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Challenges

I Plural individuals in the entity domain

II Distributive vs. collective predication

III Structured individuals

IV Non-atomic distribution



Challenge I - the entity domain

(1) The girl is/*are singing.

(2) The girls are/*is singing.

(3) Mary is/*are singing.

(4) Mary and Sue are/*is singing.

Intuitive idea:

Singular NPs (the girl, Mary) denote arbitrary entities: by default atomic.

Plural NPs (the girls, Mary and Sue) denote collections of such entities.

Problem:

The standard treatment of NPs using entities/quantifiers takes all NP

denotations to range over arbitrary entities.

“arbitrary entities” = besides (non-)identity, no relation is given between entities

Ð→ no entity represents a collection of other entities
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Changing the domain of entities

Let E be a non-empty arbitrary set of entities. De is defined by:

DSG = {{x} ∶ x ∈ E}

DPL = {A ⊆ E ∶ ∣A∣ ≥ 2}

De = DSG ∪DPL = {A ⊆ E ∶ A /= ∅}

DSG and DPL are the sub-domains of atomic/plural entities.

Lattice-theoretical notation:

i. Instead of ‘{x}’ for atomic elements of DSG, write ‘x ’.

ii. Instead of ‘A ∪B’ for the union of sets A,B ∈ De , write ‘A+B’.

iii. Instead of ‘⋃A’ for the union of sets in A ⊆ D, write ‘⊕A’.

iv. Instead of ‘A ⊆ B’ for sets A,B ∈ De , write ‘A ≤ B’.

Rationale: No empty set in De ; we only use unions of entities.

→ no intersection and complementation → De is a join semi-lattice.
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Collective predication

Collective predicates:

meet, lift the piano together, be a nice team, like each other

(1) Sue and Mary met – meet(sue+mary)

sue,mary ∈ DSG sue+mary ∈ DPL

meet ∈ Det

(2) The girls met – meet(G)

girl ∈ DDSG
t : characterizes a set with at least two girls

[[the girls]] = G = ⊕{x ∈ DSG ∶ girl(x)}

meet ∈ Det

Note: the group/#girl met – meet(g), where g ∈ DSG
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Plural nouns and definites

Singular nouns – girl, group – denote in DDSG
t

Singular def. NPs – the girl/group – denote in DSG

Plural nouns – girls, groups – denote in DDPL
t

Plural def. NPs – the girls/groups – denote in DPL

Note: “f denotes in D
DSG
t ” = f (x) is undefined/trivially false for x /∈ DSG

We choose the former (“undefined”), hence assume f ∈ D
DSG
t .

Example:

▸ girl characterizes the set {t,m, s}

▸ girls characterizes the set {t+m+s, t+m, t+s, m+s}

▸ the(girl) is undefined

▸ the(girls) = G = t+m+s
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Plural nouns – formally
For every singular noun Nsg denoting a predicate Pet ∈ Dt

DSG , the
plural form Npl denotes the predicate ∗P ∈ Dt

DPL , defined by:

∗P = λye . y ∈DPL ∧ y ≤ ⊕{x ∈ De ∶ P(x)}

In words: Npl denotes the predicate that holds of entities y made of at least

two elements in the set characterized by Nsg ’s denotation.

Examples:

girl characterizes {t,m, s} → ∗girl characterizes {t+m+s, t+m, t+s, m+s}

girl characterizes {t,m} → ∗girl characterizes {t,m}

girl characterizes {t} → ∗girl characterizes the empty set

girl characterizes the empty set → ∗girl characterizes the empty set

Note: the commonly assumed star operator (cf. Champollion’s Distributivity

in formal semantics) admits atomic members ∗P – replace “y ∈ DPL” by

“y ∈De” in definition.
Ð→ pro: straightforward (next slide)

cons: no girls arrived, either the girls or Dan are thieves
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Definites – formally

For every singular/plural noun N, the definite noun phrase the N
denotes the unique maximal element of [[N]], if it exists. Otherwise,
the denotation of the N is undefined.

the = λPet .{
x P(x) and for every y : P(y)→ y ≤ x
undefined no such x exists

Examples:
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Challenge II: Distributive predication
Distributive predicates: sleep, wear a blue dress, have a baby, be
vegetarian, be champions

Problem – assuming that sleep, like meet, denotes in Det , we get:

(1) Sue and Mary slept – sleep(sue+mary)

(2) The girls slept – sleep(G)

Are these meanings adequate?

Approach taken here:

Distributive inferences from lexical predicates are a subtle matter –
soft inferences from lexical meanings.

– Meanings in (1) and (2) are OK. The group slept/is happy

– Quantificational distributive meanings on top of (1) and (2) – obtained
using operator (next...)

– Only distributive nouns can rule out group atoms;
verbs and adjectives cannot. This group is (#a) vegetarian
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Lexical distributivity – alternative approach

▸ All distributive predicates – nouns, verbs and adjectives –
basically range over entities in DSG.

▸ Their actual lexical denotations are uniformly obtained by the
star operator.

Example:

sleep ∈ D
DSG
t

suppose that sleep characterizes {t,m, s, j}

the(girls) = G = t+m+s

∗sleep(G) = ∗sleep(t+m+s) = sleep(t) ∧ sleep(m) ∧ sleep(s)

Challenge: the townspeople are asleep
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Phrasal distributivity

Distributivity is not only a matter of lexical predicates like sleep.

(1) The girls sang or danced.

– True (at least) if each girl either sang or danced.

(2) The girls are wearing a blue dress.

– True (at least) if each girl is wearing a different blue dress.

(3) The girls won.

– True if each girl won (but also if one team of the girls won, or even if
several teams of girls won).

