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Abstract

This paper explores the hypothesis that simple monotonicity prop-
erties of quantifiers in natural language determine to a large extent the
entailment relations between their wide/narrow scope readings. We
prove that the disjunctive normal form of upward monotone quanti-
fiers using principal ultrafilters correlates with whether an object nar-
row scope reading entails an object wide scope reading. This result
naturally extends the familiar entailment relations between 3V and V3
quantification in first order logic into arbitrary “finitely based” up-
ward monotone determiners (over possibly infinite models), which are
precisely defined.

Given a simple sentence of the form Subject- Verb-Object, we are inter-
ested in the logical relations between the object narrow scope (ONS) and
the object wide scope (OWS) readings of the sentence. In [4], Zimmermann
(1993) fully characterizes the class of ”"scopeless” object quantifiers — those
for which the ONS and OWS readings are equivalent for any subject. Zim-
mermann shows that this class is closely related to the class of (principal)
ultrafilters (names). In [3], Westerstahl (1996) fully characterizes the class
of ”self-commuting” quantifiers, i.e. the quantifiers Q for which ONS and
OWS readings are equivalent when @ is substituted for both subject and
object. However, as far as we know, the more general problem of char-
acterizing (possibly one-way) entailment relations between ONS and OWS
readings has not been given serious attention.

Global determiners (see [2]) are functors that map any non-empty domain
F to a binary relation over p(FE). Any set Qi C p(F) is called a generalized
quantifier (GQ) over E. Thus, a determiner Dg over F maps any A C F
to the generalized quantifier Dg(A) over E.
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Let @)1 and ()2 be the GQs over E that the subject and object respec-
tively denote in a given model. The ONS and OWS readings of the sentence
in this model with respect to a binary relation R C F X F/, are defined using
the following polyadic GQs over F x E:

de
1) Qr:(R) Y 01z € B Qy({y € E: R(y)(2)})}) (ONS reading)
de .
Qi~Qa(R) Y Qu{y e B:Qi({r € E: R(y)(2)})}) (OWS reading)
Let Dy and D5 be global determiners that correspond to the subject and
object determiners respectively. The polyadic determiners Di-D9 and Dy~
D5, which give rise to ONS and OWS readings respectively, are defined as
ternary relations between A, B C F and R C I X F.
def
Di-Dy(A)(B)(R) = ((D1(A))-(D2(B))(R)

def

2
() DinDo(A)(B)(R) = ((D1(A))~(D2(B))(R)

A quantifier Qg is called upward (downward) monotone if it is closed
under supersets (subsets). A global determiner D is called upward (down-
ward) right monotone if for every A C F, the quantifier Dg(A) is upward
(downM) monotone. Symmetrically, D is called upward (downward) left
monotone if for every A C F, the quantifier {B C E': D(B)(A)} is upward
(downward) monotone. We use the following abbreviations:

Qr € MON1T/MON/: @p is upward/downward monotone
D € MON1T/MONJ: D is upward/downward right monotone
D €tMON/|MON: D is upward/downward left monotone

We would like to characterize whether the relation D;-D; is contained in
the relation Dy~D;. When D is every (some) and D, is some (every), it is
well-known that the answer is negative (positive) respectively. For instance,
the ONS reading of the sentence some student saw every teacher entails,
but is not entailed by, its OWS reading. We show that in fact, in sentences
with upward monotone subjects and objects, the existential determiner is
the basis for the class of subject determiners that guarantee entailment from
the ONS reading to the OWS reading. Symmetrically, for upward monotone
subjects and objects, the universal determiner is the basis for the class of
object determiners that guarantee entailment from the ONS reading to the
OWS reading.

We use the fact (cf. [1]) that any upward monotone quantifier Qr can
be represented as a union of intersections of principal ultrafilters.

Fact 1 Let Q be an upward monotone G over . Then Qp = UnepmNzeN



I, for some subset M of p(F), where I, is the principal ultrafilter {A C
E :y € A} generated by y € E.

