
Natural Language Engineering 1 (1): 000–000. Printed in the United Kingdom

c© 1998 Cambridge University Press

1

Part-Of-Speech Tagging of
Modern Hebrew Text

Roy Bar-Haim
Dept. of Computer Science

Bar-Ilan University
Ramat-Gan 52900, Israel
barhair@cs.biu.ac.il

Khalil Sima’an
Institute for Logic, Language and Computation

Universiteit van Amsterdam
Amsterdam, The Netherlands
simaan@science.uva.nl

Yoad Winter
Dept. of Computer Science Netherlands Institute for Advanced Study
Technion Meijboomlaan 1
Haifa 32000, Israel 2242 PR Wassenaar, The Netherlands

winter@cs.technion.ac.il

(Received 21 December 2006)

Abstract

Words in Semitic texts often consist of a concatenation of word segments, each correspond-
ing to a Part-of-Speech (POS) category. Semitic words may be ambiguous with regard to
their segmentation as well as to the POS tags assigned to each segment. When designing
POS taggers for Semitic languages, a major architectural decision concerns the choice of
the atomic input tokens (terminal symbols). If the tokenization is at the word level the
output tags must be complex, and represent both the segmentation of the word and the
POS tag assigned to each word segment. If the tokenization is at the segment level, the
input itself must encode the different alternative segmentations of the words, while the
output consists of standard POS tags. Comparing these two alternatives is not trivial, as
the choice between them may have global effects on the grammatical model. Moreover,
intermediate levels of tokenization between these two extremes are conceivable, and, as
we will aim to show, beneficial. To the best of our knowledge, the problem of tokenization
for POS tagging of Semitic languages has not been addressed before in full generality.
In this paper, we study this problem for the purpose of POS tagging of Modern Hebrew
texts. After extensive error analysis of the two simple tokenization models, we propose a
novel, linguistically-motivated, intermediate tokenization model that gives better perfor-
mance for Hebrew over the two initial architectures. Our study is based on the well-known
Hidden Markov Models (HMMs). We start out from a manually devised morphological an-
alyzer and a very small annotated corpus, and describe how to adapt an HMM-based POS
tagger for both tokenization architectures. We present an effective technique for smoothing
the lexical probabilities using an untagged corpus, and a novel transform for casting the
segment-level tagger in terms of a standard, word-level, HMM implementation. The results

2 R. Bar-Haim, K. Sima’an and Y. Winter

obtained using our model are on par with the best published results on Modern Standard
Arabic, despite the much smaller annotated corpus available for Modern Hebrew.

1 Introduction

Part-of-Speech (POS) tagging is commonly known as the task of classifying a word
in a given input sentence by assigning it a tag from a predefined set of classes that
represent syntactic behavior. For languages such as English, word-level POS tag-
ging seems sufficient because words usually correspond to the syntactically relevant
POS tag classes. But for various other languages, including Semitic languages such
as Modern Hebrew (henceforth Hebrew) and Modern Standard Arabic (henceforth
Arabic), this view is insufficient. In Hebrew and Arabic the syntactically relevant
POS tag classes do not necessarily correspond to words. In the morphology and or-
thography of Arabic and Hebrew, words are often formed by concatenating smaller
parts, which function as free morpho-syntactic units, each of which with its own
POS tag. One of these word parts is a potentially polymorphemic stem, often de-
rived from a root morpheme, a template/pattern morpheme and possibly an in-
flectional suffix. The other morphemes within Hebrew words are clitics for certain
prepositions, conjunctions, definiteness marking and other parts of speech. We refer
to the stem and the clitics within a word as word segments, or in short, segments.

Since the different segments in a word may belong to a variety of POS tag classes,
the classes that are associated with a word can be seen as compound classes, each
constituting an ordered sequence of POS tags together with the corresponding
segments. Consequently, the task of POS tagging for Semitic languages also involves
word segmentation in addition to POS tag classification. Crucially, a word may be
segmented into different candidate sequences of segments, and, in turn, each of
the word segments may be ambiguous with respect to the choice of a POS tag.
The result is a relatively high degree of ambiguity, aggravated by the absence of
vocalization markers (diacritics) in most modern Semitic texts.

Because of the similarity between Hebrew and Arabic at the orthographic, mor-
phological and syntactic levels, similar POS tagging architectures are expected to
be similarly successful for both languages. A major decision in designing unified
models of segmentation and POS tagging for Semitic languages concerns the to-
kenization level of the input: the optimal definition of the terminal symbols for
the grammatical model. This paper focuses on this problem, which has not been
addressed so far in its full generality with respect to Semitic languages.

We adapt the well-known Hidden-Markov Model (HMM) POS tagging archi-
tecture (Church, 1988; Brants, 2000) to suit the specific tokenization problems of
Hebrew and other Semitic languages. We employ HMMs because they easily al-
low joint modeling (Noisy Channel style) of segmentation and POS tagging, and
because they have been successfully applied to various tasks and languages (see
(Brants, 2000; Nakagawa, 2004)) with comparable tag sets to the Hebrew tag set
that we employ. This setting is general enough for making principal architectural
decisions that are relevant also for other platforms of POS tagging besides HMM.

POS-Tagging Modern Hebrew 3

When considering the tokenization level of HMM-based taggers, two simple op-
tions present themselves for Semitic languages: tokenization into words and tok-
enization into word segments. Between these two alternatives, also more sophisti-
cated, intermediate levels of tokenization are of course conceivable. When words
are considered as the tokens to be tagged, the corresponding classes are compound.
This means that a standard HMM implementation can be directly employed, but
the Markov model conditionings can be less balanced and much sparser than when
the tokens are word segments. On the other hand, when the tokens are segments
their classes are standard syntactic POS tags, but the alternative segmentations
must be derived by a separate segmentation process. This implies that the stan-
dard HMM POS tagger implementation must be extended in a suitable manner. We
provide the implementation details of HMM taggers based on the two alternative
strategies of tokenization. In particular, for implementing the segment-level tag-
ger using existing tools, we present a novel transformation that casts segment-level
tokenization in terms of the standard HMM-based POS tagging architecture.

For dealing with severe sparse data problems that result from the small size of
the annotated Hebrew corpus, we employ an effective smoothing technique based
on unsupervised training on a large unannotated corpus. Using this smoothing
method, we present extensive experiments that show that neither of the two basic
tokenization architectures is optimal with regard to both segmentation and POS tag
disambiguation. While the segment-level system outperforms the word-level system
with regard to tag disambiguation, the latter turns out at least as successful as
the former with regard to segmentation. This surprising result hints at the need
for an intermediate level which combines statistics from both architectures. Subse-
quent error analysis of the output of both taggers points at a reoccurring problem,
concerning the disambiguation of nominal words with certain prepositional pre-
fixes. Many such words in Hebrew (but not in Arabic) are textually ambiguous for
in/definiteness. Covert occurrences of the Hebrew definiteness marker are a ma-
jor source of inaccuracy, and more seriously so in the POS tagger based on the
segment-level tokenization.

To overcome this problem, we present a modification of the basic segment-level
POS tagger that treats the definiteness marker as a feature of the noun rather than
as a separate word segment. This treatment resonates well with theoretical linguistic
considerations (Wintner, 2000; Danon, 2001), and results in a novel, intermediate-
level model, incorporating segment level input with word level features into a single
model. Extensive experimentation with this intermediate-level tokenization exhibits
segmentation and tagging accuracies that are on par with the best reported results
for Standard Arabic, despite the much smaller size of the Hebrew annotated corpus.

The paper is structured as follows. Section 2 gives necessary details on Hebrew
morphology and POS tagging. Section 3 describes the existing corpora. Section 4
defines the different levels of tokenization, specifies the details of the probabilistic
framework that the tagger employs, and describes the techniques used for smooth-
ing the probability estimates. Section 5 gives details on the implementation of the
architectures we experiment with. Section 6 compares the different levels of tok-
enization empirically, discusses their limitations, and introduces an improved model

4 R. Bar-Haim, K. Sima’an and Y. Winter

that outperforms both of the initial models. Finally, section 7 discusses related work
and summarizes the conclusions of our study for segmentation and POS tagging of
Hebrew in particular, and Semitic languages in general.

2 Hebrew morphology and POS tagging

The major syntactic categories that are employed for the analysis of Semitic lan-
guages are similar to those of many European languages. However, the morphology
and orthography of Modern Hebrew, Modern Standard Arabic and other Semitic
languages differ substantially from those of European languages. Semitic languages
have rich inflectional systems and a template-based derivational morphology, which
are manifested in a large variation of word forms. In addition, Semitic languages
often allow grammatical prefixes/proclitics (e.g. conjunctions and prepositions) and
suffixes/enclitics (e.g. pronouns) to appear quite productively, which increases the
ambiguity of texts in these languages. Moreover, in most modern Semitic texts
vocalization and gemination are not represented, which further increases the ambi-
guity of word tokens. In this section we give a brief overview of Hebrew morphology,
and describe the POS tagging scheme that will be assumed throughout this paper.
For more details on the grammar and morphology of Modern Hebrew see e.g. (Glin-
ert, 1989).

2.1 Morphological Analysis of Hebrew

In theoretical, descriptive and computational work on Semitic languages (e.g. (Glin-
ert, 1989; Watson, 2002; Segal, 2000; Buckwalter, 2002)) it is commonly assumed
that a word may consist of the following elements:

(1) • Prefixes (or proclitics): conjunctions, prepositions, complementizers and
the definiteness marker (in a strict well-defined order).

