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Abstract

We characterize pairs of monotone generalized quantifiersQ1 andQ2

over finite domains that give rise to an entailment relation between their
two relative scope construals. This relation between quantifiers, which is re-
ferred to asscope dominance, is used for identifying entailment relations be-
tween the two scopal interpretations of simple sentences of the form NP1-V-
NP2. Simple numerical or set-theoretical considerations that follow from our
main result are used for characterizing such relations. The variety of exam-
ples in which they hold are shown to go far beyond the familiar existential-
universal type.

1 Introduction

Scope ambiguity in simple transitive sentences of the form NP1-V-NP2 is one
of the well-studied areas in natural language semantics. Ithas been often ob-
served that whether this kind of ambiguity is manifested in natural language may
depend on entailment relations between the readings of suchsentences. For in-
stance, Zimmermann (1993) characterizes the class ofscopeless(“name like”)
noun phrases – the class of NP2s for which the two scope construals of the sen-
tence NP1-V-NP2 are equivalent for any noun phrase NP1 and transitive verb
V. A more general notion, first addressed by Westerståhl (1986), involves uni-
directional entailment between the two analyses, which is referred to here asscope
dominance. A sentence NP1-V-NP2 exhibits scope dominance if one of its two
analyses entails the other. A familiar case is when the subject (or object) denotes
an existential quantifier (e.g.some student) and the object (or subject, respec-
tively) denotes a universal quantifier (e.g.every teacher). Westerst̊ahl shows that
in the class of non-trivial upward monotone quantifiers overfinite domains, scope
dominance appears if and only if the subject or object are existential or universal.
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Altman et al. (2002) generalize Westerståhl’s result, and show a full charac-
terization of scope dominance witharbitrary upward monotone quantifiers over
countabledomains. In this paper we generalize Westerståhl’s result in another
way, and characterize scope dominance between simple upward or downward
monotone quantifiers over finite domains. It leads to a general characterization
of entailments over finite domains between the semantic analyses of sentences
with (potential) scope ambiguity as in the following cases,where both subject and
object are monotone.

(1) Less than five referees read each of the abstracts.

(2) Less than five referees read at least one of the abstracts

In sentence (2), the object narrow scope construal entails the object wide scope
construal. In (1) the entailment between the two construalsis in the opposite di-
rection. Note that the definite noun phrasethe abstractsleads in both sentences to
the presupposition that there is at least one abstract, which is crucial for the respec-
tive entailments to hold. Similarly to Westerståhl’s result about upward monotone
quantifiers, in both examples scope dominance is created by the presence of an
existential or universal quantifier. However, as we shall see, our extension of
Westerst̊ahl’s characterization reveals many more cases of scope dominance with
monotone quantifiers other thaneveryor some.

This work is part of a broader enterprise that aims to characterize general
entailment patterns between different readings of ambiguous sentences in natu-
ral language. One central motivation for studying this question comes from the
promise it carries for improving existing techniques forreasoning under ambigu-
ity. Towards the end of this paper we describe this new line of research.

The rest of this paper is organized as follows. Section 2 gives some essen-
tial background on generalized quantifier theory. Section 3briefly discusses some
previous results on various scope dominance relations. Section 4 proves our char-
acterization of scope dominance relations with monotone quantifiers over finite
domains, and exemplifies its relevance for the analysis of scopally ambiguous En-
glish sentences. Section 5 concludes the article and elaborates in some detail on
its relevance for reasoning under ambiguity.

2 Background

This section reviews some notions from generalized quantifier theory that will be
used in our characterization of scope dominance.

A (generalized) quantifierover a domainE is a setQ ⊆ ℘(E). In this pa-
per we are particularly interested inmonotonequantifiers, those quantifiers that
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are closed under supersets or subsets. Formally, a quantifier Q overE is called
upward (downward) monotoneiff for any setA in Q andA′ a superset (subset)
of A: A′ is in Q as well. In the sequel, we sometimes use the abbreviations
“MON↑” and “MON↓” for “upward/downward monotone”. Two “degenerate”
kinds of monotone quantifiers over a domainE are the twotrivial quantifiers: the
empty quantifier and the quantifier℘(E). For an upward (downward) monotone
quantifierQ, it is sometimes useful to designate the collection ofQ’s minimal
(maximal) sets. Formally, given a quantifierQ, a setA ∈ Q is minimalin Q iff for
anyA′ ( A: A′ /∈ Q. Analogously, given a quantifierQ, a setA ∈ Q is maximal
in Q iff for any A ( A′: A′ /∈ Q.

Given a binary relationR ⊆ E2 andx ∈ E we write Rx
def
= {y ∈ E :

R(x, y)} andRy def
= {x ∈ E : R(x, y)}. The Object Narrow Scope(ONS)

analysis of a simple transitive sentence NP1-V-NP2 is naturally interpreted in a
domainE as the propositionQ1Q2R as defined below, whereQ1 andQ2 are the
subject and object quantifiers (NP1 and NP2 respectively) overE, and the relation
R ⊆ E2 is the denotation of the verbV .

(3) Q1Q2R
def
⇔ {x ∈ E : Rx ∈ Q2} ∈ Q1.

TheObject Wide Scope(OWS) analysis isQ2Q1R
−1, which by (3) is equivalent

to the requirement{y ∈ E : Ry ∈ Q1} ∈ Q2. The notion ofscope dominance,
which plays a special role in this paper, is defined as follows.

