natural
logic. Some examples of work in this area are McAllester and
Givan (1992); Sánchez (1991); Moss (2010). Defeasible reasoning in
language is related to common sense reasoning in work in artificial
intelligence (Brewka et al. 1997) and cognitive psychology (Stenning
and van Lambalgen 2007; Adler and Rips 2008). For more on
pragmatic theories, and specifically the notion of implicature , see
Grice (1975); Geurts (2010); Chierchia et al. (2012). Much of this
work pays close attention to the meaning and use of the word
or (cf. the choice between ‘inclusive’ and ‘exclusive’ denotations
in Exercise 6). Direct compositionality in contemporary seman-
tics of natural language was first illustrated in Montague (1970a).
For further work on compositionality, see Montague (1970b);
Janssen (1983); Janssen with Partee (2011); Barker and Jacobson
(2007); Pagin and Westerståhl (2010); Werning et al. (2012).

EXERCISES (ADVANCED: 4, 5, 6, 7, 8, 9, 10)
1. In the following pairs of sentences, make a judgment on whether

there is an entailment between them, and if so, in which of the two
possible directions. For directions in which there is no entailment,
describe informally a situation that makes one sentence true and
the other sentence false. For example, in the pair of sentences (2.1)
and (2.2), we gave the judgment (2.1)⇒(2.2), and supported the
non-entailment (2.2) �⇒(2.1) by describing a situation in which
Tina is thin but not tall.
(i) a. Tina got a B or a C. b. Tina got a B.
(ii) a. Tina is neither tall nor thin. b. Tina is not thin.
(iii) a. Mary arrived. b. Someone arrived.
(iv) a. John saw fewer than four students. b. John saw no students.
(v) a. The ball is in the room. b. The box is in the room and the
ball is in the box.
(vi) a. Hillary is not a blond girl. b. Hillary is not a girl.
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(vii) a.Hillary is a blond girl. b. Hillary is a girl.
(viii) a. Tina is a Danish flutist and a physicist. b. Tina is a Danish
physicist and a flutist.
(ix) a. Tina is not tall but taller than Mary. b. Mary is not tall.
(x) a.Mary ran. b. Mary ran quickly.
(xi) a. I saw fewer than five horses that ran. b. I saw fewer than
five black horses that ran.
(xii) a. I saw fewer than five horses that ran. b. I saw fewer than
five animals that ran.
(xiii) a. Exactly five pianists in this room are French composers. b.
Exactly five composers in this room are French pianists.
(xiv) a. No tall politician is multilingual. b. Every politician is
monolingual.
(xv) a. No politician is absent. b. Every politician is present.
(xvi) a. At most three pacifists are vegetarians. b. At most three
vegetarians are pacifists.
(xvii) a. All but at most three pacifists are vegetarians. b. At most
three non-vegetarians are pacifists.

2. Each of the following sentences is standardly considered to be
structurally ambiguous. For each sentence suggest two structures,
and show an entailment that one structure intuitively supports and
the other structure does not:
(i) I read that Dan published an article in the newspaper.
(ii) Sue is blond or tall and thin.
(iii) The policeman saw the man with the telescope.
(iv) Rich Americans and Russians like to spend money.
(v) Sue told some man that Dan liked the story.
(vi) Dan ate the lettuce wet.
(vii) Sue didn’t see a spot on the floor.

3. Table 2.2 shows different denotations for the expressions in sen-
tences (2.1) and (2.2) in different models. We used these models
and the truth-values they assign to the sentences to support our
claim that the TCC explains the entailment (2.1)⇒(2.2), and the
non-entailment (2.2) �⇒(2.1).
The table on the right gives the expressions for the two analyses in
Figure 2.5 of the sentence Tina is not tall and thin.

a. Add to this table the missing denotations of these expressions
within the three models M1, M2 and M3.
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b. Verify that the truth-values that you assigned to the two analy-
ses in Figure 2.5 support the intuition that the analysis in
Figure 2.4A entails sentence (2.2), whereas the analysis in
Figure 2.4B does not entail (2.2).

Expression Denotations in example models with
E = {a, b, c, d}
M1 M2 M3

Tina a b b
tall {b, c} {b, d} {a, b, d}
thin {a, b, c} {b, c} {a, c, d}
not tall
[not tall] and thin
Tina is [[not tall] and thin]
tall and thin
not [tall and thin]
Tina is [not [tall and thin]]
Tina is thin

4.a. Mark the pairs of sentences in Exercise 1 that you considered
equivalent.

b. Give three more examples for pairs of sentences that you con-
sider intuitively equivalent.

c. State the formal condition that a semantic theory that satisfies
the TCC has to satisfy with respect to equivalent sentences.

5. Consider the ungrammaticality of the following strings of words.
(i) *Tina is both tall *Tina is both not tall *Tina is both tall or
thin
To account for this ungrammaticality, let us assume that the word
both only appears in adjective phrases of the structure both AP1
and AP2. Thus, a constituent both X is only grammatical when X
is an and-conjunction of two adjectives or adjective phrases; hence
the grammaticality of the string both tall and thin as opposed to the
ungrammaticality of the strings in (i), where X is tall, not tall and
tall or thin, respectively. We assume further that the denotation
of a constituent both AP1 and AP2 is the same as the denota-
tion of the parallel constituent AP1 and AP2 as analyzed in this
chapter.
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a. With these syntactic and semantic assumptions, write down the
denotations assigned to the following sentences in terms of the
denotations tina, tall, thin, IS and AND.
(ii) Tina is both not tall and thin. (iii) Tina is not both tall and
thin.

b. Explain why the denotations you suggested for (ii) and (iii)
account for the (non-)entailments (ii)⇒(2.2) and (iii) �⇒(2.2).

c. Consider the equivalence between the following sentences:
(iv) Tina is both not tall and not thin. (v) Tina is neither tall
nor thin.
Suggest a proper denotation for the constituent neither tall nor
thin in (v) in terms of the denotations tall and thin (standing
for sets of entities). Explain how the denotation you suggest,
together with our assumptions in items 5a and 5b above, explain
the equivalence (iv)⇔(v).

6. Consider the following sentence:
(i) Tina is [tall or thin].
The inclusive or exclusive analyses for the coordinator or in-
volve denotations that employ the union and symmetric difference
functions, respectively – the functions defined as follows for all
A, B ⊆ E :

ORin(A, B)= A∪ B
= the set of members of E that are in A, in B

or in both A and B

ORex(A, B) = (A− B)∪ (B − A)= (A∪ B)− (A∩ B)
= the set of members of E that are in A or B , but not

both A and B

Consider the following sentential structures:
(ii) Tina is not [tall and thin].
(iii) Tina is not [tall or thin].
(iv) Tina is [not tall] and [not thin].
(v) Tina is [not tall] or [not thin].

a. Assuming that the word or denotes the function ORin, write down
all the entailments that the TCC expects in (ii)–(v). Answer the
same question, but now assuming that or denotes ORex.
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b. Which of the two entailment patterns in 6a better captures your
linguistic intuitions about (ii)–(v)?

c. Under one of the two analyses of or, one of the structures (ii)–
(v) is expected to be equivalent to (i). Which structure is it, and
under which analysis? Support your answer by a set-theoretical
equation.

7. A pair of sentences (or readings/structures) is said to be treated as
contradictory if, whenever one of the sentences is taken to denote 1,
the other denotes 0. For instance, under the analysis in this chapter,
the sentencesMary is tall andMary is not tall are contradictory.

a. Give more examples for contradictory pairs of sentences/
structures under the assumptions of this chapter.

b. Consider the sentences The bottle is empty and The bottle is
full. Suggest a theoretical assumption that would render these
sentences contradictory.

c. Give an entailment that is accounted for by the same assump-
tion.

d. Show that according to our account, the denotation of the
sentence Tina is tall and not tall is 0 in any model. Such a
sentence is classified as a contradiction. Show more examples for
sentences that our account treats as contradictions.

e. Show that according to both our treatments of or in Exercise 6,
the denotation of the sentence Tina is tall or not tall is 1 in any
model. Such sentences are classified as tautological . Show more
examples for sentences that our account treats as tautological.

f. Show that the TCC expects that any contradictory sentence
entails any sentence in natural language, and that any tautology
is entailed by any sentence in natural language. Does this expec-
tation agree with your linguistic intuitions? If it does not, do you
have ideas about how the problem can be solved?

8. We assume that entailments between sentences (or structures)
have the following properties.
Reflexivity: Every sentence S entails itself.
Transitivity: For all sentences S1, S2, S3: if S1 entails S2 and S2

entails S3, then S1 entails S3.
Reflexivity and transitivity characterize entailments as a preorder
relation on sentences/structures.
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Consider the following entailments:
(i) Tina is tall, and Ms. Turner is neither tall nor thin⇒ Tina is
tall, and Ms. Turner is not tall.
(ii) Tina is tall, and Ms. Turner is neither tall nor thin⇒ Tina is
not Ms. Turner.
Show an entailment that illustrates transitivity together with en-
tailments (i) and (ii).

9. Consider the following structurally ambiguous sentence (=(ii)
from Exercise 2).
(i) Tina is blond or tall and thin.
a. For sentence (i), write down the denotations derived for the two

structures using the inclusive denotation of or from Exercise 6,
and the denotations tina, blond, tall and thin.

b. Give specific set denotations for the words blond, tall and thin
that make one of these denotations true (1), while making the
other denotation false (0).

c. Using the both . . . and construction from Exercise 4, find two
unambiguous sentences, each of which is equivalent to one of
the structural analyses you have given for sentence (i).

d. Under an inclusive interpretation of or, which of the two sen-
tences you found in 9c is expected to be equivalent to the
following sentence?
(ii) Tina is both blond and thin or both tall and thin.

e. Write down the set-theoretical equation that supports this equiv-
alence.

f. Using our assumptions in this chapter, find a structurally am-
biguous sentence whose two readings are analyzed as equivalent.

10. Consider the following entailment:
(i) Tina has much money in her bank account, and Bill has one
cent less than Tina in his bank account⇒ Bill has much money in
his bank account.
a. We adopt the following assumption: Tina has m cents in her

bank account, wherem is some positive natural number. Further,
we assume that entailment is transitive. Show that with these
assumptions, you can use the entailment pattern in (i) to support
an entailment with the following contradictory conclusion: Ms.
X has much money in her bank account, and Ms. X has no money
in her bank account.
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b. The ability to rely on transitivity of entailments to support such
absurd conclusions is known as the Sorites Paradox. Suggest a
possible resolution of this paradox by modifying our assump-
tions in 10a and/or our assumption that entailment relations are
transitive.

SOLUTIONS TO SELECTED EXERCISES
3.

Expression
Denotations in example
models with
E = {a, b, c, d}
M1 M2 M3

Tina a b b
tall {b, c} {b, d} {a, b, d}
thin {a, b, c} {b, c} {a, c, d}
not tall {a, d} {a, c} {c}
[not tall] and thin {a} {c} {c}
Tina is [[not tall] and thin] 1 0 0
tall and thin {b, c} {b} {a, d}
not [tall and thin] {a, d} {a, c, d} {b, c}
Tina is [not [tall and thin]] 1 0 1
Tina is thin 1 1 0

4.c. In any theory T that satisfies the TCC, sentences S1 and S2 are
equivalent if and only if for all models M in T , [[S1]]M=[[S2]]M .

5. a–b. The truth-values and the accounts of the (non-)entail-
ments are identical to the truth-values for the ambiguous
sentence (2.13) and the corresponding (non-)entailment from
(2.13) to (2.2).

c. [[neither tall nor thin]] = tall∩ thin=
AND(NOT(tall),NOT(thin))= [[both not tall and not thin]]

6.a. ORin: (iii)⇒(ii); (iv)⇒(ii); (ii)⇔(v); (iii)⇔(iv); (iii)⇒(v);
(iv)⇒(v).

ORex: (iv)⇒(ii); (v)⇒(ii); (iv)⇒(iii).
c. (v); the ORex analysis; (A− B)∪ (B − A)= (B − A)∪ (A−

B)= (A− B)∪ (B − A).
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7.a. Mary is neither tall nor thin, Mary is tall or thin; Mary is tall and
not thin, Mary is thin; Mary is [not tall] or [not thin], Mary is
tall and thin.

b. The adjectives empty and full denote disjoint sets: empty∩
full= ∅.

c. The bottle is empty⇒ The bottle is not full; The bottle is full⇒
The bottle is not empty.

8. Tina is tall, and Ms. Turner is not tall⇒ Tina is not Ms. Turner
(=(2.3a)).

9.a. IS(tina,AND(ORin(blond,tall),thin))
IS(tina,ORin(blond,AND(tall,thin)))

b. blond= {tina}; tall= thin= ∅
c. Tina is both blond or tall and thin.

Tina is blond or both tall and thin.
d. Tina is both blond or tall and thin.
e. (A∪ B)∩C = (A∩C )∪ (B ∩C )
f. Tina is blond and tall and thin

10.a. Consider the following general entailment scheme, based on (i):
(i ′)Ms. n hasmuchmoney inMs. n’s bank account andMs. n+ 1
has one cent less thanMs. n inMs. n+ 1’s bank account ⇒ Ms.
n+ 1 has much money inMs. n+ 1’s bank account.
We can deduce from (i ′), by induction on the transitivity of
entailment, that the following (unacceptable) entailment is in-
tuitively valid:
Ms. 1 has much money in her bank account, and Ms. 1 has m
cents in her bank account ⇒ Ms. m+ 1 has much money in her
bank account, andMs. m+ 1 has no cents in her bank account.



