
 

 

Elements of Formal Semantics 
An Introduction to the Mathematical Theory of Meaning in Natural Language 

 

Yoad Winter 

 

Open Access Materials: Chapter 3 

 

 

 

 

 

 

 

 

 

 

 

 

�  Edinburgh University Press, 2016 

 

See webpage below for further materials and information: 

http://www.phil.uu.nl/~yoad/efs/main.html 
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CHAPTER 3

TYPES AND MEANING COMPOSITION

This chapter introduces some of the elementary mathematical
techniques in formal semantics. We systematize models by
organizing denotations in domains of different types. This general
type system allows models to describe sets, as well as relations and
other operators with multiple arguments. Denotations of complex
expressions are compositionally derived by a uniform semantic
operation of function application. The resulting semantic framework
is demonstrated by treating modified noun phrases (a tall man),
reflexive pronouns (herself) and coordinations between different
phrases. We avoid excess notation by defining denotations
set-theoretically and introducing lambda-style shorthand when
convenient.

This chapter systematically explains the way in which models allow
linguistic expressions to denote abstract objects. This will give us
a better insight into our theory of meaning and its relations with
syntactic forms. The first step is to describe how denotations are
organized in a model. Throughout Chapter 2, we used models freely to
describe different mathematical objects. For sentences we used truth-
values, for names like Tina we used entities, and for adjectives like
tall we used sets of entities. In addition we used the membership
operator for is, the intersection function for and, and the comple-
ment function for not. Using various mathematical objects in this
manner was useful for expository purposes. However, in general it
makes our compositionality principle hard to obtain. With each new
mathematical notion we introduce, we need to see how it composes
with other denotations. Toomuchmathematical freedom in the design
of the denotations makes it hard to describe how they operate in
different natural language expressions. Themodel structure that we in-
troduce in this chapter helps us to make semantic distinctions between
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language expressions within well-defined boundaries. In this way we
gain a better understanding of denotations in general, and see more
clearly how they interact with syntactic forms and with each other.
Some of the foundational themes in this chapter may seem intimi-

dating at first glance. However, none of them is especially hard. To help
you follow this chapter with ease, it is divided into four parts. Each of
these parts covers a general topic that leads naturally to the topic of the
next one. If you are a novice to the field, it is a good idea to solve the
exercises referred to at the end of each part before reading on.

• Part 1 (‘Types and domains’) classifies denotations in models into
different domains with different types. An important tool will be
functions that characterize sets.

• Part 2 (‘Denotations at work’) elaborates on the composition of de-
notations and on how typed denotations in a compositional setting
are translated to other set-theoretical concepts. An important tool
here is functions that operate on other functions.

• Part 3 (‘Using lambda notation’) introduces a short notation for
functions by using so-called ‘lambda-terms’. This helps us to define
and use denotations in our analyses.

• Part 4 (‘Restricting denotations’) is about denotations that are sys-
tematically restricted by our models.

The formal system that is developed throughout this chapter is founda-
tional to many works in formal semantics. For this reason, a technical
summary of this chapter is included as an appendix to this book
(page 239). This appendix gives readers a global overview of some of
the most basic technical assumptions in formal semantics.

PART 1: TYPES AND DOMAINS
One of the main goals of this book is to systematically describe
semantic distinctions between expressions as they are manifested in
entailments. In Chapter 2, the basic difference was between entity de-
notations of names and truth-value denotations of sentences. Further,
we used different functions as the denotations of the words is, and
and not. Now we would like to analyze denotations of many more
expressions. Therefore, it is high time to introduce some discipline into
our semantic framework. In order to deal with denotations in a more
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systematic way, we will formally specify the kind of mathematical ob-
jects that our models contain. In technical terms, such a specification
is referred to as a type system.

CHARACTERISTIC FUNCTIONS
Many of the denotations in formal semantics are functions of different
types. To illustrate a simple type of function in formal semantics, we
start with a maximally simple sentence:

(3.1) Tina smiled.

Intuitively, the intransitive verb smile should denote a set of entities,
just like the adjectives tall and thin in Chapter 2. We conceive of the
denotation of the word smiled in (3.1) as the set of entities that smiled
at a given moment in the past. For convenience, we often ignore the
tense in our discussion, and refer to the verb smiled in (3.1) as being
associated with “the set of smilers”. But now, how can sentence (3.1)
denote a truth-value? Unlike the sentence Tina is tall, sentence (3.1)
contains no word like is that may express the membership function.
Thus, the set for smiled and the entity for Tina do not immediately
give a truth-value in (3.1). To allow for their easy composition, we
should change perspectives slightly. We still use sets of entities for
describing denotations of intransitive verbs, but we do that indirectly
using functions. For example, suppose that we want to describe a
model with three entities: a, b and c. Suppose further that in the
situation that the model describes, entities a and c smiled and entity
b did not. In this case the set of smilers in the model, S , is the set {a, c}.
Instead of defining the denotation of the verb smile to be the set S itself,
we let it be a function that indirectly describes S . This function, which
we denote χS , is a function from entities to truth-values. For each of the
two elements in S , entities a and c, the function χS returns the truth-
value 1. For entity b, which is not in S , we let χS return 0. Thus, χS is
the following function:

(3.2) χS : a �→ 1 b �→ 0 c �→ 1

The functionχS is called the characteristic function of the set {a, c} over
the set of entities {a, b, c}. In general, we define characteristic functions
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as follows:

Let A be a subset of E . A function χA from E to the set {0, 1} is called
the characteristic function of A in E if it satisfies for every x ∈ E :

χA(x)=
{
1 if x ∈ A
0 if x �∈ A

For every element x of E , the truth-value χA(x) indicates whether x is
in A or not. Thus, χA uniquely describes a subset of E . The converse
is also true: for every subset of E there is a unique characteristic
function. This means that sets of entities and their characteristic
functions encode precisely the same information. For this reason we
often interchangeably talk about subsets of E or the functions that
characterize them. Specifically, in Chapter 4, we will refer by ‘ f ∗’
to the set characterized by a function f . Further, we will see that
functions can also be used for characterizing subsets of other domains
besides E .
For the time being, for the sake of brevity, we use the general term

‘characteristic functions’ when referring exclusively to functions that
characterize sets of entities in E . With this notion of characteristic
functions, we can easily describe how the composition process in
sentence (3.1) works. We assume that the denotation of the verb
smile is an arbitrary characteristic function. This corresponds to our
assumption that the verb smile can be associated with any set of
entities. Suppose that the denotation of smile is the function smile.
In our analysis of sentence (3.1), this function applies to the entity
denotation tina. In a formula, sentence (3.1) is analyzed as follows:

(3.3) smile(tina)

The expression in (3.3) describes the truth-value that the function
smile assigns to the entity tina. For example, in themodel we described
above, the denotation smile is the function χ S in (3.2). Suppose that
in the same model, the denotation tina is the entity a. As a result, the
denotation (3.3) of sentence (3.1) is χ S(a), which equals 1. If tina is
the entity b, the denotation (3.3) equals 0. This way, by letting the
denotation of the verb smile characterize a set, we directly obtain a
truth-value denotation for the sentence Tina smiled.
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In our analysis of sentence (3.1), we have been using three deno-
tations: an entity, a characteristic function and a truth-value. Each
of these denotations has a different ‘nature’, which we distinguish by
letting each of them come from a different domain. In Chapter 2, we
already let every model M contain a domain of entities EM and a
domain of truth-values {0, 1}. Now it is time to also introduce domains
for characteristic functions and other denotations. Each domain we
introduce comes with a label that we call a type. We use the letter e as
the type for the domain EM in a givenmodelM. Since we want tomake
an explicit connection between types and their respective domains, we
also use the notation ‘DM

e ’ (the e Domain in M) as an alternative name
for EM . As usual, when themodel M is clear from the context, we write
‘De ’ rather than ‘DM

e ’. The letter t is used as the type for the domain
of truth-values. Accordingly, this domain is denoted ‘Dt ’. Since we fix
Dt as the set {0, 1} in all models, we do not mention the model when
referring to this domain. In our example above, the name Tina takes its
denotation from De , and the sentence Tina smiled takes its denotation
from Dt . In short, we say that proper names are of type e and sentences
are of type t. We refer to the types e and t as the basic types of our type
system. The domains for these types, De and Dt , have been specified
with no relation to other domains. For this reason, we refer to them as
the basic domains in every model.
Now, we also want to define a type and a domain for characteristic

functions like the denotation of smile. These are defined on the basis
of the types e and t, and the domains De and Dt . Specifically, a
characteristic function in a model M is a function from the entities in
M to truth-values. Accordingly, we define the domain of characteristic
functions as follows:

(3.4) The domain of characteristic functions in a model M is the set
of all the functions from DM

e to Dt .

This domain is assigned the type ‘(et)’. We often omit outermost
parentheses, and refer to the same type as ‘et’. The corresponding
domain is accordingly referred to as ‘DM

et ’, or simply ‘Det ’.
In set theory, there is a common way to refer to the set of all

functions from a set A to a set B . Formally, we use ‘B A’ when referring
to this set of functions. Thus, the definition of the domain Det in (3.4)
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Table 3.1: Subsets of De and their characteristic functions in Det .

Subset of De Characteristic function in Det

∅ f1 : a �→ 0 b �→ 0 c �→ 0
{a} f2 : a �→ 1 b �→ 0 c �→ 0
{b} f3 : a �→ 0 b �→ 1 c �→ 0
{c} f4 : a �→ 0 b �→ 0 c �→ 1
{a, b} f5 : a �→ 1 b �→ 1 c �→ 0
{a, c} f6 : a �→ 1 b �→ 0 c �→ 1
{b, c} f7 : a �→ 0 b �→ 1 c �→ 1
{a, b, c} f8 : a �→ 1 b �→ 1 c �→ 1

can be formally written as follows:

Det = DDe
t

Functions in the Det domain, as well as expressions of type et, are often
referred to as one-place predicates over entities. Common alternative
notations for the type of one-place predicates are 〈e, t〉 and e→ t. In
this book we will stick to the shorter notation et.
All intransitive verbs like smile, dance, run etc. are assigned the

type et. In a given model, each of these verbs may have a different
denotation. For example, in the model we described above, the verb
smile denotes the function χ S , which characterizes the set S = {a, c}.
Other verbs like dance and runmay be associated with different sets in
the same model, and hence denote different characteristic functions.
For this reason, the domain DM

et in a given model M includes all the
functions from DM

e to Dt . To see which functions these are in our
example model, we first note that the domain De has eight subsets in
that model. These are: the empty set ∅; the singleton sets {a}, {b} and
{c}; the doubletons {a, b}, {a, c} and {b, c}; and the whole set De , i.e.
{a, b, c}. The domain Det includes the eight functions that characterize
these sets, as shown in Table 3.1. In such models, where the entities are
a, b and c, intransitive verbs like smile and runmust denote one of the
eight functions in Det . Specifically, the function f6 in Table 3.1 is the
same function χ S that we assumed as the denotation of the verb smile
in our example.
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MANY TYPES, MANY DOMAINS
We have seen how to define the domain Det on the basis of De and
Dt . As we consider more expressions besides intransitive verbs, we
will need more types and domains. The methods for defining them
are similar to the definition of Det . The construction of the type
et and the domain Det illustrates the general principle that we use
for defining new types and domains. We have defined the type (et)
as the parenthesized concatenation of the basic types e and t. The
corresponding domain Det was defined as the set of functions from
the domain De to the domain Dt . We employ the same method for
defining more new types and domains. Once two types τ and σ and
domains Dτ and Dσ are defined, they are used for defining another
type (τσ ) and a domain Dτσ , which consists of all the functions from
Dτ to Dσ . More types and domains are defined in a similar way, with
no upper limit on their complexity. Since the same method works
for defining all types and domains from the basic ones, we refer to
it as an inductive procedure. Specifically, types e, t and et, and their
respective domains, are used inductively for defining new types and
domains. For instance, when using type e twice, we get the type ee.
The respective domain, Dee , contains all the functions from De to
De . Further, combining the types e and et, we get the type e(et). The
corresponding domain De(et) is the set of functions from De to Det .
As we will see below, this e(et) domain is useful for denotations of
transitive verbs, i.e. verbs that have both a subject and a direct object.
Definition 1 below formally summarizes our inductive method for

specifying types:

Definition 1. The set of types over the basic types e and t is the
smallest set T that satisfies:
(i) {e, t} ⊆ T
(ii) If τ and σ are types in T then (τσ ) is also a type in T .