Definition 1 (Scope dominance)Given two quantifiersQ1 andQ2 overE we say
thatQ1 is scopally dominantoverQ2 iff for everyR ⊆ E2: Q1Q2R ⇒ Q2Q1R

−1.

Consider for instance the following familiar type of sentences.

(4) A competent referee read every abstract.

In this case, we say that the ONS reading, with the∃∀ order of quantifiers, is
dominant over the OWS reading, with the opposite order.1

For a quantifierQ overE, the following notions of quantifiernegationwill be
useful for characterizing scope dominance.

¬Q = {X ⊆ E : X /∈ Q} (Q’s complement)

Q¬ = {X ⊆ E : E \ X ∈ Q} (Q’s post-complement)

Qd = ¬Q¬ = {X ⊆ E : E \ X /∈ Q} (Q’s dual)

Some simple properties of quantifier duality are the following, for any quantifier
Q overE:

1Standardly, we henceforth use the term “reading” when referring to a statement that represents
an actual interpretation of a sentence. When referring only to a formal derivation of a statement,
with no commitment as to its empirical status, we refer to an “analysis” of a sentence.
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1. (Qd)d = Q

2. Q = ∅ ⇔ Qd = ℘(E)

3. Q is MON↑ (MON↓) iff Qd is MON↑ (MON↓).

The relevance of duality to scope dominance comes from the following simple
fact.

Fact 1 For any two quantifiersQ1 andQ2 overE: Q1 is scopally dominant over
Q2 iff Qd

2 is scopally dominant overQd
1.

A determinerover a domainE is a functionD that assigns to everyA ⊆ E a
quantifierD(A). Two important properties of determiners areconservativityand
permutation invariance. A determinerD overE is calledconservativeiff for all
A,B ⊆ E: B ∈ D(A) ⇔ B ∩ A ∈ D(A). A determinerD over E is called
permutation invariantiff for every permutationπ on E, and for allA,B ⊆ E:
B ∈ D(A) ⇔ πB ∈ D(πA), where for a setX ⊆ E, πX = {π(x) : x ∈ X}.

In part of Section 4 we will concentrate on quantifiers that satisfy Q = D(A)
for someA ⊆ E and a conservative and permutation invariant determinerD. In
the sequel, we refer to such quantifiers asCPI-based.

As pointed out by V̈aän̈anen and Westerståhl (2001), every monotone CPI-
based quantifierQ over a finite domainE can be represented as follows, for some
A ⊆ E andn ≥ 0.

(5) a. Q = {X : |A ∩ X| ≥ n}, if Q is MON↑

b. Q = {X : |A ∩ X| < n}, if Q is MON↓

The duals of such CPI-based quantifiers can be represented as follows, respec-
tively (note that a dual of a CPI-based quantifier is also CPI-based).

(6) a. Qd = {X : |A ∩ X| ≥ |A| − n + 1}

b. Qd = {X : |A ∩ X| < |A| − n + 1}

In Table I we give some examples of monotone CPI-based quantifiersD(A) over
a finite domainE for various determinersD and arbitrary setsA ⊆ E, together
with their presentation according to the scheme in (5). In these examples, for any
real numberr, the notations⌊r⌋ and⌈r⌉ standardly stand for the integer value
closest tor from below and from above, respectively.
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every′(A) = {X ⊆ E : |A ∩ X| ≥ |A|}

not every′(A) = {X ⊆ E : |A ∩ X| < |A|}

some′(A) = {X ⊆ E : |A ∩ X| ≥ 1}

no′(A) = {X ⊆ E : |A ∩ X| < 1}

more than n
′(A) = {X ⊆ E : |A ∩ X| > n}

less than n
′(A) = {X ⊆ E : |A ∩ X| < n}

more than half ′(A) = {X ⊆ E : |A ∩ X| ≥ ⌊ |A|
2
⌋ + 1}

at least half ′(A) = {X ⊆ E : |A ∩ X| ≥ ⌈ |A|
2
⌉}

less than half ′(A) = {X ⊆ E : |A ∩ X| < ⌈ |A|
2
⌉}

Table 1: CPI-based Quantifiers

3 Related works

This section reviews previous works in which scope dominance and similar rela-
tions are characterized.

Westerst̊ahl (1986) characterizes the pairsQ1 andQ2 of CPI-based, upward
monotone quantifiers over finite domains, for whichQ1 is scopally dominant over
Q2. He shows that if both quantifiers are not trivial, thenQ1 is dominant over
Q2 iff Q1 = some′(A) or Q2 = every′(B), for someA,B ⊆ E. Some more
results about scope dominance appear in Van Benthem (1989). He shows that a
quantifierQ is dominant overanyupward monotone quantifier iffQ = some′(A),
for someA ⊆ E. Furthermore, he shows that a quantifierQ is dominant overany
(not necessarily monotone) quantifier iff it is a principal ultra filter, or the empty
quantifier.

Altman et al. (2002) extend Westerståhl’s result forall upward monotone quan-
tifiers overcountabledomains. They show that for such quantifiers,Q1 is scopally
dominant overQ2 iff one of the following requirements holds:

(i) Q1 is existential

(ii) Q2 is universal

(iii) Q1 satisfies (U),Q2 6= ∅ andQ2 satisfies (DCC)

(iv) Q2 is a filter,Q1 6= ℘(E) andQ1 satisfies (FIN)

where (U), (DCC) and (FIN) are defined as follows:

• A quantifierQ satisfies theunion property(U) if for all A1, A2 ⊆ E: if
A1 ∪ A2 ∈ Q thenA1 ∈ Q or A2 ∈ Q.
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• A quantifierQ satisfies theDescending Chain Condition(DCC) if for every
descending sequenceA1 ⊇ A2 ⊇ · · ·An ⊇ · · · in Q, the intersection∩Ai

is in Q as well.