• Stem: a potentially polymorphemic part of the word, together with its
POS tag and additional information about its template/pattern and root
morphemes (see below).

• Inflectional suffix: encoding inflectional features on verbs, adjectives and
nouns.

• Pronominal suffix/enclitic: pronominal complements with verbs and prepo-
sitions, or possessive pronouns with nouns.

• A feature indicating whether a noun, adjective or numeral is a construct
state or an absolute form.1

1 The Semitic construct state is a special form of a word that participates in compounds.
For instance, in the Hebrew compound bdiqt hjenh (“check of the claim”), the word bdiqt
(“check of”/“test of”) is the construct form of the absolute form bdiqh (“check”/“test”).

POS-Tagging Modern Hebrew 5

Except for the definiteness marker in Hebrew (see below), these word parts are
simply concatenated in a strict order.2 For instance, the word wfnpgfnw (“and that
we met”, pronounced ve-she-nifgashnu)3 is traditionally analyzed as follows:

(2) • Prefixes: the conjunction w (“and”) and the complementizer f (“that”)
• Stem: the verb npgf (past tense of “meet”)
• Inflectional suffix: nw (“we”)

Some parts of this analysis are very robust and do not depend on the tagset
or conventional notations. For instance, the identification of the prefixes w and
f as separate segments, with their independent POS tags, is something that any
linguistic analysis of Hebrew texts should assume. These morphemes are typical
clitics: they have an independent syntactic role but are phonologically bound to
the stem. Other decisions concerning the annotation scheme, especially concerning
the status of the inflectional suffix, are sometimes less clear cut. For instance, in
the verbal form npgfnw, whether to analyze the pronominal suffix nw as a separate
word segment or as an inflectional part of the verbal stem may depend on the task
at hand. In this work we analyze inflectional suffixes as part of the stem, which is
compatible with analysis of inflectional suffixes as part of the word in English and
other languages.

Another non-trivial morphological phenomenon in Hebrew and other Semitic
languages concerns the analysis of the templates and patterns for verbs, nouns
and adjectives. For instance, the meaning and inflectional features (tense, number,
gender, person) of the verb npgf(nw) are identified using a set of morphological
rules for the Hebrew verbal templates. These rules derive different verbs from one
abstract root – a sequence of (usually three) consonants. In the case of the verb form
npgf(nw) the root is pgf, and the template formation rule n+〈root〉 (traditionally
called “npel”) is responsible for forming the verbal stem npgf. Full morphological
analysis of a Semitic word should include its root and template/pattern, but the
usefulness of this morphological information may depend on the task at hand (see
more on this point below).

One crucial problem for morphological disambiguation in Hebrew texts, which
plays a special role in this paper, is the possible omission of the definite article.
This prefix can be covert, which happens (only) when it appears together with one
of three prepositional prefixes (b=“in”, l=“to” or k=“like/as”). The presence of a
covert definiteness marker can often be recovered using the context. Some examples
for the usage of the Hebrew definiteness marker are given in table 1. Note that
the ambiguity here is only due to the lack of vocalization in the modern Hebrew
writing system, and ambiguous occurrences of words like bbit have two different
pronunciations (babayit or bebayit). Note further that in Hebrew (as in Arabic),
modifying adjectives are marked for definiteness, and their marking should agree

2 Importantly, the intenal morphology of the stem (see below) is much more compli-
cated, and its analysis in terms of root and template/pattern involves non-concatenative
processes.

3 See appendix A for the Hebrew/Latin transliteration that we use in this work.

6 R. Bar-Haim, K. Sima’an and Y. Winter

text segmentation meaning

hbit h-bit “the-house” (unambiguous)
fhbit f-h-bit “that-the-house” (unambiguous)
bbit b(-h)-bit “in(-the)-house” (ambiguous)
bbit gdwl b-bit gdwl “in-house big” (disambiguated: “in a big house”)
bbit hgdwl b-h-bit h-gdwl “in-the-house the-big” (disambiguated: “in the big house”)

Table 1. Some usages of the Hebrew definiteness marker

with the definiteness of the noun they modify. This facilitates the disambiguation
of modified nouns that are orthographically ambiguous with regard to definiteness.

2.2 An annotation scheme for Hebrew POS tagging

From example (2) above it is clear that the morphological analysis of a Hebrew
word may involve more than one element that has a syntactic role. In (2), the
conjunction, the complementizer and the verb may belong to different constituents
in the syntactic structure, and may therefore need to have separate POS tags in
any syntactic representation that contains the word wfnpgfnw. More generally, for
Hebrew POS tagging we need to define the possible word segments and the POS
tag that is assigned to any such word segment. By the term word segmentation
we henceforth refer to identifying the prefixes, the stem and various suffixes of the
word. By POS tag disambiguation we mean the assignment of a proper POS tag to
each of the identified word segments.

The task of segmentation and POS tag disambiguation is closely related to mor-
phological analysis and disambiguation, but the two tasks are different at some
respects. First, the internal analysis of the stem can be ignored for the sake of
analyzing its POS tag. This is because the root and pattern/template morphemes
are phonologically and syntactically bound, and the syntactic function of the stem
is derived from them in a complex manner that need not concern applications like
syntactic parsing. Conversely, some syntactic distinctions that are relevant for POS
tagging are not crucial for morphological disambiguation. For instance, the clitic
f (“that”) in Hebrew, like its parallel in English, is ambiguous between a comple-
mentizer and a relative pronoun. This ambiguity should be resolved by a syntactic
parser or a POS tagger, but is not crucial for the internal morphological anal-
ysis of Hebrew words. Whether full morphological disambiguation is required in
addition to POS tagging depends on the target application. For instance, full mor-
phological disambiguation is important for machine translation and text-to-speech
applications for Semitic languages. However, for syntactic parsing, chunking or in-
formation extraction, the POS tagging scheme that we describe below may often
be sufficient.

For the purpose of our POS tagging scheme, we ignore part of the information
that is found in the common morphological scheme shown in (1). The internal

POS-Tagging Modern Hebrew 7

morphological structure of stems is not analyzed, and the POS tag that is assigned
to a stem includes no information about its root, template/pattern, inflectional
features and suffixes. Among the suffixes, only pronominal complement suffixes on
verbs and prepositions are identified as separate word segments. The construct
state/absolute feature and the existence of a possessive suffix are identified using
the POS tag assigned to the stem, and not as a separate segment or feature.

Some of these conventions are illustrated below by the segmentation and POS
tagging of the word wfnpgfnw, as opposed to its traditional morphological analysis
in (2).

(3) w/CC: conjunction
f /COM: complementizer
npgfnw/VB: verb

Our segmentation and POS tagging conform with the annotation scheme used
in the Hebrew Treebank (Sima’an et al., 2001), described below. Ignoring part of
the morphological information in the analysis allows us to achieve reduced sparse-
ness when training a POS tagging model on the small annotated corpus that is
available for Hebrew, but may result in analyses that are not fully disambiguated
morphologically. However, it is interesting to note that only 6.6% of the words that
were tagged correctly by our system were not fully disambiguated. If one of the
possible full analyses is picked randomly in such cases, then approximately 96.4%
of the correct analyses can be expanded correctly to a full morphological analysis.
Therefore, tagging using our scheme can be significantly helpful as a first stage in
full morphological disambiguation. Having said that, in this paper we concentrate
on the tasks of word segmentation and POS tagging, and leave the study of full
morphological disambiguation to further research.4

2.3 A note on the POS tag annotation scheme for Arabic

Despite the similarity between the writing systems and morphology of modern He-
brew and Arabic, two differences should be mentioned. First, unlike the Hebrew
definiteness marker (h), which can be covert, the definiteness marker al/l is always
present in the Arabic writing system. Furthermore, the Arabic treebank (Maamouri
et al., 2004) does not separate the al/l prefix from the stem following it. This conven-
tion helps POS tagging in Arabic when compared to Hebrew. By contrast, however,
pronominal suffixes of nouns and verbs are much more productive in Arabic than in
Hebrew. In the Hebrew treebank, unlike the Arabic treebank, pronominal suffixes
are scarce on nouns and virtually non-existent on verbs (cf. table 14 below). In this
respect, POS tagging of nouns and verbs may often be easier than in Arabic.

4 See (Habash and Rambow, 2005) and (Adler and Elhadad, 2006) for recent works that
deal with morphological disambiguation and POS tagging using the same model.

8 R. Bar-Haim, K. Sima’an and Y. Winter

3 Available corpora

One of the problems of dealing with Modern Hebrew is the lack of large anno-
tated corpora. The Hebrew Treebank (Sima’an et al., 2001) consists of syntacti-
cally annotated sentences taken from articles from the Ha’aretz daily newspaper.
The treebank version that was used in the current work contains 57 articles, which
amount to 1,892 sentences, consisting of 35,848 words, together comprising 48,332
word segments.5 In addition to the manually tagged corpus, we have access to an
untagged corpus containing 337,651 words, also originating from Ha’aretz newspa-
per.