This inductive definition specifies the set of types as an infinite set T ,
including, among others, the types given in Figure 3.1.
For every model M, we specify a domain for each of the types in

the set T . Let us summarize how this is done. The domain DM
e is

directly specified by the model. The domain Dt is fixed as {0, 1} for



March 8, 2016 Time: 04:03pm chapter3.tex

TYPES AND MEANING COMPOSITION 51

e, t,
ee, tt, et, te,

e(ee), e(tt), e(et), e(te), t(ee), t(tt), t(et), t(te),
(ee)e, (tt)e, (et)e, (te)e, (ee)t, (tt)t, (et)t, (te)t,

(ee)(ee), (ee)(tt), (ee)(et), (ee)(te), (tt)(ee), (tt)(tt), (tt)(et), (tt)(te)

Figure 3.1 Examples for types.

all models. Domains for other types are inductively defined, as for-
mally summarized in Definition 2 below:

Definition 2. For all types τ and σ in T , the domain Dτσ of the type
(τσ ) is the set DDτ

σ – the set of functions from Dτ to Dσ .

The induction in Definition 2, together with our stipulated basic
domains De and Dt , specify the domains for all the types derived from
Definition 1. We have already discussed the domain Det of character-
istic functions. Let us now consider in more detail the definition of the
domain De(et). When unfolding Definition 2, we see that it derives the
following definition:

(3.5) De(et) is the set of functions from De to Det
= the functions from entities to Det
= the functions from entities to the functions from De to Dt
= the functions from entities to the functions from entities
to truth-values.

Thus, functions of type e(et) return functions (of type et) as their re-
sult. This is a result of our inductive definitions. Our definitions above
also make another situation possible: functions that take functions as
their arguments. For instance, the type (et)e describes functions that
map et functions to entities. Further, Definitions 1 and 2 also allow
functions that take function arguments and map them to function
results. Consider for instance the type (et)(et). The corresponding
domain, D(et)(et), contains the functions that map characteristic func-
tions to characteristic functions. For instance, suppose that F is a
function in D(et)(et). This means that F can receive any characteristic
function g in Det and return a characteristic function h in Det , possibly
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different from g . We describe this situation by writing F (g )= h. The
functions g and h characterize sets of entities. Thus, we can view
functions like F , of type (et)(et), as mapping sets of entities to sets
of entities. We already used one such function in Chapter 2, when
we let the denotation of the word not map sets of entities to their
complement. Functions from sets of entities to sets of entities, in their
new guise as (et)(et) functions, will often reappear in the rest of this
book.

You are now advised to solve Exercises 1, 2 and 3 at the end of this
chapter.

PART 2: DENOTATIONS AT WORK
Semantic types and their corresponding domains give us a powerful
tool for analyzing natural language meanings: one that is empirically
rich, and yet systematically constrained. Equipped with our expressive
tool for describing denotations, it is high time to start using it for
analyzing linguistic examples. In order to do that, we have to explain
what principles allow denotations to combine with each other com-
positionally. One elementary principle lets functions apply to their
arguments. As we will see, functions, and the rule of function applica-
tion, allow us to encode many useful intuitions about meanings, using
the technique known as currying. After introducing this technique of
using functions, we will see how to develop systematic analyses by
solving type equations. This will allow us to look back at what we
did in Chapter 2, and systematically treat the copula be and predicate
negation as part of our uniform type system.

FUNCTION APPLICATION
Types provide us with a record of the way denotations combine with
each other. In our analysis of the simple example Tina smiled we saw
how an et function combines with an entity (type e) to derive a truth-
value (type t). We write it as follows:

(et)+ e = t.
The rule we used for combining denotations in the sentence Tina
smiled is function application : we applied a function smile from
entities to truth-values to an entity tina, and got a truth-value
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smile(tina). In terms of denotations, we write it as follows:

smileet + tinae = smile(tina) : t

By the notation ‘smileet ’ we refer to the denotation of the verb smile,
and state that it is of type et. Similarly for ‘tinat ’. An alternative
notation is ‘smile : et’ and ‘tina : e’. This colon becomes more conve-
nient when we wish to state the type t of the result smile(tina), and
write ‘smile(tina) : t’. Following standard mathematical practice, we
let the function smile appear to the left of its argument tina. However,
English verbs like smile normally follow the subject, as is the case in
the sentence Tina smiled. The workings of function application are not
affected by this. So we also assume:

e+ (et)= t.

Thus, when wishing to highlight the syntactic ordering, we also de-
scribe the composition of denotations in the sentence Tina smiled as
follows:

tinae + smileet = smile(tina) : t.

In more general terms, our type-based rule of function application is
given below:

Function application with typed denotations: Applying a function
f of type τσ to an object x of type τ gives an object f (x) of type σ .
In short:
Types: (τσ )+ τ = τ + (τσ ) = σ
Denotations: fτσ + xτ = xτ + fτσ = f (x) : σ

The equations that we gave above describe how types are combined
with each other. For each type combination, there is a corresponding
operation between denotations in the corresponding domains: func-
tion application. Such a system, which combines types and denota-
tions, is called a type calculus. The type calculus above, which deals
with function application, is known as the Ajdukiewicz Calculus (after
K. Ajdukiewicz). In Chapter 5 we will return to type calculi, and
extend their usages for other operations besides function application.
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For now, let us see some more examples of the way we use
Ajdukiewicz’s calculus:

e+ ee = e applying a function gee to an entity xe gives an
entity g (x)

e(et)+ e = et applying a function he(et) to an entity xe gives an
et function h(x)

et+ (et)(et) = et applying a function F(et)(et) to a function ket
gives an et function F (k)

These equations each contain two types and their combination
using function application. However, for many pairs of types, function
application cannot work. For instance, function application cannot
combine a function f of type t(et) with a function g of type et. The
reason is twofold. First, the function f cannot apply to g , since f takes
truth-values as its argument, and g is not a truth-value. Second, the
function g cannot apply to f , since g takes entities as its argument,
and f is not an entity. Such situations, where the type calculus does
not produce any result, are referred to as a type mismatch.

TRANSITIVE VERBS
Now that we have seen how typed denotations are systematically
combined with each other, let us consider the following sentence:

(3.6) Tina [praised Mary]

Sentences like (3.6), which contain both a subject and a direct object,
are referred to as transitive sentences. In (3.6) we standardly assume
that a transitive verb (praise) forms a constituent with the object noun
phrase (Mary). This means that, in order to compositionally derive
a truth-value for sentence (3.6), we first need to derive a denotation
for the verb phrase praised Mary. To do that, we follow our treatment
of intransitive verbs. In the same way that the denotation of the verb
smiled characterizes the set of entities that smiled, we now want the
denotation of the verb phrase praised Mary to characterize the set
of entities that praised Mary. This is the function that sends every
entity that praised Mary to 1, and any other entity to 0. How do we
derive such an et function from the denotations of the words praised
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A. B.

Tina
praised Mary

praise(mary)(tina) : t

tina : e praise(mary) : et

praise : e(et) mary : e

Figure 3.2 Syntactic structure and semantic interpretation for Tina
praised Mary.

andMary? The key to doing so is to assume that the verb praise denotes
a function of type e(et). As we have seen in (3.5) above, functions of
type e(et) map entities to et functions. Thus, we let the verb praise
denote an e(et) function praise. Applying this function to the entity
mary, we get a denotation of type et for the verb phrase praised Mary.
This is formally written as follows:

(3.7) praisee(et)+marye = praise(mary) : et

Further, in the compositional analysis of the whole sentence (3.6),
the et function in (3.7) applies to the entity tina. What we get is the
following truth-value:

(3.8) praise(mary)+ tinae = (praise(mary))(tina) : t

In words: when the et function praise(mary) applies to the entity tina,
the result is a truth-value. This truth-value is the denotation that our
model assigns to the sentence (3.6). To increase readability, we often
omit obvious types and parentheses, and write this truth-value as:

(3.9) praise(mary)(tina)

To summarize the compositional process in our analysis of sentence
(3.6), we repeat it in Figure 3.2 using tree notation.
Figure 3.2A is the tree notation of the structure we assumed in (3.6).

Figure 3.2B is the same tree, but the nodes are now decorated with their
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types and their denotations. We refer to tree diagrams like Figure 3.2B
as semantically interpreted structures . In this interpreted structure, the
nodes for the words Tina, praised and Mary are decorated by their
lexical types and denotations. In addition, we have two nodes for the
constituents assumed in the binary structure: the verb phrase praised
Mary and the whole sentence. These nodes are decorated by their
types and denotations, which are compositionally derived by function
application.
Any e(et) function can combine with two entities, one entity at a

time, returning a truth-value. Having seen how e(et) functions allow
us to derive truth-values for transitive sentences like (3.6), we may still
feel that functions that return functions as their result are excessively
intricate when analyzing such simple sentences. Fortunately, there is
an equivalent way of looking at e(et) denotations of transitive verbs,
which better reflects their intuitive simplicity. Intuitively, denotations
of verbs like praised can be viewed as two-place relations between
entities, aka binary relations. Such relations are sets of pairs of entities.
In our example, we may view the denotation of the verb praised as
the set of pairs of entities 〈x, y〉 that satisfy the condition x praised
y. For instance, suppose that in our model, the entities t, j and m are
the denotations of the respective names Tina, John and Mary. When
the domain De is {t, j,m}, we may describe who praised who by the
following binary relationU :

(3.10) U = {〈t,m〉, 〈m, t〉, 〈m, j〉, 〈m,m〉}

The relation U is useful for describing a situation with three people,
where Tina only praised Mary, John praised no one, and Mary praised
everybody, including herself. In this way, the relation U provides full
answers to the following questions:

(3.11) a. Who praised Tina? Answer: only Mary.
b. Who praised John? Answer: only Mary.
c. Who praised Mary? Answer: only Tina and Mary herself.

Conversely: anybody who gives the same answers as in (3.11) will have
implicitly described the binary relation U .
Now we can get back to e(et) functions, and observe that they give

us the same information as binary relations like U . In particular, the
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e(et) denotation of praise also tells us, for each entity, which entities
praised that entity. Thus, when our domain of entities De is the set
{t, j,m}, any e(et) function over this domain answers precisely the
same questions as in (3.11). In particular, the same situation that the
binary relation U encodes is also described by the following e(et)
function in our model, which we call χU :

(3.12) χU : t �→ [t �→ 0 j �→ 0 m �→ 1]
j �→ [t �→ 0 j �→ 0 m �→ 1]
m �→ [t �→ 1 j �→ 0 m �→ 1]

The function χU maps each of the three entities in De to an et function.
More specifically:

• χU maps the entity t to the function characterizing the set {m}.
• χU maps the entity j to the function characterizing the same set, {m}.
• χU maps the entity m to the function characterizing the set {t,m}.

Note the parallelism between this specification of χU and the
question–answer pairs in (3.11). When the denotation praise is χU ,
our model describes the same situation that (3.11) describes in words,
which is the same information described by the binary relation U .
More generally, we conclude that e(et) functions encode the same
information as binary relations over entities. This is similar to how
characteristic functions of type et encode the same information as sets
of entities. In mathematical terms, we say that the domain of e(et)
functions is isomorphic to the set of binary relations over De . Because
e(et) functions take two entities before returning a truth-value, we
sometimes also refer to them as two-place predicates .

