Logical methods in NLP 2012

Preliminaries

Michael Moortgat

Abstract

Natural languages exhibit dependency patterns that are provably be-
yond the recognizing capacity of context free grammars. In recent re-
search, a family of grammar formalisms has emerged that gracefully deals
with such phenomema beyond context-free and at the same time keeps a
pleasant (polynomial) parsing complexity.

We study some key formalisms in this so-called 'mildly context-sensitive’
family, together with the cognitive interpretation of the kind of depen-
dencies they express. We look at the dependency structures projected by
grammatical derivations.

Background reading. Chapter 2 from Laura Kallmeyer, Parsing Beyond
Context-Free Grammars. Springer, Cognitive Technologies, 2010. Chap-
ters 3 to 6 from Marco Kuhlmann, Dependency Structures and Lexicalized
Grammars. Springer.

More to explore. A standard reference for the general theory is Lewis &
Papadimitriou, Elements of the theory of computation.

http://www.pearsonhighered.com/educator/product/Elements-of-the-Theory-of-Computation/9780132624787.page

1. Formal grammars
A grammar is a tuple (V, 3, R, S) with

» V is an alphabet;
» X a subset of V, a finite set of terminal symbols;
» R a set of rules, a finite subset of V* x V*
we write « — 8
with «, 8 € V* (strings over terminals/non-terminals)

» S an element of V' — 3, the start symbol

Putting restrictions on the form of the production rules leads to a hierarchy of
formal grammars, each with their own expressivity and complexity properties.

Chomsky hierarchy

RCCFCCSCRE

type | language automaton restrictions
3 regular finite state automaton A— w; A— wB
2 | context-free push-down automaton A—r
1 context-sensitive linear bounded automaton «aAB — ayB, v # €
0 recursively enumerable Turing machine a— f

(notation: A, B for nonterminals, w for a string of terminals, «, 8 as before)

Adding fine-structure
R and C'F' have shown to be extremely useful for capturing NL patterns.

» R: speech,phonology, morphology

» CF: the larger part of NL syntax

C'S is too expressive to be informative about the limitations of the language
faculty.

~~ let’s impose a finer granularity to chart the territory between C'F' and CS.

Regular languages, finite state automata

We have characterized grammars for regular languages as a restricted form of
CFG. There is a more natural, direct characterization.

Regular expressions Concatenation, choice, repetition

Eu:=a|l|0|EE|E+E|E"

Deterministic finite state automaton a 5-tuple M = (K, X, 4, qo, F') with

K a finite set of states,

qo € K the initial state,

F C K the set of final states,

32 an alphabet of input symbols,

0, the transition function, is a function from K x X to K.

Non-deterministic: transition relation

Regular patterns: semantic automata

Consider examples of the form ‘all poets dream’, ‘not all politicians can be
trusted’, in general: QAB

A B

To understand the @@ words it suffices to compare
» blue: A— B
» red: ANB

Tree of numbers

A triangle with pairs (n,m), for growing numbers of A:

» n: |A— B
» m: |AN B
Al =0 (0,0)
Al =1 (1,0) (0,1)
|A| =2 (2,0) (1,1) (0,2)
Al =3 (3,0) (2,1) (1,2) (0,3)
|A| =4 (4,0) (3,1) (2,2) (1,3) (0,4)

[Al=5 " (5,0) (4,1) (3,2) (2,3) (1,4) (0,5)

Tree of numbers

A triangle with pairs (n,m), for growing numbers of A:

» n: |A— B
» m: |AN B
Al =0 (0,0)
Al =1 (1,0) (0,1)
|A| =2 (2,0) (1,1) (0,2)
Al =3 (3,0) (2,1) (1,2) (0,3)
|A| =4 (4,0) (3,1) (2,2) (1,3) (0,4)

[Al=5 " (5,0) (4,1) (3,2) (2,3) (1,4) (0,5)

Example: all A B

Patterns: all, no, some, not all

+ +
_____ + _|______
all no
- + + + + —
-+ + + + + + -
-+ + + + + + + + —
-+ + + ++ + + + + + -

some not all

Q words as semantic automata

A @ automaton runs on a string of 0's and 1's: 0 for elements in A — B, 1 for
elements in A N B. Acceptance of a string means that QAB holds.

