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Abstract

We characterize pairs of monotone generalized quantiflerand Qo
over finite domains that give rise to an entailment relation between their
two relative scope construals. This relation between quantifiers, whieh is r
ferred to ascope dominangés used for identifying entailment relations be-
tween the two scopal interpretations of simple sentences of the forrVNP
NP,. Simple numerical or set-theoretical considerations that follow from our
main result are used for characterizing such relations. The varietyaof-ex
ples in which they hold are shown to go far beyond the familiar existential-
universal type.

1 Introduction

Scope ambiguity in simple transitive sentences of the for-MNP, is one
of the well-studied areas in natural language semantichiasgtbeen often ob-
served that whether this kind of ambiguity is manifestedatural language may
depend on entailment relations between the readings of seriences. For in-
stance, Zimmermann (1993) characterizes the clascapbelesg“name like”)
noun phrases — the class of §¢Hor which the two scope construals of the sen-
tence NR-V-NP; are equivalent for any noun phrase N&nd transitive verb
V. A more general notion, first addressed by Wes#dis{1986), involves uni-
directional entailment between the two analyses, whicéfexred to here ascope
dominance A sentence NRV-NP, exhibits scope dominance if one of its two
analyses entails the other. A familiar case is when the stifge object) denotes
an existential quantifier (e.gome studeptand the object (or subject, respec-
tively) denotes a universal quantifier (eayery teacher Westersihl shows that
in the class of non-trivial upward monotone quantifiers direte domains, scope
dominance appears if and only if the subject or object argtexiial or universal.



Altman et al. (2002) generalize Westétsks result, and show a full charac-
terization of scope dominance witlrbitrary upward monotone quantifiers over
countabledomains. In this paper we generalize Wes#gts result in another
way, and characterize scope dominance between simple dpwatownward
monotone quantifiers over finite domains. It leads to a gémd@acterization
of entailments over finite domains between the semanticyseslof sentences
with (potential) scope ambiguity as in the following caselsere both subject and
object are monotone.

(1) Less than five referees read each of the abstracts.
(2) Less than five referees read at least one of the abstracts

In sentence (2), the object narrow scope construal entel®bject wide scope
construal. In (1) the entailment between the two constnsals the opposite di-
rection. Note that the definite noun phrdlse abstractdeads in both sentences to
the presupposition that there is at least one abstracthvidarucial for the respec-
tive entailments to hold. Similarly to Westeiht's result about upward monotone
guantifiers, in both examples scope dominance is createtébpresence of an
existential or universal quantifier. However, as we shadl, sur extension of
Westersdhl's characterization reveals many more cases of scop@dane with
monotone quantifiers other thameryor some

This work is part of a broader enterprise that aims to chareet general
entailment patterns between different readings of amhigigentences in natu-
ral language. One central motivation for studying this ¢joescomes from the
promise it carries for improving existing technigues feasoning under ambigu-
ity. Towards the end of this paper we describe this new line efares$.

The rest of this paper is organized as follows. Section 2sgs@ne essen-
tial background on generalized quantifier theory. Sectibnefly discusses some
previous results on various scope dominance relationgioBetproves our char-
acterization of scope dominance relations with monotorentifiers over finite
domains, and exemplifies its relevance for the analysisagaity ambiguous En-
glish sentences. Section 5 concludes the article and eltdsoin some detail on
its relevance for reasoning under ambiguity.

2 Background

This section reviews some notions from generalized quanttieory that will be
used in our characterization of scope dominance.

A (generalizedl quantifierover a domain¥ is a set@) C p(FE). In this pa-
per we are particularly interested monotonegquantifiers, those quantifiers that



are closed under supersets or subsets. Formally, a quaglifieer F is called
upward (downward) monoton# for any setA in (Q and A’ a superset (subset)
of A: A" isin ) as well. In the sequel, we sometimes use the abbreviations
“MONT” and “MON " for “upward/downward monotone”. Two “degenerate”
kinds of monotone quantifiers over a domairare the twdrivial quantifiers: the
empty quantifier and the quantifief £). For an upward (downward) monotone
quantifier@, it is sometimes useful to designate the collectior)d minimal
(maximal) sets. Formally, given a quantifi@r a setd € @ is minimalin @ iff for
any A’ C A: A’ ¢ Q. Analogously, given a quantifi€p, a setA € @ is maximal
inQiffforany A C A A" ¢ Q.

Given a binary relatiol? C E? andz € E we write R, =4 {y € E:

R(z,y)} and RY = {r € E : R(z,y)}. TheObject Narrow Scop€¢ONS)
analysis of a simple transitive sentence;NPNP; is naturally interpreted in a
domainF as the propositiod);Q, R as defined below, whei@, and(, are the
subject and object quantifiers (NBnd NB respectively) oveF’, and the relation
R C E?is the denotation of the verls.