CURRYING
There is a general lesson to be learned from our treatment of transitive
sentences and e(et) predicates. We have seen how a situation that
is naturally described by a binary relation can equally be described
by a function that returns functions. The general idea is useful in
many other circumstances in formal semantics (as well as in computer
science). A binary relation between entities is a set containing pairs of
entities. We can characterize such a set by a function that takes pairs of
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entities and returns “true” or “false”. Such two-place functions occur
very often in mathematics. As another example, let us consider one of
the most familiar two-place functions: number addition. This function
takes two numbers, x and y, and returns their sum, which we normally
denote ‘x+ y’. To highlight the fact that number addition is a two-
place function, let us denote it using the function symbol sum . Thus,
we use the following notation:

sum(x, y) = x+ y

Now, let us use the letter ‘n’ as the type for natural numbers. Using this
type, we will now see how we can also encode addition as a function
of type n(nn): a function from numbers to functions from numbers to
numbers. Let us refer to this function as ADD. To define ADD, we need
to define the result that it assigns to any given number. This result is
an nn function: a function from numbers to numbers. Therefore, to
define ADD we will now specify the nn function that ADD assigns to any
number. For every number y, we define:

(3.13) The nn function ADD(y) sends every number x to the number
sum(x, y).

As we expect from number addition, the function ADD takes two
numbers and returns their sum. But it does it step by step: it first takes
one number, y, it returns a function ADD(y), and this function applies
to another number x and returns the sum sum(x, y), or more simply:
x+ y. As a result, for every two numbers x and y, we get:

ADD(y)(x) = sum(x, y) = x+ y

For example, let us consider how we calculate the sum of 1 and
5 using the function ADD. We first give ADD the number 1 as an
argument, and get the function ADD(1) as the result. This resulting
function can take any number and return its sum with 1. Now, we
choose to give the function ADD(1) the argument 5. Unsurprisingly,
the result of calculating (ADD(1))(5) is 5+ 1, or 6. Have we gained
anything from reaching this obvious result in such a roundabout way?
As strange as it may sound, we have! While calculating the sum of 5
and 1, we generated the function ADD(1). This is the successor function:
the function that sends every natural number to the number that
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follows it. This function is of course useful for other purposes besides
applying it to the number 5.
These different ways of looking at number addition are quite similar

to what we saw in our syntactic-semantic analysis of sentence (3.6). In
that analysis, we equivalently encoded situations either using binary
relations like U or using e(et) functions. Because we adopt the latter
method, we got an intermediate result by applying the e(et) denotation
of the verb praise to the entity denotation of the object Mary. This
is the et denotation of the verb phrase praised Mary. Having such a
denotation for the verb phrase is compositionally useful. As we will
see later in this chapter, it gives us a natural treatment of conjunctive
sentences like Tina smiled and praised Mary, where the verb phrase
praised Mary does not combine directly with the subject Tina.
The kind of maneuver we saw above will also be useful for treating

many other phenomena besides transitive sentences. In its full gener-
ality, the idea is known as Currying (after H. Curry) or, less commonly,
as Schönfinkelization (after M. Schönfinkel). In technical slang we
often say that a one-place function like ADD is a Curried version of the
two-place addition operator sum . Conversely, we say that the addition
function sum is an unCurried (or ‘deCurried’) version of ADD. For
more on Currying, see the suggested further reading at the end of this
chapter.

SOLVING TYPE EQUATIONS
Using Currying, we now present a revised treatment of the copular
sentences with adjectives from Chapter 2. Reconsider the following
sentence:

(3.14) Tina [ is tall ]

In Chapter 2 we analyzed the verb is in (3.14) as the membership
function. This two-place function sends pairs, of entities and sets
of entities, to truth-values. However, now we no longer have two-
place functions and sets of entities in our models: we have replaced
them by Curried functions and characteristic functions, respectively.
Therefore, we need to revise our analysis of (3.14) along these lines.
First, as for intransitive verbs, we let adjectives characterize sets of
entities. Thus, in our analysis of sentence (3.14) we assume that
the adjective tall denotes an et function. In many other languages
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besides English, this allows us to treat sentences of the form Tina tall.
However, English requires the copula be to appear in such sentences.
How should we now analyze the semantic role of the English copula?
Let us first consider its type. Compositional interpretation of the
structure in (3.14) means that the denotation of the constituent is
tall has to be determined before we determine the denotation of the
sentence. To be able to combine with the denotation of the subject
Tina, the constituent is tall has to denote a function that applies to the
entity tina and derives a truth-value. Therefore, the expression is tall
should have the same type et as the adjective tall. We conclude that the
denotation of is has to be a function of type (et)(et): a function from
et functions to et functions. When such an (et)(et) denotation for the
word is applies to an et function like tall, it gives a function of the same
type, et, which we will use as the denotation for the constituent is tall.
What we have done above is a kind of puzzle solving. We assumed

solutions to some parts of the puzzle: the types of the words Tina
and tall, and the type t of the whole sentence. Using the sentence’s
structure, we found a suitable type for the word is that allows function
application to compositionally derive for the sentence a t-type deno-
tation. The puzzle can be summarized as follows, with X and Y as the
unknown types:

(3.15) [ Tinae [ isY tallet ]X ]t

In our solution, we found that X = et and Y = (et)(et). The solution
process itself is described in Figure 3.3. This figure contains two
type equations. One equation is:

Eq. 1: e+ X = t
In words: which type(s) X combines with type e and
derives type t?

By solving this equation, we see that the type for the constituent is tall
must be et. This leads us to another equation in the compositional
analysis of the sentence, which helps us to see how we can derive the
type et for this constituent:

Eq. 2: Y + et = et
In words: which type(s) Y combines with type et and
derives type et?
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Figure 3.3 Solving type equations for the sentence Tina is tall.

Solving this equation as well, we see that the type for the copula ismust
be (et)(et).

BACK TO COPULAS AND PREDICATE NEGATION
Now, after determining the type of the copula is, we want its denota-
tion to preserve the welcome results of our analysis in Chapter 2. To
do that, we let the constituent is tall denote the same et function as the
adjective tall. This is because, intuitively, we still want the sentence
Tina is tall to be interpreted as a membership assertion, claiming
that the entity tina is in the set that the function tallet characterizes.
Thus, we assume that the word is denotes the identity function for
et functions: the function of type (et)(et) that maps any et function
to itself. Formally, we define the denotation IS for the word is as the
following (et)(et) function:

(3.16) IS is the function sending every function g of type et to g itself.
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A. B.

Tina is tall
(IS(tall))(tina) : t

tina : e IS(tall) : et

IS : (et)(et) tall : et

Figure 3.4 Syntactic structure and semantic interpretation for Tina
is tall.

Our compositional, type-theoretical analysis is summarized in
Figure 3.4.
Because the denotation of the copula is is now defined as the identity

function, the truth-value that we get for sentence (3.14) can now be
analyzed as follows in (3.17):

(3.17) a. IS(tall) = tall (by definition of IS in (3.16))
b. (IS(tall))(tina) = tall(tina) (due to the equality in (3.17a))

Due to this simple derivation, the truth-value that we derive in (3.17b)
for sentence (3.14) is 1 if and only if the entity tina is in the set
characterized by the function tall.
Functions of type (et)(et) are also useful for adjusting our account

of predicate negation from Chapter 2. Let us reconsider, for example,
the following negative sentence:

(3.18) Tina [ is [ not tall ]]

In Chapter 2 we let the negation word not denote the complement
function, which sends every set of entities to its complement set. With
our characteristic functions substituting sets, we now treat the word
not as an (et)(et) function, of the same type as the copula is. Our
definition of the denotation NOT in (3.19) below respects the status of
the word not in (3.18) as a predicate negator:
(3.19) NOT is the (et)(et) function sending every et function g to

the et function NOT(g ) that satisfies the following, for every
entity x (see next page):
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(NOT(g ))(x)=
{
1 if g (x)= 0
0 if g (x)= 1

In words: we define the function NOT, which takes a function g of type
et and returns a function NOT(g ) of the same type, separating into the
following two cases:

• for any entity x such that g (x) is 0, we define (NOT(g ))(x) to be 1;
• for any entity x such that g (x) is 1, we define (NOT(g ))(x) to be 0.

In this way, the function NOT(g ) reverses the value that g assigns to
any entity. Because of that, NOT(g ) is the et function characterizing
the complement set of the set characterized by g . Thus, by applying the
function NOT to an et denotation tall, we achieve the same analysis
that we got in Chapter 2 by complementing the set characterized by
tall. More formally, we analyze the structure (3.18) as denoting the
following truth-value:

(3.20) (IS(et)(et)(NOT(et)(et)(tallet)))(tinae)

Because the function IS is the identity function, the truth-value in
(3.20) is the same as:

(NOT(et)(et)(tallet))(tinae)

By definition of the function NOT, this truth-value is 1 if and only if
the entity tina is in the complement of the set characterized by the et
function tall. Thus, the structure (3.18) is analyzed on a par with our
analysis of the sentence in Chapter 2.

Let us now take stock of what we have done in Part 2. In this part
we have aimed to maintain the informal analyses of Chapter 2 within
a more structured type system. This system was fully defined by the
two simple Definitions 1 and 2 in Part 1. As we have seen, these two
definitions are highly expressive: they allowed models to mimic sets by
using characteristic functions, andmimic two-place functions by using
one-place Curried functions. Despite this expressiveness, so far we
have done little to extend the empirical coverage of Chapter 2 besides
adding a treatment of transitive verbs. However, by employing types
as part of our theory we now have a rather powerful system that elu-
cidates our notions of denotations and compositionality. This unified
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framework will be employed throughout this book for dealing with
new phenomena while relying on the same foundational principles.

You are now advised to solve Exercises 4, 5, 6 and 7 at the end of this
chapter.

PART 3: USING LAMBDA NOTATION
Having functions of different types in our semantic framework gives
us an extremely powerful tool. In order to use this tool efficiently, it
is convenient to have a standard notation for the functions we use,
and the way they apply to their arguments. In this part we study the
common notation of lambda terms, and see how it is used within our
semantic system.

DEFINING FUNCTIONS USING LAMBDA TERMS
Below we restate definition (3.16) of the denotation for the copula is:

(3.21) the function sending every function g of type et to g itself.

We may feel that (3.21) is an unnecessarily long and cumbersome
way of defining the identity function. Indeed, in formal semantics we
often use a more convenient notation, by employing lambda terms, or
‘λ-terms’. Let us illustrate it by rewriting definition (3.21) in our new
notation:

• Instead of writing “the function sending every function g of type
et,” we write “λget”.

• Instead of “to g itself”, we write “.g”.

After rewriting (3.21) in this way, we get the following formula:

(3.22) λget .g

Since (3.22) is nothing but an alternative way of defining the function
in (3.21), it gives us exactly the same information about it:

(i) The letter ‘λ’ tells us that it is a function.
(ii) The dot separates the specification of the function’s argument and

the definition of the function’s result. Before the dot, writing ‘get ’
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introduces ‘g ’ as an ad hoc name for the argument of the function.
The type et in the subscript of g tells us that this argument can be
any object in the domain Det .

(iii) The re-occurrence of ‘g ’ after the dot tells us that the function we
define in (3.22) simply returns the value of its argument.

From (ii) and (iii) we immediately conclude that the function λget .g
in (3.22) returns an object in the domain Det . Hence this function
is of type (et)(et), as we wanted. Now, with our λ-term conventions,
we are fully justified in saving space and writing our definition of the
denotation for the copula is concisely, as in (3.23) below:

(3.23) IS= λget .g
It is important to note that the letter ‘g ’ has no special significance
in definition (3.23). If we prefer, we may define the function IS
equivalently, as λhet .h: “the function sending every function h of type
et to h itself”. This would not change anything about our definition
of the identity function, since it would still do the same thing: return
the et function that it got as argument. When defining a function, it
hardly matters if we decide to call the argument ‘g ’, ‘h’, ‘x’, ‘y’ or any
other name. Any name will do, as long as we use it consistently within
the function definition.
With our new lambda notation, we adopt the following convention

for writing function definitions:

Lambda notation: When writing “λxτ .ϕ”, where τ is a type, we
mean:
“the function sending every element x of the domain Dτ to ϕ”.