Proof Let M be Q. If A € g, then clearly A € Nycal;, thus Qp C
UNeQy NeenN Iz In the other direction, if A € Uneg, Nzen Iz, then there
is N € Qg s.t. A € Ngenl;. Thus, thereis N € Qg s.t. N C A. Due to
upward monotonicity of @5, we have: A € Q. O

We call M the signature of a disjunctive normal form (DNF) of an up-
ward monotone quantifier. We define a hierarchy of the upward monotone
quantifiers by requiring a DNF for a quantifier Q5 € MONT, with a signa-
ture M that satisfies certain conditions. The classes in the hierarchy, with
the respective conditions on M that define them, are listed below.

TRIVy: M = 0: Qg is empty
TRIV;: 0 € M: Qg is equal to p(F)
PUF: M = {{a}} for some a € E:
Qg is the principal ultrafilter 1, generated by a;
PUF~: M = {A} for some (possibly empty) A C E:
@ is an intersection of PUFs: the principal filter 'y generated by A
PUFy: M is a (possibly empty) collection of singletons in p(F):
Qg is a union of PUFs.

Obviously, the following relations hold between these classes of GQs: PUF C
PUF~, € MONT; PUF c PUF, ¢ MON1; TRIVy C PUFy; TRIV,; C
PUF-.

Further, observe the following simple facts.
Fact 2 A quantifier () is in PUFy iff Q@ =Ugeqls-
Fact 3 A quantifier Q) is in PUFq iff Q = Nyengls (= Fro).

Consider now the following simple relation between the above hierarchy and
scope entailments.

Lemma 4 Let QQ1,Q2 C p(F) be upward monotone GQs over E. If @, €
PUFU or QQ € PUFQ then Ql-QQ g QlNQQ.

Proof Assume first that Q1 € PUF.

Assume that R € Q1-Q2. Thatis: Q1({z € F: Q2({y € E: R(y)(z)})}).
We conclude that @ # (. Because @ is in PUF, we have by fact 2:



Q1 = Ugyeq, It~ Thus, there exists {t} € Q1 s.t. {z € £ : Q2({y € E :
R(y)(2)})} € I;. Let tg € E satisfy {to} € Q1 and Q2:({y € E: R(y)(to)})-

But {y € F : R(y)(to)} C {y € E : 3{t} € Q:i[R(y)(t)]}. Hence, from
Q2 € MONT we conclude: Qo({y € F: 3{t} € Q1[R(y)(t)]}). (i)

From @1 € MON? we conclude {y € E : 3{t} € Q:[R(y)(1)]} C{y € I :
Qi({x € B Ry)(@)))-

Hence, from Q2 € MONT and (i) we conclude: Q2({y € F : Q:1({z € F :
R()(@))).

Therefore, R € Q1~Q)>.

We have shown that if ¢); € PUIFy then Q1-Q2 C @1~2. The proof for
)2 € PUFR is analogous. O

We use our classification of MON7Y local quantifiers in order to classify
MON* global determiners as follows. For any global determiner D:

D is PUFL iff for all A C E: Dg(A) is in PUF, U TRIV;.
D is PUFY, iff for all A C E: Dg(A)is in PUF5 U TRIV.

D is TRIVy (TRIVy) iff forall A C E: Dg(A)isin TRIVy (TRIVy).
When D is TRIVq or TRIV; we say that D is trivial.

Dis TRIV3 (TRIV7) iff thereexist A C Es.t. Dg(A)isin TRIVy (TRIV,).

D is PUF, (PUF,) iff forall 2 € E: Dg({z}) = I, while forall A C
s.t. |A] # 1: Dg(A) isin TRIVy (TRIVy).
When D is PUFg or PUF; we say that D is PUF.

Thus, a determiner is called PUF), (PUFY) when it generates only PUF,
(PUFr) and trivial quantifiers. Note that a determiner is classified as PUF],
(PUF2) or TRIVy (TRIV;) according to its behavior on all domains and
arguments. By contrast, for classifying a determiner as TRIV3 (TRIV7),
it is sufficient to find one domain and one argument for which it is TRIV
(TRIVy). The usefulness of both “universal” and “existential” classifications
of determiners will be clarified as we go along.

