LMNLP 2012. Take-home assignment 4

These exercises go with Part 3 of the course. References are to the LIRa paper.

1

Below a TAG for crossed dependencies $a^nb^mc^nd^m$, and the corresponding **LG** type assignments. T' is a type such that $T' \vdash T$ but $T \not\vdash T'$, i.e. you can connect T' as a hypothesis to conclusion T, but not vice versa. Similarly for U', U.

- 1. Using the links of Fig 3, draw the lexical unfolding for the γ_1 and δ type assignments.
- 2. Build a proof net for *abbcdd*: draw the abstract proof structure, and show how it can be rewritten to a tensor tree with the contraction of Figs 6–7 and the distributivity rules of Figs 8–9.

2

Below a focused proof for the sequent $a/b \cdot \otimes \cdot (a \otimes s^-) \otimes b \vdash s^-$, together with its proof term, according to the rules of Equations (7)–(11). Atomic type s is assigned negative polarity, atomic types a, b are positive.

$$\frac{a \vdash a \quad s^{-} \vdash s^{-}}{a \cdot \oslash \cdot s^{-} \vdash a \oslash s^{-}} \oslash R$$

$$\frac{a \vdash a \oslash s^{-} \vdash s^{-}}{a \vdash a \oslash s^{-} \vdash s^{-}} \rightleftharpoons b \vdash b$$

$$\frac{a/b \vdash (a \oslash s^{-} \cdot \oplus \cdot s^{-}) \cdot / \cdot b}{a/b \cdot \otimes \cdot (a \oslash s^{-}) \otimes b \vdash s^{-}} \rightleftharpoons$$

$$(\dagger) \qquad \mu\alpha_{0}.(\frac{\beta_{0} z_{0}}{c2}.\langle c1 \uparrow (\widetilde{\mu}x_{1}.\langle (x_{1} \oslash \alpha_{0}) \upharpoonright \beta_{0} \rangle / z_{0}) \rangle)$$

1. In the table below, compute the target *types* for the CPS translation, according to the definition of $\lceil \cdot \rceil$ in Table 1, and the polarities of the atomic formulas.

CONSTANT	SOURCE TYPE	IMAGE UNDER [·]
c1	a/b	
c2	$(a \oslash s^-) \oslash b$	

- 2. Compute [†], the CPS translation of the proof term, according to Eq (16).
- 3. Assume a mapping $a^{\ell}=a, b^{\ell}=b, s^{\ell}=\perp^{\ell}=o$. Give \cdot^{ℓ} translations for the constants c1, c2 so that the composed mapping $[\dagger]^{\ell}$ reduces to

$$\lambda k.(k \text{ (f (g b))})$$

Use a constant $g^{b \to a}$ in the translation of c1, and constants $f^{a \to o}$ and b^b in the translation of c2.

Solutions

1.1 On the left, the unfolding for γ_3 (a TAG initial tree), on the right the unfolding for δ (a TAG auxiliary tree), with the terminals **a** and **b** already substituted. For the other lexical entries, the geometry is the same — just change the labels.

The auxiliary δ is for the iteration of $b \dots d$ pairs, γ_2 for iteration of $a \dots c$, and γ_4 for switching from $a \dots c$ to $b \dots d$ iteration.

1.2 For the derivation of *abbcdd*, we use δ twice. Notice that δ can be internally connected (left) and then contracts to the tensor tree on the right (δ'). The reduced tree δ' can then be internally adjoined in a second copy of δ .

On the left the abstract proof structure that results from adjoining $\delta + \delta'$ within γ_3 . On the right the final tensor tree, after contractions and Grishin distribution.

If you like symbol manipulation, here is the corresponding focused proof.

It may be helpful to compare the **LG** grammar with the ACG construction for this TAG. For a string interpretation, S is mapped to the string type σ (* \rightarrow *), the adjunction nodes U, T to $\sigma \rightarrow \sigma$. The extra constants $\varepsilon_U, \varepsilon_T$ are there to terminate adjunction. We use the familiar abbreviation + for concatenation/composition.