• A quantifierQ satisfies (FIN) if every set inQ contains a finite subset that
is also inQ.

Other scope commutativity properties of quantifiers were studied by Zim-
mermann (1993) and Westerståhl (1996). Zimmermann characterizes the class
of scopelessquantifiers: those quantifiersQ that satisfy for allQ1 ⊆ ℘(E) and
R ⊆ E2: QQ1R ⇔ Q1QR−1. He shows that the scopeless quantifiers overE
are precisely the principal ultrafilters overE.2. Westerst̊ahl (1996) characterizes
the class ofself-commutingquantifiers: those quantifiersQ, such that for every
R ⊆ E2: QQR ⇔ QQR−1. He shows thatQ ⊆ ℘(E) is self-commuting iffQ
is either a union or an intersection of atoms, or a finite symmetric difference of
atoms, or a negation of such a symmetric difference. Clearly,the notion of scope
dominance is more general than scopelessness or self-commutativity: a quantifier
Q is scopeless iffQ andQd are both scopally dominant over any quantifierQ1;
Q is self-commuting iff it is scopally dominant over itself. However, it should be
noted that the actual results of Altman et al., as well as the new results presented
in this paper, do not fully subsume the results by Zimmermannand Westerståhl.

4 Scope dominance with monotone quantifiers over
finite domains

In this section we introduce a general result that completely characterizes the re-
lations of scope dominance between pairs of upward monotonequantifiers and
downward monotone quantifiers over finite domains. We then study the implica-
tions of this result for the natural subclass of CPI-based quantifiers, and extend the
coverage of our technique to scope dominance over finite domains between pairs
of CPI-baseddownwardmonotone quantifiers. Throughout this section we ex-
emplify how these results are used for characterizing scopedominance in natural
language, which leads to the identification of previously unobserved entailments
between wide scope and narrow scope analyses of scopally ambiguous sentences.

2Zimmermann characterizes scopelessness in a more general case, whereQ andQ1 are not
necessarily defined over same domain. The property we mention here is a direct result of his
characterization.
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4.1 Scope dominance with quantifiers of mixed monotonicity

The following proposition, the central result in this subsection, characterizes scope
dominance between pairs of upward monotone quantifiers and downward mono-
tone quantifiers over finite domains.

Proposition 2 Let Q1 andQ2 be two quantifiers over a finite domainE, s.t. Q1

is MON↑ andQ2 is MON↓. Let the natural numbern be defined by:

n = max{|Y | : Y is minimal in¬Q2}.

ThenQ1 is scopally dominant overQ2 iff one of the following holds:

(i) Both quantifiers are not trivial, and for everyQ ⊆ Q1, if |Q| = n + 1 then⋂
Q 6= ∅.

(ii) Q1 = ∅.

(iii) Q2 = ℘(E).

(iv) Q2 = ∅ andQ1 6= ℘(E).

Proof. It is easy to verify that if at least one ofQ1 andQ2 is trivial, thenQ1

is scopally dominant overQ2 iff one of the clauses (ii)-(iv) holds. We therefore
assume that both quantifiers are not trivial, and prove thatQ1 is scopally dominant
overQ2 iff (i) holds.
Only if: Assume by way of contradiction thatQ1 is scopally dominant overQ2,
but there is a subsetQ of Q1 s.t. |Q| = n + 1 and

⋂
Q = ∅. DenoteQ =

{X,X1, . . . , Xn}. Let Y be any minimal set in¬Q2 of cardinalityn, and denote
Y = {y1, . . . , yn}. Let R =

⋃n

i=1(Xi × {yi}). From
⋂

Q = ∅ it follows that for
everyx ∈ X, Rx ( Y , and becauseY is minimal in¬Q2, Rx ∈ Q2. Hence,X ⊆
{x ∈ E : Rx ∈ Q2}. SinceX ∈ Q1 andQ1 is MON↑: {x ∈ E : Rx ∈ Q2} ∈ Q1.
However,{y ∈ E : Ry ∈ Q1} = Y /∈ Q2, in contradiction to the assumption that
Q1 is scopally dominant overQ2.
If: Assume by way of contradiction that for everyQ ⊆ Q1 s.t. |Q| = n + 1:⋂

Q 6= ∅, but Q1 is not scopally dominant overQ2. Then there isR ⊆ E2 s.t.
{x ∈ E : Rx ∈ Q2} ∈ Q1 and{y ∈ E : Ry ∈ Q1} /∈ Q2. Let Y ⊆ {y ∈ E :
Ry ∈ Q1} be a minimal set in¬Q2. SinceQ2 is MON↓ and not empty, it follows
that∅ ∈ Q2, henceY ∈ ¬Q2 is not empty. SinceE is finite, |Y | < ℵ0. For every
y ∈ Y let Ay be a minimal set inQ1 s.t.Ay ⊆ Ry. Let A ⊆ {x ∈ E : Rx ∈ Q2}
be also a minimal set inQ1. Let Q = {A} ∪ {Ay : y ∈ Y }. If x ∈

⋂
y∈Y Ay then

Y ⊆ Rx, and becauseQ2 is MON↓ andY /∈ Q2, alsoRx /∈ Q2. It follows that
for suchx, x /∈ A, and therefore