Meanwhile, to illustrate these definitions, consider the following simple
facts.

e The determiner some is TRIVZ and PUF, but neither TRIV] nor
PUFY;

e The determiner every is TRIVF and PUFY, but neither TRIVZ nor
PUF];

e The determiner some and (in fact) every is TRIVSI and PUFY, but
neither TRIV] nor PUFL;



e The determiner some or (perhaps even) every is TRIV] and PUFL,
but neither TRIVZ nor PUFY,

Of course, the determiners some and/or every are respectively the intersec-
tion/union of the standard relations for the existential and universal deter-
miners.

Our main claim is that this typology of determiners allows us to deter-
mine in which cases of MON1 determiners Dy and D, the ONS reading
D1-Dy entails (or is entailed by) the OWS reading Di~D;. Before proving
that, there is one qualification concerning this result that we should explain.
We will assume that both Dy and Dj are finitely based, in a sense that is
defined below. This restriction is needed because MON1 determiners such
as infinitely many behave with respect to re lative scope entailments differ-
ently than MON1 determiners such as at least three. Consider the following
examples.

(3)  a. Infinitely many students saw John or Mary.
b. At least three students saw John or Mary.

(4)  a. Infinitely many students saw at least one of the two students.

b. At least three students saw at least one of the two students.

In (3a), the ONS reading entails the OWS reading: if there are infinitely
many students that have the property saw John or saw Mary, then either
John or Mary has the property was seen by infinitely many students. But this
is obviously not the case in (3b). A similar contrast is observed between (4a)
and (4b), under a Russellian treatment of the definite article. For instance:

(5) at_least_one of then'(A)(B)=1 & |[A|=nAANB#(
(6) eachof then'(A)(B)=1 & [A|l=nAACB

We have seen that MON1T determiners such as infinitely many show scope
entailments that are different than those of similar “finite” determiners.
Such “infinite” determiners, which are common in the mathematical jargon,
are much less common — and have a much less defined meaning —in everyday
speech. This is in contrast to more ordinary determiners such at least three
or every, which English speakers use by and large with the same meaning
as logicians do. The formal distinction between determiners that is held
responsible for this difference is defined as follows.



Definition 1 (FB quantifiers) Let E be a denumerable non-empty do-
main. A sequence A;|2, of subsets of E is called properly monotone if
A; C Ajyq for everyi > 1, or A; D A;j4q for every i > 1.

Two properly monotone sequences A;|52, and Bj|?'i1 are called mutually
monotone if A; C B; foralli,j > 1, or A; D B; foralli,j > 1.

A quantifier Qg over E is called finitely based (FB) iff for any two mu-
tually monotone sequences A;[72, and B;|3%2, s.t. Qg is constant on both
sequences, Qg sends both sequences to the same value.

By “constancy” of a quantifier Qg on a set X' C p(F), we of course mean:
X CQrporQrNnX =0. In the first case say we say that Qg sends X to 1.
In the second case say we say that Qg sends X to 0.

The definition of FB determiners is derived from the definition of I'B
quantifiers.

Definition 2 (FB determiners) A global determiner D is FB iff for any
denumerable non-empty domain FE, Dg(F) is an FB quantifier.

Note that this definition pays attention only to the behavior of Dg on the
whole F domain, and does not take into account proper subsets of . Thus,
a determiner such as all is provably FFB, even though on the domain of
natural numbers, the quantifier all odd natural numbers is not FB. This is
in accordance with the intuition that the determiner all does not inherently
pertain to infinite sets. By contrast, the determiner all but finitely many
provably maps any infinite domain to a non-FB quantifier, hence it is not
B itself.

