
Logical methods in NLP 2012

Preliminaries

Michael Moortgat

Abstract

Natural languages exhibit dependency patterns that are provably be-
yond the recognizing capacity of context free grammars. In recent re-
search, a family of grammar formalisms has emerged that gracefully deals
with such phenomema beyond context-free and at the same time keeps a
pleasant (polynomial) parsing complexity.

We study some key formalisms in this so-called ’mildly context-sensitive’
family, together with the cognitive interpretation of the kind of depen-
dencies they express. We look at the dependency structures projected by
grammatical derivations.

Background reading. Chapter 2 from Laura Kallmeyer, Parsing Beyond
Context-Free Grammars. Springer, Cognitive Technologies, 2010. Chap-
ters 3 to 6 from Marco Kuhlmann, Dependency Structures and Lexicalized
Grammars. Springer.

More to explore. A standard reference for the general theory is Lewis &
Papadimitriou, Elements of the theory of computation.

http://www.pearsonhighered.com/educator/product/Elements-of-the-Theory-of-Computation/9780132624787.page

1. Formal grammars

A grammar is a tuple (V,Σ, R, S) with

I V is an alphabet;

I Σ a subset of V , a finite set of terminal symbols;

I R a set of rules, a finite subset of V ∗ × V ∗

we write α −→ β

with α, β ∈ V ∗ (strings over terminals/non-terminals)

I S an element of V − Σ, the start symbol

Putting restrictions on the form of the production rules leads to a hierarchy of
formal grammars, each with their own expressivity and complexity properties.

Chomsky hierarchy

R ⊂ CF ⊂ CS ⊂ RE

type language automaton restrictions

3 regular finite state automaton A −→ w; A −→ wB

2 context-free push-down automaton A −→ γ

1 context-sensitive linear bounded automaton αAβ −→ αγβ, γ 6= ε

0 recursively enumerable Turing machine α −→ β

(notation: A,B for nonterminals, w for a string of terminals, α, β as before)

Adding fine-structure

R and CF have shown to be extremely useful for capturing NL patterns.

I R: speech,phonology, morphology

I CF : the larger part of NL syntax

CS is too expressive to be informative about the limitations of the language
faculty.

 let’s impose a finer granularity to chart the territory between CF and CS.

Regular languages, finite state automata

We have characterized grammars for regular languages as a restricted form of
CFG. There is a more natural, direct characterization.

Regular expressions Concatenation, choice, repetition

E ::= a | 1 | 0 | EE | E + E | E∗

Deterministic finite state automaton a 5-tuple M = (K,Σ, δ, q0, F) with

K a finite set of states,

q0 ∈ K the initial state,

F ⊆ K the set of final states,

Σ an alphabet of input symbols,

δ, the transition function, is a function from K × Σ to K.

Non-deterministic: transition relation

Regular patterns: semantic automata

Consider examples of the form ‘all poets dream’, ‘not all politicians can be
trusted’, in general: QAB

E

A B

To understand the Q words it suffices to compare

I blue: A−B

I red: A ∩B

Tree of numbers

A triangle with pairs (n,m), for growing numbers of A:

I n : |A−B|

I m : |A ∩B|

|A| = 0 (0, 0)

|A| = 1 (1, 0) (0, 1)

|A| = 2 (2, 0) (1, 1) (0, 2)

|A| = 3 (3, 0) (2, 1) (1, 2) (0, 3)

|A| = 4 (4, 0) (3, 1) (2, 2) (1, 3) (0, 4)

|A| = 5 (5, 0) (4, 1) (3, 2) (2, 3) (1, 4) (0, 5)

.

Tree of numbers

A triangle with pairs (n,m), for growing numbers of A:

I n : |A−B|

I m : |A ∩B|

|A| = 0 (0, 0)

|A| = 1 (1, 0) (0, 1)

|A| = 2 (2, 0) (1, 1) (0, 2)

|A| = 3 (3, 0) (2, 1) (1, 2) (0, 3)

|A| = 4 (4, 0) (3, 1) (2, 2) (1, 3) (0, 4)

|A| = 5 (5, 0) (4, 1) (3, 2) (2, 3) (1, 4) (0, 5)

.

Example: all A B

Patterns: all, no, some, not all

+
− +
− − +
− − − +
− − − − +
− − − − − +

all

+
+ −

+ − −
+ − − −

+ − − − −
+ − − − − −

no

−
− +
− + +
− + + +
− + + + +
− + + + + +

some

−
+ −

+ + −
+ + + −

+ + + + −
+ + + + + −

not all

Q words as semantic automata

A Q automaton runs on a string of 0’s and 1’s: 0 for elements in A−B, 1 for
elements in A ∩B. Acceptance of a string means that QAB holds.

