
.30

Controlled Language for Geographical
Information System Queries

Sela Mador-Haim, Yoad Winter, and Anthony Braun

Technion I.I.T
selam@ cs. technion. ac. il,winter@ cs. technion. ac. il ,

tonyb@ geofocus. co. il

Abstract

Natural language interface to spatial databases have not received a lot of attention
in computational linguistics, in spite of the potential value of such systems for
users of Geographical Information Systems (GISs). This paper presents a controlled
language for GIS queries, solves some of the semantic problems for spatial inference
in this language, and introduces a system that implements this controlled language
as a novel interface for GIS.

1 Introduction

Geographical Information Systems (GISs) are information systems for pro-
cessing of data that pertains to spatial or geographic coordinates [14]. Even
though GISs are enjoying a rapidly growing users community, the current
systems are often difficult to use or require a long learning process [13]. In
the GIS literature [15,16,5,8], it has been well-acknowledged that natural lan-
guage interfaces (NLIs) would significantly enhance the exploitation of the
more complex features of GISs, yet despite the potential value of NLIs for
GISs, the work on this subject has so far been rather limited [16]. To the best
of our knowledge, existing NLIs for GISs are limited in scope and expressive
power and lack the ability to express complex relationships over spatial enti-
ties. Some works ([9,17,12]) have demonstrated NLIs using a database that
contain geographically related data. Those databases, however, lack any ac-
tual spatial information (e.g. geometric polygons representing buildings), and
therefore do not deal with the problem of inferring spatial relations from such
representations.

In general, the design of NLIs to databases is regarded as a difficult problem
since human interaction is often vague, ambiguous or highly contextualized
[15,1]. The approach we take in this paper is to avoid many of these problems
by designing a system that uses a controlled language for GIS queries. Such
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controlled languages [10,11], which is based on a fragment of English, can be
designed in a way that minimizes the use of vague, ambiguous and context-
dependent expressions, while maintaining the ability to express very complex
queries in a language that is a subset of English. We greatly benefit from the
fact that GISs are a closed, well-defined domain, which enables us to focus on
the data independent core of the language. We show that the addition of the
data dependent portion can be done semi-automatically and requires very low
effort.

Our implementation of an NLI for GISs involves four major tasks: first, the
definition the data independent lexicon, which was done using simple applica-
tive categorial grammar (Ajdukiewicz-Bar-Hillel calculus). Second, we develop
a suitable semantic representation for GIS queries, which we call λSQL, and a
method to translate natural-language queries via λSQL into spatially-enabled
SQL. The third task is the definition of the semantics for spatial relations (esp.
prepositions) in the lexicon in accordance with the intuitive understanding of
such relations, which involves tackling certain aspects of spatial prepositions
that where never dealt with before. The fourth task is the development of
methods to add the data dependent portion of the lexicon with minimal ef-
fort, including an automatic tool that generates lexical entries from the actual
geographical database in use.

The paper is organized as follows: Section 2 introduces λSQL and de-
scribes the translation scheme from natural language into SQL queries. Sec-
tion 3 reviews the architecture of the lexicon. Section 4 discusses semantic
issues concerning spatial relations in natural languages. Section 5 presents
our implementation, and section 6 concludes.

2 A compositional approach for building SQL queries

SQL is a recursive language in the sense that it allows using an SQL query as a
part of an expression inside another SQL query. However, due to its complex
syntax, the construction of an SQL query in a compositional way from a query
in natural language is far from being a straightforward task. One way to
tackle this problem is by using an intermediate representation [4,10]. While
such an intermediate language avoids the complications of composing SQL
queries directly, its downsides are the additional translation phase it requires
and the fact that such intermediate languages are usually not as expressive as
the target language.

We introduce an intermediate representation language, which we call λSQL.
This language only adds the necessary “compositional glue” to SQL. As a re-
sult, only a simple translation process is necessary to convert λSQL queries
into normal SQL syntax. λSQL is basically expressions in the simply typed
λ Calculus with the addition of syntactic sugar for SQL-like syntax.

The typical syntax of a select SQL-command for querying a database is:



SELECT < selectlist > FROM < tablelist > WHERE < whereclause >;

The selectlist parameter is usually a list of fields to be displayed, but it also
allows other expressions such as aggregate functions (e.g. field summation).
The tablelist parameter is a list of tables to query and whereclause is a
boolean expression that restricts the rows in the query.