SOURCE		TARGET	
γ_1	$T \multimap S$	$\lambda f.(\mathtt{a} + (f \mathtt{c}))$	$(\sigma \multimap \sigma) \multimap \sigma$
γ_2	$T \multimap T$	$\lambda f \lambda x.(\mathtt{a} + (f(x + \mathtt{c})))$	$(\sigma \multimap \sigma) \multimap \sigma \multimap \sigma$
γ_3	$U \multimap S$	$\lambda f.(\mathtt{a} + (f \ \mathtt{c}))$	$(\sigma \multimap \sigma) \multimap \sigma$
γ_4	$U \multimap T$	$\lambda f \lambda x.(\mathtt{a} + (f(x+\mathtt{c})))$	$(\sigma \multimap \sigma) \multimap \sigma \multimap \sigma$
δ	$U \multimap U$	$\lambda f \lambda x.(b + (f(x+d)))$	$(\sigma \multimap \sigma) \multimap \sigma \multimap \sigma$
$arepsilon_U$	U	$\lambda x.x$	$\sigma \multimap \sigma$
ε_T	T	$\lambda x.x$	$\sigma \multimap \sigma$

Below the abstract proof term for the derivation of abbcdd.

$$\frac{\gamma_3}{\frac{s/u}{s/u}} \frac{\frac{\delta}{u/u} \frac{\varepsilon_u}{u}}{\frac{\delta \cdot \varepsilon_u \vdash u}{\delta \cdot (\delta \cdot \varepsilon_u) \vdash u}} [/E] \frac{1}{\gamma_3 \cdot (\delta \cdot (\delta \cdot \varepsilon_u)) \vdash s} [/E]$$

$$\lambda i.(\mathtt{a}\;(\mathtt{b}\;(\mathtt{b}\;(\mathtt{c}\;(\mathtt{d}\;(\mathtt{d}\;i))))))$$

2.1 The effect of $\lceil \cdot \rceil$ on the types:

CONSTANTSOURCE TYPEIMAGE UNDER
$$\lceil \cdot \rceil$$
c1 a/b $(a^{\perp} \otimes b)^{\perp}$ c2 $(a \oslash s^{-}) \oslash b$ $(a \otimes s^{\perp})^{\perp} \otimes b$

2.2 The $[\cdot]$ translation of the proof term:

$$\lceil \mu \alpha_0. (\frac{\beta_0 \ z_0}{\mathsf{c2}}. \langle \ \mathsf{c1} \ | \ (\widetilde{\mu} x_1. \langle \ (x_1 \oslash \alpha_0) \ | \ \beta_0 \ \rangle \ / \ z_0) \ \rangle) \rceil = \\ \lambda \widetilde{\alpha}_0. (\mathsf{case} \ \mathsf{c2}^\ell \ \mathsf{of} \ \langle \widetilde{\beta}_0, \widetilde{z}_0 \rangle. (\mathsf{c1}^\ell \ \langle \lambda \widetilde{x}_1. (\widetilde{\beta}_0 \ \langle \widetilde{x}_1, \widetilde{\alpha}_0 \rangle), \widetilde{z}_0 \rangle))$$

2.3 $\lceil \cdot \rceil^{\ell}$ translation of the constants yielding interpretation $\lambda k^{o-\circ o}.(k (\mathbf{f}^{a-\circ o} (\mathbf{g}^{b-\circ a} \mathbf{b}^b)))$:

This interpretation gives the $a \oslash s$ component of the constant c2 wide scope: the coimplication $a \oslash s$ behaves the same as an implication $a \backslash s$.

Compare:

For a *string* interpretation, one can consider an alternative ACG-style \cdot^{ℓ} mapping, sending all atomic source types (including \perp) to the string type σ . In the translations we now use constants f,g,b of type σ .

$\mathbf{C}^{\mathbf{C}}$	ONSTANT		
	c1	$\lambda \langle c, y \rangle . (c \ \lambda i. (g \ (y \ i)))$	$((\sigma \multimap \sigma) \otimes \sigma) \multimap \sigma$
	c2	$\langle \lambda \langle x, k \rangle . (k \ \lambda i . (x \ (f \ (b \ i)))), \lambda i . i \rangle$	$(\sigma \otimes (\sigma \multimap \sigma)) \multimap \sigma) \otimes \sigma$

The $[\cdot]^{\ell}$ translation of the proof term (\dagger) then is

$$\lambda k.(k \ \lambda i.(g \ (f \ (b \ i))))$$