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Summary This paper explores the hypothesis that simple monotonicity properties of quan-
tifiers in natural language determine to a large extent the entailment relations between their
wide/narrow scope readings. We prove that the disjunctive normal form of upward monotone
quantifiers using principal ultrafilters correlates with whether an object narrow scope reading
entails an object wide scope reading. This result naturally extends the familiar entailment
relations between 3V and V3 quantification in first order logic into arbitrary “finitely based”
upward monotone determiners (over possibly infinite models), which are precisely defined.

Given a simple sentence of the form Subject- Verb-Object, we are interested in
the logical relations between the object narrow scope (ONS) and the object wide
scope (OWS) readings of the sentence. In [4], Zimmermann (1993) fully char-
acterizes the class of ”scopeless” object quantifiers — those for which the ONS
and OWS readings are equivalent for any subject. Zimmermann shows that
this class is closely related to the class of (principal) ultrafilters (names). In [3],
Westerstahl (1996) fully characterizes the class of "self-commuting” quantifiers,
i.e. the quantifiers Q for which ONS and OWS readings are equivalent when
Q is substituted for both subject and object. However, as far as we know, the
more general problem of characterizing (possibly one-way) entailment relations
between ONS and OWS readings has not been given serious attention.

Global determiners (see [2]) are functors that map any non-empty domain
F to a binary relation over p(F). Any set Qr C p(F) is called a generalized
quantifier (GQ) over E. Thus, a determiner Dg over F maps any A C p(FE) to
the generalized quantifier Dg(A) over F.

Let ()1 and ()2 be the GQs over F that the subject and object respectively
denote in a given model. The ONS and OWS readings of the sentence in this
model with respect to a binary relation R C F x F, are defined using the
following polyadic GQs over F X F:

def

(1) Q1-Q2(R) = Qi{z e E:Q:({y€ E: R(y)(z)})}) (ONS reading)
Qi~Q2(R) Y u{y e E:Qi({r € E: R(y)(2)})}) (OWS reading)

Let Dy and D5 be global determiners that correspond to the subject and object
determiners respectively. The polyadic determiners D{-Dy and Di~D,, which
give rise to ONS and OWS readings respectively, are defined as ternary relations
between A, BC Fand RC F x F.

def
Di-Dy(A)(B)(R) = ((D1(A))-(D2(B))(R)

def
Di~Dy(A)(B)(R) = ((D1(A))~(D2(B))(R)
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A quantifier Qg is called upward monotone (MON1) if it is closed under
supersets. A global determiner D is called upward right monotone (MONY) if

for every A C F, the quantifier Dg(A) is upward monotone.

We would like to characterize whether the relation ID{-D; is contained in
the relation Dy~ D;. When Dy is every (some) and Dj is some (every), it is
well-known that the answer is negative (positive) respectively. For instance, the
ONS reading of the sentence some student saw every teacher entails, but is not
entailed by, its OWS reading. We show that in fact, in sentences with upward
monotone subjects and objects, the existential determiner is the basis for the
class of subject determiners that guarantee entailment from the ONS reading to
the OWS reading. Symmetrically, for upward monotone subjects and objects,
the universal determiner is the basis for the class of object determiners that
guarantee entailment from the ONS reading to the OWS reading.

We use the fact (cf. [1]) that any upward monotone quantifier Qg can be
represented as a union of intersections of principal ultrafilters.

Fact 1 Let Qg be an upward monotone GQ over . Then Qr = UnepmNeen Iz,
for some subset M of p(E), where I is the principal ultrafilter {A C E : y € A}
generated by y € F.

We call M the signature of a disjunctive normal form (DNF') of an upward
monotone quantifier. We define a hierarchy of the upward monotone quantifiers
by requiring a DNF for a quantifier Qr € MON 1, with a signature M that
satisfies certain conditions. The classes in the hierarchy, with the respective
conditions on M that defines them, are listed below.

TRIVy: M = 0: Qg is empty
TRIV;: 0 € M: Qg is equal to p(F)
PUF: M = {{a}} for some a € E:
Qg is the principal ultrafilter 1, generated by a;
PUF~: M ={A} for some A C E:
@ is an intersection of PUFs: the principal filter 'y generated by A
PUFy: M is a (possibly empty) collection of singletons in p(F):
@ is a union of PUFs.

Obviously, the following relations hold between these classes of GQs: PUF C
PUF~ C MON?; PUF C PUF, C MON1; TRIVy C PUF; TRIV, C PUF..

Further, observe the following simple facts.
Fact 2 A quantifier () is in PUFy iff Q@ = Ueqls-
Fact 3 A quantifier Q is in PUFq iff Q = Nyengls (= Fro)-
Consider now the following simple relation between the above hierarchy and
scope entailments.

Lemma 4 Let Q1,Q2 C p(F) be upward monotone GQs over E. If Q1 €
PUFU or QQ € PUFﬂ then Ql-QQ g QlNQQ.



We use our classification of MON 1 local quantifiers in order to classify
MONT7 global determiners as follows. For any global determiner D:

D is PUFY iff forall A C E: Dg(A)is in PUF, U TRIV;.
D is PUFY iff forall A C E: Dg(A)is in PUFs U TRIV,.