Let us consider an example for a pair of FB/non-FB determiners that
belong in the same class of the above hierarchy. Consider first the determiner
infinitely many. Let N by the set of natural numbers, with No C N the
set of odd natural numbers. Consider two sequences (No N [1..2¢])[52, — the
increasing sequence of sets of odd numbers; and (NoU[1..27])|?2, — the unions
of the odd numbers with elements in the increasing sequence of sets of even
numbers. These two sequences are mutually monotone, but the denotation of
infinitely many natural numbers on the domain £ = N is constantly false on
the first sequence but constantly true on the second sequence. Consequently,
the determiner infinitely many is not FB. It is impossible to find two such
sequences for the determiner at least three: trivially, for any domain F, the
quantifier at_least_3’%;(F) cannot be false over an infinite properly monotone
sequence. Consequently, the determiner at least three is FB. Note however
that, for each of the determiners infinitely many and at least three, there
are quantifiers that the determiner forms that belong in the class MON 1



\(PUFLUPUFR). Hence, both determiners are in the class MONt \ (PUF},U
PUFY). Some more examples for FB and non-FB determiners are given in
table 1. We note without proof that the class of FB determiners is closed
under complements and finite intersections and unions.

FB non-FB
at least three finitely many
at most three infinitely many

exactly three
all

all but (at least) three | all but finitely many
all but at most three all but infinitely many

Table 1: FB and non-FB determiners

We observe the following fact about upward monotone FB quantifiers.

Lemma 5 Let () be an FB upward monotone quantifier over a denumerable
domain FE. If C7 D Cy D ... is a properly decreasing infinite sequence of
sets in @, then there is a finite set A C Cy in Q.

Proof Assume for contradiction that every A C (' in @) is infinite. We will
show that ) is not FB.

Assume first that there is A C C in @ s.t. F'\ A is infinite. Let us denote
A =Aay,ay,...}, F\ A={ey,eq,..}. Consider the following two sequences:

X1 =A4; X1 = X;U{e;} for every i > 1.
Yi ={a1}; Y1 =Y; U{aj41} for every j > 1.

These two infinite sequences are mutually monotone.

For every ¢ > 1 we have: X; €  (by monotonicity of @ and X; = A € Q).
For every 7 > 1 we have: Y; ¢ @ (by finiteness of Y; and Y; C A C ().
Hence ) is not FB, in contradiction to the assumption that it is.

Assume now that for every A C Cy in Q: E \ A is finite. Consider the
following two sequences:

X; = C1; /Yi+1 =X; \ (CQi \ sz’+1)-
Y1 =Ci\Co; Y1 =Y; U (Cojp1 \ Cojy2).



These two infinite sequences are mutually monotone.

For every ¢ > 1 we have: X; € @, because Cy;,_1 € @, Cy_1 C X;, and
@ € MON*.

For every j > 1 we have: Y; C U2, (Caor—1 \ Caz) D, But E\DD
U2 (C2x \ Cak41) is infinite and D C C4, hence by our assumption: D ¢ Q.
We conclude Y; ¢ () by monotonicity of Q.

Therefore we proved again that ) is not FB, in contradiction to the assump-
tion that it is. O

For the statement of our main claim, recall the following definitions,
which are standard in GQ theory ([2]). For any global determiner D:

D satisfies extension (EXT) iff for all A,B C E C E": Dg(A)(B) =
Dgi(A)(B).

D is isomorphism invariant (ISOM) iff for all bijections = : E — FE’, for
all A BCE: Dp({n(z):2 € A})({n(y) : y € B}) = D(A)(B).

D is conservative (CONS) iff forall A, B C E: Dg(A)(B) = Dg(A)(ANB).

As in other works on GQ theory, we restrict our attention to determiners in
natural language that are EXT, ISOM and CONS.
It is now possible to move on to our main claim.

Theorem 6 Let Dy and Dy be two global MONT determiners that satisfy
FB, EXT and CONS. Then Dy-Dy C Dy~Dy for any domain denumerable
non-empty E iff both following conditions hold: (1) Dy is PUF), or D, is
PUFY; and (2) Dy is not TRIV] or Dy is not TRIV3.

Proof (if)

We prove that if Dy is PUFLlJ and condition 2 holds then Dy-Dy C Dy~Ds.
The proof in case that Dy is PUFY is analogous.