In order to obtain a training and testing corpus for POS tagging, we extracted
from the Hebrew Treebank a mapping from each word to its analysis as a sequence
of POS tagged segments. The simplified tagset that was obtained in this way con-
tains 24 categories, ignoring the gender, number, person and tense features in the
treebank POS tags. 13 additional tags are used for various symbols, and for mark-
ing beginning and end of sentence. See appendices B and C for more data and
explanations about the tagset.6

4 Architectures for POS tagging Semitic languages

Our segmentation and POS tagging system uses a morphological analyzer that
assigns a set of candidate morphological analyses to each word. The morphological
analyses of each word are then mapped to a set of candidate POS taggings of the
word. Each such candidate tagging consists of a segmentation of the word and a POS
tag assigned to each of the resulting segments. The mapping from morphological
analyses to candidate POS taggings is defined using the same annotation scheme
that was used for the Hebrew Treebank (see Section 3 above). A disambiguator
selects from the set of candidate POS taggings a single preferred analysis for each
word. In this section we concentrate on the architectural decisions in devising an
optimal disambiguator, given a morphological analyzer.

4.1 Defining the input/output

As indicated in the introduction, word-level tokenization and segment-level tok-
enization are the simplest options for defining the tokenization level for POS tagging
of Hebrew and other Semitic languages. Before implementing these two alternatives
and developing further variations, let us see how the choice between them directly
affects the terminal and the nonterminal (output) symbols for POS tagging.

Words (W): The terminals are words as they appear in the text. In this case a
nonterminal a that is assigned to a word w consists of a sequence of POS

5 Recently a new version of the Hebrew treebank has become available. For some prelim-
inary results on this bigger dataset that support our main conclusions in this paper, see
section 7.2 below.

6 The corpus version used in this paper is available in
http://www.cs.technion.ac.il/∼barhaim/MorphTagger.

POS-Tagging Modern Hebrew 9

tags, each assigned to a segment of w, delimited with a special segmentation
symbol. We henceforth refer to such complex nonterminals as analyses. For
instance, the analysis IN-H-NN for the Hebrew word bbit uniquely encodes
the segmentation b-h-bit (“in-the-house”). In Hebrew, this unique encoding
of the segmentation by the sequence of POS tags in the analysis is a general
property: given a word w and a complex nonterminal a = [t1 . . . tp] for w, it
is possible to extend a back to a full analysis ã = [(s1, t1) . . . (sp, tp)], which
includes the segments s1 . . . sp that make out w. This is done by finding a full
analysis ã in Analyses(w), the set of possible analyses for w, such that the
tagging of its segments is the same as the tag sequence in a. Except for very
rare cases, this match is unique. As an example for the way in which POS tag
sequences can be expanded to analysis, consider the word lmrwt, which has
the following analyses according to our scheme:

1. lmrwt/RB (“although”)
2. l/IN mrwt/NN (“to authority”, indefinite)
3. l/IN mrwt/NNT (“to the authority of”, construct form)
4. l/IN h/H mrwt/NN (“to the authority”, definite)
5. l/IN mrwt/JJ (“to bitter”, feminine, plural)
6. l/IN mrwt/JJT (“to bitter”, construct form, feminine, plural, indefinite)
7. l/IN h/H mrwt/JJ (“to the bitter”,feminine, plural, definite)

Removing the segments results in the following set of analyses: {RB, IN-NN,
IN-NNT, IN-H-NN, IN-JJ, IN-JJT, IN-H-JJ}. It can be seen that each of
these seven tag sequences corresponds to exactly one full analysis.

Word segments (WS): Assuming a segmentation of the input words, the termi-
nals of the tagger are segments, and the nonterminals are the usual POS tags.
Note that in this case, information about how segments combine into words
is not directly available for the disambiguator.

Table 2 shows the number of different types (unigrams) found in the training corpus
for the word and segment tokenization levels.

It should be stressed that word-level tokenization and segment-level tokenization
are two extremes, and the optimal level of tokenization that we will propose for
Hebrew POS tagging will lie somewhere between them. However, the W/WS op-
position will be useful for the time being for introducing the key concepts of the
proposed architecture.

4.2 The probabilistic framework

Let wk
1 be the input sentence, a sequence of words w1 . . . wk. With word-level tok-

enization, the disambiguator aims at finding the analysis sequence ak
1 that has the

highest probability given the sentence wk
1 :

arg max
ak

1

P (ak
1 |wk

1) = arg max
ak

1

P (wk
1 ,ak

1) (1)

This is the standard formulation of probabilistic tagging for languages like English.

10 R. Bar-Haim, K. Sima’an and Y. Winter

Alternatively, with segment-level tokenization, the disambiguator aims at finding
a combination of a segmentation sn

1 and a tagging tn1 for sn
1 , such that their joint

probability with the given sentence, wk
1 , is maximized:

arg max
(sn

1 ,tn
1)∈ANALY SES(wk

1)

P (wk
1 , sn

1 , tn1), (2)

where ANALY SES(wk
1) is the set of candidate analyses for the input sentence wk

1

(output by the morphological analyzer). Note that n can be different from k, and
may vary for different segmentations. The original sentence can be uniquely recov-
ered from the segmentation and the tagging. Since all 〈sn

1 , tn1 〉 pairs that constitute
the input to the disambiguator were derived from wk

1 , we have P (wk
1 |sn

1 , tn1) = 1,
and thus P (wk

1 , sn
1 , tn1) = P (tn1 , sn

1). Therefore, Formula (2) can be simplified:

arg max
(sn

1 ,tn
1)∈ANALY SES(wk

1)

P (sn
1 , tn1) (3)

Formulas (1) and (3) can be represented in a unified formula that applies to both
word-level tokenization and segment-level tokenization:

arg max
(en

1 ,An
1)∈ANALY SES(wk

1)

P (en
1 , An

1) (4)

In Formula (4) en
1 represents either a sequence of words or a sequence of segments,

depending on the level of tokenization. The nonterminals An
1 are the respective anal-

yses of these terminals – POS tag sequences or POS tags, respectively. The disam-
biguator aims at finding the most probable pair 〈terminal sequence, nonterminal

sequence〉 for the given sentence, where in the case of word-tokenization there is
only one possible input terminal sequence for the sentence.

4.3 HMM probabilistic model

The actual probabilistic model used in this work for estimating P (en
1 , An

1) is based
on Hidden Markov Models (HMMs). HMMs underly many successful POS tag-
gers for different languages, e.g. (DeRose, 1988; Church, 1988; Cutting et al., 1992;
Charniak et al., 1993; Weischedel et al., 1993; Merialdo, 1994) for English, (Der-
matas and Kokkinakis, 1995) for Dutch, English, French, German, Greek, Italian
and Spanish, (Brants, 2000) for German and English, (Hakkani-Tür et al., 2000)
for Turkish, and many more.

For a k-th order Markov model (k = 1 or k = 2), we rewrite (4) as:

arg max
en
1 ,An

1

P (en
1 , An

1) ≈ arg max
en
1 ,An

1

n∏

i=1

P (Ai | Ai−k, . . . , Ai−1)P (ei | Ai) (5)

For reasons of data sparseness, the instance models employed here work with k = 2
for the segment level tokenization, and with k = 1 for the word level tokenization. It
is crucial at this point to observe that a Markov model at the word tokenization level
employs different statistics than a Markov model of the same order at the segment
tokenization level. Like in the case of English, the Hebrew segment tokenization

POS-Tagging Modern Hebrew 11

working with a 1st-order Markov model conditions a single POS tag over a single
preceding POS tag. In contrast, for the Hebrew word tokenization level, a 1st-order
Markov model will condition a sequence of POS tags for the current word on another
sequence of POS tags for the preceding word. For example, consider again the phrase
‘bbit hgdwl’ from table 1, tagged as bbit/IN-H-NN hgdwl/H-JJ. First-order Markov
model will condition H-JJ on IN-H-NN (i.e. estimate P (H-JJ | IN-H-NN)).

For both models of HMM-based POS tagging, two kinds of probabilities need
to be estimated: P (ei | Ai) (the lexical model) and P (Ai | Ai−k, . . . , Ai−1) (the
language model). Because the only manually POS tagged corpus that is available
to us for training the HMM is relatively small (less than 4% of the Wall Street
Journal (WSJ) portion of the Penn treebank), major effort must be dedicated to
alleviating the sparseness problems that arise. For smoothing the language model
probabilities over nonterminals we employ the standard backoff smoothing method
of Katz (1987). Naturally, the relative frequency estimates of the lexical model
suffer from more severe data-sparseness than the estimates for the language model.
On average, 31.3% of the test words in our setting did not appear in the training
corpus. Next we describe a novel method for smoothing the lexical probabilities
using an untagged corpus.

4.4 Bootstrapping a better lexical model

We use an unsupervised training method for smoothing the lexical model acquired
from the annotated data. For the sake of exposition, in this subsection we assume
word-level tokenization. The method used for smoothing the segment-level tagger
is very similar.

The smoothing of the lexical probability of a word w given an analysis a, i.e.,
P (w | a) = P (w,a)

P (a) , is accomplished by smoothing the joint probability P (w,a)
only, i.e., we do not smooth the relative frequency estimate of P (a).7 To smooth
P (w,a), we use a linear interpolation of the relative frequency estimates from the
annotated training corpus (denoted rf tr(w,a)) together with estimates obtained by
unsupervised estimation from a large unannotated corpus (denoted emauto(w,a)):

P (w,a) = λ rf tr(w,a) + (1− λ) emauto(w,a) (6)

where λ is an interpolation factor, experimentally set to 0.85.
Our unsupervised estimation method for obtaining emauto(w,a) starts out with

a naively smoothed POS tagger and then tries to reestimate the lexical model
probabilities of this POS tagger on an untagged corpus. In fact, this method can
be viewed as a single iteration of the Baum-Welch (Forward-Backward) estimation
algorithm (Baum, 1972) with minor differences. We apply this unsupervised method
to an untagged corpus of 340K words.

