Class 2

Basic notions and
tools

- NOTIONS
- TOOLS



Lambda Notation



IS as Identity Function

[[ Tinaistall ]] =1 -- tina denotes an entity
in the set for tall
With types:

(1(et)(er) (talle ) ) (tinae )

Intuitively: IS maps any set to itself.
Formally:
B(et)(et) =

The function sending every element g of the domain De; to g.



IS in lambda notation

S(et)(et)

The function sending every element g of the domain Dt to q.

Instead of writing “the function sending every element g of D¢;” as 1 (55), we write “Aget”.

Instead of “to ¢g” as 1n (55), we write “.g”.

Thus: AJe-9 = Summing up: 1s = Aget.g

The letter * A’ tells us that it 1s a function.

The notation ‘ge;” before the dot mtroduces ‘g’ as an ad hoc name for the argument of this
function. The type et 1n the subscript of ¢ tells us that this argument can be any object in the
domain D.;.

The re-occurrence of ‘g’ after the dot tells us that the function we define in (58) returns the
value of its argument.



Lambda notation: When writing “Ax+.p”, where T is a type, we mean:

“the function sending every element x of the domain D+ to ©”.




Function application with Lambda’s
(Ager-g)(talle;)
= tall

Another example:

succ(z) =z +1
succ(22) =22 +1 (Az,,.z+1)(22) I 22 + 1
Function application with lambda terms.: The result (Ax,.¢)(a,) of applving a func-

tion described by a lambda term Ax..p to an areument a., is equal to the value of the

expression @, with all occurrences of x replaced by a.



Reflexives in object position
Tina praised herself

praise_ . (tina.)(tina)
[[ herself ]] = tina 7?77

(HERSELF (¢ (1)) (et) (Praise, ;) ) (tina,)

= praise(tina)(tina)

Generalizing:
For all functions R of the domam D, ., for all enfities 2 of the domam D).
(HEFJEELE{,-_.{H ))(et) (R) )(1) — R(?)(l)



For all functions 1 of the domain D, .. for all entities = of the domain D,:
(HERSELF (c(et)) (et) (R) ) () = R(z) ()

HERSELF (¢ (1)) (et) 1S

the function sending every element R of the domain D, . to the function sending every
element x of the domain D, to R(x)(x).

HERSELF (¢(ct))(et)

= AR, (.¢)-the function sending every element = of the domain D, to R(z)(z)

HERSELF (¢ (ct)) (et)

= ARE (et)- ('A:EE- R(.‘II) (:l‘)) ARe{et} L Am&-*R(:‘é) (‘I")




(.:- IERSELF (¢ (et))(et) _(pra-isee(&t} ))(tina,) > compositional analysis of structure (63)
- (.('mﬂfﬁﬂ Aze.R(z)(z))(praise)) (tiﬂﬂ)_ > definition (70) of HERSELF

= (Az..praise(z)(x))(tina) > applying HERSELF to the argument praise

= prajse(ti]aa)(tinﬂ) > applying (HERSELF(praise)) to the argu-
ment tina




What have we learnt here?

- A useful notation for functions

- A useful rule for simplifying notation under
function application



Exercise — Types for Conditionals

[If [you smile]] [you win]
you smile — of type t
you win — of type t

1. Write type equations.

2. What are the types of the following expressions?

If you smile — If
3. Find denotation of if that explains:

[[If [you smile]] [you win]] [and [you smile]]
=> You win



Exercise — Lambdas
describe Af.:.Au..f(john,) in words

describe Afceye.f(Aue.john,) in words
simplify (A fee. Axe.x = f(2))(Ate.john,)



Restricting
Denotations




NoT is the (¢t)(et) function sending every et function g to the ef function NoT(g) that satis-
fies for every entity x:

or(a)@) = ) 2}

NOT = Aget-)@e-”(g(m))

(IS( ey (at) (NDT( et)(et) (tall,;)))(tina,) compositional analysis of structure (37)
= ((Aget.g)(vor(tall)))(tina) definition of 1s as identity function

= (~vor(tall))(tina) applying identity function to nor(tall)
= ((Aget-Aze.~(g(2)))(tall))(tina) definition (55) of Not

= ((Az.~(tall(x))))(tina) applying definition of nor to tall

= ~(tall(tina)) application to tina




Expressing ANDs in lambda’s

[ Tina [is tall ]] [ and [ Tina [ is thin ]]]
For any two truth-values x and y: the truth-value 2 A y 1s o - y, the multiplication of 2 by y.