March 8, 2016 Time: 04:03pm chapter3.tex

CHAPTER 3

TYPES AND MEANING COMPOSITION

This chapter introduces some of the elementary mathematical
techniques in formal semantics. We systematize models by
organizing denotations in domains of different types. This general
type system allows models to describe sets, as well as relations and
other operators with multiple arguments. Denotations of complex
expressions are compositionally derived by a uniform semantic
operation of function application. The resulting semantic framework
is demonstrated by treating modified noun phrases (a tall man),
reflexive pronouns (herself) and coordinations between different
phrases. We avoid excess notation by defining denotations
set-theoretically and introducing lambda-style shorthand when
convenient.

This chapter systematically explains the way in which models allow
linguistic expressions to denote abstract objects. This will give us
a better insight into our theory of meaning and its relations with
syntactic forms. The first step is to describe how denotations are
organized in a model. Throughout Chapter 2, we used models freely to
describe different mathematical objects. For sentences we used truth-
values, for names like Tina we used entities, and for adjectives like
tall we used sets of entities. In addition we used the membership
operator for is, the intersection function for and, and the comple-
ment function for not. Using various mathematical objects in this
manner was useful for expository purposes. However, in general it
makes our compositionality principle hard to obtain. With each new
mathematical notion we introduce, we need to see how it composes
with other denotations. Toomuchmathematical freedom in the design
of the denotations makes it hard to describe how they operate in
different natural language expressions. Themodel structure that we in-
troduce in this chapter helps us to make semantic distinctions between

44
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language expressions within well-defined boundaries. In this way we
gain a better understanding of denotations in general, and see more
clearly how they interact with syntactic forms and with each other.
Some of the foundational themes in this chapter may seem intimi-

dating at first glance. However, none of them is especially hard. To help
you follow this chapter with ease, it is divided into four parts. Each of
these parts covers a general topic that leads naturally to the topic of the
next one. If you are a novice to the field, it is a good idea to solve the
exercises referred to at the end of each part before reading on.

• Part 1 (‘Types and domains’) classifies denotations in models into
different domains with different types. An important tool will be
functions that characterize sets.

• Part 2 (‘Denotations at work’) elaborates on the composition of de-
notations and on how typed denotations in a compositional setting
are translated to other set-theoretical concepts. An important tool
here is functions that operate on other functions.

• Part 3 (‘Using lambda notation’) introduces a short notation for
functions by using so-called ‘lambda-terms’. This helps us to define
and use denotations in our analyses.

• Part 4 (‘Restricting denotations’) is about denotations that are sys-
tematically restricted by our models.

The formal system that is developed throughout this chapter is founda-
tional to many works in formal semantics. For this reason, a technical
summary of this chapter is included as an appendix to this book
(page 239). This appendix gives readers a global overview of some of
the most basic technical assumptions in formal semantics.

PART 1: TYPES AND DOMAINS
One of the main goals of this book is to systematically describe
semantic distinctions between expressions as they are manifested in
entailments. In Chapter 2, the basic difference was between entity de-
notations of names and truth-value denotations of sentences. Further,
we used different functions as the denotations of the words is, and
and not. Now we would like to analyze denotations of many more
expressions. Therefore, it is high time to introduce some discipline into
our semantic framework. In order to deal with denotations in a more



March 8, 2016 Time: 04:03pm chapter3.tex

46 ELEMENTS OF FORMAL SEMANTICS

systematic way, we will formally specify the kind of mathematical ob-
jects that our models contain. In technical terms, such a specification
is referred to as a type system.

CHARACTERISTIC FUNCTIONS
Many of the denotations in formal semantics are functions of different
types. To illustrate a simple type of function in formal semantics, we
start with a maximally simple sentence:

(3.1) Tina smiled.

Intuitively, the intransitive verb smile should denote a set of entities,
just like the adjectives tall and thin in Chapter 2. We conceive of the
denotation of the word smiled in (3.1) as the set of entities that smiled
at a given moment in the past. For convenience, we often ignore the
tense in our discussion, and refer to the verb smiled in (3.1) as being
associated with “the set of smilers”. But now, how can sentence (3.1)
denote a truth-value? Unlike the sentence Tina is tall, sentence (3.1)
contains no word like is that may express the membership function.
Thus, the set for smiled and the entity for Tina do not immediately
give a truth-value in (3.1). To allow for their easy composition, we
should change perspectives slightly. We still use sets of entities for
describing denotations of intransitive verbs, but we do that indirectly
using functions. For example, suppose that we want to describe a
model with three entities: a, b and c. Suppose further that in the
situation that the model describes, entities a and c smiled and entity
b did not. In this case the set of smilers in the model, S , is the set {a, c}.
Instead of defining the denotation of the verb smile to be the set S itself,
we let it be a function that indirectly describes S . This function, which
we denote χS , is a function from entities to truth-values. For each of the
two elements in S , entities a and c, the function χS returns the truth-
value 1. For entity b, which is not in S , we let χS return 0. Thus, χS is
the following function:

(3.2) χS : a �→ 1 b �→ 0 c �→ 1

The functionχS is called the characteristic function of the set {a, c} over
the set of entities {a, b, c}. In general, we define characteristic functions
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as follows:

Let A be a subset of E . A function χA from E to the set {0, 1} is called
the characteristic function of A in E if it satisfies for every x ∈ E :

χA(x)=
{
1 if x ∈ A
0 if x �∈ A

For every element x of E , the truth-value χA(x) indicates whether x is
in A or not. Thus, χA uniquely describes a subset of E . The converse
is also true: for every subset of E there is a unique characteristic
function. This means that sets of entities and their characteristic
functions encode precisely the same information. For this reason we
often interchangeably talk about subsets of E or the functions that
characterize them. Specifically, in Chapter 4, we will refer by ‘ f ∗’
to the set characterized by a function f . Further, we will see that
functions can also be used for characterizing subsets of other domains
besides E .
For the time being, for the sake of brevity, we use the general term

‘characteristic functions’ when referring exclusively to functions that
characterize sets of entities in E . With this notion of characteristic
functions, we can easily describe how the composition process in
sentence (3.1) works. We assume that the denotation of the verb
smile is an arbitrary characteristic function. This corresponds to our
assumption that the verb smile can be associated with any set of
entities. Suppose that the denotation of smile is the function smile.
In our analysis of sentence (3.1), this function applies to the entity
denotation tina. In a formula, sentence (3.1) is analyzed as follows:

(3.3) smile(tina)

The expression in (3.3) describes the truth-value that the function
smile assigns to the entity tina. For example, in themodel we described
above, the denotation smile is the function χ S in (3.2). Suppose that
in the same model, the denotation tina is the entity a. As a result, the
denotation (3.3) of sentence (3.1) is χ S(a), which equals 1. If tina is
the entity b, the denotation (3.3) equals 0. This way, by letting the
denotation of the verb smile characterize a set, we directly obtain a
truth-value denotation for the sentence Tina smiled.
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In our analysis of sentence (3.1), we have been using three deno-
tations: an entity, a characteristic function and a truth-value. Each
of these denotations has a different ‘nature’, which we distinguish by
letting each of them come from a different domain. In Chapter 2, we
already let every model M contain a domain of entities EM and a
domain of truth-values {0, 1}. Now it is time to also introduce domains
for characteristic functions and other denotations. Each domain we
introduce comes with a label that we call a type. We use the letter e as
the type for the domain EM in a givenmodelM. Since we want tomake
an explicit connection between types and their respective domains, we
also use the notation ‘DM

e ’ (the e Domain in M) as an alternative name
for EM . As usual, when themodel M is clear from the context, we write
‘De ’ rather than ‘DM

e ’. The letter t is used as the type for the domain
of truth-values. Accordingly, this domain is denoted ‘Dt ’. Since we fix
Dt as the set {0, 1} in all models, we do not mention the model when
referring to this domain. In our example above, the name Tina takes its
denotation from De , and the sentence Tina smiled takes its denotation
from Dt . In short, we say that proper names are of type e and sentences
are of type t. We refer to the types e and t as the basic types of our type
system. The domains for these types, De and Dt , have been specified
with no relation to other domains. For this reason, we refer to them as
the basic domains in every model.
Now, we also want to define a type and a domain for characteristic

functions like the denotation of smile. These are defined on the basis
of the types e and t, and the domains De and Dt . Specifically, a
characteristic function in a model M is a function from the entities in
M to truth-values. Accordingly, we define the domain of characteristic
functions as follows:

(3.4) The domain of characteristic functions in a model M is the set
of all the functions from DM

e to Dt .

This domain is assigned the type ‘(et)’. We often omit outermost
parentheses, and refer to the same type as ‘et’. The corresponding
domain is accordingly referred to as ‘DM

et ’, or simply ‘Det ’.
In set theory, there is a common way to refer to the set of all

functions from a set A to a set B . Formally, we use ‘B A’ when referring
to this set of functions. Thus, the definition of the domain Det in (3.4)
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Table 3.1: Subsets of De and their characteristic functions in Det .

Subset of De Characteristic function in Det

∅ f1 : a �→ 0 b �→ 0 c �→ 0
{a} f2 : a �→ 1 b �→ 0 c �→ 0
{b} f3 : a �→ 0 b �→ 1 c �→ 0
{c} f4 : a �→ 0 b �→ 0 c �→ 1
{a, b} f5 : a �→ 1 b �→ 1 c �→ 0
{a, c} f6 : a �→ 1 b �→ 0 c �→ 1
{b, c} f7 : a �→ 0 b �→ 1 c �→ 1
{a, b, c} f8 : a �→ 1 b �→ 1 c �→ 1

can be formally written as follows:

Det = DDe
t

Functions in the Det domain, as well as expressions of type et, are often
referred to as one-place predicates over entities. Common alternative
notations for the type of one-place predicates are 〈e, t〉 and e→ t. In
this book we will stick to the shorter notation et.
All intransitive verbs like smile, dance, run etc. are assigned the

type et. In a given model, each of these verbs may have a different
denotation. For example, in the model we described above, the verb
smile denotes the function χ S , which characterizes the set S = {a, c}.
Other verbs like dance and runmay be associated with different sets in
the same model, and hence denote different characteristic functions.
For this reason, the domain DM

et in a given model M includes all the
functions from DM

e to Dt . To see which functions these are in our
example model, we first note that the domain De has eight subsets in
that model. These are: the empty set ∅; the singleton sets {a}, {b} and
{c}; the doubletons {a, b}, {a, c} and {b, c}; and the whole set De , i.e.
{a, b, c}. The domain Det includes the eight functions that characterize
these sets, as shown in Table 3.1. In such models, where the entities are
a, b and c, intransitive verbs like smile and runmust denote one of the
eight functions in Det . Specifically, the function f6 in Table 3.1 is the
same function χ S that we assumed as the denotation of the verb smile
in our example.
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MANY TYPES, MANY DOMAINS
We have seen how to define the domain Det on the basis of De and
Dt . As we consider more expressions besides intransitive verbs, we
will need more types and domains. The methods for defining them
are similar to the definition of Det . The construction of the type
et and the domain Det illustrates the general principle that we use
for defining new types and domains. We have defined the type (et)
as the parenthesized concatenation of the basic types e and t. The
corresponding domain Det was defined as the set of functions from
the domain De to the domain Dt . We employ the same method for
defining more new types and domains. Once two types τ and σ and
domains Dτ and Dσ are defined, they are used for defining another
type (τσ ) and a domain Dτσ , which consists of all the functions from
Dτ to Dσ . More types and domains are defined in a similar way, with
no upper limit on their complexity. Since the same method works
for defining all types and domains from the basic ones, we refer to
it as an inductive procedure. Specifically, types e, t and et, and their
respective domains, are used inductively for defining new types and
domains. For instance, when using type e twice, we get the type ee.
The respective domain, Dee , contains all the functions from De to
De . Further, combining the types e and et, we get the type e(et). The
corresponding domain De(et) is the set of functions from De to Det .
As we will see below, this e(et) domain is useful for denotations of
transitive verbs, i.e. verbs that have both a subject and a direct object.
Definition 1 below formally summarizes our inductive method for

specifying types:

Definition 1. The set of types over the basic types e and t is the
smallest set T that satisfies:
(i) {e, t} ⊆ T
(ii) If τ and σ are types in T then (τσ ) is also a type in T .

This inductive definition specifies the set of types as an infinite set T ,
including, among others, the types given in Figure 3.1.
For every model M, we specify a domain for each of the types in

the set T . Let us summarize how this is done. The domain DM
e is

directly specified by the model. The domain Dt is fixed as {0, 1} for
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e, t,
ee, tt, et, te,

e(ee), e(tt), e(et), e(te), t(ee), t(tt), t(et), t(te),
(ee)e, (tt)e, (et)e, (te)e, (ee)t, (tt)t, (et)t, (te)t,

(ee)(ee), (ee)(tt), (ee)(et), (ee)(te), (tt)(ee), (tt)(tt), (tt)(et), (tt)(te)

Figure 3.1 Examples for types.

all models. Domains for other types are inductively defined, as for-
mally summarized in Definition 2 below:

Definition 2. For all types τ and σ in T , the domain Dτσ of the type
(τσ ) is the set DDτ

σ – the set of functions from Dτ to Dσ .

The induction in Definition 2, together with our stipulated basic
domains De and Dt , specify the domains for all the types derived from
Definition 1. We have already discussed the domain Det of character-
istic functions. Let us now consider in more detail the definition of the
domain De(et). When unfolding Definition 2, we see that it derives the
following definition:

(3.5) De(et) is the set of functions from De to Det
= the functions from entities to Det
= the functions from entities to the functions from De to Dt
= the functions from entities to the functions from entities
to truth-values.