The reestimation method starts out with a POS tagger that employs naively

7 The smoothed probabilities are normalized so that
P

w P (w, a) = P (a).

12 R. Bar-Haim, K. Sima’an and Y. Winter

smoothed relative frequency estimates of the lexical model probabilities:

PLM0(w|a) =

{
(1− p0) rf tr(w,a) ftr(w) > 0

p0 otherwise
(7)

Where ftr(w) is the frequency of w in the training corpus, and p0 is a constant
(fixed at 10−10 in our experiments). We use the notation Pbasic to denote the POS
tagger that combines a Katz-backoff smoothed language model together with the
naively smoothed lexical model PLM0 .

The unsupervised reestimation algorithm works in two steps. In the first step
(expectation calculation), the model Pbasic is employed in order to generate a dis-
tribution of alternative analyses (segment-tag sequences) for each of the sentences
in the untagged corpus.8 This way the untagged (incomplete) corpus is transformed
into an ambiguously-tagged (complete) corpus containing for every sentence a distri-
bution of analyses (i.e., segment-tag sequences), each weighted with its probability
according to the model Pbasic. Subsequently, in the second step (maximization), the
ambiguously-tagged, the complete corpus is used to reestimate the lexical model
probabilities using relative frequency estimation (which is in the case of a complete
corpus equivalent to maximum-likelihood estimation). Note that because this is
unsupervised training, the test set sentences may be added to the untagged corpus
to ensure that the model assigns non-zero probabilities to the test set words.9

This smoothing method can be seen as a variant of the well-known EM method
(Merialdo, 1994), (Elworthy, 1994) for smoothing lexical probabilities using un-
labeled data. In this approach we initialize the model with relative-frequency es-
timates from labeled data and re-estimate the probabilities by running the EM
algorithm on the unlabeled data. Our proposed method differs from this classical
approach in the following points: first, the use of a weighting factor to control the
influence of the unlabeled data, following (Nigam et al., 2000). Second, we perform
only one cycle of re-estimation. This is justified by Merialdo’s finding that additional
iterations do not improve accuracy when starting with a relatively small tagged cor-
pus. Finally, unlike standard EM that affects all model parameters, we smooth only
the lexical probabilities, while using standard backoff methods to smooth language-
model probabilities. This is justified by the fact that sparseness is far more severe
for lexical probabilities than for language model probabilities. To the best of our
knowledge, this aspect of our method of lexical smoothing is novel.

8 We approximate this distribution by the 300 most probable analyses per sentence.
9 Adding the test sentences to the untagged corpus for improved reestimation can be

implemented efficiently enough that it can be applied during run-time for the tagging
of running text. Since the expectation calculation step is done independently for each
untagged sentence (recall that the probabilistic model used in this step is based solely
on the tagged corpus), the expectation can be calculated in an accumulative fashion.
For the large untagged corpus, it can be computed offline during training. At run time,
the expectation calculation is conducted only for the sentences in the running text,
which amounts to running the Viterbi algorithm on the running text sentences (linear
time complexity), and taking the N best taggings. Finally, in the maximization step,
emauto(w, a) is calculated only for words occuring in the running text, by combining the
probabilities estimated offline from the untagged corpus, with the probabilties computed
online from the running text.

POS-Tagging Modern Hebrew 13

5 Implementing different models for Hebrew POS tagging

After having introduced the basic ingredients of our POS tagging procedure, we
move on to their implementation, which involves two subtasks: extracting candidate
POS tag sequences from the output of a morphological analyzer, and implementing
the POS tag disambiguator for each of the two models.

5.1 From morphological analayses to candidate POS taggings

The set of possible morphological analyses was obtained from Segal’s morphological
analyzer (Segal, 2000). The analyzer’s dictionary contains 17,544 base forms that
can be inflected. After this dictionary was extended with the tagged training corpus,
it recognizes 96.14% of the words in the test set. Segal’s analyses follow the scheme
described in section 2.1. Translating them to the POS tagging scheme described in
section 2.2 involves three elements:

1. Translating the POS of the stem to the treebank tagset. Since this tagset is
more fine-grained than Segal’s, the translation is one-to-many in some cases,
thereby increasing the ambiguity. The treebank scheme uses different POS
tags to represent some of the morphological features. For example, nouns in
the absolute/construct state are represented as NN/NNT, respectively.

2. Creating separate segments for the prefixes, along with their POS tag. This
mapping can be ambiguous as well: according to the treebank tagset, the
prefix f may be tagged either as a complementizer (COM) or a relativizer
(REL).10

3. Creating suffix segments for pronominal complement suffixes of verbs and
prepositions.

Out of vocabulary (OOV) words (words that are not recognized by the mor-
phological analyzer) are assumed to be proper nouns,11, and the morphological
analyzer proposes possible segmentations for the word, based on the recognition of
possible prefixes. We enhanced this to allow analysis as ’h’+common noun in case
the OOV word begins with ’h’. Further, we applied a simple heuristic for reducing
the number of possible segmentations for OOV words. The idea is that if two OOV
words differ only in their (presumed) prefixes, it is more likely that they share the
same stem and differ in their prefixes, than that they have similar but different
stems. For example, if the OOV word is wlalprd, ‘and to Alfred’, the letters w,l can
be either prefixes, or part of the stem. Now, if we see another OOV word malprd,
‘from Alfred’, we may assume with high probability that w,l are indeed prefixes, and
eliminate segmentations in which these letters are part of the stem. The heuristic

10 For example, in amr fdn hlx (“said that-Dan went”), the prefix f in fdn is tagged as
COM. By contrast, in haif fdn awhv (“the-man that-Dan likes”) the same prefix is
tagged as REL. Hebrew morphological analyzers usually don’t make this distinction,
although it is important for syntactic analysis and for applications such as machine
translation from Hebrew to English.

11 Unlike English, in Hebrew proper nouns are not orthographically marked as such.

14 R. Bar-Haim, K. Sima’an and Y. Winter

makes use of a collection of OOV words, extracted from a raw corpus containing
11M words. The contribution of the OOV heuristic is analyzed in section 6.6.

5.2 Implementing word-level and segment-level disambiguators

We used the SRI Language Modeling (SRILM) Toolkit (Stolcke, 2002) for con-
structing smoothed language models for tag sequences, and for finding the most
probable tag sequence, using Viterbi decoding (Viterbi, 1967). We created from the
small tagged corpus a backoff language model for tag sequences, using Good-Turing
discounting (Good, 1953) with Katz backoff (Katz, 1987).

The construction of word-level (W) HMMs is well studied in the literature, and
is straightforward in SRILM. This is the standard HMM implementation which
works with unambiguous input (a finite sequence of terminals). Clearly, this imple-
mentation is not directly suitable for modeling segment-level HMM taggers, since
the disambiguator has to optimize not only the nonterminal sequence, but also the
terminal sequence (which corresponds to the segmentation).

For modeling the segment-level tagger we simulate segment tagging by a word-
tagger, where the terminals are words and the nonterminals are analyses (tag se-
quences). As explained in section 4.1, for a given word w and an analysis a =
[t1 . . . tp] for w that contains tags without the corresponding word segments, it is
possible to extend a to a unique analysis ã = [(s1, t1) . . . (sp, tp)], where s1 . . . sp are
the respective segments. Therefore, at the sentence level it is easy to move back and
forth between segment-level analyses of the form (sn

1 , tn1) and word-level analysis
of the form (wk

1 , ak
1). In order to simulate a segment tagger, we now only have to

change the calculation of the probabilities P (ai|ai−2, ai−1) and P (wi|ai), so that
P (wk

1 , ak
1) = P (sn

1 , tn1) for each (wk
1 , ak

1) and the corresponding (sn
1 , tn1).

The probabilities are calculated as follows. First, we calculate segment-level prob-
abilities: language model probabilities for tag sequences Pws(ti|ti−2, ti−1), and lex-
ical probabilities for segment-tag pairs Pws(si|ti). The next step is to calculate
P (a|ai−2, ai−1) and P (wi|ai):

Calculating P (ai|ai−2, ai−1): let ai = [t1 . . . tp], ai−1 = [y1 . . . yq], and ai−2 =
[x1 . . . xr] . Let u be the concatenation of ai−2, ai−1 and ai:

u = [u1 . . . ur+q+p] (8)

where

ui =

xi 1 ≤ i ≤ r

yi−r r + 1 ≤ i ≤ r + q

ti−r−q r + q + 1 ≤ i ≤ r + q + p

(9)

Then:

P (ai|ai−2,ai−1) =
r+q+p∏

i=r+q+1

Pws(ui | ui−2, ui−1) (10)

Unlike standard n-gram backoff models that contain probabilities only for
tag sequences found in the corpus, here we need to compute this probability
for each possible trigram ai−2ai−1ai, even if no subsequence of this trigram

POS-Tagging Modern Hebrew 15

appears in the corpus. Thus, computing all these probabilities offline is in-
efficient, and will result in a very large model. To save run time and space,
these trigram probabilities are derived on demand at run time, for each input
sentence, based on the segment-level probabilties (Pws) computed at training
time.

Calculating P (wi|ai) : Let ãi = [(s1, t1) . . . (sp, tp)] be the full analysis, obtained
from wi and ai. Then P (wi|ai) is given by :

P (wi|ai) =
p∏

i=1

Pmorph(si|ti) (11)

It can be verified that multiplying the probabilities in (10) and (11) together gives
the path probability according to the segment-HMM model (see equation 3).