⋂
Q = ∅. By definition ofn, |Y | ≤ n (since
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Y is minimal in¬Q2). Thus,|Q| ≤ |Y | + 1 ≤ n + 1. But |Q| 6= n + 1 since⋂
Q = ∅, and we assumed that if|Q| = n + 1 then

⋂
Q 6= ∅. Thus,|Q| = k for

0 < k < n + 1, and we show that there isQ′ ⊆ Q1 s.t. |Q′| = n + 1 − k and
Q′ ∩ Q = ∅.
To do that we first claim that|{x ∈ E : E \ {x} /∈ Q}| ≥ n − k. This is true
because|{x ∈ E : E \ {x} /∈ Q}| = |E \ {x ∈ E : E \ {x} ∈ Q}| = |E|− |{x ∈
E : E \ {x} ∈ Q}|. But |E| ≥ n, and|{x ∈ E : E \ {x} ∈ Q}| ≤ |Q| = k.
Thus,|E| − |{x ∈ E : E \ {x} ∈ Q}| ≥ n − k.
So letX ⊆ {x ∈ E : E \ {x} /∈ Q} with |X| = n − k, and letQ′ = {E \ {x} :
x ∈ X}∪{E}. Q′ ⊆ Q1, because ifx ∈ X then there isA′ ∈ Q s.t.x /∈ A′ (since⋂

Q = ∅), and thereforeA′ ⊆ E \ {x}; from the upward monotonicity ofQ1, it
follows thatE \ {x} ∈ Q1. To see thatQ′ ∩ Q = ∅ note that by the definition
of X: if x ∈ X thenE \ {x} /∈ Q. Furthermore, ifE ∈ Q then, since all the
sets inQ are minimal inQ1, E is the only minimal set inQ1, which implies that
Q = {E}. But this contradicts the fact that

⋂
Q = ∅, henceE /∈ Q. Thus, every

set inQ′ is not inQ.
FromQ′ ∩ Q = ∅ it follows that |Q′ ∪ Q| = |Q′| + |Q| = n + 1. Furthermore,
from

⋂
Q = ∅ it follows that

⋂
(Q′ ∪ Q) = ∅, in contradiction to the assumption

that for everyQ ⊆ Q1 s.t.|Q| = n + 1:
⋂

Q 6= ∅.

The dual of the kind of scope dominance that is introduced in Proposition 2 is
the case in whichQ1 is MON↓ andQ2 is MON↑. Corollary 3 below is a direct
consequence of Proposition 2.

Corollary 3 Let Q1 andQ2 be two quantifiers over a finite domainE, s.t. Q1 is
MON↓ andQ2 is MON↑. Let

n = max{|Y | : Y is minimal inQ1¬}.

ThenQ1 is scopally dominant overQ2 iff one of the following holds:

(i) Both quantifiers are not trivial, and for everyQ ⊆ Qd
2, if |Q| = n + 1 then⋂

Q 6= ∅.

(ii) Q1 = ∅.

(iii) Q2 = ℘(E).

(iv) Q1 = ℘(E) andQ2 6= ∅.

4.2 Examples

Let us now consider some examples for Proposition 2 and Corollary 3. Note
that Proposition 2 implies that ifB 6= ∅ thenevery′(B) is scopally dominant
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over anyMON↓ quantifier. Dually, ifB 6= ∅ then everyMON↓ quantifier is
scopally dominant oversome′(B). Another consequence of Proposition 2 is that
if |B| ≥ 2 thensome′(B) is not scopally dominant over any non-trivialMON↓
quantifier. Incidently, these three consequences hold in infinite domains as well.
We start with two examples, which concern CPI-based quantifiers with simple
determiners.

EXAMPLE 1. Reconsider sentences (1) and (2), restated below as (7) and (8).Since the
set of abstractsB is presupposed to be non-empty,3 the OWS reading (7b) of sentence (7)
entails its ONS reading (7b). Similarly, the ONS analysis (8a) of sentence (8)entails its
OWS analysis (8b).

(7) Less than five referees read each of the abstracts.
a. less than 5′(A) every′(B) R b. every′(B) less than 5′(A) R−1

(8) Less than five referees read at least one of the abstracts.
a. less than 5′(A) some′(B) R b. some′(B) less than 5′(A) R−1

Such examples with existential and universal quantifiers donot exhaust the
cases of scope dominance with monotone quantifiers, as the following example
demonstrates.

EXAMPLE 2. By Proposition 2,more than half ′(A) is scopally dominant over
no′(B) for all A, B ⊆ E. By Corollary 3,not every′(A) (=(no′(A))d) is scopally
dominant overat least half ′(B) (=(more than half ′(B))d), for all A, B ⊆ E. Con-
sider now the following sentences.

(9) More than half of the referees read no abstract.

(10) No abstract was read by more than half of the referees.

To begin with, it is not at all clear that these two sentences are scopally ambiguous. For
many speakers both sentences are unambiguous, and have only an ONS reading. Under
this unambiguous interpretation, our characterization accounts for the entailment from
(the unambiguous) sentence (9) to (the unambiguous) sentence (10). For speakers who
may consider these sentences (or their non-English parallel) ambiguous, our characteri-
zation accounts for the entailment from the ONS analysis of (9) to its OWS analysis, and
for the entailment in the opposite direction in (10).

Note that themore than/at least half ofquantifiers that are involved in Example
2 are not first order definable, so these entailments cannot bederived by any axiom
system of the first order Predicate Calculus.