AND! = AT AU . YA T

Tina [ is [ tall [ and thin ]]]
For every two functions f4 and fp in [)., characterizing the subsets A and B of D.:
(anp( fa))( fe) is defined as the function f1~p, characterizing the intersection of A and B.

AND™ = Afir NGap- AEs0(2) A F(2)



Attributive adjectives (1) - Intersective

Tina 1s a tall woman; the fall engineer visited us; I met five fa/l astronomers.

Tina 1s a Chinese pianist < Tina 1s Chinese and Tina 1s a pianist.
My doctor has a white Volkswagen < My doctor’s Volkswagen is white.

Mary saw three carnivorous animals < Three animals that Mary saw are carnivorous.
Tina [ 1s [ a pianist |]

Alet)(et) = IS = —”\";'ct";"

(1s(a(pianist)))(tina)

= pianist(tina)



Attributive adjectives (2) - Intersective

Tina [ 1s [ a [ Chinese pianist ]]]

chines;e?f%(m = Afet-AZ..chinese(z) A f(x)

For any two truth-values o and y: the truth-value = A y 1s 2 - y, the multiplication of = by y.

(1s(a(chinese™(pianist))))(tina) > compositional analysis of (73)
= (chinese™ (pianist))(tina) > applying 1s and a (identity func-
tions)
= ((Afet-Axe.chinese(2) A f(2))(pianist))(tina) > definition (74) of chinese™™
= (Az..chinese(x) A pianist(x))(tina > applying modificational denota-
I PPLyIE

tion to pianist

= chinese(tina) A pianist(tina) > applying result to tina

Conclusion: with adjectives like Chinese the attributive (et)(et)
denotation can be systematically derived from the predicative et
denotation.

Note: this 1s not the case with all adjectives (ct. skillful).



Attributive adjectives (3) - Subsective

Jan is a Chinese surgeon & Jan is a violinist
=>» Jan is a Chinese violinist

Jan is a skillful surgeon & Jan is a violinist
=>» Jan is a skilltul violinist

Conclusion 1: skillful is not intersective.

However, skillful has a weaker property, which
we call restrictivity.

Jan is a skillful surgeon
=» Jan is a surgeon




Attributive adjectives (4) - Subsective

Formally: M is subsective (or “restrictive”) if for
every set of entities A, M(A) & A.

Conclusion 2: skillful is subsective.

In Lambdas:
skiIIfuI(et)(et) = AA Ay. (skiIIfuI1(et)(et) (A))(y)A A(y)



Summary - restrictions on denotations

Constant, Combinatorial:
IS, A, HERSELF

Constant, Logical:
ANDs, NOTs

Arbitrary:

tina, smile, praise, pianist, chinese (predicative use)

Logical operator on arbitrary:
chinese™°?, skillful™od (attributive use)

Further: bachelor = unmarried ...



More Exercises



Exercise — part 1

Split the words in each sentence into 2 sets:

(i) words whose denotations are arbitrary across
models;

(i) words whose denotations are constant across
models.

John is a man
Tina is a dancer and an artist
It is not the case that Trump respects Obama

Note: assume that it is not necessarily the case
that is a word = an atomic constituent.



Exercise — part 2

For each sentence:

- Give lambda terms for the words from set (i)

- Define a model in which the sentence denotes
1 and a model in which the sentence denotes
0. This requires: a definition of the domain of
entities, denotations of the words from set (i).

John is a man
Tina is a dancer and an artist
It is not the case that Obama respected Bush



Simple quantifiers



The problem

(i) Mary slept
slept(m)
m < sleep’

(i) Every girl slept
slept(?)
girl’ c sleep’



In order to describe the meaning of NPs with determiners (every, some, most
etc.), we should let such NPs denote sets of subsets of E — type (et)t.

The same type is needed for describing NP coordination in a general way.

Montague’s hypothesis about the matching between syntactic categories and
semantic types leads us to adopt a uniform type for all NPs.

Some hard syntactic questions can then be given interesting semantic an-
SWETS.