D is TRIVy (TRIVy) iff forall A C E: Dg(A)isin TRIVy (TRIVy).
When D is TRIVy or TRIV; we say that D is trivial.

D is TRIV3 (TRIV3) iff there exist A C E's.t. Dg(A) is in TRIV, (TRIV,).

Thus, a determiner is called PUF}, (PUFY) when it generates only PUF
(PUFR) and trivial quantifiers. Note that a determiner is classified as PUF],
(PUFR) or TRIVy (TRIV,) according to its behavior on all domains and ar-
guments. By contrast, for classifying a determiner as TRIV% (TRIV?), it is
sufficient to find one domain and one argument for which it is TRIVy (TRIVy).
The usefulness of both “universal” and “existential” classifications of determin-
ers will be clarified as we go along.

Our main claim is that this typology of determiners allows us to determine in
which cases of MONY determiners Dy and Dj, the ONS reading D;-D, entails
(or is entailed by) the OWS reading Dy~ D3. Before proving that, there is
one qualification concerning this result that we should explain. We will assume
that both Dy and Dy are finitely based, in a sense that is defined below. This
restriction is needed because MON1 determiners such as infinitely many behave
with respect to relative scope entailments differently than MON? determiners
such as at least three. Consider the following examples.

(3) a. Infinitely many students saw John or Mary.
b. At least three students saw John or Mary.

(4)  a. Infinitely many students saw at least one of the two students.
b. At least three students saw at least one of the two students.

In (3a), the ONS reading entails the OWS reading: if there are infinitely many
students that have the property saw John or saw Mary, then either John or
Mary has the property was seen by infinitely many students. But this is ob-
viously not the case in (3b). A similar contrast is observed between (4a) and
(4b), under a Russellian treatment of the definite article. For instance:

(5) at_least_one of then'(A)(B)=1 < [A|l=nAANB#(
(6) eachof then'(A)(B)=1 & |A|=nAACB
We observe that MON 1 determiners such as infinitely many show scope

entailments that are different than those of similar “finite” determiners. Such
“infinite” determiners, which are common in the mathematical jargon, are much
less common — and have a much less defined meaning — in everyday speech.
This is in contrast to more ordinary determiners such at least three or every,
which English speakers use by and large with the same meaning as logicians
do. The formal distinction between determiners that is held responsible for this
difference is defined as follows.



Definition 1 (FB quantifiers) Let E be a non-empty domain. A sequence
A;|22, of subsets of F is called properly monotone if A; C A;y1 for everyi > 1,
or A; D Aiyq for every i > 1.

Two properly monotone sequences A;|32, and Bj|}?i1 are called mutually mono-
tone if A; C B; for alli,j > 1, or A; D B; forall i, > 1.

A quantifier Qg over F is called finitely based (FB) iff for any two mutually
monotone sequences A;|32, and Bj|}?i1 s.t. Qg is constant on both sequences,
QE sends both sequences to the same value.

By “constancy” of a quantifier @z on a set X C p(F), we of course mean:
X CQrporQrNAX =0. In the first case say we say that Qg sends X to 1. In
the second case say we say that (g sends A to 0.

The definition of FB determiners is derived from the definition of FB quantifiers.

Definition 2 (FB determiners) A global determiner D is FB iff for any
domain F, Dg(F) is an FB quantifier.

Note that this definition pays attention only to the behavior of Dy on the
whole F domain, and does not take into account proper subsets of £. Thus, a
determiner such as all is provably I'B, even though on the domain of natural
numbers, the quantifier all odd natural numbersis not FB. This is in accordance
with the intuition that the determiner all does not inherently pertain to infinite
sets. By contrast, the determiner all but finitely many provably maps any
infinite domain to a non-FB quantifier, hence it is not FB itself.

Let us consider an example for a pair of FB/non-FB determiners that belong
in the same class of the above hierarchy. Consider first the determiner infinitely
many. Let N by the set of natural numbers, with No C N the set of odd natural
numbers. Consider two sequences (N N [1..24])[2; — the increasing sequence
of sets of odd numbers; and (No U [1..27])]32, — the unions of the odd numbers
with elements in the increasing sequence of sets of even numbers. These two
sequences are mutually monotone, but the denotation of infinitely many natural
numbers on the domain £ = N is constantly false on the first sequence but
constantly true on the second sequence. Consequently, the determiner infinitely
many is not FB. It is impossible to find two such sequences for the determiner at
least three: trivially, for any domain F, the quantifier at_least_8% (F) cannot be
false over an infinite properly monotone sequence. Consequently, the determiner
at least three is FB. Note however that, for each of the determiners infinitely
many and at least three, there are quantifiers that the determiner forms that
belong in the class MON 1 \(PUFy U PUFn). Hence, both determiners are
in the class MON1 \(PUF!, U PUF2). Some more examples for FB and non-
FB determiners are given below. We note without proof that the class of FB
determiners is closed under complements and finite intersections and unions.