If Dy is not TRIV7 then for all A C E: Dyg(A) € PUF,. Hence, by lemma
4, for all B C E: (D1(A))-(D2(B)) C (D1(A))~(D2(B)). In other words:
Di-Dy C Dy~Dy for any domain F.

Otherwise, Dy is TRIV] and by condition 2: Dy is not TRIV3. (i)

For all A C E: Dig(A) € PUFLUTRIVy. If Dig(A) € PUF, then again
by lemma 4, for all B C F: (D1(A))-(D2(B)) C (D1(A))~(D2(B)).

If Dig(A) € TRIVy, then {y € F: D1(A){z € F : R(y)(z)})} = E for
any R € ' x E. But for all B C E: E € Dyg(B), because Dy(B) is not
TRIVy (by (i)) and upward monotone. We conclude that for all B C E:
(Dy(A)-(Da(B)) € (Dy(A)~(Da(B)).



We have shown that if D; € PUF] and condition 2 holds, then Dy-Dy C
Di~Djy. The proof for Dy € PUF% is analogous. O

To prove the “only if” direction of theorem 6, we will first prove the
following two lemmas, which rely on the B property.

Lemma 7 Let D be an FB determiner in MON1 \PUF\, that satisfies EXT
and CONS. Then there are A C E, for which there is B € Dg(A) s.t. |B| > 2
and for every X C B: X ¢ Dg(A).

Proof We first show that there is a domain A s.t. D4(A) € MON?T \ (PUF U
TRIVy). The proof is routine in usages of CONS and EXT. By the assump-
tion that D is not PUF]}, there are A C F's.t. Dg(A) ¢ PUF_UTRIV;. By
fact 2 and upward monotonicity of Dg(A), there is B € Dg(A) s.t. for every
z € B: {z} ¢ Dg(A). By conservativity of D: AN B € Dg(A). Because
Dg(A) € MONT \TRIV; we conclude AN B # (). Because D satisfies EXT:
ANB € D4(A). Hence by assumption on B and extension, for all z € AN B:
{z} ¢ D4(A). By fact 2 and upward monotonicity of D4(A): D4(A) is not
PUF. Because AN B # 0, D4(A) is not TRIV; either.

Let us denote Q@ = D 4(A).

Let us further denote @’ et {X €Q :forevery z € X: {z} ¢ Q}.
Because Q € MONT \PUF and fact 2: Q' # 0.

Because @ € MONT\TRIV;: 0 ¢ Q.

Assume that there is no properly decreasing infinite sequence in Q’. Then
for every C' € @', there is B C C' s.t. B € ' and forevery X C B: X ¢ Q.
Any such B € Q' is non-empty and by definition of Q": |B| > 2. Because
Q' # (0, we proved existence of B as required.

Assume now that there is a properly decreasing infinite sequence C7; D Cy D
...in Q' C Q. By lemma 5, there is a finite set C' C C in Q. From defini-
tion of (' we conclude C' € '. Hence, by finiteness of C, there is B C
s.t. B € Q" and for every X C B: X ¢ QQ'. Thus, by 0 ¢ Q' and definition
of Q' we again conclude |B| > 2. O

Lemma 8 Let D be an FB determiner in MON 1 \PUF that satisfies
EXT and CONS. Then there is a domain E and A C F, for which there are
Bl,BQ € DE(A) s.t. B1 N B2 ¢ DE(A)

Proof For similar considerations as in the proof of lemma 7, we have
D4(A) € MONT \(PUFA UTRIVy) for some A. Let us denote @ = D4(A).

Assume that there is no properly decreasing infinite sequence in (). Let us



denote Qnin = {A € Q : forevery BC A: B ¢ (Q}. By assumption on

@, we get that for every A € @) thereis B C A s.t. B € Qnin. Therefore,
by monotonicity of Q: @ = Uaeq,,,, Fa. Because Q@ ¢ TRIVq: Quin # 0.
Because Q ¢ PUFqn: |Qmin| # 1. Hence, any two sets By, By € Qi are as
required.