Example: all A B

(=

Automata: all, no, some, not all

1 0 0 1
-@0——@ ©—
1 0
all no
0 1 1 0
©O—@ -0/
0 1

some not all

Beyond R

How do we know a language is not regular?

Pumpability We say a string w in language L is k-pumpable if there are
strings ug, ..., ur and vy, ..., v satisfying

W = UYVIUIV2UD . . . U] VUL
VIV ...V F~ €

ugviuivhug . . up_jvgu, € L for every i > 0

Theorem Let L be an infinite regular language. Then there are strings z, v,
z such that y # € and xy’z € L for each i > 0 (i.e. 1-pumpability)

Example The language L = {a"b" | n > 0} is not regular. (Compare a*b*)

Context-free grammars
A context-free grammar G is a 4-tuple (V, X, R, S), where

V' is an alphabet,
3 (the set of terminals) is a subset of V,
R (the set of rules) is a finite subset of (V — %) x V*, and

S (the start symbol) is an element of V — X.

The members of V — X are called nonterminals.

Push-down automata
A push-down automaton is a 6-tuple M = (K, 3, T, A, qo, F') with

K a finite set of states,

qo € K the initial state,

F C K the set of final states,
3} an alphabet of input symbols,
I' an alphabet of stack symbols,

A C (K x ¥* xI'™) x (K x I'*) the transition relation.

Acceptance, non-determinism

We say that
((g,u,8),(d,7)) € A

if the machine, in state ¢ with 8 on top of the stack, can read u from the input
tape, replace 3 by v on top of the stack, and enter state ¢'.

When different such transitions are simultaneously applicable, we have a non-
deterministic pda.
A pda accepts a string w € X* iff from the configuration (qo,w, €) there is a

sequence of transitions to a configuration (gf,€,€) (g € F') — a final state
with end of input and empty stack.

PDA example: deterministic

Automaton M for L = {wew® | w € {a,b}*}. Let M = (K, %, T, A, qo, F),
with K = {qo, 1}, 2 = {a,b,c},I' = {a,b}, FF = {q1}, and A consists of the
following transitions:

|_l

- ((q0, a,€), (q0,a))
. ((q0,b,€), (q0,b))
- ((90,¢,€), (q1,¢€))
(
(

N

w

4. (QI;a CL) (q1,€))

(q, b, b) (Q1,€))

o1

Sample run

Run of M on the string lionoil:

K INPUT STACK A
qo lionozil € PUSH
qo tonoil [PUSH
qo onoil il PUSH
Qo noil oil

q oil oil POP
q1 il il POP
q1 l [PoOP

q1 € €

Corresponding CFG

Context-free grammar G with L(G) = {wew® | w € {a,b}*}. Let G =
(V,$, R, S) with

V. = {S,a,b,c}

¥ = {a,b,c}

R = {S—aSa,
S — bSb,

S—c }

PDA: non-deterministic

Automaton M for L = {wwf | w € {a,b}*}. Let M = (K, %, T, A, q, F),
with K = {qo,q1},2 =T = {a,b}, F = {q1}, and A consists of the following
transitions:

1. (qoaa’ 6) (QO,))
- ((q0,b,€),(qo0,b))

(
(
3. ((q0,€:¢€), (a1, €))
(
(

N

4. (QI;a CL) (q1,€))

5. ((q1,0,b),(q1,¢€))
Compare transition (3) with the earlier deterministic example. In state qg, the

machine can make a choice: push the next input symbol on the stack, or jump
to g1 without consuming any input.

Semantic automata: beyond regular

Van Benthem's THEOREM: the 1st order definable) words are precisely the
quantifying expressions recognized by permutation-invariant acyclic finite au-
tomata.