– Indecisive evidence, under the approach taking here.
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The distributivity operator

For every predicate P in Det , the distributed predicate d(P) holds of
every entity x s.t. P holds of every atomic member of x .

d(Pet) = λxe .∀y ∈DSG. y ≤x → P(y)

(1) The girls sang or danced.

a. oret(sing,dance)(G) – collective

⇔ sing(G) ∨ dance(G)

b. d(oret(sing,dance))(G) – distributive

⇔ ∀y ∈ DSG. y ≤G → (sing(y) ∨ dance(y))

⇔ ∀y ∈ G . (sing(y) ∨ dance(y))
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The distributivity operator (cont.)

(2) The girls are wearing a blue dress.

a. (λy .∃x .blue dress(x) ∧wear(y , x))(G) – collective

⇔ ∃x .blue dress(x) ∧wear(G , x)

b. d(λy .∃x .blue dress(x) ∧wear(y , x))(G) – distributive

⇔ ∀y ∈ DSG. y ≤G → ∃x .blue dress(x) ∧wear(y , x)

⇔ ∀y ∈ G . ∃x .blue dress(x) ∧wear(y , x)
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The distributivity operator (cont. 2)

(3) The girls won.

a. win(G) – collective

b. d(win)(G) – distributive

In a specific model:

win characterizes the set {t+m+s, t, s}

G = t+m+s

(3a) = win(G) ⇔ win(t+m+s) – true

(3b) = d(win)(G) ⇔ win(t) ∧win(m) ∧win(s) – false
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“Mixed” predicates

(1) Dylan wrote many hits.

(2) The Beatles wrote many hits.

(3) Simon and Grafunkel wrote many hits.

(4) Mary and Sue wrote many hits.

Sentence (4) is clearly true both if Mary and Sue wrote many hits
as a team, or if each of them wrote many hits individually.

Many predicates in natural language are “mixed” in the same way.
accounted for by the ambiguity that the d-operator introduces
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Summary – morphological, lexical and phrasal distributivity

girls morphological ∗girl ∈ D
DPL
t , where girl ∈ D

DSG
t

slept lexical inference sleep ∈ Det the girl/group/townspeople slept

met - meet ∈ Det the group met

col. reading of the two groups met

won - win ∈ Det col. reading of the girls won

[VP slept] phrasal d(sleep) the two girls slept

[VP met] phrasal d(meet) dist. reading of the two groups met

[VP win] phrasal d(win) dist. reading of the girls won
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Related topics

Reciprocity: morphological (friends), lexical (the boys hugged),
phrasal/derivational (the boys hit each other).

Floating “each”: the boys each ate a pizza

Multiplicity of events/Pluractional markers:

Kaqchikel (Mayan): X- in- kan- ala’ jun wuj
perf- 1sS- search- plurac a book

“I looked for a book several times”
(Henderson 2011: 219)

“Pluractional adverbials”: Sue ate the cake piece by piece.
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Challenge III – structured individuals?

Problem 1:

(1) The girls and the boys were separated.

(2) The young children and the other children were separated.

We consider models where:

G+B =C : the girls and the boys are the children (C )

YC+OC =C : the young children and the other children are the
same children

In these models: were separated(G+B) = were separated(YC+OC)

(1) and (2) do not seem equivalent under these conditions

the girls and the boys are just the children; the girls and the boys were separated
?
⇒ the young children and the other children were separated

Tentative conclusion 1: there are models such that girl∪boy = child

but [[the girls and the boys]] /= [[the children]].
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Challenge III – structured individuals? (cont.)

Problem 2:

(1) a. The girls are group A.

b. The boys are group B.

(2) Group A and group B are of the same size.

a. Group A is of the same size as group B.

b. Group A and group B (together or separately) are of the same
size mentioned earlier.

(3) The children are of the same size.

a. Each child is of the same size.

b. The children (together or separately) are of the same size
mentioned earlier.

Tentative conclusion 2: there are models such that girl∪boy = child,

and groups A and B have the members in girl and boy (pre-

theoretically), but [[group A and group B]] /= [[the children]].



Impure atoms

Impure atom principle: An NP denotation like [[the girls]] is a plural
individual G ∈ DPL, which can be freely mapped to a contextually de-
termined member of the set of “impure” atoms in DSG (groups, teams,
committees, bands etc.) made of the members of G . We denote this
selected impure atom by ↑G ∈ DSG.

↑ is used with precedence over other operators: ↑A +B = (↑A)+B.
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Impure atoms (cont.)

Example 1:

(1) The girls and the boys were separated.

a. separated(G+B) “the children were separated”

b. separated(↑G+ ↑B) “an impure atom made of G and an

impure atom made of B were separated”

(2) The young children and the other children were separated.

a. separated(YC+OC) “the children were separated”

b. separated(↑YC+ ↑OC) “an impure atom made of YC and an

impure atom made of OC were separated”

G+B = YC+OC , but ↑G+ ↑B /= ↑YC+ ↑OC .

Readings (1b) and (2b) are prominent for (1) and (2), hence the
perceived lack of equivalence.
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Impure atoms (cont. 2)

Example 2:

(1) a. The girls are group A. ↑G = group A

b. The boys are group B. ↑B = group B

[[be of the same size]] = λxe .∀y , z ∈ DSG. y , z ≤x → size(y) = size(z)

(2) Group A and group B are of the same size.

∀x , y ∈ group A+group B.size(x) = size(y)

⇔ size(group A) = size(group B)

(3) The children are of the same size.

∀x , y ∈ C .size(x) = size(y)
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Challenge IV – non-atomic distribution?

See Champollion’s article Distributivity in formal semantics