Assume now that there is a properly decreasing infinite sequence in ). Be-
cause () is MON7? and FB, it follows by lemma 5 that there is a finite set

Ag € . Assume for contradiction that for all By, By € Q: BiN By €

(assumption (i)). The set Qo f {ANAy: A€} CQ is finite and non-

empty, thus by assumption (i): NQ € Q. But NQo = NEQ, and therefore
NE € Q. By monotonicity of ¢ and fact 3: @ is in PUFq, in contradiction
to our assumption that it is not. We conclude that there are By, By € @) s.t.
BiNnBy¢Q. 0O

We can now finally prove the “only if” direction of theorem 6.

Proof of theorem 6 (only if)

Let Dy and Dy be two global MONT determiners that satisfy FB, EXT and
CONS.

We assume that at least one of the two conditions 1 and 2 does not hold,
and will show that D1-Dy € Dy~Ds.

Assume first that condition 1 does not hold: D; is not PUFL{I and D, is

not PUFY. According to lemma 7, there are Ay, By C E s.t. |Bg| > 2 and

Q1 def D1(A1) on F satisfies: By € @1, and for all X C Bg: X ¢ (1. Let

us denote ay, ay; € By, for arbitrary a; # as.

According to lemma 8, there are Ay, By, By C FE' s.t. By, By € Qo i/

DQ(AQ) on El, but B1 N B2 ¢ QQ.

Because Dy and Dj satisfy EXT, we can assume without loss of generality
that £ = E’ (otherwise, choose E"” = E'U E').

Let us define R C F x F as follows:

R(y)(z) & (z=a1 Ay e Bi)V(z e Bo\{m} Ay € By).

We shall now show that (A1, Az, R) € Dy-Dy: From definition of R, Vz €
By :{y € E: R(y)(z)} € {B1,B2} C Q. Hence: By C {z € F:{y €
FE : R(y)(z)} € Q2}. From monotonicity of @y and By € @1 we get that
(A1, Az, R) € D1-Ds.

To prove that (A, Az, R) ¢ Di~D,, we will show that {y € F': {z € F:
R(y)(z)} € @1} = By N By, which is sufficient because By N By ¢ Q2.
Direction “2”7: We assume b € By N By. We have for every z € F:

10



R(b)(z) &z =a1Vz € Bo\{a1} & z € By. Hence {z : R(b)(z)} = Bo.
But By € @1, hence we conclude be {y € F:{z € E: R(y)(z)} € Q1}.
Direction “C”: We assume b € {y € F : {z € E : R(y)(z)} € Q1}.
Hence, {z € E : R(b)(z)} € Q1. From definition of R, we conclude
{z € F: R(b)(z)} C By. From our assumption about minimality of By in
Q1, it follows that {z : R(b)(z)} = By. Especially: R(b)(a1) and R(b)(asz).
Hence, by definition of R: b € By N Bs.
From the assumption that condition 1 does not hold, we have shown (A, Az, R) €
Dl—DQ \ DlNDQ, which means that Dl—DQ Z DlNDQ.

Assume now that condition 2 does not hold: Dy is TRIV%I and D, is

TRIVZ. Let A C E' be s.t. D1(A) on E'is p(E') and let B C E” be s.t.

D;y(B) on E" is empty. On E I E'U E" we have:

Dy (A) = p(F), by MONT and EXT of D;.

D;(B) = 0, by CONS and EXT of Ds.

Thus, for every R € ' x E:

((D1(A))-(D2(B)))(R) trivially holds; but

((D1(A))~(D2(B)))(R) trivially does not hold.

From the assumption that condition 2 does not hold, we have again shown
that Dl—DQ Z DlNDQ. a

Theorem 6 characterizes all the FB logical cases of upward right-monotone
subject and object determiners that make the ONS reading entail (or be en-
tailed by) the OWS reading. Simple cases like that are when the subject
determiner is PUFL\TRIVF or when the object determiner is PUF%\ TRIV3.
That is: when the subject always denotes a PUF quantifier or the object
always denotes a PUFn quantifier. This is the case in the following sen-
tences.

(7)  a. Some student saw every/most/at least two teachers.

b. Every/most/at least two student(s) saw every teacher.