But .. .there are Q words that require stronger computational resources.

Example: most A B here we need a stack memory.

INPUT | STACK
0010111
010111 |0
10111 (00O
0111 |0
111 |00
11 |0
1

Abstract example: 071"

0,¢|0

. 676|$ e
1,0 ¢
. 67$|6

1,0 | €

Compare after reading a 1, a finite automaton would have forgotten how
many 0’s it has seen.

Beyond CFG

CF pumping theorem Let GG be a context-free grammar generating an infinite
language. Then there is a constant k, depending on (G, so that for every string
w in L(G) with |w| > k it holds that w = xviyvaz with

> |vive] > 1
> |viyve| < k

> w = zviyviz € L(G), for every i > 0

This is 2-pumpability.
Example L = {a"b"c" | n > 0} is not context-free.

Example Patterns of the w? type in Dutch/Swiss German (Huijbregts, Shieber):

...dat Jan Marie de kinderen zag leren zwemmen

Mild context-sensitivity

Challenge An emergent thesis underlining the cognitive relevance of the above:
‘Human cognitive capacities are constrained by polynomial time computability’
(Frixione, Minds and Machines; Szymanyk, etc). The challenge then becomes:
Can we step beyond CF without losing the attractive computational properties?

Joshi’s program A set of languages £ is mildly context-sensitive iff

» L contains all CFL

» L recognizes a bounded amount of cross-serial dependencies:
there is n > 2 such that {w* |w € Z*} € L forall k< n

» The languages in £ are polynomially parsable

» The languages in £ have the constant growth property

Constant growth holds for semilinear languages.

Semilinearity

Parikh mapping Let X = {ai,...,an} be an alphabet with some fixed order
on the elements. The Parikh mapping p : X* — N" is defined as follows:

» for all w € X*, p(w) = (Jwlay, .-, |Wan)
where |wl,,; is the number of occurrences of a; in w

» for all L C X*, p(L) = {p(w) | w € L} is the Parikh image of L

Letter equivalence Two words are l.e. if they contain an equal number of
occurrences of each terminal symbol; two languages are l.e. if every string in
one is l.e. to a string in the other and v.v.

Semilinearity A language is semilinear iff l.e. to a regular language.

Parikh’s theorem All context-free languages are semilinear.

Closure properties

The following are useful tools to abstract away from irrelevant details of the
‘linguistic phenomena’.

String homomorphism For two alphabets 31, 39, a function f : ¥ — X3
iff for all v, w € X3: f(vw) = f(v) f(w).

Note that h is determined by its values on single alphabet symbols. Note also
that h is allowed to erase material: for nonempty w, h(w) may be empty.

Closure under homomorphisms given X1, Y9, for every context-free language
L1 over 31 and every homomorphism f : 37 — X3, h(L1) = {h(w) | w € L1}
is a context-free language.

Closure under intersection with regular languages for every context-free lan-
guage L and every regular language R, L N R is a context-free language.

The landscape beyond context-free

Below, from Kallmeyer's book, the hierarchy of mildly context-sensitive for-
malisms and some characteristic patterns.

//////

TAG, LIG, CCG, tree-local MCTAG, EPDA
Ly = {a"b"c" | > 0}, L — {ww| w € {a,b}"}

2-LCFRS, 2-MCFG, simple 2-RCG

3-LCFRS, 3-MCFG, simple 3-RCG
Ly = {afajajalal |n >0}, Ly = {fwww|w e (a.b)y

LCFRS, MCFG, simple RCG, MG, set-local MCTAG,

\ finite-copying LFG
\ / Thread Automata (TA) /
PMCFG
\ Ls = {a®" |n > 0} J
\ / RCG, simple LMG (= PTIME) /

mildly context-sensitive

2. Dependency structures

Marco Kuhlmann, Dependency Structures and Lexicalized Grammars.

Aim to systematically relate expressivity/complexity of grammar formalisms
to structural properties of the dependency graphs induced by the derivations of
these formalisms.