The expression ϕ within the lambda term λxτ .ϕ specifies the object
that we want the function to return. In our definition of the identity
function in (3.23), the expression ϕ was simply the argument g itself.
However, in general, any mathematical expression ϕ that describes
an object in one of our domains would be appropriate in such a λ-
term. The type of the object that ϕ describes is the type of the value
returned by the function. In (3.23), the type of the value g returned by
the function is et, and hence the function is of type (et)(et). Similarly,
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we have:
λxe .x the ee function sending every entity x to x itself
λ fet .tinae the (et)e function sending every et function f

to the entity tina
λhet .h(tinae) the (et)t function sending every et function h

to the truth-value h(tina) that h assigns to the
entity tina

More generally, when ϕ describes an object of type σ , the whole λ-term
λxτ .ϕ describes a function of type τσ : from objects in Dτ to objects
in Dσ .

FUNCTION APPLICATION WITH LAMBDA TERMS
Now we can see how λ-terms are used in the semantic analysis. Based
on definition (3.23), we can rewrite the equation IS(tallet)= tall in
(3.17a) as follows:

(3.24) a. IS(tallet)
b. = (λget .g )(tall)
c. = tall

The move from (3.24a) to (3.24b) is according to the definition of
the function IS. The move from (3.24b) to (3.24c) involves applying
a function to its argument. As a result, we replace the abstract descrip-
tion in (3.24b) “what the identity function returns when it gets the
argument tall” by writing more simply and concretely “tall”. Function
application with λ-terms always involves this sort of concretization.
Suppose that we have a function f described by the instruction:

“for every x of type τ do such and such to x and return the
result”.

Suppose further that we apply f to an argument a of the right type.
What we get as the value f (a) is whatever “doing such and such” does
to a.
In our lambda notation, the expression ϕ in a λ-term λx.ϕ describes

what the function does with its argument. Within the identity function
λget .g in (3.24), the expression ϕ is the argument g itself. However,
ϕ may encode a more complex operation on the function argument.
For instance, let us again consider operations on numbers. Consider a
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function DOUBLER that maps any number to its multiplication by 2:

DOUBLER is the function from numbers to numbers sending
every number x to 2 · x.

In lambda format, this definition is written as follows, where n is again
the type of numbers:

(3.25) DOUBLERnn = λxn.2 · x

Having a name like DOUBLER for this function is convenient when we
commonly want to double numbers. However, when using λ-terms
we can also avoid giving this function a name, and apply the term
that corresponds to the function definition directly to the function’s
argument, as we did in (3.24b) above. Suppose that we apply the
function DOUBLER to the number 17. We get the following term:

(3.26) (λxn.2 · x)(17)

This corresponds to the following verbal description:
“the result of applying the function sending every number x to 2 · x, to
the number 17”.
Of course, the result is the value of the arithmetic expression 2 · 17. We
get this expression by substituting ‘17’ for ‘x’ in the result definition
2 · x, as it is defined in the λ-term λxn.2 · x. In sum, we get:

(3.27) (λxn.2 · x)(17) = 2 · 17

In general, we describe this kind of simplification as follows:

Function application with lambda terms: The result (λxτ .ϕ)(aτ )
of applying a function described by a lambda term λxτ .ϕ to an
argument aτ is equal to the value of the expression ϕ, with all
occurrences of x replaced by a.

Consider how this convention works in (3.27). The expression ‘ϕ’
within the lambda term λxn.2 · x is the expression 2 · x. The argument
‘a’ is the number 17. Substituting 17 for x in 2 · x, we get the result
2 · 17. Something similar happens when we use a λ-term for defining
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the function ADD that we introduced in (3.13):

ADD = λyn.λxn.y+ x

As in (3.13), this λ-term defines the function ADD by specifying that it
sends every number y to the function λxn.y+ x: the function sending
every number x to y+ x. When describing the result of applying the
function ADD to the values 1 and 5, we get the following simplifications:

(3.28) ((λyn.λxn.y+ x)(1))(5) = (λxn.1+ x)(5) = 1+ 5

The simplification in (3.28) involves two steps. First, when the function
ADD takes the argument 1, this value is substituted for ‘y’. The result
is the function λxn.1+ x. This function applies to 5. When 5 is
substituted for ‘x’, we get the result 1+ 5.
In (3.24), (3.27) and (3.28) above we use λ-terms for function

application. In all of these cases, when a function λx.ϕ applies to
an argument a, the result (λx.ϕ)(a) was displayed in a simplified
notation, by substituting a for x’s occurrences in ϕ. This substitution
technique is based on common mathematical intuitions about the
workings of functions. However, as usual, we should be careful when
formalizing intuitions. There are some cases where naively using
substitution as described above fails to derive the correct results.When
using λ-terms for actual calculations, we need a more general rule for
simplifying λ-terms under function application. This rule is known as
beta-reduction, and it constitutes part of the rule system for computing
λ-term equivalences, known as the lambda calculus. For our purposes
in this book we will not need the full lambda calculus. Rather, the
informal notational conventions above for writing and simplifying
λ-terms will be sufficient. The reader is assured that none of our
examples involve the formal complications that motivated the more
intricate rule of beta-reduction in the lambda calculus. For more on
this point, see the further reading at the end of this chapter.

REFLEXIVE PRONOUNS
In order to get a better feel for the value of lambda notation, let
us now see how it works in a more complicated example: the case
of reflexive pronouns like herself or himself. Consider the following
sentence:
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(3.29) Tina [praised herself]

Intuitively, this sentence should be treated as having the following
truth-value:

(3.30) praisee(et)(tina)(tina)

In words, (3.30) is the truth-value that results from applying the
denotation of praise twice to the entity denotation of Tina. What
denotation of the pronoun herself can guarantee that this truth-value
is derived for sentence (3.29)? One obvious way to derive (3.30) from
(3.29) is to let the pronoun herself denote the entity tina. This would
be a correct treatment of sentence (3.29), but it definitely could not
work as a general account of reflexive pronouns. To see why, let us
consider the sentence Mary praised herself. Here, we must guarantee
that the entity for Mary is given twice to the function praise. More
generally, for any entity x denoted by the subject, we must guarantee
that that same entity is given twice as an argument to the function
praise. This “sameness” cannot be described by treating the pronoun
herself as denoting an entity of type e. For instance, if we analyzed
herself as denoting the entity tina, the unwelcome result would be that
the sentenceMary praised herselfwould be analyzed as having the same
truth-value as Mary praised Tina. Similar problems would appear for
any analysis of the pronoun herself as an entity-denoting noun phrase.
Let us see how we solve the problem. First, following our previous

analyses, we let the verb phrase praised herself in (3.29) denote a
function of type et. In this way we can treat it on a par with verb
phrases like praised Mary. Thus, we want to solve the following type
equation for the verb phrase praised herself, where X is the type for
herself:

e(et)+ X = et

Letting X be e was fine type-theoretically, but it did not allow us to re-
spect the semantic properties of reflexive pronouns. Fortunately, there
is another solution: X = (e(et))(et). Thus, we will let the pronoun
herself denote a function that takes the e(et) denotation praise as an
argument, and returns a function of type et: the denotation of the
phrase praised herself. These type-theoretical ideas about the analysis
of sentence (3.29) are summarized in Figure 3.5.
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A. B.

Tina
praised herself

(HERSELF(praise))(tina) : t

tina : e HERSELF(praise) : et

praise : e(et) HERSELF : (e(et))(et)

Figure 3.5 Syntactic structure and semantic interpretation for Tina
praised herself.

The analysis in Figure 3.5 does not yet define the (e(et))(et) function
that the pronoun HERSELF should denote. To define it correctly, we
rely on our intuition that sentence (3.29) has to have the same truth-
value as (3.30). Thus, what we want to achieve is the following
identity:

(3.31) [[praised herself]](tina) = praise(tina)(tina)

In words: the one-place predicate for praised herself holds of the entity
tina if and only if the two-place predicate praise holds of the pair
〈tina, tina〉.
The denotation [[praised herself]] in (3.31) is obtained by

applying the denotation of herself to the function praise. Thus,
by spelling out the denotation [[praised herself]], we restate (3.31) as
the following identity:

(3.32) (HERSELF(e(et))(et)(praisee(et))) (tina)
= [[praised herself]](tina)
= praise(tina)(tina)

In words: when the function HERSELF applies to the denotation praise,
the result is the et function [[praised herself]] in (3.31) above. As we
saw, this resulting et function sends the entity tina to 1 if and only if
the two-place predicate praise holds of the pair 〈tina, tina〉.
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Since the denotations of the verb praise and the name Tina are
arbitrary, we want the function HERSELF to satisfy the identity in (3.32)
for all possible e(et) and e denotations. We therefore conclude:

(3.33) For all functions R of type e(et), for all entities x:
(HERSELF(e(et))(et)(R))(x)= R(x)(x)

This generalization defines the result of the function HERSELF for every
argument of type e(et). Thus, we get:

(3.34) HERSELF(e(et))(et) is
the function sending every function R of type e(et) to the et
function sending every entity x to R(x)(x).

This definition is rather long. Let us save space and use a λ-term for
rewriting it:

(3.35) HERSELF(e(et))(et)
= λRe(et).the et function sending every entity x to R(x)(x)

But behold: we can save more space! The et function that HERSELF
returns can also be written as a lambda term: λxe .R(x)(x). Here is what
we get when we use it in (3.35):

(3.36) HERSELF(e(et))(et)
= λRe(et).(λxe .R(x)(x))

Since we don’t like unnecessary parentheses, we will write instead:

(3.37) λRe(et).λxe .R(x)(x)

And this is as much as we get by abbreviating our definition for the
function HERSELF.
We can now write our analysis of the truth-value of sentence (3.29)

using λ-terms alone, with some notes for clarification, but without any
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description of functions in natural language:

(3.38) a. (HERSELF(e(et))(et)(praisee(et)))(tinae)
� compositional analysis (Figure 3.5)

b. = ((λRe(et).λxe .R(x)(x))(praise))(tina)
� definition (3.37) of HERSELF

c. = (λxe .praise(x)(x))(tina)
� application to praise

d. = praise(tina)(tina) � application to tina

Our compositional analysis assigns the verb phrase praised herself
the denotation HERSELF(praise), of type et. This is the same type
we assigned to the intransitive verb smiled and to the verb phrase
praised Mary. As we see in (3.38b–c), with our definition of the
function HERSELF, the denotation we get for praised herself is the et
function λxe .praise(x)(x), which characterizes the set of self-praisers,
as intuitively required by sentence (3.29). By letting all verb phrases
denote et functions we obtain pleasing uniformity in our system. This
uniformity will prove useful later on in this chapter, when we analyze
verb phrase conjunctions like smiled and praised herself, as we will do
in (3.53)–(3.54) below, and in Exercise 12c.

You are now advised to solve Exercises 8, 9, 10 and 11 at the end of this
chapter.

PART 4: RESTRICTING DENOTATIONS
In Chapter 2 we introduced the distinction between constant and
arbitrary denotations. This distinction is also instrumental with our
new type system. For words like Tina, smile, tall and praise, we
assume arbitrary denotations of the type we assign. By contrast, when
analyzing functional words like is, not and herself, we focus on one
denotation of the relevant type. In this part we study more examples
where denotations are restricted in this way. This will lead us to some
general conclusions about the relations between formal semantics and
the specification of lexical meanings.