Thus, functions of type e(et) return functions (of type et) as their re-
sult. This is a result of our inductive definitions. Our definitions above
also make another situation possible: functions that take functions as
their arguments. For instance, the type (et)e describes functions that
map et functions to entities. Further, Definitions 1 and 2 also allow
functions that take function arguments and map them to function
results. Consider for instance the type (et)(et). The corresponding
domain, D(et)(et), contains the functions that map characteristic func-
tions to characteristic functions. For instance, suppose that F is a
function in D(et)(et). This means that F can receive any characteristic
function g in Det and return a characteristic function h in Det , possibly
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different from g . We describe this situation by writing F (g )= h. The
functions g and h characterize sets of entities. Thus, we can view
functions like F , of type (et)(et), as mapping sets of entities to sets
of entities. We already used one such function in Chapter 2, when
we let the denotation of the word not map sets of entities to their
complement. Functions from sets of entities to sets of entities, in their
new guise as (et)(et) functions, will often reappear in the rest of this
book.

You are now advised to solve Exercises 1, 2 and 3 at the end of this
chapter.

PART 2: DENOTATIONS AT WORK
Semantic types and their corresponding domains give us a powerful
tool for analyzing natural language meanings: one that is empirically
rich, and yet systematically constrained. Equipped with our expressive
tool for describing denotations, it is high time to start using it for
analyzing linguistic examples. In order to do that, we have to explain
what principles allow denotations to combine with each other com-
positionally. One elementary principle lets functions apply to their
arguments. As we will see, functions, and the rule of function applica-
tion, allow us to encode many useful intuitions about meanings, using
the technique known as currying. After introducing this technique of
using functions, we will see how to develop systematic analyses by
solving type equations. This will allow us to look back at what we
did in Chapter 2, and systematically treat the copula be and predicate
negation as part of our uniform type system.

FUNCTION APPLICATION
Types provide us with a record of the way denotations combine with
each other. In our analysis of the simple example Tina smiled we saw
how an et function combines with an entity (type e) to derive a truth-
value (type t). We write it as follows:

(et)+ e = t.
The rule we used for combining denotations in the sentence Tina
smiled is function application : we applied a function smile from
entities to truth-values to an entity tina, and got a truth-value
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smile(tina). In terms of denotations, we write it as follows:

smileet + tinae = smile(tina) : t

By the notation ‘smileet ’ we refer to the denotation of the verb smile,
and state that it is of type et. Similarly for ‘tinat ’. An alternative
notation is ‘smile : et’ and ‘tina : e’. This colon becomes more conve-
nient when we wish to state the type t of the result smile(tina), and
write ‘smile(tina) : t’. Following standard mathematical practice, we
let the function smile appear to the left of its argument tina. However,
English verbs like smile normally follow the subject, as is the case in
the sentence Tina smiled. The workings of function application are not
affected by this. So we also assume:

e+ (et)= t.

Thus, when wishing to highlight the syntactic ordering, we also de-
scribe the composition of denotations in the sentence Tina smiled as
follows:

tinae + smileet = smile(tina) : t.

In more general terms, our type-based rule of function application is
given below:

Function application with typed denotations: Applying a function
f of type τσ to an object x of type τ gives an object f (x) of type σ .
In short:
Types: (τσ )+ τ = τ + (τσ ) = σ
Denotations: fτσ + xτ = xτ + fτσ = f (x) : σ

The equations that we gave above describe how types are combined
with each other. For each type combination, there is a corresponding
operation between denotations in the corresponding domains: func-
tion application. Such a system, which combines types and denota-
tions, is called a type calculus. The type calculus above, which deals
with function application, is known as the Ajdukiewicz Calculus (after
K. Ajdukiewicz). In Chapter 5 we will return to type calculi, and
extend their usages for other operations besides function application.
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For now, let us see some more examples of the way we use
Ajdukiewicz’s calculus:

e+ ee = e applying a function gee to an entity xe gives an
entity g (x)

e(et)+ e = et applying a function he(et) to an entity xe gives an
et function h(x)

et+ (et)(et) = et applying a function F(et)(et) to a function ket
gives an et function F (k)

These equations each contain two types and their combination
using function application. However, for many pairs of types, function
application cannot work. For instance, function application cannot
combine a function f of type t(et) with a function g of type et. The
reason is twofold. First, the function f cannot apply to g , since f takes
truth-values as its argument, and g is not a truth-value. Second, the
function g cannot apply to f , since g takes entities as its argument,
and f is not an entity. Such situations, where the type calculus does
not produce any result, are referred to as a type mismatch.

TRANSITIVE VERBS
Now that we have seen how typed denotations are systematically
combined with each other, let us consider the following sentence:

(3.6) Tina [praised Mary]

Sentences like (3.6), which contain both a subject and a direct object,
are referred to as transitive sentences. In (3.6) we standardly assume
that a transitive verb (praise) forms a constituent with the object noun
phrase (Mary). This means that, in order to compositionally derive
a truth-value for sentence (3.6), we first need to derive a denotation
for the verb phrase praised Mary. To do that, we follow our treatment
of intransitive verbs. In the same way that the denotation of the verb
smiled characterizes the set of entities that smiled, we now want the
denotation of the verb phrase praised Mary to characterize the set
of entities that praised Mary. This is the function that sends every
entity that praised Mary to 1, and any other entity to 0. How do we
derive such an et function from the denotations of the words praised
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A. B.

Tina
praised Mary

praise(mary)(tina) : t

tina : e praise(mary) : et

praise : e(et) mary : e

Figure 3.2 Syntactic structure and semantic interpretation for Tina
praised Mary.

andMary? The key to doing so is to assume that the verb praise denotes
a function of type e(et). As we have seen in (3.5) above, functions of
type e(et) map entities to et functions. Thus, we let the verb praise
denote an e(et) function praise. Applying this function to the entity
mary, we get a denotation of type et for the verb phrase praised Mary.
This is formally written as follows:

(3.7) praisee(et)+marye = praise(mary) : et

Further, in the compositional analysis of the whole sentence (3.6),
the et function in (3.7) applies to the entity tina. What we get is the
following truth-value:

(3.8) praise(mary)+ tinae = (praise(mary))(tina) : t

In words: when the et function praise(mary) applies to the entity tina,
the result is a truth-value. This truth-value is the denotation that our
model assigns to the sentence (3.6). To increase readability, we often
omit obvious types and parentheses, and write this truth-value as:

(3.9) praise(mary)(tina)

To summarize the compositional process in our analysis of sentence
(3.6), we repeat it in Figure 3.2 using tree notation.
Figure 3.2A is the tree notation of the structure we assumed in (3.6).

Figure 3.2B is the same tree, but the nodes are now decorated with their
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types and their denotations. We refer to tree diagrams like Figure 3.2B
as semantically interpreted structures . In this interpreted structure, the
nodes for the words Tina, praised and Mary are decorated by their
lexical types and denotations. In addition, we have two nodes for the
constituents assumed in the binary structure: the verb phrase praised
Mary and the whole sentence. These nodes are decorated by their
types and denotations, which are compositionally derived by function
application.
Any e(et) function can combine with two entities, one entity at a

time, returning a truth-value. Having seen how e(et) functions allow
us to derive truth-values for transitive sentences like (3.6), we may still
feel that functions that return functions as their result are excessively
intricate when analyzing such simple sentences. Fortunately, there is
an equivalent way of looking at e(et) denotations of transitive verbs,
which better reflects their intuitive simplicity. Intuitively, denotations
of verbs like praised can be viewed as two-place relations between
entities, aka binary relations. Such relations are sets of pairs of entities.
In our example, we may view the denotation of the verb praised as
the set of pairs of entities 〈x, y〉 that satisfy the condition x praised
y. For instance, suppose that in our model, the entities t, j and m are
the denotations of the respective names Tina, John and Mary. When
the domain De is {t, j,m}, we may describe who praised who by the
following binary relationU :

(3.10) U = {〈t,m〉, 〈m, t〉, 〈m, j〉, 〈m,m〉}

The relation U is useful for describing a situation with three people,
where Tina only praised Mary, John praised no one, and Mary praised
everybody, including herself. In this way, the relation U provides full
answers to the following questions:

(3.11) a. Who praised Tina? Answer: only Mary.
b. Who praised John? Answer: only Mary.
c. Who praised Mary? Answer: only Tina and Mary herself.

Conversely: anybody who gives the same answers as in (3.11) will have
implicitly described the binary relation U .
Now we can get back to e(et) functions, and observe that they give

us the same information as binary relations like U . In particular, the
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e(et) denotation of praise also tells us, for each entity, which entities
praised that entity. Thus, when our domain of entities De is the set
{t, j,m}, any e(et) function over this domain answers precisely the
same questions as in (3.11). In particular, the same situation that the
binary relation U encodes is also described by the following e(et)
function in our model, which we call χU :

(3.12) χU : t �→ [t �→ 0 j �→ 0 m �→ 1]
j �→ [t �→ 0 j �→ 0 m �→ 1]
m �→ [t �→ 1 j �→ 0 m �→ 1]

The function χU maps each of the three entities in De to an et function.
More specifically:

• χU maps the entity t to the function characterizing the set {m}.
• χU maps the entity j to the function characterizing the same set, {m}.
• χU maps the entity m to the function characterizing the set {t,m}.

Note the parallelism between this specification of χU and the
question–answer pairs in (3.11). When the denotation praise is χU ,
our model describes the same situation that (3.11) describes in words,
which is the same information described by the binary relation U .
More generally, we conclude that e(et) functions encode the same
information as binary relations over entities. This is similar to how
characteristic functions of type et encode the same information as sets
of entities. In mathematical terms, we say that the domain of e(et)
functions is isomorphic to the set of binary relations over De . Because
e(et) functions take two entities before returning a truth-value, we
sometimes also refer to them as two-place predicates .

CURRYING
There is a general lesson to be learned from our treatment of transitive
sentences and e(et) predicates. We have seen how a situation that
is naturally described by a binary relation can equally be described
by a function that returns functions. The general idea is useful in
many other circumstances in formal semantics (as well as in computer
science). A binary relation between entities is a set containing pairs of
entities. We can characterize such a set by a function that takes pairs of
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entities and returns “true” or “false”. Such two-place functions occur
very often in mathematics. As another example, let us consider one of
the most familiar two-place functions: number addition. This function
takes two numbers, x and y, and returns their sum, which we normally
denote ‘x+ y’. To highlight the fact that number addition is a two-
place function, let us denote it using the function symbol sum . Thus,
we use the following notation:

sum(x, y) = x+ y

Now, let us use the letter ‘n’ as the type for natural numbers. Using this
type, we will now see how we can also encode addition as a function
of type n(nn): a function from numbers to functions from numbers to
numbers. Let us refer to this function as ADD. To define ADD, we need
to define the result that it assigns to any given number. This result is
an nn function: a function from numbers to numbers. Therefore, to
define ADD we will now specify the nn function that ADD assigns to any
number. For every number y, we define:

(3.13) The nn function ADD(y) sends every number x to the number
sum(x, y).

As we expect from number addition, the function ADD takes two
numbers and returns their sum. But it does it step by step: it first takes
one number, y, it returns a function ADD(y), and this function applies
to another number x and returns the sum sum(x, y), or more simply:
x+ y. As a result, for every two numbers x and y, we get:

ADD(y)(x) = sum(x, y) = x+ y

For example, let us consider how we calculate the sum of 1 and
5 using the function ADD. We first give ADD the number 1 as an
argument, and get the function ADD(1) as the result. This resulting
function can take any number and return its sum with 1. Now, we
choose to give the function ADD(1) the argument 5. Unsurprisingly,
the result of calculating (ADD(1))(5) is 5+ 1, or 6. Have we gained
anything from reaching this obvious result in such a roundabout way?
As strange as it may sound, we have! While calculating the sum of 5
and 1, we generated the function ADD(1). This is the successor function:
the function that sends every natural number to the number that



March 8, 2016 Time: 04:03pm chapter3.tex

TYPES AND MEANING COMPOSITION 59

follows it. This function is of course useful for other purposes besides
applying it to the number 5.
These different ways of looking at number addition are quite similar

to what we saw in our syntactic-semantic analysis of sentence (3.6). In
that analysis, we equivalently encoded situations either using binary
relations like U or using e(et) functions. Because we adopt the latter
method, we got an intermediate result by applying the e(et) denotation
of the verb praise to the entity denotation of the object Mary. This
is the et denotation of the verb phrase praised Mary. Having such a
denotation for the verb phrase is compositionally useful. As we will
see later in this chapter, it gives us a natural treatment of conjunctive
sentences like Tina smiled and praised Mary, where the verb phrase
praised Mary does not combine directly with the subject Tina.
The kind of maneuver we saw above will also be useful for treating

many other phenomena besides transitive sentences. In its full gener-
ality, the idea is known as Currying (after H. Curry) or, less commonly,
as Schönfinkelization (after M. Schönfinkel). In technical slang we
often say that a one-place function like ADD is a Curried version of the
two-place addition operator sum . Conversely, we say that the addition
function sum is an unCurried (or ‘deCurried’) version of ADD. For
more on Currying, see the suggested further reading at the end of this
chapter.

