Between Logic and Common Sense

Or: Dikkertje Dap meets Dr. Halfbaked

Yoad Winter Technion &

NICI, 20 May 2008

Main Puzzle: How do words contribute to sentence understanding?

Typical situation in linguistics:

Gottlob Frege

(1848 - 1925)

Principle of Compositionality:

The meaning of a compound expression is a function of the meanings of its parts, and the ways they combine with each other.

Model-theoretic, Truth-conditional Semantics:

Meanings are defined relative to an algebraic *model*. The relations between meanings in the model are coupled to relations between *truth values* of sentences in the (artificial) language.

Alfred Tarski (1902-1983)

Noam Chomsky (1928)

Universal Grammar:

Central *structural* aspects of the human language faculty, and especially of language *acquisition*, are innate, and common to all human languages.

English as a formal language:

There is no fundamental difference between the techniques needed for treating the semantics of natural languages, and those needed for artificial-logical languages.

Richard Montague (1930-1971)

Logic and Language in the 20th Century

Gottlob Frege (1848-1925)

Noam Chomsky (1928)

Current Tasks

Better relations with semantic performance

Better understanding of semantic resources themeselves

Alfred Tarski

Richard Montague (1930-1971)

Basic Distinction (e.g. Keenan)

Logical concepts = Tarksian operators: the (N) = $\begin{cases} x & - \text{ if } N=\{x\}\\ undefined - \text{ otherwise} \end{cases}$

Non-logical concepts

```
see; man; telescope = ?
```

The Challenge

So far so good for syntax-semantics mapping:

I saw the man with the telescope

- But what are meanings themselves?
- Can the mapping between syntax and semantics be blind to the meanings it manipulates?

General thesis:

Cognitive faculties of concept processing via prototypes may affect logical meanings as well as the composition process.

Areas: where semantics meets cognitive psychology

- 1. Composition of simple *non-logical* concepts. *stone lion*
- 2. Composition of *non-logical* with *logical* concepts. *follow each other*
- 3. Modeling of logical relations between sentences in *Computational Semantics.*

Prototype Theory – reconstruction

Prototype of a concept: some structured collection of features that characterize preferred attributes for instances of the concept.

Categorization: prototypes are a vehicle for determining whether an object falls into a given conceptual category or not.

For Modeltheoretic Semantics, then:

Prototypes partake in determining the *extension* (referent, denotation) of non-logical expressions.

Note – this doesn't mean that extensions are necessarily graded.

It only means that if is in the extension of *red* in a given model, then also is.

Back to basics

Gottlob Frege (1848-1925)

In terms of conceptual semantics:

On Sense and Reference

Sense = concept

Reference – determined by using concept for categorization

Osherson and Smith's Puzzle: Can Prototype Theory deal with concept composition?

How do we create a complex prototype concept from two simpler prototypes?

Proposed answer: we don't.

Prototypes are only associated with **lexical** expressions - morphemes, words, idioms.

lexical *senses/intensions* = concepts

lexical *referents/extensions*, by way of categorization and perhaps common collocations.

Concepts for **complex** expressions = senses, obtained by compositional interface between syntax and logical semantics.

A problem that is not a problem (1) an apple that is not an apple (O&S)

COLOR: ... TEXTURE: ... TASTE: ... SHAPE: ...

Non-logical senses

= prototypes in lexical semantics.

Non-logical references

= use of prototypes for categorization

Compositional syntax and semantics:

APPLE $\bigcap \neg \text{APPLE} = \Phi$

A problem that is not a problem (2)

American city situated on the East Coast just a little south of Tennessee (Fodor)

- Common collocations may perhaps have prototypes, based on experience with them.
- Idioms definitely should.
- But the less common a phrase is, the less likely it is to be connected to an independent prototype.

Head Primacy Principle

giant midget vs. midget giant

Kamp and Partee:

"In a modifier-head structure, the head is interpreted relative to the context of the whole constituent, and the modifier is interpreted relative to the local context created from the former context by the interpretation of the head".

In simpler terms: in adjective-noun constructions, the adjective is "recalibrated" according to the noun, and not vice versa.

Locating the problem: modification

Implementing HPP (also Gardenfors)

Give the nominal scores higher factors than the adjectival scores.

midget:	0.5m→5	1.0m → 4.5	1.5m → 4	1.8m → 1
		2.0m → 0	3.0m → 0	
giant:	0.5m → 0	1.0m → 0	1.5m → 0.5	1.8m → 2
		2.0m→4	3.0m → 5	
		an =	$a \cdot n^2/25$	
midget g	giant:	0.5m → 0	1.0m → 0	1.5m→1/25
		(1.8m→4/2.5	5)2.0m→0	3.0m → 0
giant m	idget:	0.5m → 0	1.0m → 0	(1.5m→8/25)
		1.8m→2/25	5 2.0m → 0	3.0m→0

Possible extensions (also Gardenfors)

A later note: Analysis of the answers to some concerns raised by Osherson and Smith (1982) is beyond the scope of this presentation. *male nurse stone lion toy train pet fish*

etc.

Note: These only concern the "recalibration" of modifiers in nominal compounds; not necessarily a general theory of concept composition.

When the noun makes a difference

Dikkertje Dap climbed a tall giraffe.

Dikkertje Dap is the hero of a well-known Dutch poem by Annie M. G. Schmidt. After feeding a giraffe and talking to him, DD ends up sliding down the giraffe's neck, discovering how hard the ground of the Artis zoo in Amsterdam really is.