PROPOSITIONAL NEGATION AND PREDICATE NEGATION
Let us now get back to the negation in sentence (3.18) (Tina is not tall).
We analyzed this sentence using definition (3.19), which describes
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the set complement operation using characteristic functions. Using λ-
terms we restate this definition as follows:

(3.39) NOT = λget .λxe .
{
1 if g (x)= 0
0 if g (x)= 1

In words: the function NOT sends every et function g to the function
that sends every entity x to 1 in case g (x)= 0, and to 0 in case g (x)= 1.
Driven by our wish to save space, we can shorten up the “piece-wise”
definition in (3.39) by using propositional negation: the function from
truth-values to truth-values that sends 0 to 1, and 1 to 0. We denote
this tt function ‘∼’. For its formal definition we can use subtraction, as
stated in (3.40) below:

(3.40) ∼ = λxt .1− x

Using this definition of propositional negation, we can rewrite defini-
tion (3.39) above more concisely as:

(3.41) NOT = λget .λxe .∼(g (x))

The three definitions (3.19), (3.39) and (3.41) are equivalent, and they
all boil down to the analysis of the word not as set complementation.
However, since we now work with characteristic functions, our use of
propositional negation in (3.41) has some presentational advantages.
Given the structure in (3.18) (page 62), we analyze the sentence Tina
is not tall as in (3.42) below.

(3.42) a. (IS(et)(et)(NOT(et)(et)(tallet)))(tinae)
� compositional analysis of structure (3.18)

b. = ((λget .g )(NOT(tall)))(tina)
� definition of IS as identity function

c. = (NOT(tall))(tina)
� application to NOT(tall)

d. = ((λget .λxe .∼(g (x)))(tall))(tina)
� definition (3.41) of NOT

e. = ((λxe .∼(tall(x))))(tina)
� application to tall

f. =∼(tall(tina)) � application to tina
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In (3.42) we see two different representations of the same truth-value
that our model assigns to sentence (3.18). In (3.42a–c) it is easy to
see that the truth-value assigned to the sentence is 1 if the denotation
tina is in the complement of the set characterized by the et denotation
tall. This was the view that we adopted in Chapter 2. It is also very
much in line with our compositional analysis of the sentence. After
simplifying the representation by employing propositional negation,
(3.42d–f) makes it easier to see that the truth-value that we assign to
(3.18) is 1 if the function tall sends tina to 0. In simple sentences such
as (3.18) these two perspectives are equivalent. However, the general
question of how we should use propositional negation when analyzing
the semantics of negative sentences is more complex. Later on in this
chapter, and in Exercise 12e below, we briefly touch upon this problem.
See also the further reading at the end of this chapter.

PROPOSITIONAL CONJUNCTION AND
PREDICATE CONJUNCTION

Another useful propositional operator is propositional conjunction .
In Chapter 2 we focused on predicate conjunction of adjectives and
simple entailments as in (3.43) below:

(3.43) Tina is tall and thin⇒ Tina is thin.

We also briefly noted the use of the conjunction and between sen-
tences, and the very similar entailments that it often leads to. This is
illustrated again in (3.44) below.

(3.44) Tina is tall and Tina is thin⇒ Tina is thin.

For the sentential conjunction in (3.44) we assume the following
binary structure:

(3.45) [ Tina [ is tall ]] [ and [ Tina [ is thin ]]]

In (3.45) the conjunction word and combines with the right-hand
sentence and forms the constituent and Tina is thin. This expression
combines with the left-hand sentential conjunct, of type t, and together
they form a sentence of the same type. Thus, the type we assign
to the constituent and Tina is thin in (3.45) is a function of type
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tt, from truth-values to truth-values. This function is derived by
combining the conjunction word and with a sentence of type t, and
hence we conclude that the word and in (3.45) is of type t(tt): a
function from truth-values to functions from truth-values to truth-
values.We define this denotation as the Curried version of the classical
propositional conjunction operator ∧. Propositional conjunction is a
two-place function that maps two truth-values into a single truth-
value. In numeric terms, it amounts to multiplication between truth-
values: the binary function that maps a pair of truth-values to 1 if both
of them are 1, and to 0 otherwise. Formally:

(3.46) For any two truth-values x and y: the truth-value x ∧ y is x · y,
the multiplication of x by y.

In (3.47) below, we define our Curried t(tt) version of propositional
conjunction using lambda notation. In order to distinguish this t(tt)
denotation of and from other denotations of this word, we refer to this
t(tt) function as ‘ANDt ’:

(3.47) ANDt = λxt .λyt .y ∧ x

In words: the denotation of sentential and maps any truth-value x to
the function mapping any truth-value y to the multiplication y ∧ x of
x and y. For example, for structure (3.45), we get:

(3.48) ANDt([[Tina is thin]])([[Tina is tall]])
= [[Tina is tall]]∧ [[Tina is thin]]

The denotation of the second conjunct in (3.45) is used as the first
argument of the function ANDt . When ANDt sends its arguments to the
∧ operator, we let it reverse their order, so that the first argument of
ANDt is the second argument of ∧. This is innocuous, since y ∧ x is
the same as x ∧ y. The reason we reverse the order is merely aesthetic:
it is more pleasing to the eye to see a ‘y ∧ x’ notation when x is the
denotation of the right-hand conjunct in the sentence.
For a fuller analysis of structure (3.45), see Figure 3.6. The semantic

interpretation uses the functions ANDt for and, and the identity func-
tion IS for is.
In (3.49) below we use our definition of the denotations ANDt and IS

to analyze the truth-value derived in Figure 3.6.
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Figure 3.6 Syntactic structure and semantic interpretation for Tina is
tall and Tina is thin.

(3.49) a. (ANDt((IS(thin))(tina)))((IS(tall))(tina))
� compositional analysis in Figure 3.6

b. = (ANDt(thin(tina)))(tall(tina))
� applying IS (identity function)

c. = ((λxt .λyt .y ∧ x)(thin(tina)))(tall(tina))
� definition of ANDt

d. = ((λyt .y ∧ thin(tina)))(tall(tina))
� application to thin(tina)

e. = tall(tina)∧ thin(tina)
� application to tall(tina)
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As in our example of number addition, we see that lambda notation
allows us to use Curried functions while reverting to traditional nota-
tion when convenient. The Curried notation in (3.49a–b) is convenient
when considering the truth-value derivation from syntactic forms as
in Figure 3.6. The standard notation in (3.49e) is convenient if we
are interested in the relations between our results and classical logical
analyses. However, the two notations are equivalent in terms of the
truth-values they represent.
As noted in Chapter 2, the connections between our compositional

treatment of conjunction and classical analyses become less straight-
forward when we consider predicate conjunction. In Chapter 2 we
analyzed the conjunction between adjectives in the sentence Tina is
tall and thin using set intersection. Given our current emphasis on
the use of Curried functions, it is convenient to analyze the same
sentence analogously to (3.45), using only binary structures. Thus, we
now assume the structure in (3.50) below:

(3.50) Tina [ is [ tall [ and thin ]]

To mimic our intersective analysis of conjunction, here we let the
word and denote a function of type (et)((et)(et)). When we read it
in English, this is the type that describes functions from characteristic
functions to functions from characteristic functions to characteristic
functions. You may say gee whiz, but when replacing “characteristic
functions” by “sets”, we see that it is just our usual Currying practice.
The functions we have just mentioned correspond to functions that
map every pair of sets to a set. The intersection operator is such
a function: it sends every pair of sets to their intersection. Thus,
type (et)((et)(et)) is the proper type for defining an operator on et
functions that mimics set intersection.
When we define the denotation of predicate conjunction in (3.50)

as a function of type (et)((et)(et)), it is convenient, as we did in the
case of predicate negation, to use the corresponding propositional
operator. Below we give our denotation of predicate conjunction,
denoted ‘ANDet ’, using the operator ∧ between truth-values:

(3.51) ANDet = λ fet .λget .λxe .g (x)∧ f (x)
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In words: the denotation of the predicate conjunction andmaps any et
function f to the function mapping any et function g to the function
mapping any entity x to g (x)∧ f (x). This definition has the following
simple property: when two et functions h1 and h2 characterize sets
of entities A1 and A2, respectively, the result of applying the function
ANDet to h1 and h2 is the function characterizing the intersection of
A1 and A2 (see Exercise 12). Thus, treating predicate conjunction
using (et)((et)(et)) functions encodes the same analysis of (3.50) as
in Chapter 2, where we used set intersection.
To see in more detail how definition (3.51) works, consider the

analysis of structure (3.50) in (3.52) below:

(3.52) a. (IS((ANDet(thin))(tall)))(tina)
� compositional analysis of (3.50)

b. = ((ANDet(thin))(tall))(tina)
� applying IS (identity function)

c. = (((λ fet .λget .λxe .g (x)∧ f (x))(thin))(tall))(tina)
� definition of ANDet

d. = (((λget .λxe .g (x)∧ thin(x)))(tall))(tina)
� application to thin

e. = (((λxe .tall(x)∧ thin(x))))(tina)
� application to tall

f. = tall(tina)∧ thin(tina) � application to tina

The truth-value that we end up deriving for sentence (3.50) (Tina
is tall and thin) is the same as the one we got for (3.45) (Tina is
tall and Tina is thin). Thus, we have captured the intuitive semantic
equivalence between these sentences. However, note that simplifi-
cations as in (3.49) and (3.52) are only one way of explaining this
equivalence, and sometimes they can obscure insights about deno-
tations of constituents. Specifically, in (3.52f) we no longer see that
our compositional analysis of predicate conjunction is equivalent to
the set intersection of Chapter 2. The direct compositional analysis
in (3.49a) highlights this fact more clearly. More generally, we analyze
the equivalence between (3.50) and (3.45) as following from elemen-
tary considerations about the relationships between set intersection
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(in (3.50)) and multiplication of truth-values (in (3.45)). In formula,
let χA and χ B be et functions that characterize the sets of entities A
and B , respectively. For every entity x, we have:

x ∈ A∩ B if and only if χA(x) ·χ B (x)= 1

For instance, the entity tina is in the intersection of the sets charac-
terized by the et functions tall and thin if and only if both functions
send tina to 1. Thus, we can see that we account for the equivalence
already in the interpreted structures (3.52a) and (3.49a), without any
simplification of λ-terms. This point is of some historical interest:
unlike early analyses of conjunction in the 1960s, our compositional
semantics directly interprets the structures of both sentences (3.50)
and (3.45). Neither of these structures is assumed to be “deeper” or
“more basic” than the other.
Our treatment of adjective conjunction can now be directly used for

other predicates, especially verb phrases as in the examples below:

(3.53) Tina smiled and danced. Tina smiled and praised Mary. Tina
praisedMary and smiled. Tina praisedMary and thanked John.

(3.54) Tina smiled and praised herself. Tina thanked Mary and
praised herself.

These sentences with verb phrase conjunctions also demonstrate an
equivalence with sentential conjunction. Consider for instance the
following equivalence:

Tina thanked Mary and praised herself ⇔ Tina thanked Mary
and Tina praised herself

Such equivalences are immediately explained by our analysis of propo-
sitional conjunction and predicate conjunction. However, it should
be noted that the equivalence scheme is not valid in general: it does
not necessarily hold with more complex subjects. For instance, the
sentence someone is smiling and someone is dancing does not entail
someone is smiling and dancing: the existence of people doing two
different things does not mean that someone is doing both. We will
return to this point in Chapter 4.
As with our treatment of negation, the lambda notation exposes

the semantic relation between a propositional operator (∧) and a
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set-theoretical operator (intersection), where the latter is presented
by means of characteristic functions. However, in contrast to our
treatment of negation, where propositional negation was not directly
used in our compositional analysis, now it becomes clear that both
propositional conjunction and set intersection are useful as denota-
tions of conjunction: the first has a straightforward use with sentential
conjunctions, the latter with predicate conjunction. To conclude, our
type system requires the use of two denotations for conjunction:
ANDt for sentential conjunction and ANDet for predicate conjunction.
Although the two functions are of different types, namely t(tt) and
(et)((et)(et)), they are logically related. In fact, the parallelism we have
observed only reflects a small part of the semantic relations between
and conjunctions of different categories in natural language. Similar
relations exist between disjunctive coordinations with or in differ-
ent categories, and, to a lesser extent, between negation in different
categories. These relations are often analyzed as revealing Boolean
structures in natural language semantics. Relevant details can be found
in the further reading at the end of this chapter.