B UQRY {(rcE R, €@y} €.

The Object Wide Scop@OWS) analysis i€),Q; R, which by (3) is equivalent
to the requiremenfy € £ : RY € @1} € Q.. The notion ofscope dominance
which plays a special role in this paper, is defined as follows

Definition 1 (Scope dominance)Given two quantifier§); and(), over E we say
thatQ, is scopally dominanbverQ, iff for everyR C E?: Q1Q-R = Q-Q R~ *.

Consider for instance the following familiar type of sentesic
(4) A competent referee read every abstract.

In this case, we say that the ONS reading, with #lveorder of quantifiers, is
dominant over the OWS reading, with the opposite otder.
For a quantifier) over E, the following notions of quantifiemegationwill be

useful for characterizing scope dominance.

-Q {XCFE: X ¢Q} (Q's complement

Q- {XCFE:E\X €@} (Q’s post-complemept

QY = -Q-={XCE:E\X¢Q} (Qsdual
Some simple properties of quantifier duality are the follogyifor any quantifier
Q) overE:

1Standardly, we henceforth use the term “reading” when rieigto a statement that represents
an actual interpretation of a sentence. When referring anlyformal derivation of a statement,
with no commitment as to its empirical status, we refer toamelysis” of a sentence.
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1 (@) =Q
2.Q=0eQ"=p(E)
3. Q is MONT (MON]) iff Q7 is MONT (MON]).

The relevance of duality to scope dominance comes from thanimg simple
fact.

Fact 1 For any two quantifiers); and (), over E: (), is scopally dominant over
Q, iff Q¢ is scopally dominant ovep?.

A determinerover a domair¥ is a functionD that assigns to everyy C F a
quantifierD(A). Two important properties of determiners amnservativityand
permutation invarianceA determinerD over E is calledconservativeff for all
A BCE:. Be DA < BNnA e D(A). AdeterminerD over E is called
permutation invarianiff for every permutationr on £, and for allA, B C FE:

B e D(A) < B € D(rA), where forasek C E,7X = {n(z) : 2 € X}.

In part of Section 4 we will concentrate on quantifiers thaisda@) = D(A)
for someA C F and a conservative and permutation invariant determihen
the sequel, we refer to such quantifiersCi-based

As pointed out by \daranen and Westeghl (2001), every monotone CPI-
based quantifief) over a finite domairk’ can be represented as follows, for some
A C Fandn > 0.

B) a.@Q={X:|AnX|>n}, ifQisMONT
b. Q ={X:|AnX|<n}, ifQiSMON|
The duals of such CPIl-based quantifiers can be representeti@agst respec-
tively (note that a dual of a CPI-based quantifier is also CREda
6) aQQi={X:|[AnX|>|Al—-n+1}
b. Q¢ ={X:|ANX| < |A] —n+1}
In Table | we give some examples of monotone CPI-based queastifi( A) over
a finite domainF for various determiner® and arbitrary sets! C E, together
with their presentation according to the scheme in (5). éséhexamples, for any

real numberr, the notationgr| and [r| standardly stand for the integer value
closest ta- from below and from above, respectively.



every'(A) = {XCE:|AnX| > |Al}
not_every’(A) = {(XCE: |AnX|<|Al}
some’(A) = {XCE:|AnX|>1}
no’(A) = {XCE: |AnX| <1}
more_than n'(A) = {XCE:|AnX|>n}
less_than n'(A) = {XCE:|AnX|<n}
more_than half'(4) = {X CFE:[AnX|> 4] +1}
at_least_half’(A) = {XCE:|AnX|>[EN
less than half'(4) = {XCE:[AnX]|< [}

Table 1: CPIl-based Quantifiers

3 Related works

This section reviews previous works in which scope domieaartd similar rela-
tions are characterized.

Westershhl (1986) characterizes the pai{s and Q. of CPl-based, upward
monotone quantifiers over finite domains, for whighis scopally dominant over
Q2. He shows that if both quantifiers are not trivial, then is dominant over
Q- iff Q1 = some’(A) or Q; = every’(B), for someA, B C E. Some more
results about scope dominance appear in Van Benthem (19&9%héivs that a
quantifier® is dominant oveanyupward monotone quantifier iff = some’(A),
for someA C E. Furthermore, he shows that a quantifieis dominant oveany
(not necessarily monotone) quantifier iff it is a principétaifilter, or the empty
quantifier.