Example: all A B

q0 q1

1

0

0

1

Automata: all, no, some, not all

q0 q1

1

0

0

1

q0 q1

0

1

1

0

all no

q0 q1

0

1

1

0

q0 q1

1

0

0

1

some not all

Beyond R

How do we know a language is not regular?

Pumpability We say a string w in language L is k-pumpable if there are
strings u0, . . . , uk and v1, . . . , vk satisfying

w = u0v1u1v2u2 . . . uk−1vkuk

v1v2 . . . vk 6= ε

u0v
i
1u1v

i
2u2 . . . uk−1v

i
kuk ∈ L for every i ≥ 0

Theorem Let L be an infinite regular language. Then there are strings x, y,
z such that y 6= ε and xyiz ∈ L for each i ≥ 0 (i.e. 1-pumpability)

Example The language L = {anbn | n ≥ 0} is not regular. (Compare a∗b∗)

Context-free grammars

A context-free grammar G is a 4-tuple (V,Σ, R, S), where

V is an alphabet,

Σ (the set of terminals) is a subset of V ,

R (the set of rules) is a finite subset of (V − Σ)× V ∗, and

S (the start symbol) is an element of V − Σ.

The members of V − Σ are called nonterminals.

Push-down automata

A push-down automaton is a 6-tuple M = (K,Σ,Γ,∆, q0, F) with

K a finite set of states,

q0 ∈ K the initial state,

F ⊆ K the set of final states,

Σ an alphabet of input symbols,

Γ an alphabet of stack symbols,

∆ ⊆ (K × Σ∗ × Γ∗)× (K × Γ∗) the transition relation.

Acceptance, non-determinism

We say that
((q, u, β), (q′, γ)) ∈ ∆

if the machine, in state q with β on top of the stack, can read u from the input
tape, replace β by γ on top of the stack, and enter state q′.

When different such transitions are simultaneously applicable, we have a non-
deterministic pda.

A pda accepts a string w ∈ Σ∗ iff from the configuration (q0, w, ε) there is a
sequence of transitions to a configuration (qf , ε, ε) (qf ∈ F) — a final state
with end of input and empty stack.

PDA example: deterministic

Automaton M for L = {wcwR | w ∈ {a, b}∗}. Let M = (K,Σ,Γ,∆, q0, F),
with K = {q0, q1},Σ = {a, b, c},Γ = {a, b}, F = {q1}, and ∆ consists of the
following transitions:

1. ((q0, a, ε), (q0, a))

2. ((q0, b, ε), (q0, b))

3. ((q0, c, ε), (q1, ε))

4. ((q1, a, a), (q1, ε))

5. ((q1, b, b), (q1, ε))

Sample run

Run of M on the string lionoil:

K input stack ∆

q0 lionoil ε push
q0 ionoil l push
q0 onoil il push
q0 noil oil
q1 oil oil pop
q1 il il pop
q1 l l pop
q1 ε ε

Corresponding CFG

Context-free grammar G with L(G) = {wcwR | w ∈ {a, b}∗}. Let G =
(V,Σ, R, S) with

V = {S, a, b, c}
Σ = {a, b, c}
R = { S −→ aSa,

S −→ bSb,
S −→ c }

PDA: non-deterministic

Automaton M for L = {wwR | w ∈ {a, b}∗}. Let M = (K,Σ,Γ,∆, q0, F),
with K = {q0, q1},Σ = Γ = {a, b}, F = {q1}, and ∆ consists of the following
transitions:

1. ((q0, a, ε), (q0, a))

2. ((q0, b, ε), (q0, b))

3. ((q0, ε, ε), (q1, ε))

4. ((q1, a, a), (q1, ε))

5. ((q1, b, b), (q1, ε))

Compare transition (3) with the earlier deterministic example. In state q0, the
machine can make a choice: push the next input symbol on the stack, or jump
to q1 without consuming any input.

Semantic automata: beyond regular

Van Benthem’s theorem: the 1st order definable Q words are precisely the
quantifying expressions recognized by permutation-invariant acyclic finite au-
tomata.

But . . . there are Q words that require stronger computational resources.

Example: most A B here we need a stack memory.

input stack

0 0 1 0 1 1 1
0 1 0 1 1 1 0

1 0 1 1 1 0 0
0 1 1 1 0

1 1 1 0 0
1 1 0

1
.

Abstract example: 0n1n

q0 q1

q2q3

ε, ε | $

0, ε | 0

1, 0 | ε

1, 0 | ε

ε, $ | ε

Compare after reading a 1, a finite automaton would have forgotten how
many 0’s it has seen.