Table 2 shows the average number of unigrams, bigrams and trigrams in the
training set for each tokenization level (this is an average over the 5 training sets
in our cross-validation experiments, described in the next section). The relevant
number for the actual n-gram size used for each level of tokenization appears in
boldface. The table clearly shows the influence of the tokenization level on the
data sparseness: word-level models suffer increased data sparseness as compared to
segment-level models. These figures support our choice to use bigrams for the word
level and trigrams for segment level, since trigrams seem too sparse for the word
level. This decision was also supported empirically, as we found that using trigrams
does not improve the accuracy for the word-level tagger.

Level of tokenization Unigrams Bigrams Trigrams Tokens

Word segment 37 644 4,109 39,282
Word 185 2,539 10,496 28,738

Table 2. n-gram counts for each tokenization level. For each level of tokenization,
the n-gram order actually used is marked in boldface.

6 Evaluation – The advantages of a segment-level tagger with a
definiteness feature

In this section we report on an empirical comparison between the two levels of
tokenization presented in the previous sections, and study the proper way to handle
the Hebrew definiteness marker in the segment-level model. Analysis of the results
shows that a segment-level model that treats the definiteness marker as a feature,
rather than a separate segment, is advantageous to both of the initial models with
word-level and segment-level tokenization.

We start by introducing the setting for the different experiments, and the results

16 R. Bar-Haim, K. Sima’an and Y. Winter

obtained with some baseline models. After evaluating the various tokenization ar-
chitectures, we present an evaluation of the bootstrapping of lexical model proba-
bilities and the OOV heuristic, which enhance the standard model of HMM tagging.
The results show that both of these enhancements are valuable, and contribute to
the overall accuracy of the best model found.

6.1 Experimental setting

Each architectural configuration was evaluated in 5-fold cross-validated experi-
ments. In a train/test split of the corpus, the training set includes 1,598 sentences
on average, which on average amount to 28,738 words and 39,282 word segments.
The test set includes 250 sentences.

Per word measures We measure segmentation accuracy – the percentage of words
correctly segmented, as well as tagging accuracy – the percentage of words
that were correctly segmented for which each segment was assigned the cor-
rect POS tag. Thus, using this measure a single segmentation/tagging error
in one of the segments invalidates the whole word.

Per segment measures we also report the Fβ=1 measure, defined as:

Fβ=1 =
2× precision× recall

precision + recall
(12)

where segmentation (tagging) recall is defined as the length of the longest
common subsequence (LCS) of the output (tagged) segment sequence (WSS)
and the gold (tagged) WSS, divided by the length of the gold WSS. Similarly,
precision is obtained by dividing the LCS length by the length of the output
WSS.

For each parameter, the average over the five folds is reported, with the standard
deviation in parentheses. We used two-tailed paired t-test for testing the significance
of the difference between the average results of different systems. The significance
level (p-value) is reported.

6.2 Baseline models

We tested two baseline taggers: one is based on choosing the most frequent analysis,
and the other is a POS tagger based on a morphological disambiguator developed
by Segal ((2000), see section 7.1). The most-frequent tagger operates at the word
level and implements the following simple rule:

â(w) =

argmaxa∈Analyses(w)[rf tr(w, a)] if ftr(w) > 0

argmaxa∈Analyses(w)[rf tr(a)] otherwise
(13)

where rf tr(a) is the relative frequency of a in the tagged corpus. The most-frequent
model was also tested on POS-tag disambiguation alone, where the input is the cor-
rect sequence of segments. In this case, the above formula was applied per segment,
rather than per word.

POS-Tagging Modern Hebrew 17

The accuracy of Segal’s tagger on our data sets is another reference point. The
training corpus was translated to Segal’s scheme, and the results were translated
back to the treebank’s morphological format12.

Accuracy per word (%) Fβ=1 per segment (%)
System Tagging Segmentation Tagging Segmentation

Most Frequent 82.71 (0.8) 95.08 (0.4) 85.34 (0.9) 95.73 (0.5)
Most Frequent with gold seg. 84.57 (1.1) 100.00 (0.0) 88.43 (0.9) 100.00 (0.0)
Segal 85.22 (2.0) 95.23 (0.4) 87.74 (1.7) 95.67 (0.3)

Table 3. Baseline results

The baseline results are listed in table 3. The tagging accuracy per word achieved
by the most-frequent method (82.71%), is relatively low, as compared with the
90% or higher accuracy, achieved by similar methods for English (Charniak et al.,
1993). Table 4 shows some examples for tagging errors. Since an English word
corresponds to a word segment in Hebrew, it might be more appropriate to use the
Fβ=1 measure per segment for the comparison with English. The result (85.34%)
is still considerably lower than the equivalent for English. This difference supports
our conjecture that the task of POS tagging in Hebrew is relatively difficult, given
the small annotated corpus we have. The results per segment obtained with the
gold segmentation (88.43%) are closer to the results for English.

Word Correct (occurrences) Most frequent (occurrences) Error count

iwm iwm/NNT (4) iwm/NN (5) 8
“day”, construct “day”, absolute

hia hia/AGR (38) hia/PRP (40) 8
“is”, feminine, 3rd person, single “she”

snj snj/NN (2400 - for NN) snj/VB (2690 - for VB) 3
“cent” “teased”

Table 4. Some examples for tagging errors with the most-frequent tagger. The num-
ber of occurrences in the training corpus is given in parentheses. The word “snj”
does not appear in the training corpus, therefore the frequencies of “NN” and “VB”
are compared.

The tagging accuracy per word of 85.22% obtained for Segal’s tagger is distinctly

12 In case of ambiguity, we chose the most probable translation, estimated from the training
corpus.

18 R. Bar-Haim, K. Sima’an and Y. Winter

incompatible with the 96.2% reported in (Segal, 2000), presumably for the following
reasons. First, the translation from Segal’s annotation scheme to the tree-bank
format is imperfect. Second, Segal’s scheme is not flexible enough to describe every
combination of segments found in Hebrew (and in the corpus). But presumably
the most important reason for the difference is that Segal ensured that the right
analyses for all the test words always appear in the dictionary. In practice, however,
for about 4% of the test words the right analysis does not appear in the dictionary,
even after it is complemented with the training corpus.

6.3 Evaluating the word-level model and the segment-level model

The first two lines in table 5 detail the results obtained for both word (W) and word
segment (WS) levels of tokenization. The tagging accuracy of the segment tagger

Accuracy per word (%) Fβ=1 per segment (%)
System Tagging Segmentation Tagging Segmentation

W 88.50 (1.0) 96.74 (0.3) 90.69 (0.9) 97.32 (0.3)
WS 89.27 (1.1) 96.55 (0.3) 91.51 (1.0) 97.40 (0.3)
WS+h 89.59 (1.1) 97.05 (0.3) 91.59 (1.0) 97.57 (0.3)

Table 5. Level of tokenization - experimental results

is considerably better than that achieved by the word tagger (difference of 0.77%
with significance level p = 0.019). This is in spite of the fact that the segmentation
achieved by the word tagger is a little better (and a segmentation error implies
incorrect tagging). Our hypothesis is that:

The segment-level tagger outperforms the word-level tagger in its tagging accuracy since
it suffers less from data sparseness. However, it lacks some word-level knowledge that is
required for segmentation.

The hypothesis about the relative data sparseness in the word-level model is
supported by the number of once-occurring terminals at each level: 8,582 at the
word level, versus 5,129 at the segment level.

6.4 Error analysis and discussion

Motivated by this hypothesis, we next consider what kind of word-level information
is required for the segment-level tagger in order to do better in segmentation. Error
analysis revealed a very common type of segmentation errors, which was found to
be considerably more frequent in segment tagging than in word tagging. This kind
of errors involves words like bbit (“in-the-house”/“in-a-house”, cf. table 1), where
the definiteness marker ‘h’ may be textually covert. The errors detected miss a
covert ‘h’ or wrongly add an unnecessary ‘h’ to the analysis. Unlike other cases of

POS-Tagging Modern Hebrew 19

segmentation ambiguity, which often just manifest lexical facts about spelling of
Hebrew stems, this kind of ambiguity is productive: it occurs whenever the stem’s
POS allows definiteness, and is preceded by one of the prepositions b/k/l. In segment
tagging, this type of error was found on average in 1.71% of the words (50% of the
segmentation errors). In word tagging, it was found only in 1.37% of the words
(42% of the segmentation errors).

Since in Hebrew there should be agreement between the definiteness status of a
noun and its related adjective, definiteness ambiguities of nouns can sometimes be
resolved syntactically. For instance, reconsider the disambiguated cases in table 1:

“bbit hgdwl” implies b-h-bit (“in the big house”)
“bbit gdwl” implies b-bit (“in a big house”)

By contrast, in many other cases both analyses are syntactically valid, and the
choice between them requires consideration of a wider context, or some world knowl-
edge. For example, in the sentence hlknw lmsibh (“we went to a/the party”), lm-
sibh can be analyzed either as l-msibh (indefinite,“to a party”) or as l-h-mbsibh
(definite,“to the party”). Whether we prefer “the party” or “a party” depends on
contextual information that is not available to the POS tagger.

Lexical statistics can provide valuable information in such situations, since some
nouns are more common in their definite form, while other nouns are more com-
mon as indefinite. For example, consider the word lmmflh (“to a/the government”),
which can be segmented either as l-mmflh or l-h-mmflh. The stem mmflh (“govern-
ment”) was found 25 times in the corpus, out of which only two occurrences were
indefinite. This strong lexical evidence in favor of l-h-mmflh is completely missed by
the segment-level tagger, in which segments are assumed to be unrelated. The lex-
ical model of the word-level tagger better models this difference, since it does take
into account the frequencies of l-mmflh and l-h-mmflh, in measuring P(lmmflh|IN-
NN) and P(lmmflh|IN-H-NN). However, since the word tagger considers lmmflh,
hmmflh (“the government”), and mmflh (“a government”) as independent words,
it still exploits only part of the potential lexical evidence about definiteness.