SOLVING TYPE EQUATIONS
Using Currying, we now present a revised treatment of the copular
sentences with adjectives from Chapter 2. Reconsider the following
sentence:

(3.14) Tina [ is tall ]

In Chapter 2 we analyzed the verb is in (3.14) as the membership
function. This two-place function sends pairs, of entities and sets
of entities, to truth-values. However, now we no longer have two-
place functions and sets of entities in our models: we have replaced
them by Curried functions and characteristic functions, respectively.
Therefore, we need to revise our analysis of (3.14) along these lines.
First, as for intransitive verbs, we let adjectives characterize sets of
entities. Thus, in our analysis of sentence (3.14) we assume that
the adjective tall denotes an et function. In many other languages
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besides English, this allows us to treat sentences of the form Tina tall.
However, English requires the copula be to appear in such sentences.
How should we now analyze the semantic role of the English copula?
Let us first consider its type. Compositional interpretation of the
structure in (3.14) means that the denotation of the constituent is
tall has to be determined before we determine the denotation of the
sentence. To be able to combine with the denotation of the subject
Tina, the constituent is tall has to denote a function that applies to the
entity tina and derives a truth-value. Therefore, the expression is tall
should have the same type et as the adjective tall. We conclude that the
denotation of is has to be a function of type (et)(et): a function from
et functions to et functions. When such an (et)(et) denotation for the
word is applies to an et function like tall, it gives a function of the same
type, et, which we will use as the denotation for the constituent is tall.
What we have done above is a kind of puzzle solving. We assumed

solutions to some parts of the puzzle: the types of the words Tina
and tall, and the type t of the whole sentence. Using the sentence’s
structure, we found a suitable type for the word is that allows function
application to compositionally derive for the sentence a t-type deno-
tation. The puzzle can be summarized as follows, with X and Y as the
unknown types:

(3.15) [ Tinae [ isY tallet ]X ]t

In our solution, we found that X = et and Y = (et)(et). The solution
process itself is described in Figure 3.3. This figure contains two
type equations. One equation is:

Eq. 1: e+ X = t
In words: which type(s) X combines with type e and
derives type t?

By solving this equation, we see that the type for the constituent is tall
must be et. This leads us to another equation in the compositional
analysis of the sentence, which helps us to see how we can derive the
type et for this constituent:

Eq. 2: Y + et = et
In words: which type(s) Y combines with type et and
derives type et?
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Figure 3.3 Solving type equations for the sentence Tina is tall.

Solving this equation as well, we see that the type for the copula ismust
be (et)(et).

BACK TO COPULAS AND PREDICATE NEGATION
Now, after determining the type of the copula is, we want its denota-
tion to preserve the welcome results of our analysis in Chapter 2. To
do that, we let the constituent is tall denote the same et function as the
adjective tall. This is because, intuitively, we still want the sentence
Tina is tall to be interpreted as a membership assertion, claiming
that the entity tina is in the set that the function tallet characterizes.
Thus, we assume that the word is denotes the identity function for
et functions: the function of type (et)(et) that maps any et function
to itself. Formally, we define the denotation IS for the word is as the
following (et)(et) function:

(3.16) IS is the function sending every function g of type et to g itself.
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A. B.

Tina is tall
(IS(tall))(tina) : t

tina : e IS(tall) : et

IS : (et)(et) tall : et

Figure 3.4 Syntactic structure and semantic interpretation for Tina
is tall.

Our compositional, type-theoretical analysis is summarized in
Figure 3.4.
Because the denotation of the copula is is now defined as the identity

function, the truth-value that we get for sentence (3.14) can now be
analyzed as follows in (3.17):

(3.17) a. IS(tall) = tall (by definition of IS in (3.16))
b. (IS(tall))(tina) = tall(tina) (due to the equality in (3.17a))

Due to this simple derivation, the truth-value that we derive in (3.17b)
for sentence (3.14) is 1 if and only if the entity tina is in the set
characterized by the function tall.
Functions of type (et)(et) are also useful for adjusting our account

of predicate negation from Chapter 2. Let us reconsider, for example,
the following negative sentence:

(3.18) Tina [ is [ not tall ]]

In Chapter 2 we let the negation word not denote the complement
function, which sends every set of entities to its complement set. With
our characteristic functions substituting sets, we now treat the word
not as an (et)(et) function, of the same type as the copula is. Our
definition of the denotation NOT in (3.19) below respects the status of
the word not in (3.18) as a predicate negator:
(3.19) NOT is the (et)(et) function sending every et function g to

the et function NOT(g ) that satisfies the following, for every
entity x (see next page):
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(NOT(g ))(x)=
{
1 if g (x)= 0
0 if g (x)= 1

In words: we define the function NOT, which takes a function g of type
et and returns a function NOT(g ) of the same type, separating into the
following two cases:

• for any entity x such that g (x) is 0, we define (NOT(g ))(x) to be 1;
• for any entity x such that g (x) is 1, we define (NOT(g ))(x) to be 0.

In this way, the function NOT(g ) reverses the value that g assigns to
any entity. Because of that, NOT(g ) is the et function characterizing
the complement set of the set characterized by g . Thus, by applying the
function NOT to an et denotation tall, we achieve the same analysis
that we got in Chapter 2 by complementing the set characterized by
tall. More formally, we analyze the structure (3.18) as denoting the
following truth-value:

(3.20) (IS(et)(et)(NOT(et)(et)(tallet)))(tinae)

Because the function IS is the identity function, the truth-value in
(3.20) is the same as:

(NOT(et)(et)(tallet))(tinae)

By definition of the function NOT, this truth-value is 1 if and only if
the entity tina is in the complement of the set characterized by the et
function tall. Thus, the structure (3.18) is analyzed on a par with our
analysis of the sentence in Chapter 2.

Let us now take stock of what we have done in Part 2. In this part
we have aimed to maintain the informal analyses of Chapter 2 within
a more structured type system. This system was fully defined by the
two simple Definitions 1 and 2 in Part 1. As we have seen, these two
definitions are highly expressive: they allowed models to mimic sets by
using characteristic functions, andmimic two-place functions by using
one-place Curried functions. Despite this expressiveness, so far we
have done little to extend the empirical coverage of Chapter 2 besides
adding a treatment of transitive verbs. However, by employing types
as part of our theory we now have a rather powerful system that elu-
cidates our notions of denotations and compositionality. This unified
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framework will be employed throughout this book for dealing with
new phenomena while relying on the same foundational principles.

You are now advised to solve Exercises 4, 5, 6 and 7 at the end of this
chapter.

PART 3: USING LAMBDA NOTATION
Having functions of different types in our semantic framework gives
us an extremely powerful tool. In order to use this tool efficiently, it
is convenient to have a standard notation for the functions we use,
and the way they apply to their arguments. In this part we study the
common notation of lambda terms, and see how it is used within our
semantic system.

DEFINING FUNCTIONS USING LAMBDA TERMS
Below we restate definition (3.16) of the denotation for the copula is:

(3.21) the function sending every function g of type et to g itself.

We may feel that (3.21) is an unnecessarily long and cumbersome
way of defining the identity function. Indeed, in formal semantics we
often use a more convenient notation, by employing lambda terms, or
‘λ-terms’. Let us illustrate it by rewriting definition (3.21) in our new
notation:

• Instead of writing “the function sending every function g of type
et,” we write “λget”.

• Instead of “to g itself”, we write “.g”.

After rewriting (3.21) in this way, we get the following formula:

(3.22) λget .g

Since (3.22) is nothing but an alternative way of defining the function
in (3.21), it gives us exactly the same information about it:

(i) The letter ‘λ’ tells us that it is a function.
(ii) The dot separates the specification of the function’s argument and

the definition of the function’s result. Before the dot, writing ‘get ’
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introduces ‘g ’ as an ad hoc name for the argument of the function.
The type et in the subscript of g tells us that this argument can be
any object in the domain Det .

(iii) The re-occurrence of ‘g ’ after the dot tells us that the function we
define in (3.22) simply returns the value of its argument.

From (ii) and (iii) we immediately conclude that the function λget .g
in (3.22) returns an object in the domain Det . Hence this function
is of type (et)(et), as we wanted. Now, with our λ-term conventions,
we are fully justified in saving space and writing our definition of the
denotation for the copula is concisely, as in (3.23) below:

(3.23) IS= λget .g
It is important to note that the letter ‘g ’ has no special significance
in definition (3.23). If we prefer, we may define the function IS
equivalently, as λhet .h: “the function sending every function h of type
et to h itself”. This would not change anything about our definition
of the identity function, since it would still do the same thing: return
the et function that it got as argument. When defining a function, it
hardly matters if we decide to call the argument ‘g ’, ‘h’, ‘x’, ‘y’ or any
other name. Any name will do, as long as we use it consistently within
the function definition.
With our new lambda notation, we adopt the following convention

for writing function definitions:

Lambda notation: When writing “λxτ .ϕ”, where τ is a type, we
mean:
“the function sending every element x of the domain Dτ to ϕ”.

The expression ϕ within the lambda term λxτ .ϕ specifies the object
that we want the function to return. In our definition of the identity
function in (3.23), the expression ϕ was simply the argument g itself.
However, in general, any mathematical expression ϕ that describes
an object in one of our domains would be appropriate in such a λ-
term. The type of the object that ϕ describes is the type of the value
returned by the function. In (3.23), the type of the value g returned by
the function is et, and hence the function is of type (et)(et). Similarly,
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we have:
λxe .x the ee function sending every entity x to x itself
λ fet .tinae the (et)e function sending every et function f

to the entity tina
λhet .h(tinae) the (et)t function sending every et function h

to the truth-value h(tina) that h assigns to the
entity tina

More generally, when ϕ describes an object of type σ , the whole λ-term
λxτ .ϕ describes a function of type τσ : from objects in Dτ to objects
in Dσ .

FUNCTION APPLICATION WITH LAMBDA TERMS
Now we can see how λ-terms are used in the semantic analysis. Based
on definition (3.23), we can rewrite the equation IS(tallet)= tall in
(3.17a) as follows:

(3.24) a. IS(tallet)
b. = (λget .g )(tall)
c. = tall

The move from (3.24a) to (3.24b) is according to the definition of
the function IS. The move from (3.24b) to (3.24c) involves applying
a function to its argument. As a result, we replace the abstract descrip-
tion in (3.24b) “what the identity function returns when it gets the
argument tall” by writing more simply and concretely “tall”. Function
application with λ-terms always involves this sort of concretization.
Suppose that we have a function f described by the instruction:

“for every x of type τ do such and such to x and return the
result”.

Suppose further that we apply f to an argument a of the right type.
What we get as the value f (a) is whatever “doing such and such” does
to a.
In our lambda notation, the expression ϕ in a λ-term λx.ϕ describes

what the function does with its argument. Within the identity function
λget .g in (3.24), the expression ϕ is the argument g itself. However,
ϕ may encode a more complex operation on the function argument.
For instance, let us again consider operations on numbers. Consider a
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function DOUBLER that maps any number to its multiplication by 2:

DOUBLER is the function from numbers to numbers sending
every number x to 2 · x.

In lambda format, this definition is written as follows, where n is again
the type of numbers:

(3.25) DOUBLERnn = λxn.2 · x

Having a name like DOUBLER for this function is convenient when we
commonly want to double numbers. However, when using λ-terms
we can also avoid giving this function a name, and apply the term
that corresponds to the function definition directly to the function’s
argument, as we did in (3.24b) above. Suppose that we apply the
function DOUBLER to the number 17. We get the following term:

(3.26) (λxn.2 · x)(17)

This corresponds to the following verbal description:
“the result of applying the function sending every number x to 2 · x, to
the number 17”.
Of course, the result is the value of the arithmetic expression 2 · 17. We
get this expression by substituting ‘17’ for ‘x’ in the result definition
2 · x, as it is defined in the λ-term λxn.2 · x. In sum, we get:

(3.27) (λxn.2 · x)(17) = 2 · 17

In general, we describe this kind of simplification as follows:

Function application with lambda terms: The result (λxτ .ϕ)(aτ )
of applying a function described by a lambda term λxτ .ϕ to an
argument aτ is equal to the value of the expression ϕ, with all
occurrences of x replaced by a.

Consider how this convention works in (3.27). The expression ‘ϕ’
within the lambda term λxn.2 · x is the expression 2 · x. The argument
‘a’ is the number 17. Substituting 17 for x in 2 · x, we get the result
2 · 17. Something similar happens when we use a λ-term for defining
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the function ADD that we introduced in (3.13):

ADD = λyn.λxn.y+ x

As in (3.13), this λ-term defines the function ADD by specifying that it
sends every number y to the function λxn.y+ x: the function sending
every number x to y+ x. When describing the result of applying the
function ADD to the values 1 and 5, we get the following simplifications:

(3.28) ((λyn.λxn.y+ x)(1))(5) = (λxn.1+ x)(5) = 1+ 5

The simplification in (3.28) involves two steps. First, when the function
ADD takes the argument 1, this value is substituted for ‘y’. The result
is the function λxn.1+ x. This function applies to 5. When 5 is
substituted for ‘x’, we get the result 1+ 5.
In (3.24), (3.27) and (3.28) above we use λ-terms for function

application. In all of these cases, when a function λx.ϕ applies to
an argument a, the result (λx.ϕ)(a) was displayed in a simplified
notation, by substituting a for x’s occurrences in ϕ. This substitution
technique is based on common mathematical intuitions about the
workings of functions. However, as usual, we should be careful when
formalizing intuitions. There are some cases where naively using
substitution as described above fails to derive the correct results.When
using λ-terms for actual calculations, we need a more general rule for
simplifying λ-terms under function application. This rule is known as
beta-reduction, and it constitutes part of the rule system for computing
λ-term equivalences, known as the lambda calculus. For our purposes
in this book we will not need the full lambda calculus. Rather, the
informal notational conventions above for writing and simplifying
λ-terms will be sufficient. The reader is assured that none of our
examples involve the formal complications that motivated the more
intricate rule of beta-reduction in the lambda calculus. For more on
this point, see the further reading at the end of this chapter.