Dependency structures trees with a total order on their nodes. Two relations:
» governance: u < v, u governs v, v depends on u

» precedence: u X v

Visualization

(a) D

Dependency structures and grammars

Classes
» D; projective dependency structures: all yields form an interval

» D; dependency structures of bounded degree: measures number of de-
tached parts

» Dy well-nested dependency structures: non-crossing partitions

Below the classes of dependency structures induced by the derivations of a
number of grammar formalisms.

formalism class

Context-free Grammar Dy
Linear Context-free Rewriting Systems LCFRS(k), also MCFG(k) Dy
Coupled Context-free Grammars CCFG(k) D N Dyn

Tree Adjoining Grammars TAG Do N Dyn,

D, projective dependency structures

K establishes a bijection between D; and the set of all treelet-ordered trees
(each node annotated with a total order on that node and its children).

: o
| ;
1 4 2 4 3 1 5
(a) tree (b) Ds (treelet-order traversal)

TREELET-ORDER-COLLECT (1)

L < NIL
foreach v in order|u]
doif v = u

then L — L - [u]
else L — L-TREELET-ORDER-COLLECT(v)

DT WD =

return L

D; and context-free derivations

A grammar is lexicalized if each rule introduces exactly one terminal (called the
anchor of that rule). Example (for a”b™)

S—aSB|laB ; B-—b

Induced dependency structures Let G be a lexicalized CFG and t € Termy)
a derivation tree. The dependency structure induced by t is the structure
D = (nodes(t), <, <) where

» u < iff u dominates v in t

» u =< v iff u precedes v in [t] (the evaluation of ¢ in the linearization
semantics for G)

Correspondence D(CFG) = D;. Derivations of lexicalized CFGs induce pro-
jective dependency structures.

D:1 enumerative combinatorics

The number of projective dependency structures over n nodes is counted by
integer sequence https://oeis.org/A006013:

1,2,7,30,143,728, 3876,21318,120175, 690690, 4032015, 23841480, . . .
with generating formula

(3n:1)/(”+1)

where (Z) (the binomial coefficient) has initial values (]}) =1 for all n € N and

0
(0) = 0 for integers k > 0; the recursive case for n,k > 0 is

k
W=D+
k) \k—1 k
Working session We try to gain a clearer understanding of the combinatorics

by recasting D in terms of binary trees.

» step 1: encoding general trees as bintrees

» step 2: read off projective linearization from bintrees

https://oeis.org/A006013

From general to binary trees

First child-next sibling binary trees We write n} for the node of the binary
tree b corresponding to node n; of the general tree t. The root of ¢ is mapped

to the root of b; then

» if n; is the leftmost child of ny in ¢, nj is the left child of n} in b

» if n, is the next sibling of ny in ¢, n!, is the right child of n; inb

Example writing [for empty daughters in the binary representation

ANIVAN

Binary trees: semantics

n node binary trees have nice interpretations, including

» Dyck words: well-nested strings of n pairs of parentheses

» Monotonic paths on n X n grid

Binary trees: enumerative combinatorics

The sequence of Catalan numbers C), counts the number of n-node binary
trees:

1 2n 2n 2n
o=) = GG
n+1\n n n+1
This is integer sequence http://oeis.org/A000108:
1,1,2,5,14, 42,132, 429, 1430, 4862, 16796, 58786, . . .

The recurrence below calculates C, 41 in terms of C,:

Co=1 ; Ch1 = ZCiCnfi
i=0

Challenge Find a recurrence relation for the number of n-node projective
dependency structures based on C), ...

http://oeis.org/A000108

Binary trees: projective dependency semantics

Relational pseudocode reading off projective dependency structures from an
n-node binary tree:

lin Tree ListIn ListOut
with initialization ListIn : 0...(n — 1), ListOut : ||

AAAA

O # t1 to O O
ta tb te td

» lint, ¥ (r: 7)<« convex U, select r @ u’, linty u' ¥

» lint, (r:u) (r:7)«linti u ¥

» lint. @'W” (r: UV') < convex U, select r W’ ", lin t; u"” U, lin t2
,l_l// T))/