However, to characterize completely the cases of MON1 logical deter-
miners for which the ONS reading entails the OWS reading, we have also
considered some more complex cases of global determiners. An example for
a member in PUFY, N TRIV{ is the determiner some or every. Examples
for members in PUF2 N TRIV3 are the determiner some and every and the
determiner each of the five (cf. definition (6)). These determiners show en-
tailments from the ONS reading to the OWS reading in sentences such as
the following.

(8) Some or (perhaps even) every student saw some or (perhaps even)
every teacher.

11



(9) a. At least two teachers saw some and (in fact) every student.

b. At least two teachers saw each of the five students.

The complete characterization of scope entailments with MON1 deter-
miners explains why there is no entailment from the ONS reading to the
OWS reading in simple cases such as the following.

(10) Every/most/at least two student(s) saw some/most/at least two teacher(s).

Also in more complex cases such as the following, there is no entailment
from the ONS reading to the OWS reading, as theorem 6 expects.

(11) Some or (perhaps even) every student saw some teacher.
(12) Every student saw some and (in fact) every teacher.

In both cases, when there are no students and no teachers, the ONS reading
is true but the OWS reading is false.

Another result concerns the following fact that is mentioned in [3] about
local quantifiers. Westerstahl calls two quantifiers ()1 and )5 over F inde-
pendent when (Q1-Q2 = Q1~C)2. Then he makes the following claim.

Proposition 9 (Westerstahl) Let Q1 and Qy be two quantifiers over E
that are MONT, non-trivial and ISOM. Then Q)1 and Q4 are independent

iff @1 =Q2=-everyy(E) (={F}) orQ:=0Q;=somel(E) (=p(E)\0).

When we consider global determiners, we call Dy and Dy independent
if D1-Dy = Dy~ Dy for any domain F. Theorem 6 entails the following
fact about independent determiners. Note the ISOM requirement (as in
Westerstahl’s proposition), in addition to the requirements in theorem 6.

Corollary 10 Let Dy and Dy be two global MON® determiners that satisfy
FB, EXT, I[ISOM and CONS.
Then Dy and Dy are independent iff both of the following conditions hold:

1. At least one of the following holds: (a) Dy and Dy are both PUF];
or (b) Dy and Dy are both PUFY; or (c) Dy is trivial; or (d) Dy is
trivial; or (e) Dy is PUF; or (f) D, is PUF.

2. At least one of the following holds: (a) Neither Dy nor Dy are TRIV(E)';
or (b) Neither Dy nor Dy are TRIVY.
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Proof In the “if” direction, if neither Dy nor Dy are trivial or PUF, the
claim follows directly from theorem 6. We first assume without loss of gener-
ality that Dy is trivial. If Dy is TRIVg, we conclude that D;-Dy = (). From
condition 2 above we conclude that Dy is not TRIVF. From monotonicity of
Dy, it follows that forall A C E: § ¢ Dyp(A). From triviality of Dy we know
that foral ACE,RCEXE: {yc€ E:Dig(A){z € E:R(y)(z)})} =0.
Thus, Dy~Dy = (). The proof for the case that Dy is TRIV; is analogous.

We now assume without loss of generality that D is PUF. Let E an
arbitrary domain. We shall look at an arbitrary (A, B, R) € D1g-Dyp and
prove that (A, B, R) € Dig~ Dyp. If |A| # 1, then from definition of
PUF, D;(A) is trivial. From PUF we also know that if D;(A) is TRIV,
then Dy is not TRIVY, and if Di(A) is TRIVq then Dy is not TRIV3. As
above, we can now see that (A, B, R) € Di~D;. For A = {a}, we assumed
Di({ae})({z : D2(B){y : R(y)(z)})}). From PUF, a € {z : Dy(B)({y :
R(y)(z)})}, therefore Do(B)({y : R(y)(a)}), now from PUF, Dy(B)({y :
Di({a})({z : R(y)(z)})}), therefore ({a}, B,R) € Dy~ Dy. The other
direction is analogous, thus proving Di-Dgy = Dy~Ds.