The syntax of λSQL is very close to that of an SQL whereclause, with the
addition of λ operators. The atoms of λSQL are real numbers, strings and
typed identifiers. The base types in λSQL are: t - Boolean, r - real numbers,
str - strings, g - spatial data and e - entries in the database. These base
types correspond to the base types that are found in GIS databases, with the
addition of one additional type, e, for database entries (tuples). Expressions
are built from atoms via function applications: exp1(exp2), infix operators:
exp1 op exp2 and the operators λv.exp and ∃v.exp. The infix operators in
λSQL correspond to SQL operators, and include Boolean AND/OR, arith-
metic operators (+,−, ∗, /) and comparators (>,<, =, <=, >=, ! =). One ad-
ditional important operator in λSQL is the dot operator, as in var.fieldname,
where var is of type e and fieldname is a function from entries in the database
to entities of a basic type (i.e. it is of type et, er or es). A dot expression is
equivalent to fieldname(var), a function that returns the value of a field of a
given entry.

In general, the only two syntactic elements in λSQL that do not corre-
spond directly to SQL syntax are the λ and ∃ operators. Translation from
λSQL expressions to SQL queries is done by recursive traversal over the ex-
pression. During traversal, whenever certain patterns are recognized, these
patterns are replaced by a corresponding SQL select statement. Each λ op-
erator corresponds to a select statement, which can be nested inside another
select. In addition to λ operators, three different synthetic elements may affect
the translation pattern:

P1 A function over a λ expressions, as in f(λv.exp), is treated as an aggregate
function.

P2 In the simplest pattern, the type of the variable v in λv is e, and it
corresponds to a query that returns a set of entries. When the variables
that the λ operator binds is of any other base type, the pattern: λx.∃y.(x =
expr1 AND expr2) is expected, which is translated into SELECT expr1
FROM layer WHERE expr2.

P3 Any additional ∃ operator which is not part of the pattern above is trans-
lated as a table join (where tablelist parameter contains more than one
query). For example, the expression λxe.∃ye.(x.layer = “layer1′′ AND
y.layer = “layer2′′ AND exp) is translated into: SELECT x.* FROM
layer1 AS x, layer2 AS y WHERE exp. Each additional ∃ adds an addi-
tional table to the list.



The translation process is guaranteed to be successful due to constraints
over the λSQL expressions in the lexicon that enforce conformity to the above
patterns. As an example for λSQL, consider the following fragment from our
lexicon is presented below:

Word Category 1 Semantics

buildings N λxe.(x.layeres = ”building”)

with N\N/N λn1et.λn2et.λxe.(n1(x) AND n2(x))

more than Rs/R λnr.λxr.(x > n)

two R 2

floors N\Rs λprt.λxe.p(x.floorser)

highest N/N λnet.λxe.(n(x) AND (x.heighter =

max(rt)r(λrr.∃ye.(n(y) AND r = y.heighter))))

The natural language expression “buildings with more than two floors”
will be parsed into the λSQL expression: λxe.(x.layeres = ”building” AND
x.floorser > 5). Note that while functional applications during parsing elimi-
nated most λ operators, the λ operator that is introduced by the lexical entry
for buildings is not eliminated. This remaining λxe is used to describe a
query over a variable x. In order to generate an SQL query, however, one
additional piece of information is required: the name of a table to query. This
information is provided via the layer keyword (layers, or feature sets in GIS
terminology are equivalent to tables in general databases). While usually the
fieldname following the dot operator is a name for an actual field in the
database (such as floors in the above example), layer is a virtual attribute
in λSQL, used to associate a layer with a variable. Whenever an expression
such as x.layeres = ”building” is found, the parser associates x with the table
“building”, and hence the above expression is translated into the SQL query:

SELECT x.* FROM building AS x WHERE x.floors>5;

A bit more complex example is the query “highest buildings”, which is
translated into: λxe.(x.layeres = “building′′ AND x.heighter = max(rt)r(λrr.
∃ye.(y.layeres =′′ building′′ AND r = y.heighter)))). This expression demon-
strates several features of λSQL. Note that max is a free identifier, which is
expected to be a name of an SQL function. The function max receives a λ
expression, and therefore interpreted as an aggregate function. Finally, the

1 The atomic categories in the lexicon correspond to the base types of λSQL, as well as sets
of base type entities. For example, category R corresponds to type r and Rs corresponds
to the type (rt).



expression in the argument of max fits pattern P2 above, and the result is:

SELECT x.* FROM building AS x WHERE x.floors=(SELECT max(y.floors)
FROM building);

3 Lexicon architecture

The data independent part of the lexicon is the core of our controlled lan-
guage. This is the part of the lexicon that involves general logical and spatial
operators that do not depend on the actual GIS. By carefully selecting the
data-independent lexical items, we are able to express very complex queries
while avoiding vagueness and ambiguity problems that often undermine the
usability of NLIs. An important part of our work is the ability to express
spatial relations between GIS objects. However, non-spatial lexical items are
an important part of the lexicon as well. In the first part of this section we de-
scribe the non-spatial items in the lexicon. In the following part we review the
spatially-related lexical items. Finally we present classes of data-dependent
lexical items.