REFLEXIVE PRONOUNS
In order to get a better feel for the value of lambda notation, let
us now see how it works in a more complicated example: the case
of reflexive pronouns like herself or himself. Consider the following
sentence:
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(3.29) Tina [praised herself]

Intuitively, this sentence should be treated as having the following
truth-value:

(3.30) praisee(et)(tina)(tina)

In words, (3.30) is the truth-value that results from applying the
denotation of praise twice to the entity denotation of Tina. What
denotation of the pronoun herself can guarantee that this truth-value
is derived for sentence (3.29)? One obvious way to derive (3.30) from
(3.29) is to let the pronoun herself denote the entity tina. This would
be a correct treatment of sentence (3.29), but it definitely could not
work as a general account of reflexive pronouns. To see why, let us
consider the sentence Mary praised herself. Here, we must guarantee
that the entity for Mary is given twice to the function praise. More
generally, for any entity x denoted by the subject, we must guarantee
that that same entity is given twice as an argument to the function
praise. This “sameness” cannot be described by treating the pronoun
herself as denoting an entity of type e. For instance, if we analyzed
herself as denoting the entity tina, the unwelcome result would be that
the sentenceMary praised herselfwould be analyzed as having the same
truth-value as Mary praised Tina. Similar problems would appear for
any analysis of the pronoun herself as an entity-denoting noun phrase.
Let us see how we solve the problem. First, following our previous

analyses, we let the verb phrase praised herself in (3.29) denote a
function of type et. In this way we can treat it on a par with verb
phrases like praised Mary. Thus, we want to solve the following type
equation for the verb phrase praised herself, where X is the type for
herself:

e(et)+ X = et

Letting X be e was fine type-theoretically, but it did not allow us to re-
spect the semantic properties of reflexive pronouns. Fortunately, there
is another solution: X = (e(et))(et). Thus, we will let the pronoun
herself denote a function that takes the e(et) denotation praise as an
argument, and returns a function of type et: the denotation of the
phrase praised herself. These type-theoretical ideas about the analysis
of sentence (3.29) are summarized in Figure 3.5.
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A. B.

Tina
praised herself

(HERSELF(praise))(tina) : t

tina : e HERSELF(praise) : et

praise : e(et) HERSELF : (e(et))(et)

Figure 3.5 Syntactic structure and semantic interpretation for Tina
praised herself.

The analysis in Figure 3.5 does not yet define the (e(et))(et) function
that the pronoun HERSELF should denote. To define it correctly, we
rely on our intuition that sentence (3.29) has to have the same truth-
value as (3.30). Thus, what we want to achieve is the following
identity:

(3.31) [[praised herself]](tina) = praise(tina)(tina)

In words: the one-place predicate for praised herself holds of the entity
tina if and only if the two-place predicate praise holds of the pair
〈tina, tina〉.
The denotation [[praised herself]] in (3.31) is obtained by

applying the denotation of herself to the function praise. Thus,
by spelling out the denotation [[praised herself]], we restate (3.31) as
the following identity:

(3.32) (HERSELF(e(et))(et)(praisee(et))) (tina)
= [[praised herself]](tina)
= praise(tina)(tina)

In words: when the function HERSELF applies to the denotation praise,
the result is the et function [[praised herself]] in (3.31) above. As we
saw, this resulting et function sends the entity tina to 1 if and only if
the two-place predicate praise holds of the pair 〈tina, tina〉.
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Since the denotations of the verb praise and the name Tina are
arbitrary, we want the function HERSELF to satisfy the identity in (3.32)
for all possible e(et) and e denotations. We therefore conclude:

(3.33) For all functions R of type e(et), for all entities x:
(HERSELF(e(et))(et)(R))(x)= R(x)(x)

This generalization defines the result of the function HERSELF for every
argument of type e(et). Thus, we get:

(3.34) HERSELF(e(et))(et) is
the function sending every function R of type e(et) to the et
function sending every entity x to R(x)(x).

This definition is rather long. Let us save space and use a λ-term for
rewriting it:

(3.35) HERSELF(e(et))(et)
= λRe(et).the et function sending every entity x to R(x)(x)

But behold: we can save more space! The et function that HERSELF
returns can also be written as a lambda term: λxe .R(x)(x). Here is what
we get when we use it in (3.35):

(3.36) HERSELF(e(et))(et)
= λRe(et).(λxe .R(x)(x))

Since we don’t like unnecessary parentheses, we will write instead:

(3.37) λRe(et).λxe .R(x)(x)

And this is as much as we get by abbreviating our definition for the
function HERSELF.
We can now write our analysis of the truth-value of sentence (3.29)

using λ-terms alone, with some notes for clarification, but without any
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description of functions in natural language:

(3.38) a. (HERSELF(e(et))(et)(praisee(et)))(tinae)
� compositional analysis (Figure 3.5)

b. = ((λRe(et).λxe .R(x)(x))(praise))(tina)
� definition (3.37) of HERSELF

c. = (λxe .praise(x)(x))(tina)
� application to praise

d. = praise(tina)(tina) � application to tina

Our compositional analysis assigns the verb phrase praised herself
the denotation HERSELF(praise), of type et. This is the same type
we assigned to the intransitive verb smiled and to the verb phrase
praised Mary. As we see in (3.38b–c), with our definition of the
function HERSELF, the denotation we get for praised herself is the et
function λxe .praise(x)(x), which characterizes the set of self-praisers,
as intuitively required by sentence (3.29). By letting all verb phrases
denote et functions we obtain pleasing uniformity in our system. This
uniformity will prove useful later on in this chapter, when we analyze
verb phrase conjunctions like smiled and praised herself, as we will do
in (3.53)–(3.54) below, and in Exercise 12c.

You are now advised to solve Exercises 8, 9, 10 and 11 at the end of this
chapter.

PART 4: RESTRICTING DENOTATIONS
In Chapter 2 we introduced the distinction between constant and
arbitrary denotations. This distinction is also instrumental with our
new type system. For words like Tina, smile, tall and praise, we
assume arbitrary denotations of the type we assign. By contrast, when
analyzing functional words like is, not and herself, we focus on one
denotation of the relevant type. In this part we study more examples
where denotations are restricted in this way. This will lead us to some
general conclusions about the relations between formal semantics and
the specification of lexical meanings.

PROPOSITIONAL NEGATION AND PREDICATE NEGATION
Let us now get back to the negation in sentence (3.18) (Tina is not tall).
We analyzed this sentence using definition (3.19), which describes
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the set complement operation using characteristic functions. Using λ-
terms we restate this definition as follows:

(3.39) NOT = λget .λxe .
{
1 if g (x)= 0
0 if g (x)= 1

In words: the function NOT sends every et function g to the function
that sends every entity x to 1 in case g (x)= 0, and to 0 in case g (x)= 1.
Driven by our wish to save space, we can shorten up the “piece-wise”
definition in (3.39) by using propositional negation: the function from
truth-values to truth-values that sends 0 to 1, and 1 to 0. We denote
this tt function ‘∼’. For its formal definition we can use subtraction, as
stated in (3.40) below:

(3.40) ∼ = λxt .1− x

Using this definition of propositional negation, we can rewrite defini-
tion (3.39) above more concisely as:

(3.41) NOT = λget .λxe .∼(g (x))

The three definitions (3.19), (3.39) and (3.41) are equivalent, and they
all boil down to the analysis of the word not as set complementation.
However, since we now work with characteristic functions, our use of
propositional negation in (3.41) has some presentational advantages.
Given the structure in (3.18) (page 62), we analyze the sentence Tina
is not tall as in (3.42) below.

(3.42) a. (IS(et)(et)(NOT(et)(et)(tallet)))(tinae)
� compositional analysis of structure (3.18)

b. = ((λget .g )(NOT(tall)))(tina)
� definition of IS as identity function

c. = (NOT(tall))(tina)
� application to NOT(tall)

d. = ((λget .λxe .∼(g (x)))(tall))(tina)
� definition (3.41) of NOT

e. = ((λxe .∼(tall(x))))(tina)
� application to tall

f. =∼(tall(tina)) � application to tina
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In (3.42) we see two different representations of the same truth-value
that our model assigns to sentence (3.18). In (3.42a–c) it is easy to
see that the truth-value assigned to the sentence is 1 if the denotation
tina is in the complement of the set characterized by the et denotation
tall. This was the view that we adopted in Chapter 2. It is also very
much in line with our compositional analysis of the sentence. After
simplifying the representation by employing propositional negation,
(3.42d–f) makes it easier to see that the truth-value that we assign to
(3.18) is 1 if the function tall sends tina to 0. In simple sentences such
as (3.18) these two perspectives are equivalent. However, the general
question of how we should use propositional negation when analyzing
the semantics of negative sentences is more complex. Later on in this
chapter, and in Exercise 12e below, we briefly touch upon this problem.
See also the further reading at the end of this chapter.

PROPOSITIONAL CONJUNCTION AND
PREDICATE CONJUNCTION

Another useful propositional operator is propositional conjunction .
In Chapter 2 we focused on predicate conjunction of adjectives and
simple entailments as in (3.43) below:

(3.43) Tina is tall and thin⇒ Tina is thin.

We also briefly noted the use of the conjunction and between sen-
tences, and the very similar entailments that it often leads to. This is
illustrated again in (3.44) below.

(3.44) Tina is tall and Tina is thin⇒ Tina is thin.

For the sentential conjunction in (3.44) we assume the following
binary structure:

(3.45) [ Tina [ is tall ]] [ and [ Tina [ is thin ]]]

In (3.45) the conjunction word and combines with the right-hand
sentence and forms the constituent and Tina is thin. This expression
combines with the left-hand sentential conjunct, of type t, and together
they form a sentence of the same type. Thus, the type we assign
to the constituent and Tina is thin in (3.45) is a function of type
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tt, from truth-values to truth-values. This function is derived by
combining the conjunction word and with a sentence of type t, and
hence we conclude that the word and in (3.45) is of type t(tt): a
function from truth-values to functions from truth-values to truth-
values.We define this denotation as the Curried version of the classical
propositional conjunction operator ∧. Propositional conjunction is a
two-place function that maps two truth-values into a single truth-
value. In numeric terms, it amounts to multiplication between truth-
values: the binary function that maps a pair of truth-values to 1 if both
of them are 1, and to 0 otherwise. Formally:

(3.46) For any two truth-values x and y: the truth-value x ∧ y is x · y,
the multiplication of x by y.

In (3.47) below, we define our Curried t(tt) version of propositional
conjunction using lambda notation. In order to distinguish this t(tt)
denotation of and from other denotations of this word, we refer to this
t(tt) function as ‘ANDt ’:

(3.47) ANDt = λxt .λyt .y ∧ x

In words: the denotation of sentential and maps any truth-value x to
the function mapping any truth-value y to the multiplication y ∧ x of
x and y. For example, for structure (3.45), we get:

(3.48) ANDt([[Tina is thin]])([[Tina is tall]])
= [[Tina is tall]]∧ [[Tina is thin]]

The denotation of the second conjunct in (3.45) is used as the first
argument of the function ANDt . When ANDt sends its arguments to the
∧ operator, we let it reverse their order, so that the first argument of
ANDt is the second argument of ∧. This is innocuous, since y ∧ x is
the same as x ∧ y. The reason we reverse the order is merely aesthetic:
it is more pleasing to the eye to see a ‘y ∧ x’ notation when x is the
denotation of the right-hand conjunct in the sentence.
For a fuller analysis of structure (3.45), see Figure 3.6. The semantic

interpretation uses the functions ANDt for and, and the identity func-
tion IS for is.
In (3.49) below we use our definition of the denotations ANDt and IS

to analyze the truth-value derived in Figure 3.6.
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Figure 3.6 Syntactic structure and semantic interpretation for Tina is
tall and Tina is thin.