6.5 Evaluating the WS+h model

In order to better model such situations, we changed the segment-level model as
follows. In definite words the definiteness article h is treated as a manifestation of
a morphological feature of the stem. Hence the definiteness marker’s POS tag (H)
is prefixed to the POS tag of the stem. We refer by WS+h to the resulting model
that uses this assumption, which is rather standard in theoretical linguistic studies
of Hebrew (Wintner, 2000; Danon, 2001). The WS+h model can be viewed as an
intermediate level of tokenization, between segment-level and word-level tokeniza-
tion. In table 6 we demonstrate the different analyses that are obtained by the three
models of tokenization.

As shown in table 5, the WS+h model shows remarkable improvement in segmen-
tation (0.50%, p = 0.0018) compared with the initial segment-level model (WS). As

20 R. Bar-Haim, K. Sima’an and Y. Winter

Tokenization Analysis

W (lmmflh IN-H-NN)
WS (IN l) (H h) (NN mmflh)

WS+h (IN l) (H-NN hmmflh)

Table 6. Representation of l-h-mmflh in each level of tokenization

expected, the frequency of segmentation errors that involve covert definiteness (h)
dropped from 1.71% of the test words to 1.22%. The adjusted segment tagger also
outperforms the word level tagger in segmentation (by 0.31%, p = 0.049). Tagging
improved as well, although the significance level is low (0.32%, p = 0.081). Ac-
cording to these results, tokenization as in the WS+h model is preferable to both
plain-segment and plain-word tokenization.

6.6 The contribution of the individual components

Having determined the optimal level of tokenization, we would now like to measure
the contribution of individual components to the overall accuracy of our best model.
We focus on the smoothing of the lexical model using untagged data (section 4.4),
and the heuristic for reducing the number of possible segmentations for OOV words
(section 5.1). The results are shown in table 7. The first model uses a baseline lexical

Accuracy per word (%) Fβ=1 per word segment (%)
System Tagging Seg. Tagging Seg.

WS+h 87.96 (1.2) 96.09 (0.5) 89.99 (1.1) 96.63 (0.5)
WS+h + bootstrapping 89.49 (1.2) 96.76 (0.4) 91.36 (1.0) 97.21 (0.4)
WS+h + bootstrapping + OOV 89.59 (1.1) 97.05 (0.3) 91.59 (1.0) 97.57 (0.3)

Table 7. WS+h model - contribution of bootstrapping and the OOV heuristic

model, based on maximum-likelihood estimation from the tagged corpus (the model
is similar to LM0 defined in section 4.4, except that the level of tokenization here
is word segments, rather than words). The results show that bootstrapping (second
line) improves tagging by 1.53% and segmentation by 0.67%. The OOV heuristic
(third line) further improves the segmentation accuracy by 0.29%, and tagging by
0.1%. The improvements are all statistically significant (p < 0.05).

POS-Tagging Modern Hebrew 21

7 Discussion

7.1 Related work

We discuss related work on Hebrew, Arabic, and other languages separately.

Hebrew morphological disambiguation: Due to the lack of substantial tagged cor-
pora, most previous corpus-based work on Hebrew focused on inducing probabilities
from large unannotated corpora. Similarly to the present work, a morphological an-
alyzer was often used for providing candidate analyses.

Levinger et al. (1995) propose a method for choosing the most probable analysis
using an unannotated corpus, where each analysis consists of the lemma and a set
of morphological features. For each analysis A of a word w, they define a set of
“similar words” SW (A). Each word w′ in SW (A) corresponds to an analysis A′

which differs from A in exactly one feature. Since each set is expected to contain
different words, it is possible to approximate the frequency of the different analyses
using the average frequency of the words in each set, estimated from a untagged
corpus.

Carmel and Maarek (1999) follow Levinger et al. in estimating context indepen-
dent probabilities from an untagged corpus. Their algorithm learns frequencies of
morphological patterns (combinations of morphological features) from the unam-
biguous words in the corpus. They report accuracy of 86% when choosing the most
probable pattern.

Several works aimed at improving the “similar words” method by considering
the context of the word. Levinger (1992) adds a short context filter that enforces
grammatical constraints and rules out impossible analyses. Segal’s (2000) system
includes, in addition to a somewhat different implementation of the “similar words”
method, two additional components: correction rules à la Brill (1995), and a rudi-
mentary deterministic syntactic parser. See section 6.2 for an empirical study of
Segal’s system.13

An early short version of the present work appeared in (Bar-Haim et al., 2005).14

Most recently, Adler and Elhadad (Adler and Elhadad, 2006) presented new results
on unspervised HMM tagging and segmentation, using only a morphological ana-
lyzer and a large unlabeled corpus, containing 6M words (17.6 times bigger than the
one we used). Levinger et al.’s “similar words” method was used to obtain initial
probabilities. Following (Bar-Haim et al., 2005), Adler and Elhadad compare empir-
ically word and segment tokenization levels and conclude that segment-level tagging
outperforms word-level tagging, which supports our own findings. It is important to

13 A related problem in the morphological disambiguation of Semitic languages is root
identification (Daya et al., 2004). We do not discuss such work here since it is partly
independent of POS tagging and syntactic parsing: the root and template/pattern
morphemes of the Semitic stem normally form together a unit that is syntactically
unanalyzed.

14 The present paper develops this early version in a number of respects. Beside the more
rigorous detail of the novel models and algorithms, the present paper provides the
results of new and more thorough experiments, and it covers much better the linguistic
background and the related work.

22 R. Bar-Haim, K. Sima’an and Y. Winter

note that, as in the case of Segal’s reported results (cf. section 6.2), all of the above
results are incomparable to our results (and in most cases – to each other). This
is mainly due to differences in choice of tagset, in evaluation methodology and the
test set used. Our experience with re-evaluating Segal’s tagger, as well as the results
reported in (Adler and Elhadad, 2006), show that these differences may have a con-
siderable effect on accuracy. However, over and above accuracy measures, Adler and
Elhadad’s unsupervised method complements our present work, which augments a
manually tagged corpus with an untagged corpus only for smoothing the lexical
model. We believe that further research may profitably use the two models within
a superior unified framework.

Arabic morphological disambiguation, segmentation and tagging: Lee et al. (2003)
describe a word segmentation system for Arabic that uses a Markov language model
over word segments. They start with a seed segmenter which employs a language
model and a stem vocabulary derived from a manually segmented corpus. The
seed segmenter is improved iteratively by applying a bootstrapping scheme to a
very large unsegmented corpus. The reported accuracy of this system is 97.1% (per
word).

Diab et al. (2004) use Support Vector Machines (SVMs) for the tasks of word
segmentation (which is done by classification at the letter level) and POS tagging
and Base-Phrase Chunking. Segmentation and POS tagging are done in subsequent
steps. For segmentation, they report precision of 99.09% and recall of 99.15%, when
measuring word segments that were correctly identified. For tagging, Diab et al.
report accuracy of 95.5%, with a tagset of 24 POS tags. Tagging was applied to
segmented words, using the “gold” segmentation from the annotated corpus (Mona
Diab, p.c.).

The tagging architectures that were independently proposed in (Habash and
Rambow, 2005) for Arabic and in (Bar-Haim et al., 2005) for Hebrew, coincide in
two major aspects, which contrasts with previous work on Arabic: firstly, the use
of a morphological analyzer for obtaining the possible analyses, and secondly, the
simultaeous segmentation and POS tagging. Habash and Rambow perform morpho-
logical disambiguation by training SVM classifiers separately for each morphological
feature, and combining their output via a voting scheme. POS tagging and segmen-
tation are derived from the morphological analysis. Projecting their output to the
same tagset used by Diab at el. results in tagging accuracy of 97.6% on ATB part
1 (ATB1, also used by Diab et al.) and 95.7% on ATB part 2 (ATB2). Like Diab et
al., Habash and Rambow also assume gold segmentation. They report segmentation
precision and recall of 98.9% and 99.3%, respectively, measured on ATB1. Rogati et
al. (2003) investigate unsupervised stemming of Arabic using a parallel corpus. The
accuracy they achieve is considerably lower than what is achieved with supervised
methods.

Other related work: A related problem that has received much attention is the
segmentation of a sentence into words in Asian languages such as Chinese and
Japanese, where words are not delimited in the text. The approach presented in

POS-Tagging Modern Hebrew 23

(Nakagawa, 2004) makes an interesting comparison to ours. Nakagawa’s work builds
on two former methods: first, HMM-based joint segmentation and POS tagging, as
in our approach. This method, according to Nakagawa, was previously implemented
in Japanese segmentation systems, achieving high accuracy in a low computational
cost. Second, Nakagawa uses a character-level tagging method (Xue, 2003), which
performs better for unknown words. These two methods are combined into a single
probabilistic model. It seems that our approach for unknown words, which is based
on generating the possible segmentations for unknown words according to simple
affixation rules, is more suitable for Semitic languages, since the number of seg-
mentations for unknown words is quite small. More importantly, the linguistically-
motivated tokenization levels we consider, words vs. segments, are very different
from the word and character levels considered by Nakagawa.