Problem: context dependence

Kamp:

My 2-year-old son built a tall snowman.

Question: What allows *tall* to be affected by the context here?

Answer (Kamp): The context-dependence of *tall.*

But also: the fact that *snowman* does not have a clear height standard – the modified noun has little effect on the adjective.

When context-dependence is weaker

Dr. Halfbaked had a complete idea.

In the 1970s Dr. Halfbaked was a main figure in an Israeli educational TV series for teaching English. This extraordinary scientist would often come up with improbable ideas. *Musical hamburgers* was one of my favorites.

Intermediate summary – prototypes in formal semantics

- 1 May be needed for determining denotations of non-logical concepts.
- 2 May affect the composition process with modifiers, but not necessarily in a general way.
- 3 The way modifiers interact with prototypes and context requires attention, and experimentation.

More on HPP – relational prototypes and the logic of reciprocals

Reciprocal and Relational Expressions (cont.) Mary, Sue and Jane are standing on each other.

Hypothesis: Prototypes of relations affect the logic of reciprocals.

Common-sense:	Logic:	
We <u>may</u> know many people at the same time.	know each other	$\forall \forall$
We <u>can</u> only stand on in non- circular configurations.	stand on each other	
We <u>can (normally)</u> only kick one person at the same time.	kick each other	ΕA
We <u>are likely to</u> pinch only one person at the same time.	pinch each other	EA
nus, the logical aspects of langua	age may be more se	ensitive

HPP again

Adjective-Noun: Choose the maximally prototypical element(s) of the *noun* which respects preferences of the *adjective*.

Relation-Reciprocal: Choose the maximally prototypical element(s) of the *relation* that is consistent with the *reciprocal*.

Prototypes of Relations (1)

Work in progress with Nir Kerem and Naama Friedmann (Tel-Aviv)

to performance than what is sometimes believed.

Experiments run – prototypical binary relations

1. *Forced Choice*: Given two pictures like Figure 2a and Figure 2b, the subjects are asked to answer quickly:

"Which situation describes better a tickling?"

2. Sentence Completion: Given two incomplete sentences like:

The boy _____ the old man. The boy _____ the old men.

Add the following verbs in the slots, one verb for each sentence: hit, remembered.

Prototypes of Relations (2)

Results so far (52 subjects):

Forced Choice:

- 1. Transitive verbs (in Hebrew lexical TVs) that prefer a singular object: *stab, shake, hit, point at, wipe, comb, tickle, shoot at, touch, put make up on, clean, scratch, paint.*
- 2. Transitive verbs that prefer a plural object: *make a speech to, take a picture of, draw.*

Sentence Completion: Singular-Plural object pairs – catch-know, tickle-make laugh, scratch-forget, push-hate, stub-take away, stub-meet, hug-remember, hug-make thrilled, lean on-control,

Application in Computational Semantics: Acquiring word-sentence meaning interactions

Summary

- 1 Relational expressions may have prototypes.
- 2 These may affect the composition process with reciprocals.
- 3 According to the Head Primary Principle of Kamp and Partee.

Answer Requires:

- 1. A better understanding of the relations between the semantics of lexical concepts and compositional processes in logical semantics.
- 2. A way to obtain large-scale automatic acquisition of logically relevant concepts from available resources.

Gottlob Frege (1848-1925)

Noam Chomsky (1928) Sense ↓

Common

Meaning

Logic, drad gaage aged i Colgen 200/n Qe tobery

21st Century

Form

(1902-1983)

Richard Montague (1930-1971)

A tall order, to be sure!

References

Dagan, I. et al (2006): "The PASCAL Recognising Textual Entailment Challenge". *Lecture Notes in Computer Science*, vol. 3944: 177-190.

Dalrymple, M. et al (1998): "Reciprocal expressions and the concept of reciprocity", *Linguistics and Philosophy* 21:159-210.

Frege, G. (1892): "On sense and reference" ("Über Sinn und Bedeutung"), in Frege, G., *Translations from the Philosophical Writings of Gottlob Frege*, ed. by P. Geach and M. Black. Blackwell, Oxford.

Gamut, L.T.F. (1991): Logic, Language and Meaning, vol. 1-2, University of Chicago Press.

Gardenfors, P. (2000) "Concept combination: a geometrical model", in L. Cavedonet al (eds), *Logic language and Computation*, vol. 3, CSLI, Stanford, CA.

Kamp, J. A. W. (1975): "Two Theories about Adjectives", in E. L. Keenan (ed.), *Formal Semantics of Natural Language*. Cambridge University Press.

Kamp, H. and B. Partee (1995): "Prototype theory and compositionality", *Cognition* 57:129-191.

Keenan, E. (2000): "Logical objects", in C. A. Anderson and M. Zeleny (eds.), *Logic, Meaning and Computation: Essays in Memory of Alonzo Church*. Kluwer, Amsterdam.

Montague, R. (1970): "English as a formal language", reprinted in R. Thomason, ed. (1974), *Formal Philosophy:selected papers of Richard Montague*, Yale, New Haven.

Osherson , D. N. and Smith, E. E. (1981): "On the adequacy of prototype theory as a theory of concepts". *Cognition* 9: 35-58.

Osherson , D. N. and Smith, E. E. (1982): "Gradedness and conceptual combination". *Cognition* 12: 299-318.

Smith, E. E. (1990): "Categorization", in D. N. Osherson, and E. E. Smith (eds.), *Thinking, An Invitation to Cognitive Science*, volume 3. MIT Press, Cambridge, Massachusetts.