(3.49) a. (ANDt((IS(thin))(tina)))((IS(tall))(tina))
� compositional analysis in Figure 3.6

b. = (ANDt(thin(tina)))(tall(tina))
� applying IS (identity function)

c. = ((λxt .λyt .y ∧ x)(thin(tina)))(tall(tina))
� definition of ANDt

d. = ((λyt .y ∧ thin(tina)))(tall(tina))
� application to thin(tina)

e. = tall(tina)∧ thin(tina)
� application to tall(tina)
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As in our example of number addition, we see that lambda notation
allows us to use Curried functions while reverting to traditional nota-
tion when convenient. The Curried notation in (3.49a–b) is convenient
when considering the truth-value derivation from syntactic forms as
in Figure 3.6. The standard notation in (3.49e) is convenient if we
are interested in the relations between our results and classical logical
analyses. However, the two notations are equivalent in terms of the
truth-values they represent.
As noted in Chapter 2, the connections between our compositional

treatment of conjunction and classical analyses become less straight-
forward when we consider predicate conjunction. In Chapter 2 we
analyzed the conjunction between adjectives in the sentence Tina is
tall and thin using set intersection. Given our current emphasis on
the use of Curried functions, it is convenient to analyze the same
sentence analogously to (3.45), using only binary structures. Thus, we
now assume the structure in (3.50) below:

(3.50) Tina [ is [ tall [ and thin ]]

To mimic our intersective analysis of conjunction, here we let the
word and denote a function of type (et)((et)(et)). When we read it
in English, this is the type that describes functions from characteristic
functions to functions from characteristic functions to characteristic
functions. You may say gee whiz, but when replacing “characteristic
functions” by “sets”, we see that it is just our usual Currying practice.
The functions we have just mentioned correspond to functions that
map every pair of sets to a set. The intersection operator is such
a function: it sends every pair of sets to their intersection. Thus,
type (et)((et)(et)) is the proper type for defining an operator on et
functions that mimics set intersection.
When we define the denotation of predicate conjunction in (3.50)

as a function of type (et)((et)(et)), it is convenient, as we did in the
case of predicate negation, to use the corresponding propositional
operator. Below we give our denotation of predicate conjunction,
denoted ‘ANDet ’, using the operator ∧ between truth-values:

(3.51) ANDet = λ fet .λget .λxe .g (x)∧ f (x)
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In words: the denotation of the predicate conjunction andmaps any et
function f to the function mapping any et function g to the function
mapping any entity x to g (x)∧ f (x). This definition has the following
simple property: when two et functions h1 and h2 characterize sets
of entities A1 and A2, respectively, the result of applying the function
ANDet to h1 and h2 is the function characterizing the intersection of
A1 and A2 (see Exercise 12). Thus, treating predicate conjunction
using (et)((et)(et)) functions encodes the same analysis of (3.50) as
in Chapter 2, where we used set intersection.
To see in more detail how definition (3.51) works, consider the

analysis of structure (3.50) in (3.52) below:

(3.52) a. (IS((ANDet(thin))(tall)))(tina)
� compositional analysis of (3.50)

b. = ((ANDet(thin))(tall))(tina)
� applying IS (identity function)

c. = (((λ fet .λget .λxe .g (x)∧ f (x))(thin))(tall))(tina)
� definition of ANDet

d. = (((λget .λxe .g (x)∧ thin(x)))(tall))(tina)
� application to thin

e. = (((λxe .tall(x)∧ thin(x))))(tina)
� application to tall

f. = tall(tina)∧ thin(tina) � application to tina

The truth-value that we end up deriving for sentence (3.50) (Tina
is tall and thin) is the same as the one we got for (3.45) (Tina is
tall and Tina is thin). Thus, we have captured the intuitive semantic
equivalence between these sentences. However, note that simplifi-
cations as in (3.49) and (3.52) are only one way of explaining this
equivalence, and sometimes they can obscure insights about deno-
tations of constituents. Specifically, in (3.52f) we no longer see that
our compositional analysis of predicate conjunction is equivalent to
the set intersection of Chapter 2. The direct compositional analysis
in (3.49a) highlights this fact more clearly. More generally, we analyze
the equivalence between (3.50) and (3.45) as following from elemen-
tary considerations about the relationships between set intersection
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(in (3.50)) and multiplication of truth-values (in (3.45)). In formula,
let χA and χ B be et functions that characterize the sets of entities A
and B , respectively. For every entity x, we have:

x ∈ A∩ B if and only if χA(x) ·χ B (x)= 1

For instance, the entity tina is in the intersection of the sets charac-
terized by the et functions tall and thin if and only if both functions
send tina to 1. Thus, we can see that we account for the equivalence
already in the interpreted structures (3.52a) and (3.49a), without any
simplification of λ-terms. This point is of some historical interest:
unlike early analyses of conjunction in the 1960s, our compositional
semantics directly interprets the structures of both sentences (3.50)
and (3.45). Neither of these structures is assumed to be “deeper” or
“more basic” than the other.
Our treatment of adjective conjunction can now be directly used for

other predicates, especially verb phrases as in the examples below:

(3.53) Tina smiled and danced. Tina smiled and praised Mary. Tina
praisedMary and smiled. Tina praisedMary and thanked John.

(3.54) Tina smiled and praised herself. Tina thanked Mary and
praised herself.

These sentences with verb phrase conjunctions also demonstrate an
equivalence with sentential conjunction. Consider for instance the
following equivalence:

Tina thanked Mary and praised herself ⇔ Tina thanked Mary
and Tina praised herself

Such equivalences are immediately explained by our analysis of propo-
sitional conjunction and predicate conjunction. However, it should
be noted that the equivalence scheme is not valid in general: it does
not necessarily hold with more complex subjects. For instance, the
sentence someone is smiling and someone is dancing does not entail
someone is smiling and dancing: the existence of people doing two
different things does not mean that someone is doing both. We will
return to this point in Chapter 4.
As with our treatment of negation, the lambda notation exposes

the semantic relation between a propositional operator (∧) and a
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set-theoretical operator (intersection), where the latter is presented
by means of characteristic functions. However, in contrast to our
treatment of negation, where propositional negation was not directly
used in our compositional analysis, now it becomes clear that both
propositional conjunction and set intersection are useful as denota-
tions of conjunction: the first has a straightforward use with sentential
conjunctions, the latter with predicate conjunction. To conclude, our
type system requires the use of two denotations for conjunction:
ANDt for sentential conjunction and ANDet for predicate conjunction.
Although the two functions are of different types, namely t(tt) and
(et)((et)(et)), they are logically related. In fact, the parallelism we have
observed only reflects a small part of the semantic relations between
and conjunctions of different categories in natural language. Similar
relations exist between disjunctive coordinations with or in differ-
ent categories, and, to a lesser extent, between negation in different
categories. These relations are often analyzed as revealing Boolean
structures in natural language semantics. Relevant details can be found
in the further reading at the end of this chapter.

INTERSECTIVE ADJECTIVES AND SUBSECTIVE
ADJECTIVES

Let usmove on to another example where set intersection and proposi-
tional conjunction play a major role: the different usages of adjectives.
So far we have only considered adjectives in sentences like Tina is tall,
where they appear in predicative positions, following the copula is.
However, English also allows adjectives to precede nouns, as in the
following sentences:

(3.55) Tina is a tall woman; the tall engineer visited us; I met five tall
astronomers.

Occurrences of adjectives before the noun as in (3.55) are often
referred to as ‘attributive’, or modificational . In many cases, we find
strong semantic relations between these modificational occurrences
and the predicative use. Consider for instance the following equiva-
lences:

(3.56) a. Tina is a Chinese pianist⇔ Tina is Chinese and Tina is a
pianist.
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b. My doctor wears no white shirts ⇔ No shirts that my
doctor wears are white.

c. Dan saw six carnivorous animals⇔ Six animals that Dan
saw are carnivorous.

In each of these examples, we see an equivalence between a sentence
with a modificational adjective, and another sentence with the same
adjective in a predicative position. When analyzing such equivalences,
we will concentrate on (3.56a) as a representative example. Before
further analyzing the sentence Tina is a Chinese pianist in (3.56a), let
us first consider the following simpler sentence:

(3.57) Tina [ is [ a pianist ]]

Given the constituency that we assume in (3.57), we analyze the noun
pianist as denoting a function pianist of type et. This is similar to
our treatment of intransitive verbs and predicative adjectives. The
indefinite article a is analyzed, similarly to the copula is, as denoting
the identity function of type (et)(et). Formally:

(3.58) A(et)(et) = IS= λget .g
With these assumptions, structure (3.57) is analyzed as denoting the
following truth-value.

(3.59) (IS(A(pianist)))(tina)
= pianist(tina)

This truth-value is 1 when the entity tina is in the set characterized
by the function pianist, and 0 otherwise. As for the modificational
construction in (3.56a), we now assume the following structure:

(3.60) Tina [ is [ a [ Chinese pianist ]]]

We already know how to analyze sentences with predicative adjectives
like Tina is Chinese, where we let the adjective denote an et function.
It might be tempting to let the modificational occurrence of the
adjective Chinese in (3.60) denote the same et function. However,
with such an analysis, we would have a problem when treating the
constituent Chinese pianist in (3.60). If both the adjective and the
noun are assigned the type et, function application would not be
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able to combine their denotations. Our solution to this problem is
to assume that there are two different denotations of the adjective
Chinese. One denotation is the arbitrary et function chinese that we
use for the predicative use, e.g. inTina is Chinese. The other denotation
is used for modificational occurrences as in (3.60). The modificational
denotation is a function of type (et)(et), from characteristic functions
to characteristic functions. This will allow the adjective to combine
with nouns like pianist, as in (3.60). To highlight its use, we refer to
this function as ‘chinesemod’. Now, since there is a semantic connec-
tion between the two usages of the adjective Chinese, we define the
(et)(et) denotation chinesemod on the basis of the et function chinese.
Specifically, we associate chinesemod with the function mapping any
set A to the intersection of A with the Chinese entities. In this way, the
expression Chinese pianist is associated with the set of pianists who are
also Chinese. In lambda notation we define the function chinesemod as
follows:

(3.61) chinesemod
(et)(et) = λ fet .λxe .chinese(x)∧ f (x)

The function chinesemod maps any et function f to the function
that maps an entity x to 1 if and only if x is in both sets that
are characterized by the et functions f and chinese. Treating the
constituent Chinese pianist using this denotation, we get the following
analysis of sentence (3.60):

(3.62) (IS(A(chinesemod(pianist))))(tina)
� compositional analysis of (3.60)

= (chinesemod(pianist))(tina)
� applying IS and A (identity functions)

= ((λ fet .λxe .chinese(x)∧ f (x))(pianist))(tina)
� definition (3.61) of chinesemod

= (λxe .chinese(x)∧ pianist(x))(tina)
� application to pianist

= chinese(tina)∧ pianist(tina)
� application to tina

The analysis in (3.62) immediately accounts for the equivalence we
observed in (3.56a). Similar analyses of the modificational usage of
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adjectives also account for the equivalences in (3.56b) and (3.56c) with
the adjectives white and carnivorous. Because their analysis as mod-
ifiers involves intersecting the noun denotation with the predicative
adjective’s denotation, adjectives like Chinese, white and carnivorous
are referred to as intersective.
Intersective adjectives also support equivalences like the one be-

tween (3.63a) and (3.63b) below:

(3.63) a. Tina is a Chinese pianist and a biologist.
b. Tina is a Chinese biologist and a pianist.

We can now easily account for such equivalences as well. Our analysis
of the pre-nominal usage of the adjective Chinese is based on set
intersection. The occurrences of Chinese in (3.63a) and (3.63b) are
interpreted by intersecting the set C of Chinese entities with another
set: the set P of pianists, and the set B of biologists, respectively. With
these notations, let us consider the following set-theoretical equality:

(3.64) (C ∩ P )∩ B = (C ∩ B)∩ P

In words: the intersection of the set B with the intersection of C and
P is the same as the intersection of P with the intersection of C and
B . Having observed this equality, we see that the equivalence in (3.63)
follows directly from our analysis of intersective adjectives.
It is important to note that, although intersective interpretations are

pretty common, adjectives may also show non-intersective behavior
in their modificational use. Unlike what we saw with the adjective
Chinese, there are other adjectives that do not support the equivalence
pattern in (3.63). Consider for instance the adjective skillful in (3.65)
below:

(3.65) a. Tina is a skillful pianist and a biologist.
b. Tina is a skillful biologist and a pianist.

Sentence (3.65a) can be true if Tina is competent as a pianist but
amateurish as a biologist. Thus, (3.65a) does not entail (3.65b).
For a similar reason, (3.65b) does not entail (3.65a). This lack of equiv-
alence shows that we cannot analyze constructions like skillful pianist
or skillful biologist by intersecting the set of pianists/biologists with
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some set of “skillful entities”. Such an analysis, together with the set-
theoretical equality we saw in (3.64), would lead us to incorrectly ex-
pect equivalence in (3.65). Intuitively, we say that the adjective skillful
shows a non-intersective behavior in (3.65). How can we describe this
usage?
To solve this problem, we assume that the basic denotation of the

adjective skillful is of type (et)(et). This immediately allows us to
construct models where one of the sentences in (3.65a–b) denotes
1 and the other denotes 0. The reason is that, when the (et)(et)
function associated with skillful is arbitrary, we no longer assume that
the denotations of skillful pianist and skillful biologist are formed by
intersection. Specifically, let us look at a model with the following
denotations:

pianistet : characterizes the singleton set {tina}
biologistet : characterizes the set {tina,mary}
[[skillful]](et)(et)(pianist): characterizes the singleton set {tina}
[[skillful]](et)(et)(biologist): characterizes the singleton set {mary}
In words: the only pianist is Tina, the only biologists are Tina and
Mary, the only skillful pianist is Tina, and the only skillful biologist is
Mary.

In this model, we use the (et)(et) denotation for skillful, and not an
et function denotation. Thus, we consider Tina skillful relative to the
denotation of pianist, but not relative to the denotation of biologist.
Because our analysis does not use any set of “skillful entities”, the
fact that Tina is a biologist in the model does not entail that she
is considered a skillful biologist. Thus, sentence (3.65a) denotes 1
whereas (3.65b) denotes 0. This agrees with our intuitions about the
lack of entailment between these sentences.
But now we have to treat another property of the adjective skillful.

Let us consider the following entailment:

(3.66) Tina is a skillful pianist⇒ Tina is a pianist.

This entailment reflects the obvious intuition that every skillful pianist
is a pianist. Adjectives like skillful that show this behavior are often
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called subsective adjectives . An alternative name for these adjectives is
‘restrictive’ or ‘restricting’. The judgment about the validity of (3.66)
must lead us to think a little more about the (et)(et) denotation of
the adjective skillful. This denotation cannot be allowed to be any
(et)(et) function. If such arbitrariness were allowed, models might let
the denotation of skillful pianist be any set of entities they contain,
not necessarily a subset of the set of pianists. For instance, a function
from sets to set can send the set {a, b} to the set {c, d}. To avoid such
situations, we require that the denotation of skillful sends any set P
to a subset of P . More formally, we define this general restriction as
follows:

(3.67) For any model M, the denotation of skillful in M is an (et)(et)
function skillfulmod that satisfies the following: for every et
function f in M, the set characterized by skillfulmod( f ) is a
subset of the set characterized by f .