A considerable amount of work has been published on unsupervised or minimally-
supervised methods for word segmentation in non-Semitic languages, including
(Goldsmith, 2001),(Yarowsky and Wicentowski, 2000), (Schone and Jurafsky, 2000)
and many others. We do not discuss this work in detail here, since the experience
with the processing of Semitic languages has shown that using tagged corpora and
morphological analyzers results in a much higher segmentation accuracy, rather
similarly to European languages (Habash and Rambow, 2005).

7.2 Conclusion

Accuracy per word (%) Fβ=1 per word segment (%)
System Tagging Seg. Tagging Seg.

WS with gold segmentation 92.64 (0.8) 100.00 (0.0) 94.33 (0.7) 100.00 (0.0)
WS+h with 4500 sentences 90.81 (0.8) 97.21 (0.3) 92.60 (0.6) 97.74 (0.2)

Table 8. Experiments with gold segmentation and larger training corpus

Developing a word segmenter and POS tagger for Hebrew with less than 30K an-
notated words for training is a challenging task, especially given the morphological
complexity and high degree of ambiguity in Semitic texts. The difficulty of this task
is demonstrated by the low accuracy of a baseline that selects the most-frequent
tag, relative to the results of the same baseline on tagging English.

In this paper we started out from two straightforward architectures for segmenta-
tion and POS tagging of Hebrew, based on word or word-segment tokenization, and
implemented them using standard HMMs. Experimenting with these two models
has led us to develop a third architecture (the WS+h model), which overcomes some
of the problems for the two simpler tokenization models. The WS+h architecture
extends the segment-level tokenization by using multi-segment nonterminals where
it was found to be valuable. This way the number of nonterminal types (tag classes)
found in the corpus for this model is 46, which is much closer to the segment-level

24 R. Bar-Haim, K. Sima’an and Y. Winter

88.80

89.00

89.20

89.40

89.60

89.80

90.00

90.20

90.40

90.60

90.80

91.00

1600 2000 2500 3000 3500 4000 4500

number of training sentences

ac
cu

ra
cy

 p
er

 w
or

d
(%

)

96.90

96.95

97.00

97.05

97.10

97.15

97.20

97.25

97.30

1600 2000 2500 3000 3500 4000 4500

number of training sentences

ac
cu

ra
cy

 p
er

 w
or

d
(%

)

Tagging Segmentation

Fig. 1. Learning curves for tagging and segmentation

model (37 types) than to the word-level model (185 types). We developed a smooth-
ing method which exploits an existing morphological analyzer and a large untagged
corpus for significantly improving the estimates of lexical model probabilities.

The proposed general architecture that we have worked in allows a flexible im-
plementation of the disambiguator, independent of both tagset and language, as
long as analyses are represented as a sequence of tagged segments. This allows a
quick adaptation of the tagger to other Semitic languages, in particular Arabic.
The language-independent tagger, named MorphTagger, can be obtained from the
Knowledge Center for Processing Hebrew15. Among the few other tools available
for POS tagging and morphological disambiguation in Hebrew, only Segal’s system
(Segal, 2000) is freely available. In section 6.2 we conducted an extensive evaluation
showing that, under the same experimental settings, our best architecture achieves
an improvement of 1.8% in segmentation accuracy and 4.4% in tagging accuracy
over the results of Segal’s system.

One of the main sources for tagging errors in our model is the coverage of the
morphological analyzer. The analyzer misses the correct analysis in 3.78% of the test
words. Hence, the upper bound for the accuracy of the disambiguator is 96.22%.
Increasing the coverage while maintaining the quality of the proposed analyses
(avoiding overgeneration as much as possible), is crucial for improving the tagging
results.

In a setting comparable to (Diab et al., 2004) and (Habash and Rambow, 2005)
(including a tagset of a similar size), in which the correct segmentation is given,
our tagger achieves (for Hebrew) accuracy per word segment of 94.3% (see table 8).
This result is close to the result reported by Diab et al. and by Habash and Rambow
on ATB2, although our result was achieved using a much smaller annotated corpus,
and despite the much better coverage of the morphological analyzer used by Habash
and Rambow (99.4%).

After this work was completed, a new version of the Hebrew treebank, now con-
taining approximately 4,800 sentences, was released. Preliminary experiments with

15 http://www.cs.technion.ac.il/∼barhaim/MorphTagger/

POS-Tagging Modern Hebrew 25

our best model on this corpus (see table 8), using 4500 sentences for training show
a further improvement of 1.22% in tagging accuracy (from 89.59% to 90.81%), and
an improvement of 0.16% in segmentation accuracy (from 97.05% to 97.21%). We
believe that the additional annotated data will allow us to refine our model, both
in terms of accuracy and in terms of coverage, by expanding the tagset with ad-
ditional morpho-syntactic features like gender and number, which are prevalent in
Hebrew and other Semitic languages. The learning curve in figure 1 shows the effect
of adding more training data on tagging and segmentation accuracy. The curve sug-
gests that there is still room for improvement in tagging accuracy using the current
model if the training corpus is further enlarged.

Acknowledgments

We thank Gilad Ben-Avi, Ido Dagan and Alon Itai for their insightful remarks on
major aspects of this work. We also thank Andreas Stolcke for his devoted technical
assistance with SRILM. The financial and computational support of the Knowledge
Center for Processing Hebrew is gratefully acknowledged. Support by the ILLC
(University of Amsterdam), the CS department (Technion) and the Netherlands
Organization for Scientific Research (NWO) facilitated the cooperation in this re-
search. The first author would like to thank the Technion for partially funding his
part of the research. The third author is grateful for the support of the Netherlands
Institute of Advanced Studies (NIAS), where part of this work was carried out.

26 R. Bar-Haim, K. Sima’an and Y. Winter

Hebrew כ י ט ח ז ו ה ד ג ב א/
Current
paper a b g d h w z x j i k

ISO A B G D H W Z X @ I K
Hebrew ת ש ר ק �/צ �/פ ע ס �/נ �/מ ל
Current
paper l m n s e p c q r f t

ISO L M N S & P C Q R $ T

Table 9. Hebrew to Latin transliteration table

A Transliteration

Table 9 shows the Hebrew/Latin transliteration used in the current paper and in
our tagger implementation, following the transliteration used in the treebank. It is
based on the ISO standard of (ISO, 1999), with the non-letter symbols @, &, and
$ replaced by letters. This is merely due to a technical reason: some software we
used required the input to be in English letters only.

B Tagset

The tagset used in this work is shown in Table 10. The transcription of symbols is
given in Table 11.

1. AGR Agreement particle
2. AT Accusative marker
3. CC Coordinating conjunction
4. CD Numeral/Numeral determiner
5. COM Complementizer
6. DT Determiner/Question word
7. IN Preposition
8. JJ Adjective
9. JJT Construct state adjective
10. H Definiteness marker
11. HAM Yes/No question word
12. NN Noun
13. NN-H Noun ,definite|definite-genitive
14. NNP Proper noun
15. NNT Construct state noun
16. POS Possessive item
17. PRP Personal pronoun
18. QW Question/WH word
19. RB Adverb or modifier
20. RBR Adverb, comparative
21. REL Relativizer
22. VB Verb (or auxiliary verb), finite
23. VB-M Verb, infinite
24. ZVL Garbage

Table 10. The Hebrew POS tagset

POS-Tagging Modern Hebrew 27

o % CLN : DOT . EXCL ! ELPS ...
u ” LRB (DASH – QM ?
CM , QUOT ” RRB) SCLN ;

Table 11. Transcription of symbols. ’o’ and ’u’ represent transliteraton of symbols
that appear as part of tokens. The other symbols are used both as the transcription
and the POS tag assigned to symbols that appear in text as separate tokens.

C Figures on the annotated Hebrew corpus

In this section we present some statistics computed from our tagged training corpus,
some of them also involve a morphological analyzer. These statistics characterize
some phenomena in Hebrew morphology that are relevant for Hebrew tagging and
segmentation.

Most frequent word segments The most frequent word segments in the corpus are
listed in table 12. As expected, the most common segments are the same function
words that are found at the top of word frequency lists in English. The difference is
that in Hebrew these word segments appear as prefixes in other words, rather than
as separate words.

word segment meaning frequency %

h “the” 5040 10.4%
b “in” 2315 4.8%
w “and” 2273 4.7%
l “to” 1863 3.9%
f “that” 1343 2.8%

Table 12. Most frequent word segments

Number of segments per word The histogram in table 13 displays the distribution
of words in the corpus according to the number of segments (prefixes, suffixes and
the stem). Punctuation marks were ignored. The results show that in practice, most
Hebrew words are not very complex: more than 95% of them contain only one or two
segments, and only 0.18% of the words contai n more than 3 segments. Although
not found in our tagged corpus, five-segment words can be found in Hebrew texts
(e.g. w-f-b-h-bit, “and that in the house”), and in principle even six-segment words
are possible (e.g. w-f-kf-b-h-bit, “and that when in the house”).