So far we have considered only “simple” natural language quantifiers – quan-
tifiers that are denoted by simple NPs of the formDeterminer-Noun. However,

3Plausibly, plurality in sentences (7) and (8) leads to the presupposition that there are at least
two abstracts. However, for obtaining the entailment between the analyses of these sentences, the
weaker non-emptiness assumption is sufficient.
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when NP coordination comes into play, many of the potentially infinite number
of quantifiers that are created in this way are not CPI-based– hence, according
to standard assumptions, they are not expressible as NPs of the formDeterminer-
Nounin any natural language. For example, the quantifierevery′(A1)∪every′(A2)
that is denoted by coordinations such asevery author or every teacheris CPI-
based only when eitherA1 ⊆ A2 or A2 ⊆ A1. The following simple (dual)
lemmas help in characterizing scope dominance also with non-CPI-based quanti-
fiers.4

Lemma 4 Let Q1 andQ2 be two quantifiers over a domainE s.t. Q2 is MON↓
andQ1 is scopally dominant overQ2. Then every quantifierQ s.t.Q ⊆ Q1 is also
scopally dominant overQ2.

Lemma 5 Let Q1 andQ2 be two quantifiers over a domainE s.t. Q1 is MON↓
andQ1 is scopally dominant overQ2. Then for every quantifierQ s.t. Q2 ⊆ Q,
Q1 is scopally dominant overQ.

EXAMPLE 3. Sentences (11), (12) and (13) exhibit the same scope dominance relations
as sentences (7), (9) and (10) respectively, due to Lemma 4.

(11) Less than five referees read each of the abstracts and more than three manuscripts.

(12) More than half of the referees and more than three TAs read no abstract.

(13) No abstract was read by more than half of the referees and more than three TAs.

Similarly, sentence (14) exhibits the same scope dominance relations as sentence (8), due
to Lemma 5.

(14) Less than five referees read at least one of the abstracts or morethan three manuscripts.

Note that the coordinate NPs in this example do not necessarily denote CPI-
based quantifiers. For instance, if there are five abstracts in A and five manuscripts
in M , the quantifierevery′(A) ∩ more than 3′(M), which is denoted by the
object of sentence (11), is not CPI-based.

The following example demonstrates how Lemma 4 can be used toidentify
that a disjunction (union) of two quantifiers is not scopallydominant over a down-
ward monotone quantifier, even when one of the disjuncts is.

EXAMPLE 4. LetA, B ⊆ E s.t.|A| ≥ 2 and|B| ≥ 2. ThenQ1 = at least half ′(A) =
{X ⊆ E : |A ∩ X| ≥ |A \ X} is not scopally dominant overQ2 = less than 2′(B) =
{X ⊆ E : |B ∩ X| < 2}. This fact follows from Proposition 2, since2 = max{|Y | :

4Thanks to Ya’acov Peterzil for pointing this out to us.
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Y is minimal in¬Q2}, and there isQ ⊆ Q1 s.t |Q| = 3 and
⋂

Q = ∅. By Lemma 4,
for everyA′ ⊆ E, Q1 ∪ every′(A′) is not scopally dominant overQ2.5 As a result of
these facts, the ONS reading of sentence (15) below does not entail the ONS reading of
sentence (16).

(15) At least half of the referees (or each of the TAs) read less than two of the abstracts.

(16) Less than two of the abstracts was read by at least half of the referees (or each of
the TAs).

The inverse directions of Lemmas 4 and 5 do not hold, as the following exam-
ples demonstrate.

EXAMPLE 5. LetB be a non-empty subset ofE andb′, j′, m′ ∈ E. Let Q′
1 = {X ⊆

E : m′ ∈ X ∨ {b′, j′} ⊆ X}, Q′′
1 = {X ⊆ E : b′ ∈ X ∨ {m′, j′} ⊆ X}. Then neither

Q′
1 norQ′′

1 is scopally dominant overno′(B), since these quantifiers contain disjoint sets.
HoweverQ′

1∩Q′′
1 = {X ⊆ E : {m′, b′} ⊆ X∨{m′, j′} ⊆ X∨{b′, j′} ⊆ X} is scopally

dominant overno′(B). This accounts for the entailment between the ONS and the OWS
analyses of sentence (19), as opposed to the lack of a similar entailment in sentence (17)
or sentence (18).

(17) Mary or [Bill and John] read no paper.

(18) Bill or [Mary and John] read no paper.

(19) [Mary or [Bill and John]] and [Bill or [Mary and John]] read nopaper.

EXAMPLE 6. Let A1, A2 andB be non-empty subsets ofE. Thenevery′(A1) and
every′(A2) are scopally dominant overno′(B), butevery′(A1) ∪ every′(A2) is sco-
pally dominant overno′(B) only if (and if) A1 ∩ A2 6= ∅.

In the examples we have seen thus far, all the downward monotone quantifiers
were CPI-based. In the following example this is not necessarily so.

EXAMPLE 7. LetA, B1, B2 ⊆ E, s.t.|A| = 4, |B1| ≥ 2, |B2| ≥ 1 andB1 ∩ B2 = ∅.
Let Q1 = {X ⊆ E : |A ∩ X| ≥ 3} (= at least 3′(A)), Q′

2 = {Y ⊆ E : |B1 ∩ Y | < 2}
(= at most 1′(B1)) andQ′′

2 = {Y ⊆ E : |B2 ∩ Y | < 1} (= no′(B2)). Then,

2 = max{|Y | : Y is minimal in¬(Q′
2 ∩ Q′′

2)}

and for everyQ ⊆ Q1, if |Q| = 3 then
⋂

Q 6= ∅. By Proposition 2,Q1 is scopally
dominant overQ′

2∩Q′′
2. Hence the ONS reading of sentence (20) entails the ONS reading

of sentence (21).