In the “only-if” direction, we assume that D;-Dy = D~ D, and prove
that both conditions (1) and (2) above hold. From theorem 6, we conclude
that the following four propositions hold:

(i) Dy is PUF} or Dy is PUFY (from Dy-Dy C Dy~Ds).
(i) Dgis PUFY or Dy is PUFY (from Di-Dy O Di~Ds).

)
)
(ili) Dy is not TRIV] or Dy is not TRIV3 (from Dy-Dy C Dy~Dy).
)

(iv) Dy is not TRIV] or Dy is not TRIV3 (from Dy-Dy D Dy~Dy).

Assume first for contradiction that condition 2 above does not hold.
Thus, Dy or Dy are TRIV%, and Dy or Dy are TRIV?. From proposi-
tions (iii) and (iv) above, we conclude that either D; or Dy are neither
TRIV3 nor TRIV3. But, both D; and Dy are CONS, hence for any E # §:
D1 (0), Deg(0) € {0, p(E)}, which contradicts our assumption, hence con-
dition 2 holds.

Assume now for contradiction that condition 1 above does not hold.
Thus, either Dy or Dy are not PUFLlJ, either Dy or Dy are not PUF%7 and
D; and D, are both neither trivial nor PUF.

From propositions (i) and (ii) above, we conclude that either Dy or Dy
must be both PUF}, and PUFY. Without loss of generality, assume that
Dy is both PUF!, and PUFQ. By definition of PUF!, and PUFY, for every
ACE:Dig(A)€{d, I, p(E)} for some z € E.
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First, we shall prove that for all A C £ C E’ and for all y € E, if
Dyg(A) = I, then also Dip/(A) = If/. For any B € p(E'), if y €
B then also y € B N E, therefore D1g(A)(BN FE) = 1, and thus from
MON? and EXT, Dy (A)(B). We have shown 17 C Dyp/(A). But, from
EXT, Dyg/(A)(0) = Dig(A)(0) = 0, thus Dy g/(A) is not trivial, therefore
D1gi(A) must be ]yE’.

If A=0, then from CONS, Dyg(A) € {0, p(E)}.

If A = {2} C E, from CONS, Dig({z}) € {0, p(E),I,,I,}. From
MONT, DIE({x}) S {07 KD(E)7 Ix}'

If |A] > 2, assume Dyg(A) = I,. From CONS, z € A. From |A| > 2,
there is y € A s.t. y # z. Let m be a permutation of F that swaps z and y
and maps any other element of F to itself. From ISOM, D;g(n(A)) = I,,.
But, D1g(7(A)) = D1g(A) = I, hence a contradiction.

From condition 2 proven above, we know that either D, is not TRIVSI
or Dy is not TRIV?. Therefore, Dy must be trivial with the same value for
all A C F for which it is trivial. From nontriviality, we know that there is
A C E s.t. Dig(A) = I, for some z. We have shown that this can occur
only for A = {z}. From EXT, Dy ({z}) = 1. From the claim above,
we know that Dg:({z}) = I¥ for all E' s.t. = € E'. We will now show
that Dp({y}) = IF for all E and for all y € E. Let E be some domain
and let y € F be some element. Let E’ be a domain s.t. |F'| = |E| and
x € E'. Let m be a bijection ' — FE that maps z to y. From ISOM,
Dip({y})(B) ¢ Digp(r({2}))(w~'(B)) ¢ Dip/({2})(n7}(B)) <> =~ 1(B) €
I. &z €nY(B) < ye B. Thus, Dig({y}) = I, for all y € E. We have
already shown that for all A C F' s.t. |A| # 1, D1g({z}) is trivial with the
same value, thus D; must be PUF, contradicting our assumption.

We have shown that both conditions hold, thus proving the corollary. O

Examples for identical Dy and Dy that are independent are the following
cases: Dy = Dy = some, every, some-or-every, some-and-every. However,
independent determiners do not have to be identical. For instance: each of

the two and each of the five are independent determiners, since according to
the Russellian definition in (6), they are both in PUFY \ TRIV7.
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