Altman et al. (2002) extend Westeibt's result forall upward monotone quan-
tifiers overcountabledomains. They show that for such quantifi€ps,is scopally
dominant oveK); iff one of the following requirements holds:

() Q1 is existential
(i) Qo is universal
(i) @, satisfies (U)Q2 # 0 andQ), satisfies (DCC)
(iv) Q2 isafilter,); # p(F) andQ, satisfies (FIN)
where (U), (DCC) and (FIN) are defined as follows:

e A quantifier Q satisfies thaunion property(U) if for all A, A, C E: if
AjUA, e QthenA; € Qor A, € Q).
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e A quantifier@ satisfies th®escending Chain ConditiafCC) if for every
descending sequench O A, O --- A, O --- in Q, the intersectiomA;
isin@ as well.

e A quantifier() satisfies (FIN) if every set i contains a finite subset that
is also inQ).

Other scope commutativity properties of quantifiers werslisd by Zim-
mermann (1993) and Westeabt (1996). Zimmermann characterizes the class
of scopelesgjuantifiers: those quantifierg that satisfy for allQ); C o(F) and
R C E% QQ:R & Q,QR™'. He shows that the scopeless quantifiers dver
are precisely the principal ultrafilters over2. Westersihl (1996) characterizes
the class okelf-commutingjuantifiers: those quantifief@, such that for every
R C E% QQR < QQR™!. He shows tha®) C o(F) is self-commuting iffQ
is either a union or an intersection of atoms, or a finite symmédifference of
atoms, or a negation of such a symmetric difference. Cletlmdynotion of scope
dominance is more general than scopelessness or self-cativity: a quantifier
Q is scopeless iff) andQ? are both scopally dominant over any quantifigr,

Q is self-commuting iff it is scopally dominant over itselfolWever, it should be
noted that the actual results of Altman et al., as well as #ve results presented
in this paper, do not fully subsume the results by ZimmermamhWestersthl.

4 Scope dominance with monotone quantifiers over
finite domains

In this section we introduce a general result that completkaracterizes the re-
lations of scope dominance between pairs of upward monajoaetifiers and
downward monotone quantifiers over finite domains. We thedysthe implica-
tions of this result for the natural subclass of CPI-baseatjiers, and extend the
coverage of our technique to scope dominance over finite shenhe@tween pairs
of CPI-baseddownwardmonotone quantifiers. Throughout this section we ex-
emplify how these results are used for characterizing sdop@nance in natural
language, which leads to the identification of previouslghserved entailments
between wide scope and narrow scope analyses of scopaligaonis sentences.

2Zimmermann characterizes scopelessness in a more geaselwhere) andQ; are not
necessarily defined over same domain. The property we nmehgce is a direct result of his
characterization.



4.1 Scope dominance with quantifiers of mixed monotonicity

The following proposition, the central result in this sutigen, characterizes scope
dominance between pairs of upward monotone quantifiers awdward mono-
tone quantifiers over finite domains.

Proposition 2 Let ; and ), be two quantifiers over a finite domai s.t. ),
is MONT and @, is MON|. Let the natural number be defined by:

n = max{|Y| : Y is minimal in—Q-}.
Then(@), is scopally dominant ovep; iff one of the following holds:

(i) Both quantifiers are not trivial, and for evey C @4, if |Q| = n + 1 then

ne #0.
(i) Q= 0.
(i) Q2= p(E).
(iv) Q2 =0andQ, # p(E).

Proof. It is easy to verify that if at least one ¢f; and (), is trivial, then@,
is scopally dominant ove®); iff one of the clauses (ii)-(iv) holds. We therefore
assume that both quantifiers are not trivial, and provehas scopally dominant
over Q) iff (i) holds.

Only if: Assume by way of contradiction thét; is scopally dominant ovep,,
but there is a subsép of Q; s.t. |Q] = n+ 1 and(\Q = (. Denote@ =
{X,Xy,...,X,}. LetY be any minimal set im@), of cardinalityn, and denote
Y ={yi,...,yn}. Let R = U;_(X; x {v;}). FromNQ = 0 it follows that for
everyr € X, R, C Y, and becaus¥ is minimal in—Q., R, € ). Hence, X C
{r € E: R, € Qy}. SinceX € @, andQ;isMONT: {x € E: R, € @2} € Q1.
However{y € F: RY € Q1} =Y ¢ (s, in contradiction to the assumption that
@, is scopally dominant ovep,.