Beyond CFG

CF pumping theorem Let G be a context-free grammar generating an infinite
language. Then there is a constant k, depending on G, so that for every string
w in L(G) with |w| ≥ k it holds that w = xv1yv2z with

I |v1v2| ≥ 1

I |v1yv2| ≤ k

I w = xvi1yv
i
2z ∈ L(G), for every i ≥ 0

This is 2-pumpability.

Example L = {anbncn | n ≥ 0} is not context-free.

Example Patterns of the w2 type in Dutch/Swiss German (Huijbregts, Shieber):

. . . dat Jan Marie de kinderen zag leren zwemmen

Mild context-sensitivity

Challenge An emergent thesis underlining the cognitive relevance of the above:
‘Human cognitive capacities are constrained by polynomial time computability’
(Frixione, Minds and Machines; Szymanyk, etc). The challenge then becomes:
Can we step beyond CF without losing the attractive computational properties?

Joshi’s program A set of languages L is mildly context-sensitive iff

I L contains all CFL

I L recognizes a bounded amount of cross-serial dependencies:

there is n ≥ 2 such that {wk | w ∈ Σ∗} ∈ L for all k ≤ n

I The languages in L are polynomially parsable

I The languages in L have the constant growth property

Constant growth holds for semilinear languages.

Semilinearity

Parikh mapping Let X = {a1, . . . , an} be an alphabet with some fixed order
on the elements. The Parikh mapping p : X∗ −→ Nn is defined as follows:

I for all w ∈ X∗, p(w)
.

= 〈|w|a1 , . . . , |w|an〉

where |w|ai is the number of occurrences of ai in w

I for all L ⊆ X∗, p(L)
.

= {p(w) | w ∈ L} is the Parikh image of L

Letter equivalence Two words are l.e. if they contain an equal number of
occurrences of each terminal symbol; two languages are l.e. if every string in
one is l.e. to a string in the other and v.v.

Semilinearity A language is semilinear iff l.e. to a regular language.

Parikh’s theorem All context-free languages are semilinear.

Closure properties

The following are useful tools to abstract away from irrelevant details of the
‘linguistic phenomena’.

String homomorphism For two alphabets Σ1,Σ2, a function f : Σ∗1 −→ Σ∗2
iff for all v, w ∈ Σ∗1: f(vw) = f(v)f(w).

Note that h is determined by its values on single alphabet symbols. Note also
that h is allowed to erase material: for nonempty w, h(w) may be empty.

Closure under homomorphisms given Σ1,Σ2, for every context-free language
L1 over Σ1 and every homomorphism f : Σ∗1 −→ Σ∗2, h(L1) = {h(w) | w ∈ L1}
is a context-free language.

Closure under intersection with regular languages for every context-free lan-
guage L and every regular language R, L ∩R is a context-free language.

The landscape beyond context-free

Below, from Kallmeyer’s book, the hierarchy of mildly context-sensitive for-
malisms and some characteristic patterns.

2. Dependency structures

Marco Kuhlmann, Dependency Structures and Lexicalized Grammars.

Aim to systematically relate expressivity/complexity of grammar formalisms
to structural properties of the dependency graphs induced by the derivations of
these formalisms.

Dependency structures trees with a total order on their nodes. Two relations:

I governance: uE v, u governs v, v depends on u

I precedence: u � v

Visualization

Dependency structures and grammars

Classes

I D1 projective dependency structures: all yields form an interval

I Dk dependency structures of bounded degree: measures number of de-
tached parts

I Dwn well-nested dependency structures: non-crossing partitions

Below the classes of dependency structures induced by the derivations of a
number of grammar formalisms.

formalism class

Context-free Grammar D1

Linear Context-free Rewriting Systems lcfrs(k), also mcfg(k) Dk
Coupled Context-free Grammars ccfg(k) Dk ∩ Dwn

Tree Adjoining Grammars tag D2 ∩ Dwn

D1 projective dependency structures

K establishes a bijection between D1 and the set of all treelet-ordered trees
(each node annotated with a total order on that node and its children).

D1 and context-free derivations

A grammar is lexicalized if each rule introduces exactly one terminal (called the
anchor of that rule). Example (for anbn)

S −→ a S B | a B ; B −→ b

Induced dependency structures Let G be a lexicalized CFG and t ∈ TermΣ(G)

a derivation tree. The dependency structure induced by t is the structure
D = (nodes(t),E,�) where

I uE v iff u dominates v in t

I u � v iff u precedes v in JtK (the evaluation of t in the linearization
semantics for G)

Correspondence D(CFG) = D1. Derivations of lexicalized CFGs induce pro-
jective dependency structures.

D1 enumerative combinatorics

The number of projective dependency structures over n nodes is counted by
integer sequence https://oeis.org/A006013:

1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480, . . .

with generating formula (3n+ 1

n

)
/(n+ 1)

where
(n
k

)
(the binomial coefficient) has initial values

(n
0

)
= 1 for all n ∈ N and(0

k

)
= 0 for integers k > 0; the recursive case for n, k > 0 is(n

k

)
=
(n− 1

k − 1

)
+
(n− 1

k

)
Working session We try to gain a clearer understanding of the combinatorics
by recasting D1 in terms of binary trees.