(20) At least three referees read at most one abstract and no manuscript.

5The same argument holds for any quantifier, not onlyevery′(A′).
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(21) At most one abstract and no manuscript was read by at least threereferees.

On the other hand,Q1 is not scopally dominant overQ′
2 ∪ Q′′

2, since

3 = max{|Y | : Y is minimal in¬(Q′
2 ∪ Q′′

2)}

and there is aQ ⊆ Q1 s.t.|Q| = 4 and
⋂

Q = ∅. Thus, the ONS reading of sentence (22)
does not entail the ONS reading of sentence (23).

(22) At least three referees read at most one abstract or no manuscript.

(23) At most one abstract or no manuscript was read by at least three referees.

4.3 Scope dominance with CPI-based quantifiers of mixed mono-
tonicity

Proposition 2 is a general characterization of scope dominance with quantifiers of
mixed monotonicity over finite domains. As we have seen in theprevious subsec-
tion, checking whether two given quantifiers satisfy the condition in this propo-
sition is not always straightforward. But when both quantifiers are CPI-based,
which is the case in simple NPs in natural language, the task of identifying scope
dominance can be simplified using Vään̈anen and Westerståhl’s presentation (5)
of monotone CPI-based quantifiersQ, which is reproduced below.

(24) a. Q = {X : |A ∩ X| ≥ n}, if Q is MON↑

b. Q = {X : |A ∩ X| < n}, if Q is MON↓

In this presentation, the values ofn and |A| characterizeQ completely, and it
is therefore possible to identify scope dominance using a simple condition on
these values of the two quantifiers. To do that, the followingsimple combinatorial
lemma is useful, whose proof is given in an appendix for sake of completeness.

Lemma 6 Let ℓ,m, k, n ∈ N s.t.ℓ, k > 0, m ≥ 0 and0 < n ≤ k. LetX be a set
with |X| = k. Then 1 and 2 below are equivalent:

1. There is anℓ-ary sequence of (not necessarily distinct) subsetsX1, . . . , Xℓ

of X, s.t.|Xi| = n, 1 ≤ i ≤ ℓ, and everyx ∈ X is in at mostm of theXis.

2. ℓn ≤ mk.

Using this lemma, we observe the following corollary of Proposition 2.

12



Corollary 7 Let Q1 and Q2 be two CPI-based quantifiers over a finite domain
E s.t. Q1 is MON↑ and Q2 is MON↓. According to the presentation in (24),
assume that for someA,B ⊆ E andn,m ≥ 0: Q1 = {X : |A ∩ X| ≥ n} and
Q2 = {Y : |B ∩ Y | < m}. ThenQ1 is scopally dominant overQ2 iff one of the
following holds:

(i) |A|
n

< m+1
m

and both0 < n ≤ |A| and0 < m ≤ |B| (both quantifiers are
not trivial.)

(ii) n > |A| (Q1 = ∅).

(iii) m > |B| (Q2 = ℘(E)).

(iv) n > 0 andm = 0 (Q2 = ∅ andQ1 6= ℘(E)).

Proof. Note thatm = max{|Y | : Y is minimal in¬Q2}. Assume that bothQ1

andQ2 are non-trivial. According to Proposition 2,Q1 is scopally dominant over
Q2 iff the following condition holds.

(i) ∀Q ⊆ Q1[|Q| = m + 1 ⇀
⋂

Q 6= ∅].

Now, (i) is equivalent to the following condition.

(ii) For every sequenceA1, . . . , Am+1 of (not necessarily different) subsets of
A:

⋂m+1
i=1 Ai 6= ∅.

To see that, assume first that (i) does not hold, and letQ ⊆ Q1 s.t.|Q| = m+1 and⋂
Q = ∅. Let us denoteQ = {X1, . . . , Xm+1}. For everyi s.t.1 ≤ i ≤ m + 1,

let Ai ⊆ Xi ∩ A s.t. |Ai| = n. Clearly,
⋂m+1

i=1 Ai = ∅, hence (ii) does not hold.
As for the other direction, assume that (ii) does not hold, and let A1, . . . , Am+1

be a sequence of subsets ofA s.t.
⋂m+1

i=1 Ai = ∅. Let Q = {A1, . . . , Am+1}. If
|Q| = m + 1, then we are done. Otherwise,|Q| = k for 0 < k < m + 1, and it
is left to be shown that there isQ′ ⊆ Q1 s.t. |Q′| = m + 1 − k andQ′ ∩ Q = ∅.
To that, simply apply the same argument from the “if” direction in the proof of
Proposition 2 (with a substitution ofm for n.) Thus, (i) does not hold.
By Lemma 6, (ii) holds iff|A|

n
< m+1

m
.

For the dual case, of two CPI-based quantifiers whereQ1 is MON↓ andQ2 is
MON↑, Corollary 7 can be used to prove the following characterization.

Corollary 8 Let Q1 and Q2 be two CPI-based quantifiers over a finite domain
E s.t. Q1 is MON↓ and Q2 is MON↑. According to the presentation in (24),
assume that for someA,B ⊆ E andn,m ≥ 0: Q1 = {X : |A ∩ X| < n} and
Q2 = {Y : |B ∩ Y | ≥ m}. ThenQ1 is scopally dominant overQ2 iff one of the
following holds:

13



(i) |B| > (m− 1)(|A| − n + 2) and both0 < n ≤ |A| and0 < m ≤ |B| (both
quantifiers are not trivial.)