If: Assume by way of contradiction that for eve@y C Q; s.t. |Q| = n + 1:
N Q # 0, but@, is not scopally dominant ovef),. Then there is? C E? s.t.
{reE:R, €Q}e@and{yce E: R € Q1} ¢ Q. LetY C{ye E:
RY € @), } be a minimal set imQ,. Since®, is MON| and not empty, it follows
that() € Q,, henceY” € —(@Q), is not empty. Sincé” is finite, |Y| < X,. For every
y €Y let A, be a minimal setirf); s.t. A, C RV. LetAC {z € E: R, € 2}
be also a minimal seti@;. LetQ = {A} U {4, :y € Y}. If 2 € [ A, then
Y C R,, and becausé), is MON| andY ¢ ()., alsoR, ¢ Q)». It follows that
for suchz, x ¢ A, and thereforé)Q = (. By definition ofn, |Y| < n (since
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Y is minimal in—Q)). Thus,|@| < [Y|+1 < n+ 1. But|Q| # n + 1 since
N @ = 0, and we assumed that|if)| = n + 1 then\ Q # 0. Thus,|Q| = k for
0 < k < n+ 1, and we show that there @ C Q; s.t. || =n+1—k and
Q'NQE =0.
To do that we first claim tha{x € E : E\ {z} ¢ Q}| > n — k. This is true
becaus¢{r € E: E\{z} ¢ Q}| = |[E\{z € E: E\{z} € Q}| = |E|—|{z €
E:E\{z} € Q}. But|E| > n,and|{z € E: E\ {z} € Q}| <|Q| = &
Thus,|E| - |{z € E: E\ {z} € Q}| > n — k.
SoletX C{x e E: E\{z} ¢ Q}with |[X| =n —k,and letQ) = {E \ {z} :
r € X}U{F}. Q' C @, because it € X thenthereist’ € @ s.t.xz ¢ A’ (since
N Q@ = 0), and therefored’ C E \ {z}; from the upward monotonicity af, it
follows thatFE \ {z} € Q;. To see that)’ N @ = ) note that by the definition
of X: if x € X thenE \ {z} ¢ Q. Furthermore, ifE € @ then, since all the
sets in@ are minimal inQ¢, F is the only minimal set irf);, which implies that
Q) = {E}. But this contradicts the fact thA} @ = (), henceE ¢ Q. Thus, every
setin@’ is notinQ@.
From@' N @ = 0 it follows that|Q’' U Q| = |Q'| + |Q| = n + 1. Furthermore,
from (N @ = 0 it follows that((Q" U Q) = 0, in contradiction to the assumption
that foreveryQ C Q; s.t.|Q| =n+ 1. (N Q # 0. O
The dual of the kind of scope dominance that is introducedap®sition 2 is
the case in whiclg); is MON| and@)- is MONT. Corollary 3 below is a direct
consequence of Proposition 2.

Corollary 3 Let@; and (@, be two quantifiers over a finite domai, s.t. ) is
MON] and@- is MONT. Let

n = max{|Y|: Y is minimal inQ;—}.
Then@), is scopally dominant ovep; iff one of the following holds:

(i) Both quantifiers are not trivial, and for every C Q4, if |Q| = n + 1 then

NQ #0.
(i) Q1 =10.
(i) Q2= p(E).
(iv) Q1 = p(E)andQ, # 0.

4.2 Examples

Let us now consider some examples for Proposition 2 and GoyoB. Note
that Proposition 2 implies that iB # () thenevery’(B) is scopally dominant
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over anyMON| quantifier. Dually, if B # () then everyMON| quantifier is
scopally dominant ovesome’( B). Another consequence of Proposition 2 is that
if |B] > 2 thensome’(B) is not scopally dominant over any non-trivislON |
guantifier. Incidently, these three consequences holdfimite domains as well.
We start with two examples, which concern CPI-based quarstifigth simple
determiners.

ExXAMPLE 1. Reconsider sentences (1) and (2), restated below as (7) ar®ir{8%.the
set of abstract® is presupposed to be non-emptyie OWS reading (7b) of sentence (7)
entails its ONS reading (7b). Similarly, the ONS analysis (8a) of sentenan(8ils its
OWS analysis (8b).

(7) Less than five referees read each of the abstracts.
a. less_ than 5'(A4) every’(B) R b. every’(B) less_ than 5'(4) R~}

(8) Less than five referees read at least one of the abstracts.
a. less than 5'(A) some’(B) R b. some’(B) less_than 5'(4) R~}

Such examples with existential and universal quantifiersatoexhaust the
cases of scope dominance with monotone quantifiers, as lbeviftg example
demonstrates.

EXAMPLE 2. By Proposition 2;more_than half’(A) is scopally dominant over
no/(B) for all A,B C E. By Corollary 3,not_every’(A) (=(no’(A))?) is scopally
dominant oveat _least_half’(B) (=(more_than_half’(B))?), forall A, B C E. Con-
sider now the following sentences.

(9) More than half of the referees read no abstract.
(10) No abstract was read by more than half of the referees.

To begin with, it is not at all clear that these two sentences are scopally amuisig For
many speakers both sentences are unambiguous, and have only ar&Nt.r Under
this unambiguous interpretation, our characterization accounts for thiénerafrom
(the unambiguous) sentence (9) to (the unambiguous) sentence (XQpdaikers who
may consider these sentences (or their non-English parallel) ambiguousharacteri-
zation accounts for the entailment from the ONS analysis of (9) to its OWSsasaind
for the entailment in the opposite direction in (10).

Note that thenore tharat least half ofjuantifiers that are involved in Example
2 are not first order definable, so these entailments canrawrineed by any axiom
system of the first order Predicate Calculus.