3.1 Non-spatial lexical items

Non-spatial lexical items can be partitioned into the following groups:

• units, such as meters, kilometers, miles, acres. The lexical definition for
these items converts any unit into standard units (e.g. metric units).

• numerical relations, such as less than, at least, between n and m. Numer-
ical relations represent a set of real numbers.

• Superlatives: biggest, smallest, most, least. The words most and least
can be used to refer to the maximal or minimal value of any numerical
field in the database. Other words such as largest and longest are used as
abbreviation for “most area” and “most length”.

• Boolean connectives: and, or, not

• Other lexical entries: that, which, is, are, with, without, have.

3.2 Spatial lexical items

As mentioned before, we wish to design a controlled language that would avoid
the pitfalls of vagueness and context-dependent ambiguity. In order to satisfy
this requirement, we need to avoid vague qualitative relations such as near, far
and almost. Another type of relations that need to be avoided are projective
relations such as in front of, behind, left and right. The meaning of these
prepositions involves context-dependent[6] elements that are hard to handle
within a controlled language.



The following spatial relations are included in the lexicon:

• Intersectional relations, following Egenhofer’s 9-intersection model [3]: in,
outside of, borders, overlaps, crosses, contains and intersects. Note that
only the first two expressions are prepositions, while the others are verbs.

• Distance: the word from is used to specify exact distance, as in “200m from
a lake”.

• Constructors: intersection of, border of and center of. These words are
used to refer to spatial entities that do not exist in the database, but can
be derived from existing objects. For example, assuming “42nd Street” and
“Broadway” are objects in the database, “the intersection of 42nd street
and Broadway” can be constructed by intersecting the geometrical repre-
sentations of the two streets.

• Relative orientation: north of, south east of and the 3-place relation between
are all used to describe the orientation of one object relative to another
object (or objects, as in the case of between).

• Superlatives: closest and furthest are spatially-related superlatives.

3.3 Data-dependent lexical items

Data dependent lexical items are lexical items that refer to specific data inside
the database and therefore change from one data set to another. GIS data
are divided into separate thematic feature classes or layers, whereby each
layer consists of one type of geometrical entity such as a building, street or
utility pole. For each layer there is usually an associated set of attributes that
represent non-spatial data attached to real world geometric objects. These
may be boolean data, numeric data or strings. Examples for such attributes
are the number of floors in a building or a street name. String values such as
street names should be part of the lexicon as well.

An example for such a template is:

”#strval” N/N{l = #layer} λn.λx.(n(x) AND (x.#attr like #strval))

The ”#strval” template defines lexical items that refer to strings inside the
database. The lexical analyzer searches the database for strings that match
lexical tokens that are not present in the lexicon. For each such string it finds,
the above template is instantiated with the relevant layer name, attribute
name and string value. Similar templates are used for layer names and at-
tributes of various types. In case the lexical entries need to be different than
the actual names in the database, a definition file is used to add those lexical
items and instantiate the relevant templates for those items. No knowledge in
λSQL is required in order to edit the definition file.



4 Semantics of spatial prepositions

While some progress was made in semantic theories of prepositional phrases
in recent years [18,7], certain aspects of spatial linguistic phenomena have not
been treated as extensively in the semantic literature, but are nevertheless
crucial for interfaces to spatial databases. Two such aspects are treated in our
system and are discussed below.

4.1 Eigenspace vs. Existential semantics

While previous work on prepositional semantics mainly dealt with relation-
ships between two distinct objects, GIS queries often correspond to relation-
ships between sets of objects. Consider the following query: “Buildings that
are up to 200m from a lake”. In case there is more than one lake, we expect
our query to return any building such that there is at least one lake up to
200m from it. In other words, it appears like the query existentially quantifies
over the lakes. On the other hand, if we change our query to “Buildings that
are at least 200m from a lake”, we would expect the query to return buildings
that are over 200m away from all the lakes. The query “building that are
between 200m and 500m from a lake” has a yet more complex semantics, and
should result in any building such that there is at least one lake less than
500m from it and there is no lake less than 200m from it.

The semantics of the above three queries becomes much clearer, however,
when instead of interpreting the indefinite “a lake” as an existential quantifier
over the lakes in the database, “a lake” is interpreted as the set of all lakes, and
distance is measured with respect to the space taken by the union of all lakes.
We refer to this kind of interpretation for indefinites as eigenspace semantics.
In SQL, the eigenspace of a set of objects is evaluated by using the aggregate
function GeomUnion over a set of objects, as in:

Example SELECT geomunion(x.the geom) FROM lake AS x;

In our framework, eigenspace semantics is treated by enabling a type-
shifting from an indefinite noun-phrase into a special category G used for
representing the eigenspace. The λSQL expression for G/N type-shifting
is: λn.geomunion(λg.∃x.(n(x) AND g = x.the geom)) where the geom is
the attribute for the geometrical data of an object in GIS database. The
λSQL expression for from (((N\N)\RS)/G) is then defined as: λg.λp.λn.λx.
(n(x) AND p(distance(x.the geom, g))).