(ii) n = 0 (Q1 = ∅).

(iii) m = 0 (Q2 = ℘(E)).

(iv) n > |A| andm ≤ |B| (Q1 = ℘(E) andQ2 6= ∅).

EXAMPLE 8. Corollaries 7 and 8 allow us to characterize scope dominance in sim-
ple NPs using simple numerical considerations. For instance, the scope dominance in
sentence (9) is derived from the following numerical consideration, Corollary 7, and the
representation in Table 1.

• In more than half ′(A): n = ⌊ |A|
2 ⌋ + 1;

• In no′(B): m = 1;

• |A|
n

= |A|

⌊
|A|
2

⌋+1
< 2 = m+1

m
.

Similar considerations according to these corollaries point to scope dominance also in
examples like the following.

(25) At least four of the five referees read less than three of the seven abstracts.

(26) Less than four of the five referees read at least three of the seven abstracts.

4.4 Scope dominance with downward monotone CPI-based quan-
tifiers

Proposition 10 below covers scope dominance with two CPI-based quantifiers that
areMON↓. Its proof uses the following consequence of Lemma 6, the proof of
which appears in the appendix.

Corollary 9 Let k, n,m > 0. LetY be a set with|Y | ≥ m. Then 1 and 2 below
are equivalent:

1. There is a sequence of (not necessarily different) subsets ofY : Y1, . . . , Yk,
s.t. |Yi| = m, 1 ≤ i ≤ k, and

| {y ∈ Y : y is in at mostn − 1 of theYis} | ≥ m.

2. k(2m − |Y |) ≤ (n − 1)m.

14



Proposition 10 LetQ1 andQ2 be twoMON↓ CPI-based quantifiers over a finite
domainE. According to the presentation in (24), assume that for someA,B ⊆ E
andn,m ≥ 0: Q1 = {X : |A ∩ X| < n} andQ2 = {Y : |B ∩ Y | < m}. Then
Q1 is scopally dominant overQ2 iff one of the following holds:

(i) 2− |B|
m

> n−1
|A|−n+1

and both0 < n ≤ |A| and0 < m ≤ |B| (both quantifiers
are not trivial.)

(ii) n = 0 (Q1 = ∅).

(iii) m > |B| (Q2 = ℘(E)).

Proof. It is easy to verify that if at least one ofQ1 andQ2 is trivial, thenQ1

is scopally dominant overQ2 iff one of the clauses (ii)-(iii) holds. We therefore
assume that both quantifiers are not trivial, and prove thatQ1 is scopally dominant
overQ2 iff (i) holds.
Q1 is not scopally dominant overQ2 iff the following condition holds:

C1. There existsR ⊆ E2 such that

– | {x ∈ A : |Rx ∩ B| < m} | < n,
which holds iff: | {x ∈ A : |Rx ∩ B| ≥ m} | ≥ |A| − n + 1; and

– | {y ∈ B : |Ry ∩ A| < n} | ≥ m.

We claim that C1 is equivalent to the following condition.

C2. There areT ⊆ E2 andA′ ⊆ A with |A′| = |A| − n + 1 such that:

|Ta ∩ B| = m for everya ∈ A′; and

|{y ∈ B : |{a ∈ A′ : y ∈ Ta}| < n}| ≥ m.

To see that, assume first that C1 holds, and considerA′ ⊆ {x ∈ A : |Rx ∩ B| ≥ m}
s.t. |A′| = |A| − n + 1. For eacha ∈ A′, let Ba ⊆ Ra ∩ B s.t. |Ba| = m. Define
T =

⋃
a∈A′({a} × Ba), and note that{y ∈ B : |Ry ∩ A| < n} ⊆ {y ∈ B : |{a ∈

A′ : y ∈ Ta}| < n}.
As for the other direction, if C2 holds, defineR = T ∩ (A′ × B).

Now, C2 is equivalent to the requirement that there are|A| − n + 1 subsets of
B: B1, . . . , B|A|−n+1, s.t.|Bi| = m, and

| {b ∈ B : b is in at mostn − 1 of theBis} | ≥ m.

By Corollary 9, this requirement holds iff(|A| − n + 1)(2m − |B|) ≤ (n − 1)m.
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EXAMPLE 9. As an example in which both quantifiers areMON↓, note that Proposi-
tion 10 entails thatless than half ′(A) is scopally dominant overnot every′(B), for
anyA ⊆ E and any non-emptyB ⊆ E. Such a case appears in the following sentence,
in which the OWS analysis entails the ONS reading.

(27) Not every one of the referees read less than half of the abstracts.

5 Conclusions – scope dominance and reasoning un-
der ambiguity

In this paper we have introduced results that go beyond previously known facts
about scope dominance. We showed a general characterization of scope domi-
nance with upward-downward pairs of monotone quantifiers over finite domains,
and gave a simple numerical characterization of scope dominance with all pairs of
upward or downward monotone CPI-based quantifiers. One obvious area for fur-
ther research is the extension of the formal coverage of our results. This includes
questions like scope dominance between non-CPI-based downward monotone
quantifiers, overinfinite domains, with non-monotone quantifiers or with scope
permutations of more than two quantifiers. Another questionfor further research
is the use of formal results about scope dominance for computing entailment rela-
tions in simple fragments of natural language. For instance, given a simple tran-
sitive sentence NP1-V-NP2, the task is to decide whether the ONS analysisentails
the OWS analysis. In other words: whether the subject quantifier is scopally dom-
inant over the object quantifier underany model. For a recent work that studies
this question with upward monotone quantifiers see Altman and Winter (2003).