So far we have considered only “simple” natural languagentiiieérs — quan-
tifiers that are denoted by simple NPs of the fdbmterminer-Noun However,

3Plausibly, plurality in sentences (7) and (8) leads to tlesppposition that there are at least
two abstracts. However, for obtaining the entailment betwbherahalyses of these sentences, the
weaker non-emptiness assumption is sufficient.
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when NP coordination comes into play, many of the potemtialfinite number
of quantifiers that are created in this way are not CPI-basetied) according
to standard assumptions, they are not expressible as NRs fifrtnDeterminer-
Nounin any natural language. For example, the quanifiery’(A; )Uevery’(As)
that is denoted by coordinations sucheagry author or every teaches CPI-
based only when eithed; C A, or A, C A;. The following simple (dual)
lemmas help in characterizing scope dominance also withGfikbased quanti-
fiers?

Lemma 4 LetQ; and @, be two quantifiers over a domaifi s.t. () is MON |
and(@), is scopally dominant ovep,. Then every quantifiep s.t. ) C @, is also
scopally dominant oveR)s.

Lemmab5 Let @, and @, be two quantifiers over a domaifi s.t. ; is MON |
and ), is scopally dominant ove®,. Then for every quantifie) s.t. Q, C @,
@, is scopally dominant ovep.

EXAMPLE 3. Sentences (11), (12) and (13) exhibit the same scope dominanoen®la
as sentences (7), (9) and (10) respectively, due to Lemma 4.

(11) Less than five referees read each of the abstracts and morerdamimuscripts.
(12) More than half of the referees and more than three TAs read t@aeths
(13) No abstract was read by more than half of the referees and moréhtiea TAS.

Similarly, sentence (14) exhibits the same scope dominance relations axcsgBedue
to Lemma 5.

(14) Lessthanfive referees read at least one of the abstracts ottraot@ree manuscripts.

Note that the coordinate NPs in this example do not necéssimote CPI-
based quantifiers. For instance, if there are five abstmactand five manuscripts
in M, the quantifiefevery’(A) N more_than_3'(M), which is denoted by the
object of sentence (11), is not CPI-based.

The following example demonstrates how Lemma 4 can be useteiify
that a disjunction (union) of two quantifiers is not scopalyminant over a down-
ward monotone quantifier, even when one of the disjuncts is.

EXAMPLE 4. LetA, B C E's.t.|A| > 2and|B| > 2. Then@; = at_least_half’(A4) =

{X CE:|AnX]|>|A\ X} is not scopally dominant ove&p; = less_than 2'(B) =
{X C F:|BnNX| < 2}. This fact follows from Proposition 2, sinke= max{|Y| :

4Thanks to Ya’acov Peterzil for pointing this out to us.
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Y is minimal in—Q-}, and there i) C @, s.t|Q| = 3 and\Q = (. By Lemma 4,
for everyA’ C E, Q, U every’(A’) is not scopally dominant ovep,.> As a result of
these facts, the ONS reading of sentence (15) below does not entaiNBegading of
sentence (16).

(15) Atleast half of the referees (or each of the TAs) read less thawnftithe abstracts.

(16) Less than two of the abstracts was read by at least half of theesféor each of
the TAS).

The inverse directions of Lemmas 4 and 5 do not hold, as thexfmlg exam-
ples demonstrate.

EXAMPLE 5. LetB be a non-empty subset & and?’, j/,m' € E. Let@Q] = {X C
E:meXVv{¥,j/} CXLQI={XCE:VeXVv{m,j} C X} Then neither

Q' nor Q7 is scopally dominant ovaio’(B), since these quantifiers contain disjoint sets.
HoweverQ,NQ/ ={X CE: {m/ vV} C XVv{m/ j'} C XV{V,;'} C X}isscopally
dominant ovemo’(B). This accounts for the entailment between the ONS and the OWS
analyses of sentence (19), as opposed to the lack of a similar entailmentence(17)

or sentence (18).

(27) Mary or [Bill and John] read no paper.
(18) Bill or [Mary and John] read no paper.

(19) [Mary or [Bill and John]] and [Bill or [Mary and John]] read mpa&aper.

EXAMPLE 6. Let A;, A; and B be non-empty subsets @&. Thenevery’(A;) and
every’(A,) are scopally dominant overo’(B), butevery’(4;) U every’(As) is sco-
pally dominant oveno’(B) only if (and if) A; N Ay # 0.