FB Determiners: at least/at most/exactly 3; all; all but at least/most 3.
Non-FB Determiners: (in)finitely many; all but (in)finitely many.

We observe the following fact about upward monotone FB quantifiers.



Lemma 5 Let Q be an F'B upward monotone quantifier over a denumerable
domain E. If Cy D Cy D ... is a properly decreasing infinite sequence of sets
in @, then there is a finite set A C C in Q).

For the statement of our main claim, recall the following definitions, which
are standard in GQ theory ([2]). For any global determiner D:

D satisfies extension (EXT) iff for all A, B C F C E":Dg(A)(B)=Dg/(A)(B).

D is isomorphism invariant (ISOM) iff for all bijections = : ' — F’, for all
A BCFE: Dp({r(z) :z € A})({r(y):y € B}) = Dg(A)(B).

D is conservative (CONS) iff for all A, B C E: Dg(A)(B) = Dg(A)(AN B).

As in other works on GQ theory, we restrict our attention to determiners in
natural language that are EXT, ISOM and CONS.
It is now possible to move on to our main claim.

Theorem 6 Let Dy and Dy be two global MONT determiners that satisfy B,
EXT and CONS. Then Di-Dy C Dy~Dy for any domain F iff both following
conditions hold: (1) Dy is PUFY or Dy is PUFY; and (2) Dy is not TRIV] or
Dy is not TRIV{.

The proof of the “if” direction is quite direct. To prove the “only if” direction,
we make use of the following two lemmas, which rely on the FB property.

Lemma 7 Let D be an FB determiner in MON1 \PUF), that satisfies EXT
and CONS. Then there are A C E, for which there is B € Dg(A) s.t. |B| > 2
and for every X C B: X ¢ Dg(A).

Lemma 8 Let D be an FB determiner in MON 1 \PUFY, that satisfies EXT
and CONS. Then there is a domain F and A C F, for which there are By, By €
DE(A) s.t. By N By é DE(A)

Theorem 6 characterizes all the logical cases of upward right-monotone sub-
ject and object determiners that make the ONS reading entail (or be entailed
by) the OWS reading. Simple cases like that are when the subject determiner is
PUFL\ TRIV? or when the object determiner is PUF\ TRIVZ. That is: when
the subject always denotes a PUF quantifier or the object always denotes a
PUF~ quantifier. This is the case in the following sentences.

(7)  a. Some student saw every/most/at least two teachers.

b. Every/most/at least two student(s) saw every teacher.

However, to characterize completely the cases of MONY logical determiners
for which the ONS reading entails the OWS reading, we have also considered
some more complex cases of global determiners. An example for a member in
PUFL N TRIV{ is the determiner some or every. Examples for members in
PUFY N TRIV3 are the determiner some and every and the determiner each of
the five (cf. definition (6)). These determiners show entailments from the ONS
reading to the OWS reading in sentences such as the following.

(8) Some or (perhaps even) every student saw some or (perhaps even) every
teacher.



(9) a. At least two teachers saw some and (in fact) every student.
b. At least two teachers saw each of the five students.

The complete characterization of scope entailments with MON? determiners
explains why there is no entailment from the ONS reading to the OWS reading
in simple cases such as the following.

(10) Every/most/at least two student(s) saw some/most/at least two teacher(s).
Also in more complex cases such as the following, there is no entailment from
the ONS reading to the OWS reading, as theorem 6 expects.

(11) Some or (perhaps even) every student saw some teacher.

(12) Every student saw some and (in fact) every teacher.
In both cases, when there are no students and no teachers, the ONS reading is
true but the OWS reading is false.

Another result concerns the following fact that is mentioned in [3] about local
quantifiers. Westerstahl calls two quantifiers @1 and @9 over FE independent
when (J1-Q2 = Q1~2. Then he makes the following claim.

Proposition 9 (Westerstahl) Let Q1 and Q3 be two quantifiers over E that
are MONT, non-trivial and ISOM. Then ()1 and (o are independent iff Q1 =

Q2 = everyy(E) = p(E) or Q1 = Q2 = somey(E) = p(F) \ 0.

When we consider global determiners, we call Dy and D, independent if
D1-Dy = Di~Ds for any domain FE. Theorem 6 entails the following fact about
independent determiners. Note the ISOM requirement (as in Westerstahl’s
proposition), in addition to the requirements in theorem 6.

Corollary 10 Let Dy and Dy be two global MON 1 determiners that satisfy
FB, EXT, ISOM and CONS.
Then Dy and Dy are independent iff both of the following conditions hold:
1. At least one of the following holds: (a) Dy and Dy are both PUF!; or (b)
Dy and Dy are both PUFY; or (c) Dy is trivial; or (d) Dy is trivial.
2. At least one of the following holds: (a) Neither Dy nor Dy are TRIV(E)';
or (b) Neither Dy nor Dy are TRIV7.

Examples for identical Dy and D, that are independent are the following
cases: D1 = Dy = some, every, some-or-every, some-and-every. However, in-
dependent determiners do not have to be identical. For instance: each of the
two and each of the five are independent determiners, since according to the
Russellian definition in (6), they are both in PUFY \ TRIV7.
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