INTERSECTIVE ADJECTIVES AND SUBSECTIVE
ADJECTIVES

Let usmove on to another example where set intersection and proposi-
tional conjunction play a major role: the different usages of adjectives.
So far we have only considered adjectives in sentences like Tina is tall,
where they appear in predicative positions, following the copula is.
However, English also allows adjectives to precede nouns, as in the
following sentences:

(3.55) Tina is a tall woman; the tall engineer visited us; I met five tall
astronomers.

Occurrences of adjectives before the noun as in (3.55) are often
referred to as ‘attributive’, or modificational . In many cases, we find
strong semantic relations between these modificational occurrences
and the predicative use. Consider for instance the following equiva-
lences:

(3.56) a. Tina is a Chinese pianist⇔ Tina is Chinese and Tina is a
pianist.
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b. My doctor wears no white shirts ⇔ No shirts that my
doctor wears are white.

c. Dan saw six carnivorous animals⇔ Six animals that Dan
saw are carnivorous.

In each of these examples, we see an equivalence between a sentence
with a modificational adjective, and another sentence with the same
adjective in a predicative position. When analyzing such equivalences,
we will concentrate on (3.56a) as a representative example. Before
further analyzing the sentence Tina is a Chinese pianist in (3.56a), let
us first consider the following simpler sentence:

(3.57) Tina [ is [ a pianist ]]

Given the constituency that we assume in (3.57), we analyze the noun
pianist as denoting a function pianist of type et. This is similar to
our treatment of intransitive verbs and predicative adjectives. The
indefinite article a is analyzed, similarly to the copula is, as denoting
the identity function of type (et)(et). Formally:

(3.58) A(et)(et) = IS= λget .g
With these assumptions, structure (3.57) is analyzed as denoting the
following truth-value.

(3.59) (IS(A(pianist)))(tina)
= pianist(tina)

This truth-value is 1 when the entity tina is in the set characterized
by the function pianist, and 0 otherwise. As for the modificational
construction in (3.56a), we now assume the following structure:

(3.60) Tina [ is [ a [ Chinese pianist ]]]

We already know how to analyze sentences with predicative adjectives
like Tina is Chinese, where we let the adjective denote an et function.
It might be tempting to let the modificational occurrence of the
adjective Chinese in (3.60) denote the same et function. However,
with such an analysis, we would have a problem when treating the
constituent Chinese pianist in (3.60). If both the adjective and the
noun are assigned the type et, function application would not be
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able to combine their denotations. Our solution to this problem is
to assume that there are two different denotations of the adjective
Chinese. One denotation is the arbitrary et function chinese that we
use for the predicative use, e.g. inTina is Chinese. The other denotation
is used for modificational occurrences as in (3.60). The modificational
denotation is a function of type (et)(et), from characteristic functions
to characteristic functions. This will allow the adjective to combine
with nouns like pianist, as in (3.60). To highlight its use, we refer to
this function as ‘chinesemod’. Now, since there is a semantic connec-
tion between the two usages of the adjective Chinese, we define the
(et)(et) denotation chinesemod on the basis of the et function chinese.
Specifically, we associate chinesemod with the function mapping any
set A to the intersection of A with the Chinese entities. In this way, the
expression Chinese pianist is associated with the set of pianists who are
also Chinese. In lambda notation we define the function chinesemod as
follows:

(3.61) chinesemod
(et)(et) = λ fet .λxe .chinese(x)∧ f (x)

The function chinesemod maps any et function f to the function
that maps an entity x to 1 if and only if x is in both sets that
are characterized by the et functions f and chinese. Treating the
constituent Chinese pianist using this denotation, we get the following
analysis of sentence (3.60):

(3.62) (IS(A(chinesemod(pianist))))(tina)
� compositional analysis of (3.60)

= (chinesemod(pianist))(tina)
� applying IS and A (identity functions)

= ((λ fet .λxe .chinese(x)∧ f (x))(pianist))(tina)
� definition (3.61) of chinesemod

= (λxe .chinese(x)∧ pianist(x))(tina)
� application to pianist

= chinese(tina)∧ pianist(tina)
� application to tina

The analysis in (3.62) immediately accounts for the equivalence we
observed in (3.56a). Similar analyses of the modificational usage of
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adjectives also account for the equivalences in (3.56b) and (3.56c) with
the adjectives white and carnivorous. Because their analysis as mod-
ifiers involves intersecting the noun denotation with the predicative
adjective’s denotation, adjectives like Chinese, white and carnivorous
are referred to as intersective.
Intersective adjectives also support equivalences like the one be-

tween (3.63a) and (3.63b) below:

(3.63) a. Tina is a Chinese pianist and a biologist.
b. Tina is a Chinese biologist and a pianist.

We can now easily account for such equivalences as well. Our analysis
of the pre-nominal usage of the adjective Chinese is based on set
intersection. The occurrences of Chinese in (3.63a) and (3.63b) are
interpreted by intersecting the set C of Chinese entities with another
set: the set P of pianists, and the set B of biologists, respectively. With
these notations, let us consider the following set-theoretical equality:

(3.64) (C ∩ P )∩ B = (C ∩ B)∩ P

In words: the intersection of the set B with the intersection of C and
P is the same as the intersection of P with the intersection of C and
B . Having observed this equality, we see that the equivalence in (3.63)
follows directly from our analysis of intersective adjectives.
It is important to note that, although intersective interpretations are

pretty common, adjectives may also show non-intersective behavior
in their modificational use. Unlike what we saw with the adjective
Chinese, there are other adjectives that do not support the equivalence
pattern in (3.63). Consider for instance the adjective skillful in (3.65)
below:

(3.65) a. Tina is a skillful pianist and a biologist.
b. Tina is a skillful biologist and a pianist.

Sentence (3.65a) can be true if Tina is competent as a pianist but
amateurish as a biologist. Thus, (3.65a) does not entail (3.65b).
For a similar reason, (3.65b) does not entail (3.65a). This lack of equiv-
alence shows that we cannot analyze constructions like skillful pianist
or skillful biologist by intersecting the set of pianists/biologists with
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some set of “skillful entities”. Such an analysis, together with the set-
theoretical equality we saw in (3.64), would lead us to incorrectly ex-
pect equivalence in (3.65). Intuitively, we say that the adjective skillful
shows a non-intersective behavior in (3.65). How can we describe this
usage?
To solve this problem, we assume that the basic denotation of the

adjective skillful is of type (et)(et). This immediately allows us to
construct models where one of the sentences in (3.65a–b) denotes
1 and the other denotes 0. The reason is that, when the (et)(et)
function associated with skillful is arbitrary, we no longer assume that
the denotations of skillful pianist and skillful biologist are formed by
intersection. Specifically, let us look at a model with the following
denotations:

pianistet : characterizes the singleton set {tina}
biologistet : characterizes the set {tina,mary}
[[skillful]](et)(et)(pianist): characterizes the singleton set {tina}
[[skillful]](et)(et)(biologist): characterizes the singleton set {mary}
In words: the only pianist is Tina, the only biologists are Tina and
Mary, the only skillful pianist is Tina, and the only skillful biologist is
Mary.

In this model, we use the (et)(et) denotation for skillful, and not an
et function denotation. Thus, we consider Tina skillful relative to the
denotation of pianist, but not relative to the denotation of biologist.
Because our analysis does not use any set of “skillful entities”, the
fact that Tina is a biologist in the model does not entail that she
is considered a skillful biologist. Thus, sentence (3.65a) denotes 1
whereas (3.65b) denotes 0. This agrees with our intuitions about the
lack of entailment between these sentences.
But now we have to treat another property of the adjective skillful.

Let us consider the following entailment:

(3.66) Tina is a skillful pianist⇒ Tina is a pianist.

This entailment reflects the obvious intuition that every skillful pianist
is a pianist. Adjectives like skillful that show this behavior are often
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called subsective adjectives . An alternative name for these adjectives is
‘restrictive’ or ‘restricting’. The judgment about the validity of (3.66)
must lead us to think a little more about the (et)(et) denotation of
the adjective skillful. This denotation cannot be allowed to be any
(et)(et) function. If such arbitrariness were allowed, models might let
the denotation of skillful pianist be any set of entities they contain,
not necessarily a subset of the set of pianists. For instance, a function
from sets to set can send the set {a, b} to the set {c, d}. To avoid such
situations, we require that the denotation of skillful sends any set P
to a subset of P . More formally, we define this general restriction as
follows:

(3.67) For any model M, the denotation of skillful in M is an (et)(et)
function skillfulmod that satisfies the following: for every et
function f in M, the set characterized by skillfulmod( f ) is a
subset of the set characterized by f .

Another possible way to state the restriction, which is elegant though
harder to grasp, is to define skillfulmod so that it satisfies (3.67) by
relying on another, arbitrary, function of type (et)(et). When we
denote this function skillfularb, the definition of skillfulmod reads as
follows:

(3.68) skillfulmod = λ fet .λxe .(skillfularb( f ))(x)∧ f (x)

In words: the function skillfulmod sends every et function f to
the characteristic function of the (arbitrary) set characterized by
skillfularb( f ), intersected with the set characterized by f . If the
restriction (3.67) is all that we want our models to specify about
the denotation of the adjective skillful, then it is equivalent to the
definition in (3.68). The (et)(et) function skillfularb is free to vary from
one model to another like the other arbitrary denotations we have
assumed. The superscript arb is a reminder that we assume that the
function skillfularb is arbitrary, although it is not the denotation of the
word skillful.
With the denotation in (3.68), the sentence Tina is a skillful pianist

is analyzed as follows:
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(3.69) (IS(A(skillfulmod(pianist))))(tina)
� compositional analysis

= (skillfulmod(pianist))(tina)
� applying IS and A

= (λ fet .λxe .(skillfularb( f ))(x)∧ f (x))(pianist)(tina)
� definition (3.68)

= skillfularb(pianist)(tina)∧ pianist(tina)
� application to pianist and tina

The analysis in (3.69) immediately accounts for the entailment in
(3.66). At the same time, it also accounts for the lack of entailment
in the opposite direction: when Tina is a pianist, it does not follow that
she is a skillful pianist. This is easily explained, since when Tina is a
pianist the truth-value derived in (3.69) may still be 0. This happens
in models where the entity tina is not in the set characterized by
skillfularb(pianist).
We should note that intersective adjectives also show entailments

as in (3.66). This is directly accounted for in our analysis. In other
words, our treatment of intersective adjectives correctly expects them
to be a sub-class of the adjectives we classified as subsective. Below we
summarize the concepts of intersective and subsective adjective, and
intersective and subsective adjective functions. For convenience, we
look at functions from sets of entities to sets of entities.

The following entailments define an adjective A as being intersec-
tive/subsective, where X is a proper name and N is a common noun:
A is intersective – X is a A N⇔ X is A and X is a N

e.g. Dan is a Dutch man
⇔ Dan is Dutch and Dan is a man

A is subsective – X is a A N⇒X is N
e.g. Dan is a skillful pianist⇒Dan is a pianist

For a function F from ℘(E ) to ℘(E ) we define:
F is intersective – There is a set A, s.t. for every set B:

F (B)= A∩ B.
F is subsective – For every set B: F (B)⊆ B.