In the examples we have seen thus far, all the downward moeaefoantifiers
were CPI-based. In the following example this is hot necdgsa.
EXAMPLE 7. LetA,By,By C E,s.t.|A| =4, |By| > 2,|By] > 1andB; N By = 0.
LetQ: ={X CE:|ANX| >3} (=atleast 3'(A4)),Q, ={Y CE:|BiNY| <2}
(=at-most_1'(B;1))andQ) = {Y C E: |BaNY| < 1} (=no’(By)). Then,

2 =max{|Y|: Y is minimal in=(Q5 N Q%)}

and for everyQ C @4, if |Q] = 3 then(\@ # (. By Proposition 2,Q; is scopally
dominant ove), N QY. Hence the ONS reading of sentence (20) entails the ONS reading
of sentence (21).

(20) At least three referees read at most one abstract and no mahusc

>The same argument holds for any quantifier, not agry’(A’).
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(21) At most one abstract and no manuscript was read by at leastéfieeees.
On the other handy; is not scopally dominant ovep’, U @5, since
3 =max{|Y|: Y is minimal in—(Q, U Q%)}

andthereis & C @, s.t.|Q| = 4and( Q = 0. Thus, the ONS reading of sentence (22)
does not entail the ONS reading of sentence (23).

(22) At least three referees read at most one abstract or no maatuscr

(23) At most one abstract or no manuscript was read by at least #ferees.

4.3 Scope dominance with CPI-based quantifiers of mixed mono-
tonicity

Proposition 2 is a general characterization of scope damsmavith quantifiers of

mixed monotonicity over finite domains. As we have seen irptle®ious subsec-

tion, checking whether two given quantifiers satisfy thediton in this propo-

sition is not always straightforward. But when both quantfiare CPI-based,

which is the case in simple NPs in natural language, the taslentifying scope

dominance can be simplified usingg@énen and Westehl's presentation (5)
of monotone CPI-based quantifieps which is reproduced below.

(24) a.Q={X:|ANX|>n}, if Qis MON]
b. Q={X:|ANX|<n}, if QisMON]|

In this presentation, the values ofand |A| characterizey completely, and it
is therefore possible to identify scope dominance usingy@l& condition on
these values of the two quantifiers. To do that, the follovaimgple combinatorial
lemma is useful, whose proof is given in an appendix for sdk®mpleteness.

Lemma6 Letl,m,k,n e Ns.t./,k > 0,m > 0and0 < n < k. Let X be a set
with | X| = k. Then 1 and 2 below are equivalent:

1. There is arf-ary sequence of (not necessarily distinct) subsats . ., X,
of X, s.t.|X;| =n,1 <i </ andeveryr € X is in at mostn of the X;s.

2. In < mk.

Using this lemma, we observe the following corollary of Rysition 2.
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Corollary 7 Let ), and ), be two CPI-based quantifiers over a finite domain
E s.t. @ is MONT and @, is MON|. According to the presentation in (24),
assume that for somé, B C Fandn,m > 0: @, = {X:|[ANX|>n} and
Q2 = {Y :|BNY| <m}. Then@), is scopally dominant ovep, iff one of the
following holds:

() % < 2l and both0 < n < |A] and0 < m < |B| (both quantifiers are
not trivial.)

(i) n > [A[(Q:1=0).
(i) m > [B|(Q2 = p(E)).
(iv) n>0andm = 0(Q: = 0 andQ, # p(£)).

Proof. Note thatm = max{|Y| : Y is minimal in—Q-}. Assume that botk),
and(@), are non-trivial. According to Proposition &), is scopally dominant over
Q- iff the following condition holds.

() VQ S [|Q =m+1—NQ #0].
Now, (i) is equivalent to the following condition.

(i) For every sequencd,, ..., A,,.1 of (not necessarily different) subsets of

To see that, assume first that (i) does not hold, an@let @, s.t.|Q| = m+1 and
(@ = 0. Letus denot&) = {X,..., X,,.1}. Foreveryist.1 <i<m+1,
let A, € X; N As.t.|A;| = n. Clearly, " A, = 0, hence (ii) does not hold.
As for the other direction, assume that (ii) does not hold] @ A,,..., A1
be a sequence of subsetsAf.t. ngl A, = 0. Let@Q = {Ay,..., Api}. If
|Q| = m + 1, then we are done. Otherwis€)| = kfor0 < k£ < m+ 1, and it
is left to be shown that there @ C Q; s.t. |Q'| =m +1—kandQ' NQ = 0.
To that, simply apply the same argument from the “if” direatin the proof of
Proposition 2 (with a substitution of for n.) Thus, (i) does not hold.
By Lemma 6, (ii) holds iff2l < m+L, O
For the dual case, of two CPI-based quantifiers widigres MON| and@), is
MONT, Corollary 7 can be used to prove the following characteionat