Keenan’s typology of determiners (1)

Lexical Dets
every. each. all, some, a. no, several, neither, most, the, both, this, my, these, John's,
ten. a few, a dozen, many, few
Cardinal Dets
exactly/approximately/more than/fewer than/at most/only ten, infinitely many, two dozen.
between five and ten. just finitely many. an even/odd number of, a large number of
Approximative Dets
approximately/about/nearly/around fifty, almost all/no, hardly any, practically no
Definite Dets
the. that. this. these, my, his. John's, the ten. these ten, John's ten
Exception Dets
all but ten, all but at most ten. every...but John. no...but Mary,
Bounding Dets
exactly ten, between five and ten, most but not all, exactly half the, (just) one...in ten, only SOME
(= some but not all: upper case = contrastive stress). just the LIBERAL.only JOHN's
Possessive Dets
my, John's, no student's, either John's or Mary's, neither John's nor Mary's
Value Judgment Dets
too many. a few too many. (not) enough. surprisingly few, ?many, ?few
Proportionality Dets
exactly half the/John's, two out of three, (not) one...in ten, less than half the/John's. a third of the/John's,



Partitive Dets
most/two/none/only some of the/John's, more of John's than of Mary's, not more than two of the ten

Negated Dets | _
not every, not all, not a (single), not more than ten, not more than half, not very many, not quite enough.
not over a hundred, not one of John's

Conjoined Dets

at least two but not more than ten, most but not all, either fewer than ten or else more
than a hundred, both John's and Mary's, at least a third and at most two thirds of the,
neither fewer than ten nor more than a hundred
Adjectively Restricted Dets
John's biggest. more male than female. most male and all female, the last...John visited, the first ...to set
foot on the Moon, the easiest...to clean. whatever...are in the cupboard




Function-argument flip-flop

Flip: NP:e+ VP:et =S:t
(subject as argument)

Flop: But can all those NPs denote entities?

NP:(ef)t + VP:et = S:t
(subject as function)

Flip: NP denotes (et)t function??? ©

Flop: yes! let's do some work on it! ©



Generalized quantifiers - example

(1) Every man ran.

Let every man denote a set of sets: the set of subsets of £ that include the set of
men:

(2) {B € F: man’ C B}

In type-theoretical terms: every man denotes an (et )t function.
Application of this function to the VP denotation:

(3) run’ € {B C F: man’ C B}
< man’ C run’
“every member of the set man’ is a member of the set run’”

For instance, if £ = {a,b,c.d}, man’ = {a,b} and run’ = {a.b,c},
then:

levery man| = {B C F : man’ C B}

={B C {a,b,¢,d} : {a,b} C B}

= {{a,b},{a.b,c}, {a,b,d},{a,b,c,d}},

and thus run’ = {a, b, ¢} € [every man].



Universal GQ with Lambda’s

set theory typed lambda’s

ACE=D, XA € D, 1s the char. func. of A
P characterizes P* C E =D, Pe D,

every man:

[ACE|MCA) AP, Voo xm(z) — P(x)

every man ran:
Re{ACFE|MCA} (AP.¢.Nxo.xp(x) = P(2))(XR)
& MCR & Vreexm(z) = xr(x)

or, equivalently:

run®* € {A C F | man* C A} (AP.;.Vz.,.man — P(z))(run)

< man* C run® & Vr..man(zr) — run(x)



(4) Some man ran.

(5) run’ € {BC F :man’' N B # 0}
< man’ Nrun’ # 0
“there is an entity that is a member of both man’ and run’”

(6) No man ran.

(7) run’ € {B C F :man’' N B = (}

& man’ Nrun’ =0

(8) exuctly five men: {B C E : |man’ N B| =5}

(9) most men: {B C E : |man’ N B| > |man’ \ B|}




GQ - definition
NP:(ef)t + VP:et =S:t
(et)t functions ~= sets of sets of entities

Terminology: Any set ) C ©(FE) (a set of subsets of £) is called a generalized
guantifier (GQ) over F.



set theory

typed lambda’s

every man:

[ACE|MC A

SOme rmanm.

{ACE|MnA#0p)}

no man.

{ACE|MnA=0}

exactly five men:

{ACE||MnA|=5)

AP.t NVz..man(z) — P(x)

AP.;.dz..man(z) A P(x)

AP.t.—3dz..man(z) A P(x)

AP ;. [mvan* NPT =5