By treating the denotations of adjectives as intersective and subsective
functions of type (et)(et), we have been able to analyze the behavior of
intersective and subsective adjectives.
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The examples above show some cases of intersective adjectives
like Chinese, as well as one example of a non-intersective, subsective
adjective, skillful. Classifying adjectives into intersective and non-
intersective is a highly complex problem, both empirically and theo-
retically. To see one example of the difficulty, let us reconsider our
favorite adjectives tall and thin. So far, we have assumed that these
adjectives denote arbitrary et functions. Therefore, in their modifi-
cational usages, e.g. in tall woman and thin woman, we may like to
use the intersective analysis. However, this would be questionable:
tall children are not necessarily tall; thin hippos are not necessarily
thin. On the other hand, treating tall and thin as subsective adjectives
may also lead to complications. For instance, when saying that Tina
is a child and she is tall, our assertion that Tina is a child affects our
understanding of the adjective tall in much the same way as it does
in the sentence Tina is a tall child. Following this kind of observation,
many researchers propose that adjectives like tall and thin should be
treated as intersective, while paying more attention to the way they are
affected by the context of the sentence. This and other questions about
the semantics of adjectives constitute a large body of current research.
For some of these problems, see the further reading at the end of this
chapter.
The semantic concepts of subsective and intersective functions are

useful for other categories besides adjectives. Consider for instance the
following entailments:

(3.70) a. Tina [smiled [charmingly]] ⇒ Tina smiled.
b. Tina [ran [with John]] ⇒ Tina ran.

(3.71) a. Tina [is [a [pianist [from Rome]]]]
⇔ Tina is a pianist and Tina is from Rome.

b. Tina [is [a [pianist [who [praised herself]]]]]
⇔ Tina is a pianist and Tina praised herself.

In sentences (3.70a–b), we see that the adverbial modifiers charmingly
and with John give rise to ‘subsective’ entailments. Furthermore,
the adnominal prepositional modifier from Rome in (3.71a) and the
relative clause who praised herself in (3.71b) show ‘intersective’ equiv-
alences. A simple analysis of the adverb charmingly may assign it
a subsective denotation of type (et)(et). Similarly, the prepositional
phrases with John and from Rome can be analyzed as subsective, or
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even intersective, (et)(et) functions. The relative clause who praised
herself can also be analyzed as an intersective (et)(et) function. By
solving Exercise 13, you may analyze these constructions in more
detail.

SUMMARY: LEXICAL DENOTATIONS
By way of recapitulation, let us take stock of the variety of lexical
denotations that we have so far assumed. First, for some words like
is and not we assigned denotations on the basis of a definition. The
denotations of these words are fully specified by our analysis, with
little freedom left for models to change them. These denotations are
subdivided into two classes:

1. Denotations like IS and HERSELF: functions that are exclusively
defined by means of their workings on other functions, without
further definitions or assumptions. Such denotations are functions
that can be expressed as ‘pure’ λ-terms, and they are also referred to
as combinators.

2. Denotations like NOT, ANDt and ANDet : functions that are defined by
means of some additional concepts, e.g. the functions of proposi-
tional negation and propositional conjunction. Because these con-
stant denotations rely on truth-values, they are often referred to as
logical .

Most words whose denotations are combinatorially or logically
defined belong in the class that linguists call function words or
functional words . These words are contrasted with content words,
which are the bulk of the lexicon in all natural languages. We have
seen two kinds of denotations for content words:

3. Arbitrary denotations, for which no restrictions hold in our models
besides those following from their types. We gave such denotations
to proper names (Tina), common nouns (pianist), verbs (smile,
praise) and predicative usages of adjectives.

4. Denotations that are logically or combinatorially defined on the
basis of other, arbitrary denotations. This is how we accounted
for modificational adjectives, when deriving their denotations from
arbitrary denotations.
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Table 3.2: Lexical denotations and their restrictions.
Denotation Type Restrictions Category

tina e - proper name
smile et - intransitive verb
praise e(et) - transitive verb
pianist et - common noun
chinese et - predicative adjective
chinesemod (et)(et) intersective: λ fet .λxe . modificational adjective

chinese(x)∧ f (x)
skillfulmod (et)(et) subsective: λ fet .λxe . modificational adjective

(skillfularb( f ))(x)∧ f (x)
IS (et)(et) combinator: λget .g copula (auxiliary verb)
A (et)(et) combinator: λget .g indefinite article
HERSELF (e(et))(et) combinator: λRe(et).λxe .R(x)(x) reflexive pronoun
NOT (et)(et) logical: λget .λxe .∼(g (x)) predicate negation
ANDt t(tt) logical: λxt .λyt .y ∧ x sentential conjunction
ANDet (et)((et)(et)) logical: λ fet .λget .λxe .g (x)∧ f (x) predicate conjunction

The lexical denotations that we assumed, together with their restric-
tions, are summarized in Table 3.2.
This summary of our restrictions on lexical denotations only

scratches the surface of a vast topic: the organization of lexical mean-
ings. Let us briefly mention some of the questions that we have left
untreated. Restrictions on lexical meanings that affect entailments do
not only involve restricting the possible denotations of single entries.
There are alsomany strong semantic relations between different lexical
entries. Consider for instance the following examples:

(3.72) a. Tina danced⇒ Tina moved.
b. John is a bachelor⇒ John is a man and John is not married.

The entailments in (3.72) illustrate that theories of entailment should
also constrain the relations between lexical denotations. Entailment
(3.72a) can be explained if the set associated with the verb dance
is contained in the set for move; (3.72b) is explained when the set
for bachelor is contained in the intersection between the set of men
and the complement set of the married entities. Our theory should
include an architecture that allows encoding such lexical restrictions
on denotationsmore systematically than we have attempted to do here.
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The role of syntactic theory in analyzing lexical meanings is another
issue that should be further emphasized. For instance, consider the
constituent structure Tina [is [not thin]] that we assumed for sentences
with predicate negation. This structure made us adopt the (et)(et) type
for the word not. Now, suppose that for syntactic reasons we used the
structure not [Tina [is thin]]. A treatment of the word not as proposi-
tional negation of type tt would then be forthcoming. We conclude
that the choice between the types (et)(et) and tt hinges heavily on
theoretical syntactic questions about the structure of negation.
Such puzzles are highly challenging for theories about the relations

between formal semantics and other parts of grammar, especially
lexical semantics and syntactic theory. They constitute a fascinating
and very active area of research in linguistics. Some references for
works in this area can be found in the further reading below.

You are now advised to solve Exercises 12 and 13 at the end of this
chapter.

FURTHER READING
Introductory: For introductions of the lambda calculus from a linguis-

tic perspective see Dowty et al. (1981); Gamut (1982). The treatment
we used for reflexive pronouns is based on the variable-free ap-
proach to anaphora, introduced in Jacobson (2014). For an overview
of other treatments of reflexives and other anaphors see Büring
(2005). On various problems of negation and relevant references
see Horn and Kato (2003). On coordination see Haspelmath (2004);
Zamparelli (2011). On adjectives see McNally and Kennedy (2008).

Advanced: For more on type theory and higher-order logics see
Thompson (1991); Kamareddine et al. (2004). The Ajdukiewicz
Calculus is from Ajdukiewicz (1935). The original idea of Currying
appeared in Schönfinkel (1924). Solving type equations is part of the
more general problem of type inference in programming languages
(Gunter 1992), especially in relation to functional programming
(Hutton 2007; Van Eijck and Unger 2010). For an early semantic
treatment of reflexive pronouns see Keenan (1989). For more on
variable-free semantics, see Jacobson (1999); Keenan (2007); Hen-
driks (1993); Steedman (1997); Szabolcsi (1987). On the λ-calculus
see Barendregt et al. (2013), and, in relation to combinators, Hindley
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and Seldin (1986). On the Boolean approach to coordination and
negation phenomena see Keenan and Faltz (1985); Winter (2001).
For a survey on adjectives and modification see Lassiter (2015).

EXERCISES (ADVANCED: 7, 9, 10, 11, 12, 13)
1. For De = {u, v,w,m}:

a. Give the functions in Det that characterize: (i) the set {u,w};
(ii) the empty set; (iii) the complement set of {u,w}, i.e. {u,w}, or
De −{u,w}.
b. Give the set that is characterized by the function that sends every
element of De to 1.

2. a. Give the types for the following English descriptions (cf. (3.5)):

(i) functions from functions from entities to entities to func-
tions from entities to truth-values;

(ii) functions from functions from entities to truth-values to
entities;

(iii) functions from functions from entities to truth-values to
functions from truth-values to entities;

(iv) functions from entities to functions from truth-values to
functions from entities to entities;

(v) functions from functions from entities to truth-values
to functions from entities to functions from entities to
entities;

(vi) functions from entities to functions from functions from
entities to truth-values to functions from truth-values to
entities;

(vii) functions from functions from functions from truth-
values to truth-values to functions from truth-values to en-
tities to functions from entities to functions from entities
to entities.

b. Give English descriptions (cf. (3.5)) for the following types:
(et)t, t(te), (tt)e, (e(et))t, e((et)t), (e(et))(e(tt)).

3. a. Give the functions in Dtt .
b. For De = {u, v,w,m}, give the functions in Dte and Det .
c. For De = {l, n}, give the functions in D(ee)t .
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4. For each of the following pairs of types say if our function applica-
tion rule holds. If that’s the case, write the resulting type:
e+ e(et), (et)t+ et,
tt+ (ee)(tt), et+ e(tt),
(e(et))(et)+ ee, e(et)+ (e(et))(et),
(e(et))(et)+ e, (e((et)t))(tt)+ e((et)t),
(e((et)t))(tt)+ e, (ee)(et)+ e,
e((et)(et))+ e(et), (et)(et)+ ((et)(et))(e(e(et))).

5. a. In a model with De = {t, j,m}, suppose that Tina, John and
Mary praised Mary, that Tina and Mary praised John, and that
nobody else praised anybody else. What should the denotation
of the verb praise be in this model?

b. Consider sentences of the form John [[read Mary] Moby Dick].
We let the ditransitive verb read be of type e(e(et)). Assume that
John read MaryMoby Dick, Tina read Mary Lolita, and nobody
else read anything else to anybody else. In such a model, give
the et denotation of the expression read Mary Moby Dick and
the e(et) denotation of the expression read Mary.

6. a. Solve the following type equations:
tt+ X = t(tt), Y + e = ee, Z + t = et, (et)t+M = e((et)t).

b. Each of the following type equations has two solutions. Find
them:
t(tt)+ X = tt, Y + ee = e, Z + et = t, e((et)t)+M = (et)t.

c. Complete the general conclusions from your answers to 6a and
6b:

(i) Equations of the form X + y = z always have the solution
X = .

(ii) Equations of the form X + yz = z always have the solu-
tions X = and X = .

7. a. The sentence structures below introduce “typing puzzles”
similar to (3.15). Solve these puzzles and find appropriate types
for the underlined words.

(i) [Marye [walkedet quicklyX]Y ]t
(ii) [Marye [walkedet [inXUtrechte]Z]Y ]t
(iii) [[ theXpianistet ]e [ smiledet ]et ]t
(iv) [[ theX [ skillfulY pianistet ]et]e smiledet ]t
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(v) [[Walket ingX ]e [ is(et)(et) funet ]et ]t
(vi) [[ theX [manet [ whoY walkedet ]Z]M]e smiledet ]t
(vii) [[ ifX[ youe smileet ]t]Y [ youe winet ]t]t
(viii) [ Ie [[ lovee(et) ite ]Y [ whenX [ youe smileet ]t]Z]M]t

b. Now consider the following puzzle: [[ noX manet ]Y smiledet ]t .
Give two solutions for Y . For each solution give the correspond-
ing solution for X .

c. Based on your answers to 7a and 7b, find at least one solution
for X , Y and Z in the following puzzle:
[ ThereX [is(et)(et) [troubleet [inYParadisee]Z]]]t .
Can you find any more solutions?

8. a. Give English descriptions (cf. (3.34)) for the following λ-
terms:

(i) λ f(et)t .λyt . f (λze .y)
(ii) λxe .λ fet . f (x)
(iii) λ fet .λgtt .λxe .g ( f (x))
(iv) λ fee .λg (ee)t .λxe .g (λye . f (x))

b. Give λ-terms for the following English descriptions:
(i) the function sending every function fee to the function

sending every entity x to the result of applying f to f (x);
(ii) the function sending every function of type (ee)e to its

value on the identity function of type ee;
(iii) the function sending every function R of type e(et) to its

inverse, i.e. the function R−1 of type e(et) that satisfies for
every two entities x and y: (R−1(x))(y)= (R(y))(x).