It is important to note that while eigenspace semantics are used for spatial
prepositions, in the case of other spatial relations that are not expressed using
prepositions, such as the verbs contains and intersects, an indefinite is treated
in the usual way, as an existential quantifier. For example, if we ask about
“towns that contain a building with more than 10 floors”, the eigenspace se-
mantics would mean finding a town than contains all buildings with more than
one floor, whereas we expect to get any town that contains at least one building



with more than 10 floors. We achieve the correct semantics in this case by pro-
viding a λSQL expression for verbs such as contains that existentially quanti-
fies over the set of contained objects: λn1.λn2.λx.∃y.(n1(y) AND n2(y) AND
contains(x.the geom, y.the geom)).

4.2 Semantics of between

Fig 1. Example for between Fig 2. Query result in QGIS

An additional aspect of spatial relations that was so far ignored in the
semantic literature is relations between non-convex objects. A fundamental
spatial relation which is quite problematic in the context of non-convex objects
is the 3-place relation between.

Zwarts and Winter [18] suggest the following definition for between: X is
between Y and Z if X ⊆ convexHull(Y ∪Z)\Y \Z, for convex objects in X, Y
and Z. The problem is that many objects we deal with in the context of GISs
are not convex. For example, it could be quite handy to talk about objects
between two streets. However, streets are often non-convex shapes. As can
be seen in figure 1, the convex hull for two streets represented by the solid
lines includes areas that do not agree with our understanding of the expression
between the two streets. In order to overcome this problem, we suggest the
following definition:

Definition 4.1 Let X, Y and Z be sets of points. We say that X is between
Y and Z iff either there is a point x on the border of Y such that the shortest
line connecting x to Z crosses X, but does not cross Y, or there is a point y
on the border of Z such that the shortest line connecting y to Y cross X, but
does not cross Z.

The areas between the streets according to Definition 1 are marked by
stripes. As can be seen from the illustration, the new definition is more in
agreement with our intuitive understanding of between. Note that while the
above is a strict definition of between, in some context people might use a
sloppy definition (e.g., Buxton is between Manchester and Sheffield). In our
system, however, we wish to avoid the vagueness of such sloppy definitions.



5 Implementation

The NLI presented in this paper was implemented in C++. The parser reads
lexicon from a text file that includes the syntactic categories, and the semantics
is represented using λSQL expressions for all data-independent lexical items.
Data-dependent items are represented using templates, as explained in section
3.3. When the user enters a natural-language query, the query is parsed using
a bottom-up right-to-left tabular Combinatorial Categorial Grammar (CCG)
parser that was developed as part of the NLI prototype. The resulting λSQL
expression is then converted into an SQL query as explained in section 2,
which is sent to a spatially enabled database engine.

The system presented here uses PostGIS (http://postgis.refractions.net/)
as a back-end. PostGIS is an open-source GIS extension to the PostgreSQL
database engine, which implements the OpenGIS “Simple features specifica-
tion for SQL” standard [2]. PostGIS basically supplies a set of functions that
operate on vector representations, such as a function that calculates distance
between polygons. The SQL queries are sent to PostGIS, which generates the
result in a form of a table which is loaded into a GIS front-end that supports
PostGIS, such as QGIS (http://www.qgis.org).

For example, the query “Buildings that are up to 500m from the intersec-
tion of Elm street and Oak street” are converted into the SQL query, which
generates the result in figure 2:

(SELECT x.* FROM building AS x WHERE distance(x.the geom, in-
tersection((SELECT GeomUnion(x2.the geom) FROM street AS x2 WHERE
x2.street nam LIKE ’elm’),(SELECT GeomUnion(x3.the geom) FROM street
AS x3 WHERE x3.street nam LIKE ’oak’)))<=500)

6 Conclusions and future work

This work presents an interface to GISs that is based on a controlled natural
language. It demonstrates that it is possible to build such usable interfaces and
express quite complex queries using a fragment of English. Future work on this
subject can be done on several different levels: expanding the lexicon further
by adding quantifiers, comparison between attributes of different objects and
possibly anaphoric expressions. More thorough theoretical study is required
regarding semantic issues such as eigenspace and between presented here, and
finally, an empirical study is necessary to evaluate how usable such interfaces
are for actual GIS users of varying skills and needs. We believe, however, that
the general architecture and prototype demo interface that we suggest can be
developed into a useful tool for planners and other professional users of GISs.
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