Corollary 8 Let ), and ), be two CPI-based quantifiers over a finite domain
E s.t.Q; is MON| and Q, is MONT. According to the presentation in (24),
assume that for somé, B C E andn,m > 0: Q; = {X : |[ANX| <n} and
Qs = {Y :|BNY|>m}. ThenQ, is scopally dominant ove®, iff one of the
following holds:
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() |B] > (m—1)(JA| —n+2)and both0 < n < |A] and0 < m < |B| (both
quantifiers are not trivial.)
(i) n=0(Q:=0).
(i) m =0(Q2 = p(E)).
(iv) n > |Alandm < |B| (Q1 = p(E) and Q2 # 0).
ExXAMPLE 8.  Corollaries 7 and 8 allow us to characterize scope dominance in sim-
ple NPs using simple numerical considerations. For instance, the scopeashaiim

sentence (9) is derived from the following numerical considerationplaoy 7, and the
representation in Table 1.

e In more_than half’(A): n = L'%‘J +1;
e INno'(B):m=1;

ﬂ: |A] <2:m+1

[ ] .
mo g m

Similar considerations according to these corollaries point to scope dorsidsT in
examples like the following.

(25) At least four of the five referees read less than three of theshatracts.

(26) Less than four of the five referees read at least three of tlem sdstracts.

4.4 Scope dominance with downward monotone CPI-based quan-
tifiers

Proposition 10 below covers scope dominance with two CPédbgsantifiers that
areMON]. Its proof uses the following consequence of Lemma 6, thefprb
which appears in the appendix.

Corollary 9 Letk,n,m > 0. LetY be a set witHY'| > m. Then 1 and 2 below
are equivalent:

1. There is a sequence of (not necessarily different) sslofét: Y7, ..., Y},
st.|Y:|=m,1<i<k, and

|{y € Y : yisinatmostn — 1 of theY;s} | > m.

2. k2m —1Y]) < (n—1)m.

14



Proposition 10 Let@; and(@, be twoMON | CPI-based quantifiers over a finite
domainE. According to the presentation in (24), assume that for sdme C £
andn,m > 0: Q; = {X: |[AnX| <n}and@, = {Y : |BNY| <m}. Then
@, is scopally dominant ovep), iff one of the following holds:

(i) 2— 8 > »=1_andboth) < n < |4|and0 < m < |B| (both quantifiers

m JA[—n+1
are not trivial.)
(i) n=0(Q:=10).

(i) m > |B| (Q2 = p(E)).

Proof. It is easy to verify that if at least one ¢f; and (), is trivial, then@,

is scopally dominant oveR, iff one of the clauses (ii)-(iii) holds. We therefore
assume that both quantifiers are not trivial, and provehas scopally dominant
over (@), iff (i) holds.

@ is notscopally dominant ove; iff the following condition holds:

C1. There exist® C E? such that

—|[{x € A: |R,NB| <m}|<n,
which holds iff: | {z € A: |R, N B| > m}| >|A| —n+ 1;and

— [{ye B:|RYNA| <n}|>m.
We claim that C1 is equivalent to the following condition.
C2. There ar§" C E? andA’ C A with |[A’| = |A] — n + 1 such that:

|T, N B| = m for everya € A’; and
Hye B:|[{a€ A :y e T,}| <n}| >m.

To see that, assume first that C1 holds, and consiter {x € A : |R, N B| > m}
s.t.|A'| = |A| —n+ 1. Foreachu € A, let B, C R, N B s.t.|B,| = m. Define
T =U,ea{a} x By),and note thaty € B: |[RYNA| <n} C{ye B:|{ac
Ay eT,} <n}.
As for the other direction, if C2 holds, defide=7"n (A’ x B).

Now, C2 is equivalent to the requirement that there|die- n + 1 subsets of
B: By, ..., Bja-n+1, S:t.|B;| = m, and

|{b€ B:bisinat most: — 1 of the B;s} | > m.

By Corollary 9, this requirement holds iffA| — n + 1)(2m — |B|) < (n — 1)m.
O
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EXAMPLE 9. As an example in which both quantifiers &N |, note that Proposi-
tion 10 entails thatess_than_half’(A) is scopally dominant ovetiot_every’(B), for
any A C E and any non-empty3 C E. Such a case appears in the following sentence,
in which the OWS analysis entails the ONS reading.

(27) Not every one of the referees read less than half of the abstracts

5 Conclusions — scope dominance and reasoning un-
der ambiguity

In this paper we have introduced results that go beyond pusly known facts
about scope dominance. We showed a general charactemizdtigcope domi-
nance with upward-downward pairs of monotone quantifiees émite domains,
and gave a simple numerical characterization of scope domwith all pairs of
upward or downward monotone CPIl-based quantifiers. One obwcea for fur-
ther research is the extension of the formal coverage ofesults. This includes
guestions like scope dominance between non-CPl-based dadmwonotone
quantifiers, oveinfinite domains, with non-monotone quantifiers or with scope
permutations of more than two quantifiers. Another quedtorfiurther research
is the use of formal results about scope dominance for cangpantailment rela-
tions in simple fragments of natural language. For instagsen a simple tran-
sitive sentence NPV-NPs, the task is to decide whether the ONS analgsitails
the OWS analysis. In other words: whether the subject quanifscopally dom-
inant over the object quantifier undany model. For a recent work that studies
this question with upward monotone quantifiers see Altmah\@mter (2003).
One area where answers to this type of questions may be apeseful is
reasoning under ambiguityConsider for instance the following two sentences.