I step 1: encoding general trees as bintrees

I step 2: read off projective linearization from bintrees

https://oeis.org/A006013

From general to binary trees

First child-next sibling binary trees We write n′i for the node of the binary
tree b corresponding to node ni of the general tree t. The root of t is mapped
to the root of b; then

I if nl is the leftmost child of nk in t, n′l is the left child of n′k in b

I if ns is the next sibling of nk in t, n′s is the right child of n′k in b

Example writing � for empty daughters in the binary representation

•

••

•

•

�•

•

��

•

��

Binary trees: semantics

n node binary trees have nice interpretations, including

I Dyck words: well-nested strings of n pairs of parentheses

I Monotonic paths on n× n grid

•

•

�•

��

�

()(())

Binary trees: enumerative combinatorics

The sequence of Catalan numbers Cn counts the number of n-node binary
trees:

Cn =
1

n+ 1

(2n

n

)
=

(2n

n

)
−
(2n

n+ 1

)
This is integer sequence http://oeis.org/A000108:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . .

The recurrence below calculates Cn+1 in terms of Cn:

C0 = 1 ; Cn+1 =

n∑
i=0

CiCn−i

Challenge Find a recurrence relation for the number of n-node projective
dependency structures based on Cn . . .

http://oeis.org/A000108

Binary trees: projective dependency semantics

Relational pseudocode reading off projective dependency structures from an
n-node binary tree:

lin Tree ListIn ListOut

with initialization ListIn : 0 . . . (n− 1), ListOut : []

r

�t1

r

t1�

r

t2t1

r

��

ta tb tc td

I lin ta
#»u (r : #»v) ← convex #»u , select r #»u #»u ′, lin t1

#»u ′ #»v

I lin tb (r : #»u) (r : #»v) ← lin t1
#»u #»v

I lin tc
#»u ′ #»u ′′ (r : #»v #»v ′) ← convex #»u ′, select r #»u ′ #»u ′′′, lin t1

#»u ′′′ #»v , lin t2
#»u ′′ #»v ′

I lin td r r

Beyond D1

Projectivity and beyond:

I projectivity: every subtree spans an interval

I gap-degree k: every subtree has at most k gaps (=block degree k + 1)

I well-nestedness: disjoint edges must not overlap

Block/gap degree

The block-degree of S ⊆ A wrt a chain (A;�) is the cardinality of S/ ≡S.

≡S coarsest congruence relation on S: a ≡S b iff for all c ∈ [a, b], c ∈ S.

Gap degree: block degree minus 1.

Traversal of block-ordered trees

Illustration (Correct annotation for node 5 to 〈5〉 . . .)

Segmented dependency structures

Linearization

For u a node in a segmented dependency structure D, the set of blocks of u is
the set buc/ ≡u.

Correspondence (compare: treelet-ordered trees and projective D)

I for every segmented D there is exactly one block-ordered tree T such that
D = dep(T).

I if T is a block-ordered tree in which each node is annotated with at most k
lists, then dep(T) is a segmented dependency structure with block degree
at most k

Dependency structure algebras

tbd

Well-nestedness

D is well-nested if for all edges v1 → v2, w1 → w2 in D it holds that

if v1 → v2, w1 → w2 overlap, then v1 E w1 or w1 E v1

Illustration

D1 D2

I D1 ill-nested: edges 1→ 3 and 4→ 2 disjoint, overlapping;

I D2 well-nested: edges 0→ 4 and 2→ 5 overlap, but 0E 2

Well-nestedness and non-crossing partitions

A dependency structure D is well-nested iff for every node u of D, the set of
constituents of u is non-crossing wrt the chain (buc;�buc)
A partition Π on a chain (A;�) is non-crossing if whenever there exist a1 ≺
b1 ≺ a2 ≺ b2 in A such that a1, a2 belong to the same class of Π and b1, b2

belong to the same class of Π, then these two classes coincide.

The set of constituents of a node u in D is {{u} ∪ {bvc | u→ v}}.

Illustration Compare the constituents of node 0 in D1 and D2

D1 D2

{{0}, {1, 3, 5}, {2, 4}} {{0}, {1, 2, 5}, {3, 4}}

Non-crossing partitions

Partitions induced by the constituents of node 0 in D1 and D2

D1 D2

{{0}, {1, 3, 5}, {2, 4}} {{0}, {1, 2, 5}, {3, 4}}

0

12

3

4 5

0

12

3

4 5

	Formal grammars
	Dependency structures