28 R. Bar-Haim, K. Sima’an and Y. Winter

Affixes In the tagged corpus there are 10,526 words with prefixes, and 1,653 words
with suffixes. The distribution of the suffixes among their three categories (verb,
preposition and noun) is given in Table 14. Recall that in the annotation scheme
used in this paper, possessive suffixes for nouns are considered part of the stem,
rather than separate word segments.

word segments count %

1 19,248 63.82%
2 9,479 31.43%
3 1,382 4.58%
4 53 0.18%

Total 30,162 100.00%

Table 13. Segments per word

part of speech count % with suffix % (of POS) % (of all)

Verb 4,811 16.0% 30 0.6% 0.1%
Preposition 7,004 23.2% 617 8.8% 2.0%
Noun 11,004 36.4% 1006 9.1% 3.4%

Table 14. The frequency of pronominal and possessive suffixes in the tagged corpus

No. of analyses per word 1 2 3 4 5 6

No . of word tokens 145,442 75,912 55,489 27,042 18,464 6,527
% 43.07% 22.48% 16.43% 8.01% 5.47% 1.93%

No. of analyses per word 7 8 9 10 11 ≥12

No. of word tokens 3,319 2,673 1,364 477 350 592
% 0.98% 0.79% 0.40% 0.14% 0.10% 0.18%

Table 15. Possible analyses per word

POS-Tagging Modern Hebrew 29

No. of segmentations per word 1 2 3 4 5

No. of word tokens 268,261 56,074 12,781 532 3
% 79.45% 16.61% 3.79% 0.16% 0.00%

Table 16. Possible segmentations per word

Ambiguity The histograms in tables 15 and 16 illustrate the dimension of segmen-
tation and tagging ambiguity in the untagged Hebrew corpus, with respect to the
reduced tagset we use for evaluation. These results were obtained from the untagged
corpus (337,651 words) by running Segal’s (2000) morphological analyzer (described
in section 5), augmented with the analyses found in the tagged training corpus. The
average number of analyses per word was found to be 2.3, and approximately 57%
of the word tokens were ambiguous. Note that the actual morphological ambiguity
for Hebrew is higher, due to the simplifications made in our scheme, as described
above.

References

Meni Adler and Michael Elhadad. An unsupervised morpheme-based HMM for Hebrew
morphological disambiguation. In Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Association for Computa-
tional Linguistics, pages 665–672, Sydney, Australia, July 2006. Association for Com-
putational Linguistics.

Roy Bar-Haim, Khalil Sima’an, and Yoad Winter. Choosing an optimal architecture for
segmentation and POS-tagging of Modern Hebrew. In Proceedings of the ACL Work-
shop on Computational Approaches to Semitic Languages, pages 39–46, Ann Arbor,
Michigan, June 2005. Association for Computational Linguistics.

Leonard Baum. An inequality and associated maximization technique in statistical esti-
mation for probabilistic functions of a Markov process. In Inequalities III:Proceedings
of the Third Symposium on Inequalities, University of California, Los Angeles, pp.1-8,
1972.

T. Brants. TnT: A statistical part-of-speech tagger. In Proceedings of the 6th Conference
on Applied natural language processing, Seattle, WA, USA, 2000.

Eric Brill. Transformation-based error-driven learning and natural language processing:
A case study in part-of-speech tagging. Computational Linguistic, 21:784–789, 1995.

Tim Buckwalter. Buckwalter Arabic morphological analyzer version 1.0. Linguistic Data
Consortium (LDC), 2002. LDC Catalog No.:LDC2002L49 ,ISBN:1-58563-257-0.

David Carmel and Yoelle Maarek. Morphological disambiguation for Hebrew search sys-
tems. In Proceedings of the 4th international workshop,NGITS-99, 1999.

Eugene Charniak, Curtis Hendrickson, Neil Jacobson, and Mike Perkowitz. Equations for
part-of-speech tagging. In National Conference on Artificial Intelligence, pages 784–789,
1993.

K. W. Church. A stochastic parts program and noun phrase parser for unrestricted text. In
Proc. of the Second Conference on Applied Natural Language Processing, pages 136–143,
Austin, TX, 1988.

30 R. Bar-Haim, K. Sima’an and Y. Winter

Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A practical part-of-
speech tagger. In Proceedings of the third conference on Applied natural language pro-
cessing, pages 133–140. Association for Computational Linguistics, 1992.

Gabi Danon. Syntactic definiteness in the grammar of Modern Hebrew. Linguistics,
39:1071–1116, 2001.

Ezra Daya, Dan Roth, and Shuly Wintner. Learning Hebrew roots: Machine learning with
linguistic constraints. In Proceedings of EMNLP’04, pages 357–364, Barcelona, Spain,
July 2004.

Evangelos Dermatas and George Kokkinakis. Automatic stochastic tagging of natural
language texts. Computational Linguistics, 21(2):137–163, 1995.

Steven J. DeRose. Grammatical category disambiguation by statistical optimization. Com-
putational Linguistics, 14(1), Winter 1988.

Mona Diab, Kadri Hacioglu, and Daniel Jurafsky. Automatic tagging of arabic text: From
raw text to base phrase chunks. In Daniel Marcu Susan Dumais and Salim Roukos,
editors, HLT-NAACL 2004: Short Papers, pages 149–152, Boston, Massachusetts, USA,
May 2 - May 7 2004. Association for Computational Linguistics.

David Elworthy. Does Baum-Welch re-estimation help taggers? In Proceedings of the fourth
conference on Applied natural language processing, pages 53–58. Morgan Kaufmann
Publishers Inc., 1994.

Lewis Glinert. The Grammar of Modern Hebrew. Cambridge University Press, Cambridge,
1989.

John Goldsmith. Unsupervised learning of the morphology of a natural language. Com-
putational Linguistics, 27(2):153–198, June 2001.

I. J. Good. The population frequencies of species and the estimation of population pa-
rameters. Biometrika, 40:237–264, 1953.

Nizar Habash and Owen Rambow. Arabic tokenization, part-of-speech tagging and mor-
phological disambiguation in one fell swoop. In Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics (ACL’05), pages 573–580, Ann Arbor,
Michigan, June 2005. Association for Computational Linguistics.

D. Hakkani-Tür, K. Oflazer, and G. Tür. Statistical morphological disambiguation for
agglutinative languages. In Proceedings of the 18th International Conference on Com-
putational Linguistics (COLING 2000), 2000.

ISO. Information and documentation - conversion of Hebrew characters into Latin char-
acters - part 3: Phonemic conversion, ISO/FDIS 259-3: (E), 1999.

S.M. Katz. Estimation of probabilities from sparse data from the language model com-
ponent of a speech recognizer. IEEE Transactions of Acoustics, Speech and Signal
Processing, 35(3):400–401, 1987.

Young-Suk Lee, Kishore Papineni, Salim Roukos, Ossama Emam, and Hany Hassan. Lan-
guage model based arabic word segmentation. In ACL ’03: Proceedings of the 41st
Annual Meeting on Association for Computational Linguistics, pages 399–406, Morris-
town, NJ, USA, 2003. Association for Computational Linguistics.

M. Levinger, U. Ornan, and A. Itai. Morphological disambiguation in Hebrew using a
priori probabilities. Computational Linguistics, 21:383–404, 1995.

Moshe Levinger. Morphological disambiguation in Hebrew. Master’s thesis, Computer
Science Department, Technion, Haifa, Israel, 1992. In Hebrew.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. The Penn Arabic
Treebank: Building a large-scale annotated Arabic corpus. In NEMLAR International
Conference on Arabic Language Resources and Tools, Cairo, September 2004.

Bernard Merialdo. Tagging English text with a probabilistic model. Computational Lin-
guistics, 20(2):155–171, 1994.

Tetsuji Nakagawa. Chinese and japanese word segmentation using word-level and
character-level information. In Proceedings of Coling 2004, pages 466–472, Geneva,
Switzerland, Aug 23–Aug 27 2004. COLING.

POS-Tagging Modern Hebrew 31

Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun, and Tom Mitchell. Text
classification from labeled and unlabeled documents using EM. Machine Learning,
39(2-3):103–134, 2000.

Monica Rogati, Scott McCarley, and Yiming Yang. Unsupervised learning of Arabic
stemming using a parallel corpus. In Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics (ACL’03), pages 391–398, Sapporo, Japan,
2003.

Patrick Schone and Daniel Jurafsky. Knowledge-free induction of morphology using latent
semantic analysis. In Proceedings of CoNLL-2000 and LLL-2000, pages 67–72, Lisbon,
Portugal, 2000.

Erel Segal. Hebrew morphological analyzer for Hebrew undotted texts. Mas-
ter’s thesis, Computer Science Department, Technion, Haifa, Israel, 2000.
http://www.cs.technion.ac.il/∼erelsgl/bxi/hmntx/teud.html.

K. Sima’an, A. Itai, Y. Winter, A. Altman, and N. Nativ. Building a tree-bank of Modern
Hebrew text. Traitment Automatique des Langues, 42:347–380, 2001.

Andreas Stolcke. SRILM - an extensible language modeling toolkit. In ICSLP, pages
901–904, Denver, Colorado, September 2002.

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transaction of Information Theory, IT-13(2):260–269, 1967.

Janet C. E. Watson. The Phonology and Morphology of Arabic. Oxford University Press,
Oxford, 2002.

Ralph Weischedel, Richard Schwartz, Jeff Palmucci, Marie Meteer, and Lance Ramshaw.
Coping with ambiguity and unknown words through probabilistic models. Computa-
tional Linguistics, 19(2):361–382, 1993.

Shuly Wintner. Definiteness in the Hebrew noun phrase. Journal of Linguistics, 36:319–
363, 2000.

Nianwen Xue. Chinese word segmentation as character tagging. International Journal of
Computational Linguistics and Chinese, 8(1):29–48, 2003.

David Yarowsky and Richard Wicentowski. Minimally supervised morphological analysis
by multimodal alignment. In Proceedings of ACL-2000, pages 207–216, Hong Kong,
2000.