» lintgrr

Beyond D,
Projectivity and beyond:

» projectivity: every subtree spans an interval
P> gap-degree k: every subtree has at most k gaps (=block degree k + 1)

» well-nestedness: disjoint edges must not overlap

Block/gap degree

(a) D, block-degree 2 (b) D5, block-degree 3

The block-degree of S C A wrt a chain (A; <) is the cardinality of S/ =g.
=g coarsest congruence relation on S: a =g b iff for all ¢ € [a,b], c € S.

Gap degree: block degree minus 1.

Traversal of block-ordered trees

BLOCK-ORDER-COLLECT(u)

1 L + NIL; calls[u] + calls[u] + 1

2 foreach v in order[u][calls[u]]

3 doifv=u

4 then L « L - [u]

5 else L < L-BLOCK-ORDER-COLLECT(v)
6 return L

lllustration (Correct annotation for node 5 to (5) ...)

[§D1:7) Sem— 1
N
(2373) """ 2 | JRE (4)
|
(4,3) 3
(4) 4 1 9 4) 5

(a) tree (b) D5 (block-order traversal)

Segmented dependency structures

Q o o o

G SRR SRS U S 2 j=———= =24 i =g —-

11245 31 2 4n3p 4 LL)
(a) Ds = Dy (b) D4/2 (c) Da/3 (d) Dajd

Definition 4.2.1 Let D = (V' ; <, <) be a dependency structure, and let =
be a congruence relation on D. The segmentation of D by = is the structure
= (V;<4,=,R), where R is a new ternary relation on V defined as follows:

(w,v1,) ER = vy =vy A Yw € [v1,v]. w € |ul.

The elements of the set V/= are called the segments of D'. o

Linearization

For u a node in a segmented dependency structure D, the set of blocks of u is
the set |u]|/ =u.

Definition 4.2.3 Let T be a tree, and let k € N. A linearization of T with k
components is a k-tuple L = (4; | i € [k]) such that @ := 4; - 4}, is a list
of the nodes of T in which each node occurs exactly once. The segmented
dependency structure induced by a linearization L of T is the structure in
which the governance relation is isomorphic to 7', the precedence relation is
isomorphic to %, and the segments are isomorphic to the tuple components
of L. o

Correspondence (compare: treelet-ordered trees and projective D)

» for every segmented D there is exactly one block-ordered tree T" such that
D = dep(T).

» if T is a block-ordered tree in which each node is annotated with at most k
lists, then dep(T) is a segmented dependency structure with block degree
at most k

Dependency structure algebras

tbd

Well-nestedness

D is well-nested if for all edges v1 — v2, w1 — w2 in D it holds that

if v1 — vg, w1 — wo overlap, then v; <w; or wy < vy

lllustration

D1 D2
» D ill-nested: edges 1 — 3 and 4 — 2 disjoint, overlapping;
» D3 well-nested: edges 0 — 4 and 2 — 5 overlap, but 0 <2

Well-nestedness and non-crossing partitions

A dependency structure D is well-nested iff for every node u of D, the set of
constituents of u is non-crossing wrt the chain (|u]; <|y))

A partition IT on a chain (A; <) is non-crossing if whenever there exist a; <
b1 < a2 < b2 in A such that a1, as belong to the same class of II and b1, by
belong to the same class of II, then these two classes coincide.

The set of constituents of a node w in D is {{u} U {|v] | v — v}}.

lllustration Compare the constituents of node 0 in Dy and D>

D1 D2
{{0},{1,3,5},{2,4}} {{0},{1,2,5},{3,4}}

Non-crossing partitions

Partitions induced by the constituents of node 0 in Dy and D>

=R

D1 D2
{{0},{1,3,5},{2,4}} {{0},{1,2,5},{3,4}}

	Formal grammars
	Dependency structures