Another possible way to state the restriction, which is elegant though
harder to grasp, is to define skillfulmod so that it satisfies (3.67) by
relying on another, arbitrary, function of type (et)(et). When we
denote this function skillfularb, the definition of skillfulmod reads as
follows:

(3.68) skillfulmod = λ fet .λxe .(skillfularb( f ))(x)∧ f (x)

In words: the function skillfulmod sends every et function f to
the characteristic function of the (arbitrary) set characterized by
skillfularb( f ), intersected with the set characterized by f . If the
restriction (3.67) is all that we want our models to specify about
the denotation of the adjective skillful, then it is equivalent to the
definition in (3.68). The (et)(et) function skillfularb is free to vary from
one model to another like the other arbitrary denotations we have
assumed. The superscript arb is a reminder that we assume that the
function skillfularb is arbitrary, although it is not the denotation of the
word skillful.
With the denotation in (3.68), the sentence Tina is a skillful pianist

is analyzed as follows:
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(3.69) (IS(A(skillfulmod(pianist))))(tina)
� compositional analysis

= (skillfulmod(pianist))(tina)
� applying IS and A

= (λ fet .λxe .(skillfularb( f ))(x)∧ f (x))(pianist)(tina)
� definition (3.68)

= skillfularb(pianist)(tina)∧ pianist(tina)
� application to pianist and tina

The analysis in (3.69) immediately accounts for the entailment in
(3.66). At the same time, it also accounts for the lack of entailment
in the opposite direction: when Tina is a pianist, it does not follow that
she is a skillful pianist. This is easily explained, since when Tina is a
pianist the truth-value derived in (3.69) may still be 0. This happens
in models where the entity tina is not in the set characterized by
skillfularb(pianist).
We should note that intersective adjectives also show entailments

as in (3.66). This is directly accounted for in our analysis. In other
words, our treatment of intersective adjectives correctly expects them
to be a sub-class of the adjectives we classified as subsective. Below we
summarize the concepts of intersective and subsective adjective, and
intersective and subsective adjective functions. For convenience, we
look at functions from sets of entities to sets of entities.

The following entailments define an adjective A as being intersec-
tive/subsective, where X is a proper name and N is a common noun:
A is intersective – X is a A N⇔ X is A and X is a N

e.g. Dan is a Dutch man
⇔ Dan is Dutch and Dan is a man

A is subsective – X is a A N⇒X is N
e.g. Dan is a skillful pianist⇒Dan is a pianist

For a function F from ℘(E ) to ℘(E ) we define:
F is intersective – There is a set A, s.t. for every set B:

F (B)= A∩ B.
F is subsective – For every set B: F (B)⊆ B.

By treating the denotations of adjectives as intersective and subsective
functions of type (et)(et), we have been able to analyze the behavior of
intersective and subsective adjectives.
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The examples above show some cases of intersective adjectives
like Chinese, as well as one example of a non-intersective, subsective
adjective, skillful. Classifying adjectives into intersective and non-
intersective is a highly complex problem, both empirically and theo-
retically. To see one example of the difficulty, let us reconsider our
favorite adjectives tall and thin. So far, we have assumed that these
adjectives denote arbitrary et functions. Therefore, in their modifi-
cational usages, e.g. in tall woman and thin woman, we may like to
use the intersective analysis. However, this would be questionable:
tall children are not necessarily tall; thin hippos are not necessarily
thin. On the other hand, treating tall and thin as subsective adjectives
may also lead to complications. For instance, when saying that Tina
is a child and she is tall, our assertion that Tina is a child affects our
understanding of the adjective tall in much the same way as it does
in the sentence Tina is a tall child. Following this kind of observation,
many researchers propose that adjectives like tall and thin should be
treated as intersective, while paying more attention to the way they are
affected by the context of the sentence. This and other questions about
the semantics of adjectives constitute a large body of current research.
For some of these problems, see the further reading at the end of this
chapter.
The semantic concepts of subsective and intersective functions are

useful for other categories besides adjectives. Consider for instance the
following entailments:

(3.70) a. Tina [smiled [charmingly]] ⇒ Tina smiled.
b. Tina [ran [with John]] ⇒ Tina ran.

(3.71) a. Tina [is [a [pianist [from Rome]]]]
⇔ Tina is a pianist and Tina is from Rome.

b. Tina [is [a [pianist [who [praised herself]]]]]
⇔ Tina is a pianist and Tina praised herself.

In sentences (3.70a–b), we see that the adverbial modifiers charmingly
and with John give rise to ‘subsective’ entailments. Furthermore,
the adnominal prepositional modifier from Rome in (3.71a) and the
relative clause who praised herself in (3.71b) show ‘intersective’ equiv-
alences. A simple analysis of the adverb charmingly may assign it
a subsective denotation of type (et)(et). Similarly, the prepositional
phrases with John and from Rome can be analyzed as subsective, or
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even intersective, (et)(et) functions. The relative clause who praised
herself can also be analyzed as an intersective (et)(et) function. By
solving Exercise 13, you may analyze these constructions in more
detail.

SUMMARY: LEXICAL DENOTATIONS
By way of recapitulation, let us take stock of the variety of lexical
denotations that we have so far assumed. First, for some words like
is and not we assigned denotations on the basis of a definition. The
denotations of these words are fully specified by our analysis, with
little freedom left for models to change them. These denotations are
subdivided into two classes:

1. Denotations like IS and HERSELF: functions that are exclusively
defined by means of their workings on other functions, without
further definitions or assumptions. Such denotations are functions
that can be expressed as ‘pure’ λ-terms, and they are also referred to
as combinators.

2. Denotations like NOT, ANDt and ANDet : functions that are defined by
means of some additional concepts, e.g. the functions of proposi-
tional negation and propositional conjunction. Because these con-
stant denotations rely on truth-values, they are often referred to as
logical .

Most words whose denotations are combinatorially or logically
defined belong in the class that linguists call function words or
functional words . These words are contrasted with content words,
which are the bulk of the lexicon in all natural languages. We have
seen two kinds of denotations for content words:

3. Arbitrary denotations, for which no restrictions hold in our models
besides those following from their types. We gave such denotations
to proper names (Tina), common nouns (pianist), verbs (smile,
praise) and predicative usages of adjectives.

4. Denotations that are logically or combinatorially defined on the
basis of other, arbitrary denotations. This is how we accounted
for modificational adjectives, when deriving their denotations from
arbitrary denotations.
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Table 3.2: Lexical denotations and their restrictions.
Denotation Type Restrictions Category

tina e - proper name
smile et - intransitive verb
praise e(et) - transitive verb
pianist et - common noun
chinese et - predicative adjective
chinesemod (et)(et) intersective: λ fet .λxe . modificational adjective

chinese(x)∧ f (x)
skillfulmod (et)(et) subsective: λ fet .λxe . modificational adjective

(skillfularb( f ))(x)∧ f (x)
IS (et)(et) combinator: λget .g copula (auxiliary verb)
A (et)(et) combinator: λget .g indefinite article
HERSELF (e(et))(et) combinator: λRe(et).λxe .R(x)(x) reflexive pronoun
NOT (et)(et) logical: λget .λxe .∼(g (x)) predicate negation
ANDt t(tt) logical: λxt .λyt .y ∧ x sentential conjunction
ANDet (et)((et)(et)) logical: λ fet .λget .λxe .g (x)∧ f (x) predicate conjunction

The lexical denotations that we assumed, together with their restric-
tions, are summarized in Table 3.2.
This summary of our restrictions on lexical denotations only

scratches the surface of a vast topic: the organization of lexical mean-
ings. Let us briefly mention some of the questions that we have left
untreated. Restrictions on lexical meanings that affect entailments do
not only involve restricting the possible denotations of single entries.
There are alsomany strong semantic relations between different lexical
entries. Consider for instance the following examples:

(3.72) a. Tina danced⇒ Tina moved.
b. John is a bachelor⇒ John is a man and John is not married.

The entailments in (3.72) illustrate that theories of entailment should
also constrain the relations between lexical denotations. Entailment
(3.72a) can be explained if the set associated with the verb dance
is contained in the set for move; (3.72b) is explained when the set
for bachelor is contained in the intersection between the set of men
and the complement set of the married entities. Our theory should
include an architecture that allows encoding such lexical restrictions
on denotationsmore systematically than we have attempted to do here.
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The role of syntactic theory in analyzing lexical meanings is another
issue that should be further emphasized. For instance, consider the
constituent structure Tina [is [not thin]] that we assumed for sentences
with predicate negation. This structure made us adopt the (et)(et) type
for the word not. Now, suppose that for syntactic reasons we used the
structure not [Tina [is thin]]. A treatment of the word not as proposi-
tional negation of type tt would then be forthcoming. We conclude
that the choice between the types (et)(et) and tt hinges heavily on
theoretical syntactic questions about the structure of negation.
Such puzzles are highly challenging for theories about the relations

between formal semantics and other parts of grammar, especially
lexical semantics and syntactic theory. They constitute a fascinating
and very active area of research in linguistics. Some references for
works in this area can be found in the further reading below.

You are now advised to solve Exercises 12 and 13 at the end of this
chapter.

FURTHER READING
Introductory: For introductions of the lambda calculus from a linguis-

tic perspective see Dowty et al. (1981); Gamut (1982). The treatment
we used for reflexive pronouns is based on the variable-free ap-
proach to anaphora, introduced in Jacobson (2014). For an overview
of other treatments of reflexives and other anaphors see Büring
(2005). On various problems of negation and relevant references
see Horn and Kato (2003). On coordination see Haspelmath (2004);
Zamparelli (2011). On adjectives see McNally and Kennedy (2008).

Advanced: For more on type theory and higher-order logics see
Thompson (1991); Kamareddine et al. (2004). The Ajdukiewicz
Calculus is from Ajdukiewicz (1935). The original idea of Currying
appeared in Schönfinkel (1924). Solving type equations is part of the
more general problem of type inference in programming languages
(Gunter 1992), especially in relation to functional programming
(Hutton 2007; Van Eijck and Unger 2010). For an early semantic
treatment of reflexive pronouns see Keenan (1989). For more on
variable-free semantics, see Jacobson (1999); Keenan (2007); Hen-
driks (1993); Steedman (1997); Szabolcsi (1987). On the λ-calculus
see Barendregt et al. (2013), and, in relation to combinators, Hindley
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and Seldin (1986). On the Boolean approach to coordination and
negation phenomena see Keenan and Faltz (1985); Winter (2001).
For a survey on adjectives and modification see Lassiter (2015).

EXERCISES (ADVANCED: 7, 9, 10, 11, 12, 13)
1. For De = {u, v,w,m}:

a. Give the functions in Det that characterize: (i) the set {u,w};
(ii) the empty set; (iii) the complement set of {u,w}, i.e. {u,w}, or
De −{u,w}.
b. Give the set that is characterized by the function that sends every
element of De to 1.

2. a. Give the types for the following English descriptions (cf. (3.5)):

(i) functions from functions from entities to entities to func-
tions from entities to truth-values;

(ii) functions from functions from entities to truth-values to
entities;

(iii) functions from functions from entities to truth-values to
functions from truth-values to entities;

(iv) functions from entities to functions from truth-values to
functions from entities to entities;

(v) functions from functions from entities to truth-values
to functions from entities to functions from entities to
entities;

(vi) functions from entities to functions from functions from
entities to truth-values to functions from truth-values to
entities;

(vii) functions from functions from functions from truth-
values to truth-values to functions from truth-values to en-
tities to functions from entities to functions from entities
to entities.

b. Give English descriptions (cf. (3.5)) for the following types:
(et)t, t(te), (tt)e, (e(et))t, e((et)t), (e(et))(e(tt)).

3. a. Give the functions in Dtt .
b. For De = {u, v,w,m}, give the functions in Dte and Det .
c. For De = {l, n}, give the functions in D(ee)t .
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4. For each of the following pairs of types say if our function applica-
tion rule holds. If that’s the case, write the resulting type:
e+ e(et), (et)t+ et,
tt+ (ee)(tt), et+ e(tt),
(e(et))(et)+ ee, e(et)+ (e(et))(et),
(e(et))(et)+ e, (e((et)t))(tt)+ e((et)t),
(e((et)t))(tt)+ e, (ee)(et)+ e,
e((et)(et))+ e(et), (et)(et)+ ((et)(et))(e(e(et))).

5. a. In a model with De = {t, j,m}, suppose that Tina, John and
Mary praised Mary, that Tina and Mary praised John, and that
nobody else praised anybody else. What should the denotation
of the verb praise be in this model?

b. Consider sentences of the form John [[read Mary] Moby Dick].
We let the ditransitive verb read be of type e(e(et)). Assume that
John read MaryMoby Dick, Tina read Mary Lolita, and nobody
else read anything else to anybody else. In such a model, give
the et denotation of the expression read Mary Moby Dick and
the e(et) denotation of the expression read Mary.

6. a. Solve the following type equations:
tt+ X = t(tt), Y + e = ee, Z + t = et, (et)t+M = e((et)t).

b. Each of the following type equations has two solutions. Find
them:
t(tt)+ X = tt, Y + ee = e, Z + et = t, e((et)t)+M = (et)t.

c. Complete the general conclusions from your answers to 6a and
6b:

(i) Equations of the form X + y = z always have the solution
X = .

(ii) Equations of the form X + yz = z always have the solu-
tions X = and X = .

7. a. The sentence structures below introduce “typing puzzles”
similar to (3.15). Solve these puzzles and find appropriate types
for the underlined words.