9. a. Simplify the following λ-terms as much as possible using func-
tion application:
(i) ((λxe .λ fet . f (x))(tinae))(smileet)
(ii) ((λ fet .λgtt .λxe .g ( f (x)))(smileet))(λyt .y)
(iii) (((λge(et).λxe .λye .(g (y))(x))(praisee(et)))(tinae))(marye)

b. We analyze sentences like Mary is Tina by letting the word is
denote an e(et) function F , which is different from the identity
function of type (et)(et). Define F as a λ-term, basing your
definition on the equality formula x = y, which has the truth-
value 1 iff x and y are equal. Write the λ-term for the structure
Lewis Carroll [is [C. L. Dodgson]], and then simplify it as much
as possible.
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c. We analyze the sentence [Tina [praised [her mother]]] using the
following denotations:
HER=λ fee .λge(et).λxe .(g ( f (x)))(x) and motheree = the func-
tion sending each entity x to x’s mother.
Assuming these denotations, give the λ-term we derive for the
sentence. Then simplify the λ-term you got as much as possible
using function application.

10. a. Give English descriptions for the λ-terms:

(i) λyn.(DOUBLER)(y) (see (3.25))
(ii) λye .(λxe .x)(y)

b. Write simpler descriptions for the functions you described in
10a.

c. Complete the following conclusion:
for any function fτσ , the function _____ equals f .
In the λ-calculus, the simplification rule that this conclusion
supports is known as eta-reduction.

d. Simplify the following λ-term as much as possible using func-
tion application and eta-reductions:

((λ fe(et).λgtt .λxe .λye .g ( f (x)(y)))(λue .λze .praise(z)(u)))(λwt .w)
11. Consider the equivalence between the active sentence Mary

[praised Tina] and its passive form Tina [[was praised by] Mary].
In this structure, we unrealistically assume that the string was
praised by is a constituent. Express the denotation of this con-
stituent in terms of the denotation praise, in a way that captures
the equivalence between the active and passive sentences.

12. a. Simplify the following λ-term as much as possible using func-
tion application and the definition of ANDt :
(λ fe(et).λxe .λye .(ANDt(( f (x))(y)))(( f (y))(x)))(praisee(et)).
Describe in words the e(et) function that you got.

b. (i) Give the two binary structures for the sentence Tina is not
tall and thin.
(ii) For each of these structures, give the semantic interpretation
derived using the lexical denotations NOT(et)(et) and ANDet .
(iii) Simplify the resulting λ-terms as much as possible using
function application and the definitions of NOT(et)(et) and ANDet .

c. (i) Give binary structures for the sentences in (3.53) and (3.54).
(ii) For each of these structures, give the semantic interpretation
derived using the lexical denotations ANDet and HERSELF.
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(iii) Simplify the resulting λ-terms as much as possible using
function application and the definitions of ANDet and HERSELF.

d. For every function f of type et, we use the notation f ∗ to denote
the set of entities {x ∈ De : f (x)= 1} that f characterizes. For
instance, for the function χ S in (3.2) we denote: χ S

∗ = S =
{a, c}. Show that for all functions h1, h2 of type et, the following
holds:
(ANDet(h2)(h1))

∗ = h1∗ ∩ h2∗.
In words: the function ANDet(h2)(h1) characterizes the intersec-
tion of the sets that are characterized by h1 and h2.

e. Assume that the sentence Tina is not tall has the structure
not [Tina is tall]. What should the type and denotation of
not be under this analysis? How would you account for the
ambiguity of Tina is not tall and thin? Explain all your structural
assumptions.

13. a. Account for the entailment (3.70a) with the adverb charmingly:
describe the restriction on the adverb’s denotation by complet-
ing the following sentence:
the function charmingly of type maps any set A character-
ized by to .

b. Account for the same entailment by postulating a λ-term for
charmingly in terms of an arbitrary function charminglyarb.
Simplify the λ-terms for the two sentences in (3.70a), and
explain why the ≤ relation must hold between them in every
model.

c. (i) Repeat your analysis in 13a, but now for the entailment
(3.70b) and the preposition with. Complete the following sen-
tence:
the function with of type maps any entity (e.g. for John), to
a function mapping any characteristic function χA (e.g. for ran)
to .
(ii) Repeat your analysis in b, but now for (3.70b). Postulate a λ-
term for with in terms of an arbitrary function witharb. Simplify
the λ-terms you get for the sentences in (3.70b).

d. Account for the equivalence (3.71a) by defining the denotation
from (of which type?) on the basis of an arbitrary function
fromarb of type e(et). Show that after simplifications, the truth-
values you get for the two sentences in (3.71a) are the same.
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e. Account for the entailments (i) Tina is very tall ⇒ Tina is
tall, and (ii) Tina is a [[very tall] student] ⇒ Tina is a tall
student: postulate proper restrictions on the denotation of the
word very in (i) and (ii), of types (et)(et) and ((et)(et))((et)(et))
respectively.

f. Account for the equivalence in (3.71b) by postulating a proper
type and a proper restriction on the denotation of the word
who. Give it a λ-term. Show that after simplifications, the
truth-values you get for the two sentences in (3.71b) are the
same.

SOLUTIONS TO SELECTED EXERCISES
1. a. [u �→1, v �→ 0,w �→1,m �→0]; [u �→0, v �→0,w �→0,m �→0];

[u �→0, v �→1,w �→0,m �→1]. b. {u, v,w,m}, i.e. the whole do-
main De .

2. a. (i) (ee)(et), (ii) (et)e,
(iii) (et)(te), (iv) e(t(ee)),
(v) (et)(e(ee)), (vi) (e(et))(te),
(vii) ((tt)(te))(e(ee)).

3. a. Dtt={[0 �→0, 1 �→0], [0 �→0, 1 �→1], [0 �→1, 1 �→0],
[0 �→1, 1 �→1]}.

b. Det={
[u �→0, v �→0,w �→0,m �→0], [u �→0, v �→0,w �→0,m �→1],
[u �→0, v �→0,w �→1,m �→0], [u �→0, v �→0,w �→1,m �→1],
[u �→0, v �→1,w �→0,m �→0], [u �→0, v �→1,w �→0,m �→1],
[u �→0, v �→1,w �→1,m �→0], [u �→0, v �→1,w �→1,m �→1],
[u �→1, v �→0,w �→0,m �→0], [u �→1, v �→0,w �→0,m �→1],
[u �→1, v �→0,w �→1,m �→0], [u �→1, v �→0,w �→1,m �→1],
[u �→1, v �→1,w �→0,m �→0], [u �→1, v �→1,w �→0,m �→1],
[u �→1, v �→1,w �→1,m �→0], [u �→1, v �→1,w �→1,m �→1]}.
The solution for Dte is along similar lines.

c. For De={l, n}, there are four functions in Dee : [l �→l, n �→l],
[l �→l, n �→n], [l �→n, n �→l] and [l �→n, n �→n]. If we substitute
these four functions for u, v,w and m in the answer to 3b, we
get the sixteen functions in D(ee)t .

4. et, t, –, –, –, et, –, tt, –, –, –, e(e(et)).
5. a. praise= t �→[t �→0 j �→0 m �→0] j �→[t �→1 j �→0 m �→1]

m �→[t �→1 j �→1 m �→1]
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b. [[read Mary Moby Dick]] = [t �→1 j �→0 m �→0 md �→0 lo �→0]
[[read Mary]] = t �→[t �→0 j �→0 m �→0 md �→0 lo �→0],

j �→[t �→0 j �→0 m �→0 md �→0 lo �→0],
m �→[t �→0 j �→0 m �→0 md �→0 lo �→0],
md �→[t �→0 j �→1 m �→0 md �→0 lo �→0],
lo �→[t �→1 j �→0 m �→0 md �→0 lo �→0]].

6. a. (tt)(t(tt)); e(ee); t(et); ((et)t)(e((et)t)).
b. t and (t(tt))(tt); e and (ee)e; e and (et)t; e and (e((et)t))((et)t).
c. the solution X = yz; the solutions X = y and X = (yz)z.

7. a. (i) X=(et)(et) (ii) X=e((et)(et)),
(iii) X=(et)e (iv) Y=(et)(et),
(v) X=(et)e (vi) Y=(et)((et)(et)),
(vii) X=t(tt) (viii) X=t((et)(et)).

b. Y=e and X=(et)e; Y=(et)t and X=(et)((et)t).
c. X=e or (et)t; Y=e((et)(et)); Z=(et)(et).

Additional solutions for 7c:
X=et, Y=e((et)(((et)(et))e)), Z=(et)(((et)(et))e); X=e,
Y=e((et)(((et)(et))(et))), Z=(et)(((et)(et))(et)).

8. a. (i) the function sending every function f of type (et)t to the
function sending every truth-value y to the result of applying f to
the constant et function sending every entity to y.
(ii) the function I sending every entity x to the function sending
every et function f to the truth-value result of applying f to x (I
sends every x to the characteristic function of the set of functions
characterizing subsets of De containing x).
(iii) the function C sending every et function f to the function
sending every tt function g to the function from entities x to the
result of applying g to f (x) (C returns the function composition of
gtt on fet).
(iv) the function sending every ee function f to the function
sending every (ee)t function g to the function from entities x to the
result of applying g to the constant function sending every entity
to f (x).
b. (i) λ fee .λxe . f ( f (x));
(ii) λ f(ee)e . f (λxe .x);
(iii) λRe(et).λxe .λye .(R(y))(x).

9. a. (i) smile(tina); (ii) λxe .smile(x); (iii) (praise(mary))(tina)
b. F = λye .λxe .x = y; (F (cld))(lc) = (lc=cld)
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c. ((HER(mother))(praisee(et)))(tinae)=
(praise(mother(tina)))(tina)

10. a. (i) the function sending every number y to DOUBLER(y)
(ii) the function sending every entity y to the result that the
function sending every entity x to x returns for y

b. (i) DOUBLER
(ii) the function sending every entity y to y, a.k.a. the function
sending every entity x to x

c. the function λxτ . f (x) equals f
d. praise.

11. [[was praised by]] = λxe .λye .praise(y)(x)
12. a. λxe .λye .(praise(y))(x)∧ (praise(x))(y) – the function sending

x to the function sending y to 1 iff x and y praised each other.
b. (i) Tina [is [not [tall [and thin]]]]; Tina [is [[not tall] [and thin]]]

(ii) (IS(NOT((ANDet(thin))(tall))))(tina);
(IS((ANDet(thin))(NOT(tall))))(tina)
(iii)∼(tall(tina)∧ thin(tina)); (∼(tall(tina)))∧ thin(tina).

d. Suppose h1∗=A1, h2∗ = A2. By def. of ANDet :
(ANDet(h2)(h1))∗ = (λxe .h1(x)∧ h2(x))∗, i.e. the set A= {x ∈
E : (h1(x)∧ h2(x))= 1}. By def. of ∧, for every y ∈ E : y ∈ A
iff h1(y)= 1 and h2(y)= 1, i.e. y ∈ A1 and y ∈ A2, i.e.
y ∈ A1 ∩ A2.

13. c. with of type e((et)(et)) maps any entity x (e.g. for John), to a
function mapping any characteristic function χA (e.g. for ran)
to a function characterizing subsets of A;
with= λxe .λ fet .λye .((witharb

e((et)(et))(x))( f ))(y)∧ f (y).
d. frome((et)(et)) = λxe .λ fet .λye .(fromarb

e(et)(x))(y)∧ f (y).
f. WHO is assigned type (et)(et), which leads to the term:
(IS(A(WHO(HERSELF(praise))(pianist))))(tina). With the
assumption WHO=ANDet , this term is simplified to:
pianist(tina)∧ praise(tina)(tina). We get the same term
when simplifying the term for the sentence Tina is a pianist and
Tina praised herself.
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