(28) At least three referees read Abstract 1 or Abstract 2.

(29) At least two referees read Abstract 1 or Abstract 2.

It is easy to see that each of the two readings of sentence=(#8i)s each of the
two readings of sentence (29). More explicitly, each of the statements in (30)
below entails each of the two statements in (31).

a. atleast 3'(A) {B:ay€BVay; € B} R  (ONS)

(30) b, {(B:ai € BVvasc B} atleast 3(A) B! (OWS)
(31) a. atleast 2'(A) {B:ay € BVay; € B} R  (ONS)
b. {B:a; € BVay€ B} atleast 2'(A) R~! (OWS)
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This is an instance of what Van Deemteer (1998) callsthénference rela-
tion between ambiguous sentencesichreading of the antecedent entaglach
reading of the consequent. Virtually any system for infeeeander ambiguity
(e.g. Reyle (1993,1995,1996), Van Deemter (1996,1998) gokl &d Jaspars (1996))
agrees thatV inferences should be classified as valid when reasoningnaitiral
language ambiguous sentences. Results about scope domsteow that in the
case of (28)-(29), the validity of thev inference can be decided without taking
into account all four readings of the two sentences. Oncerolrg) that the ONS
reading of the antecedent (28) entails the QW&ading of the consequent (29),
the other three entailments between the readings of thesenses follow from
the scope dominance of the object over the subject in botheoht

We see that for the purpose of reasoning under ambiguity, ageignore in
some cases weaker or stronger analyses among the analyasediglious sen-
tences. The study of scope dominance allows us to decidenethgtich weak or
strong readings exist in casessgbpallyambiguous sentences, and hence to allow
more economical underspecified representations, and datigruof inferences,
for sentences with scope ambiguity of quantifiers. More gadhe the study of
entailment patterns between different readings of amhigwentences, and their
implications for inference under ambiguity, is a new anceptaglly fruitful area
for research in this domain, that may improve the design eaxtability of un-
derspecified languages for inference and meaning repegsentThe results that
were reported in this paper were obtained with an eye toitiesdf research, and
some of their implications are currently studied.

A Combinatorial proofs

Proof of Lemma 6. Let X = {zy,...z;_1}. FoOr every sequenc¥,..., X, 4
of (not necessarily different) subsets &f, for everyi s.t.0 < ¢ < k — 1 let
mi=|{X;:0<j<l—1Az; € X}

Q)= (2):

Let Xo,..., X,_1 be a sequence of (not necessarily different) subsels, guch
that for everyj s.t.0 < j < ¢ —1: |X;| = n, and for everyi s.t.0 < i < k — 1:

m; < m. Thus,
k—1

In = Z m; < mk
=0
(2) = (1):
Assume thatn < mk. Construct a sequencgy, ..., X,_; of (not necessarily
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different) subsets ok as follows:

XO = {x()u"'?a;nfl}
Xj = {x((]n) mod ks« -+ » L((j+1)n—1) mod k}
Xeo1 = AZ@—1n) mod ks - - T(tn—1) mod k }

Itis not hard to verify that forall, j s.t.0 <i,j <k—1:m; -1 <m; <m;+1.
Assume for contradiction that for some.t.0 < i < k—1: m; = m’ > m. Thus,

k-1
fn:Zmi2m'—i—(m’—l)(k—l):(m’—l)k—l—l>mk
i=0

in contradiction to the assumption that < mk. Hence, for alli s.t.0 < i <
k—1:m; <m. L]
Proof of Corollary 9.  Note, first, that if|Y’| > 2m then both (1) and (2) hold.
So assumém — |Y'| > 0.

(1)=(2):

LetY;,..., Y}, be a sequence of subsetstothat satisfy (1). Let

X C {yeY :yisinatmostn — 1 of theY;s} s.t. |X| = m. For eachi s.t.
1 <i<kletX; C XnY; with | X;| = 2m — |Y].° Since everyr € X isin at
mostn — 1 of the Xs, it follows from Lemma 6 thak(2m — |Y]) < (n — 1)m.
(2)=(1):

Let X C Y with | X| = m. By Lemma 6 there is a sequendg, ..., X} of (not
necessarily different) subsets &f, s.t. | X;| = 2m — |Y|, 1 < i < k, and every
x € X isinat most: — 1 of the X;s. LetY’ C Y \ X with |Y'| = |Y| — m. For
everyi s.t.1 <i < k defineY; = X, UY"’. L]
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