(i) [Marye [walkedet quicklyX]Y ]t
(ii) [Marye [walkedet [inXUtrechte]Z]Y ]t
(iii) [[ theXpianistet ]e [ smiledet ]et ]t
(iv) [[ theX [ skillfulY pianistet ]et]e smiledet ]t
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(v) [[Walket ingX ]e [ is(et)(et) funet ]et ]t
(vi) [[ theX [manet [ whoY walkedet ]Z]M]e smiledet ]t
(vii) [[ ifX[ youe smileet ]t]Y [ youe winet ]t]t
(viii) [ Ie [[ lovee(et) ite ]Y [ whenX [ youe smileet ]t]Z]M]t

b. Now consider the following puzzle: [[ noX manet ]Y smiledet ]t .
Give two solutions for Y . For each solution give the correspond-
ing solution for X .

c. Based on your answers to 7a and 7b, find at least one solution
for X , Y and Z in the following puzzle:
[ ThereX [is(et)(et) [troubleet [inYParadisee]Z]]]t .
Can you find any more solutions?

8. a. Give English descriptions (cf. (3.34)) for the following λ-
terms:

(i) λ f(et)t .λyt . f (λze .y)
(ii) λxe .λ fet . f (x)
(iii) λ fet .λgtt .λxe .g ( f (x))
(iv) λ fee .λg (ee)t .λxe .g (λye . f (x))

b. Give λ-terms for the following English descriptions:
(i) the function sending every function fee to the function

sending every entity x to the result of applying f to f (x);
(ii) the function sending every function of type (ee)e to its

value on the identity function of type ee;
(iii) the function sending every function R of type e(et) to its

inverse, i.e. the function R−1 of type e(et) that satisfies for
every two entities x and y: (R−1(x))(y)= (R(y))(x).

9. a. Simplify the following λ-terms as much as possible using func-
tion application:
(i) ((λxe .λ fet . f (x))(tinae))(smileet)
(ii) ((λ fet .λgtt .λxe .g ( f (x)))(smileet))(λyt .y)
(iii) (((λge(et).λxe .λye .(g (y))(x))(praisee(et)))(tinae))(marye)

b. We analyze sentences like Mary is Tina by letting the word is
denote an e(et) function F , which is different from the identity
function of type (et)(et). Define F as a λ-term, basing your
definition on the equality formula x = y, which has the truth-
value 1 iff x and y are equal. Write the λ-term for the structure
Lewis Carroll [is [C. L. Dodgson]], and then simplify it as much
as possible.
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c. We analyze the sentence [Tina [praised [her mother]]] using the
following denotations:
HER=λ fee .λge(et).λxe .(g ( f (x)))(x) and motheree = the func-
tion sending each entity x to x’s mother.
Assuming these denotations, give the λ-term we derive for the
sentence. Then simplify the λ-term you got as much as possible
using function application.

10. a. Give English descriptions for the λ-terms:

(i) λyn.(DOUBLER)(y) (see (3.25))
(ii) λye .(λxe .x)(y)

b. Write simpler descriptions for the functions you described in
10a.

c. Complete the following conclusion:
for any function fτσ , the function _____ equals f .
In the λ-calculus, the simplification rule that this conclusion
supports is known as eta-reduction.

d. Simplify the following λ-term as much as possible using func-
tion application and eta-reductions:

((λ fe(et).λgtt .λxe .λye .g ( f (x)(y)))(λue .λze .praise(z)(u)))(λwt .w)
11. Consider the equivalence between the active sentence Mary

[praised Tina] and its passive form Tina [[was praised by] Mary].
In this structure, we unrealistically assume that the string was
praised by is a constituent. Express the denotation of this con-
stituent in terms of the denotation praise, in a way that captures
the equivalence between the active and passive sentences.

12. a. Simplify the following λ-term as much as possible using func-
tion application and the definition of ANDt :
(λ fe(et).λxe .λye .(ANDt(( f (x))(y)))(( f (y))(x)))(praisee(et)).
Describe in words the e(et) function that you got.

b. (i) Give the two binary structures for the sentence Tina is not
tall and thin.
(ii) For each of these structures, give the semantic interpretation
derived using the lexical denotations NOT(et)(et) and ANDet .
(iii) Simplify the resulting λ-terms as much as possible using
function application and the definitions of NOT(et)(et) and ANDet .

c. (i) Give binary structures for the sentences in (3.53) and (3.54).
(ii) For each of these structures, give the semantic interpretation
derived using the lexical denotations ANDet and HERSELF.



March 8, 2016 Time: 04:03pm chapter3.tex

TYPES AND MEANING COMPOSITION 95

(iii) Simplify the resulting λ-terms as much as possible using
function application and the definitions of ANDet and HERSELF.

d. For every function f of type et, we use the notation f ∗ to denote
the set of entities {x ∈ De : f (x)= 1} that f characterizes. For
instance, for the function χ S in (3.2) we denote: χ S

∗ = S =
{a, c}. Show that for all functions h1, h2 of type et, the following
holds:
(ANDet(h2)(h1))

∗ = h1∗ ∩ h2∗.
In words: the function ANDet(h2)(h1) characterizes the intersec-
tion of the sets that are characterized by h1 and h2.

e. Assume that the sentence Tina is not tall has the structure
not [Tina is tall]. What should the type and denotation of
not be under this analysis? How would you account for the
ambiguity of Tina is not tall and thin? Explain all your structural
assumptions.

13. a. Account for the entailment (3.70a) with the adverb charmingly:
describe the restriction on the adverb’s denotation by complet-
ing the following sentence:
the function charmingly of type maps any set A character-
ized by to .

b. Account for the same entailment by postulating a λ-term for
charmingly in terms of an arbitrary function charminglyarb.
Simplify the λ-terms for the two sentences in (3.70a), and
explain why the ≤ relation must hold between them in every
model.

c. (i) Repeat your analysis in 13a, but now for the entailment
(3.70b) and the preposition with. Complete the following sen-
tence:
the function with of type maps any entity (e.g. for John), to
a function mapping any characteristic function χA (e.g. for ran)
to .
(ii) Repeat your analysis in b, but now for (3.70b). Postulate a λ-
term for with in terms of an arbitrary function witharb. Simplify
the λ-terms you get for the sentences in (3.70b).

d. Account for the equivalence (3.71a) by defining the denotation
from (of which type?) on the basis of an arbitrary function
fromarb of type e(et). Show that after simplifications, the truth-
values you get for the two sentences in (3.71a) are the same.
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e. Account for the entailments (i) Tina is very tall ⇒ Tina is
tall, and (ii) Tina is a [[very tall] student] ⇒ Tina is a tall
student: postulate proper restrictions on the denotation of the
word very in (i) and (ii), of types (et)(et) and ((et)(et))((et)(et))
respectively.

f. Account for the equivalence in (3.71b) by postulating a proper
type and a proper restriction on the denotation of the word
who. Give it a λ-term. Show that after simplifications, the
truth-values you get for the two sentences in (3.71b) are the
same.

SOLUTIONS TO SELECTED EXERCISES
1. a. [u �→1, v �→ 0,w �→1,m �→0]; [u �→0, v �→0,w �→0,m �→0];

[u �→0, v �→1,w �→0,m �→1]. b. {u, v,w,m}, i.e. the whole do-
main De .

2. a. (i) (ee)(et), (ii) (et)e,
(iii) (et)(te), (iv) e(t(ee)),
(v) (et)(e(ee)), (vi) (e(et))(te),
(vii) ((tt)(te))(e(ee)).

3. a. Dtt={[0 �→0, 1 �→0], [0 �→0, 1 �→1], [0 �→1, 1 �→0],
[0 �→1, 1 �→1]}.

b. Det={
[u �→0, v �→0,w �→0,m �→0], [u �→0, v �→0,w �→0,m �→1],
[u �→0, v �→0,w �→1,m �→0], [u �→0, v �→0,w �→1,m �→1],
[u �→0, v �→1,w �→0,m �→0], [u �→0, v �→1,w �→0,m �→1],
[u �→0, v �→1,w �→1,m �→0], [u �→0, v �→1,w �→1,m �→1],
[u �→1, v �→0,w �→0,m �→0], [u �→1, v �→0,w �→0,m �→1],
[u �→1, v �→0,w �→1,m �→0], [u �→1, v �→0,w �→1,m �→1],
[u �→1, v �→1,w �→0,m �→0], [u �→1, v �→1,w �→0,m �→1],
[u �→1, v �→1,w �→1,m �→0], [u �→1, v �→1,w �→1,m �→1]}.
The solution for Dte is along similar lines.

c. For De={l, n}, there are four functions in Dee : [l �→l, n �→l],
[l �→l, n �→n], [l �→n, n �→l] and [l �→n, n �→n]. If we substitute
these four functions for u, v,w and m in the answer to 3b, we
get the sixteen functions in D(ee)t .

4. et, t, –, –, –, et, –, tt, –, –, –, e(e(et)).
5. a. praise= t �→[t �→0 j �→0 m �→0] j �→[t �→1 j �→0 m �→1]

m �→[t �→1 j �→1 m �→1]
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b. [[read Mary Moby Dick]] = [t �→1 j �→0 m �→0 md �→0 lo �→0]
[[read Mary]] = t �→[t �→0 j �→0 m �→0 md �→0 lo �→0],

j �→[t �→0 j �→0 m �→0 md �→0 lo �→0],
m �→[t �→0 j �→0 m �→0 md �→0 lo �→0],
md �→[t �→0 j �→1 m �→0 md �→0 lo �→0],
lo �→[t �→1 j �→0 m �→0 md �→0 lo �→0]].

6. a. (tt)(t(tt)); e(ee); t(et); ((et)t)(e((et)t)).
b. t and (t(tt))(tt); e and (ee)e; e and (et)t; e and (e((et)t))((et)t).
c. the solution X = yz; the solutions X = y and X = (yz)z.

7. a. (i) X=(et)(et) (ii) X=e((et)(et)),
(iii) X=(et)e (iv) Y=(et)(et),
(v) X=(et)e (vi) Y=(et)((et)(et)),
(vii) X=t(tt) (viii) X=t((et)(et)).

b. Y=e and X=(et)e; Y=(et)t and X=(et)((et)t).
c. X=e or (et)t; Y=e((et)(et)); Z=(et)(et).

Additional solutions for 7c:
X=et, Y=e((et)(((et)(et))e)), Z=(et)(((et)(et))e); X=e,
Y=e((et)(((et)(et))(et))), Z=(et)(((et)(et))(et)).

8. a. (i) the function sending every function f of type (et)t to the
function sending every truth-value y to the result of applying f to
the constant et function sending every entity to y.
(ii) the function I sending every entity x to the function sending
every et function f to the truth-value result of applying f to x (I
sends every x to the characteristic function of the set of functions
characterizing subsets of De containing x).
(iii) the function C sending every et function f to the function
sending every tt function g to the function from entities x to the
result of applying g to f (x) (C returns the function composition of
gtt on fet).
(iv) the function sending every ee function f to the function
sending every (ee)t function g to the function from entities x to the
result of applying g to the constant function sending every entity
to f (x).
b. (i) λ fee .λxe . f ( f (x));
(ii) λ f(ee)e . f (λxe .x);
(iii) λRe(et).λxe .λye .(R(y))(x).

9. a. (i) smile(tina); (ii) λxe .smile(x); (iii) (praise(mary))(tina)
b. F = λye .λxe .x = y; (F (cld))(lc) = (lc=cld)
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c. ((HER(mother))(praisee(et)))(tinae)=
(praise(mother(tina)))(tina)

10. a. (i) the function sending every number y to DOUBLER(y)
(ii) the function sending every entity y to the result that the
function sending every entity x to x returns for y

b. (i) DOUBLER
(ii) the function sending every entity y to y, a.k.a. the function
sending every entity x to x

c. the function λxτ . f (x) equals f
d. praise.

11. [[was praised by]] = λxe .λye .praise(y)(x)
12. a. λxe .λye .(praise(y))(x)∧ (praise(x))(y) – the function sending

x to the function sending y to 1 iff x and y praised each other.
b. (i) Tina [is [not [tall [and thin]]]]; Tina [is [[not tall] [and thin]]]

(ii) (IS(NOT((ANDet(thin))(tall))))(tina);
(IS((ANDet(thin))(NOT(tall))))(tina)
(iii)∼(tall(tina)∧ thin(tina)); (∼(tall(tina)))∧ thin(tina).

d. Suppose h1∗=A1, h2∗ = A2. By def. of ANDet :
(ANDet(h2)(h1))∗ = (λxe .h1(x)∧ h2(x))∗, i.e. the set A= {x ∈
E : (h1(x)∧ h2(x))= 1}. By def. of ∧, for every y ∈ E : y ∈ A
iff h1(y)= 1 and h2(y)= 1, i.e. y ∈ A1 and y ∈ A2, i.e.
y ∈ A1 ∩ A2.

13. c. with of type e((et)(et)) maps any entity x (e.g. for John), to a
function mapping any characteristic function χA (e.g. for ran)
to a function characterizing subsets of A;
with= λxe .λ fet .λye .((witharb

e((et)(et))(x))( f ))(y)∧ f (y).
d. frome((et)(et)) = λxe .λ fet .λye .(fromarb

e(et)(x))(y)∧ f (y).
f. WHO is assigned type (et)(et), which leads to the term:
(IS(A(WHO(HERSELF(praise))(pianist))))(tina). With the
assumption WHO=ANDet , this term is simplified to:
pianist(tina)∧ praise(tina)(tina). We get the same term
when simplifying the term for the sentence Tina is a pianist and
Tina praised herself.
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