One area where answers to this type of questions may be especially useful is
reasoning under ambiguity. Consider for instance the following two sentences.

(28) At least three referees read Abstract 1 or Abstract 2.

(29) At least two referees read Abstract 1 or Abstract 2.

It is easy to see that each of the two readings of sentence (28)entails each of the
two readings of sentence (29). More explicitly, each of the two statements in (30)
below entails each of the two statements in (31).

(30)
a. at least 3′(A) {B : a1 ∈ B ∨ a2 ∈ B} R (ONS1)
b. {B : a1 ∈ B ∨ a2 ∈ B} at least 3′(A) R−1 (OWS1)

(31)
a. at least 2′(A) {B : a1 ∈ B ∨ a2 ∈ B} R (ONS2)
b. {B : a1 ∈ B ∨ a2 ∈ B} at least 2′(A) R−1 (OWS2)
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This is an instance of what Van Deemteer (1998) calls the∀∀ inference rela-
tion between ambiguous sentences:eachreading of the antecedent entailseach
reading of the consequent. Virtually any system for inference under ambiguity
(e.g. Reyle (1993,1995,1996), Van Deemter (1996,1998) and Eijck and Jaspars (1996))
agrees that∀∀ inferences should be classified as valid when reasoning withnatural
language ambiguous sentences. Results about scope dominance show that in the
case of (28)-(29), the validity of the∀∀ inference can be decided without taking
into account all four readings of the two sentences. Once observing that the ONS1
reading of the antecedent (28) entails the OWS2 reading of the consequent (29),
the other three entailments between the readings of these sentences follow from
the scope dominance of the object over the subject in both of them.

We see that for the purpose of reasoning under ambiguity, we may ignore in
some cases weaker or stronger analyses among the analyses ofambiguous sen-
tences. The study of scope dominance allows us to decide whether such weak or
strong readings exist in cases ofscopallyambiguous sentences, and hence to allow
more economical underspecified representations, and computation of inferences,
for sentences with scope ambiguity of quantifiers. More generally, the study of
entailment patterns between different readings of ambiguous sentences, and their
implications for inference under ambiguity, is a new and potentially fruitful area
for research in this domain, that may improve the design and tractability of un-
derspecified languages for inference and meaning representation. The results that
were reported in this paper were obtained with an eye to this line of research, and
some of their implications are currently studied.

A Combinatorial proofs

Proof of Lemma 6. Let X = {x0, . . . xk−1}. For every sequenceX0, . . . , Xℓ−1

of (not necessarily different) subsets ofX, for every i s.t. 0 ≤ i ≤ k − 1 let
mi = |{Xj : 0 ≤ j ≤ ℓ − 1 ∧ xi ∈ Xj}|.
(1)⇒ (2):
Let X0, . . . , Xℓ−1 be a sequence of (not necessarily different) subsets ofX, such
that for everyj s.t.0 ≤ j ≤ ℓ − 1: |Xj| = n, and for everyi s.t.0 ≤ i ≤ k − 1:
mi ≤ m. Thus,

ℓn =
k−1∑

i=0

mi ≤ mk

(2)⇒ (1):
Assume thatℓn ≤ mk. Construct a sequenceX0, . . . , Xℓ−1 of (not necessarily
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different) subsets ofX as follows:

X0 = {x0, . . . , xn−1}
...

Xj = {x((jn) mod k, . . . , x((j+1)n−1) mod k}
...

Xℓ−1 = {x((ℓ−1)n) mod k, . . . , x(ℓn−1) mod k}

It is not hard to verify that for alli, j s.t.0 ≤ i, j ≤ k−1: mj −1 ≤ mi ≤ mj +1.
Assume for contradiction that for somei s.t.0 ≤ i ≤ k− 1: mi = m′ > m. Thus,

ℓn =
k−1∑

i=0

mi ≥ m′ + (m′ − 1)(k − 1) = (m′ − 1)k + 1 > mk

in contradiction to the assumption thatℓn ≤ mk. Hence, for alli s.t. 0 ≤ i ≤
k − 1: mi ≤ m.

Proof of Corollary 9. Note, first, that if|Y | ≥ 2m then both (1) and (2) hold.
So assume2m − |Y | > 0.
(1)⇒(2):
Let Y1, . . . , Yk be a sequence of subsets ofY that satisfy (1). Let
X ⊆ {y ∈ Y : y is in at mostn − 1 of theYis} s.t. |X| = m. For eachi s.t.
1 ≤ i ≤ k let Xi ⊆ X ∩ Yi with |Xi| = 2m − |Y |.6 Since everyx ∈ X is in at
mostn − 1 of theXis, it follows from Lemma 6 thatk(2m − |Y |) ≤ (n − 1)m.
(2)⇒(1):
Let X ⊆ Y with |X| = m. By Lemma 6 there is a sequenceX1, . . . , Xk of (not
necessarily different) subsets ofX, s.t. |Xi| = 2m − |Y |, 1 ≤ i ≤ k, and every
x ∈ X is in at mostn − 1 of theXis. Let Y ′ ⊆ Y \ X with |Y ′| = |Y | − m. For
everyi s.t.1 ≤ i ≤ k defineYi = Xi ∪ Y ′.
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