MCFGs and D,

Two infinite hierarchies

Gijs Wijnholds & Michiel de Winter

LMNLP, 2012

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

Outline

@ MCFGs
o Grammar
@ Generative Capacity
@ Automaton
@ Lexicalization of MCFG

© Kk-MCFG induces Dy
@ Derivation and String Algebras
@ Linearization and Dependency Semantics
© Block-ordered trees

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

MCFGs

Introduction

@ Multiple Context Free Grammars are like Context Free
Grammars, but they act on tuples of strings.

@ The max. number of tuples acted upon in such a grammar
provides a measure that invokes an infinite hierarchy in the
sense of generative capacity and computational complexity.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

Grammar

Grammar

A Multiple Context Free Grammar is a 6-tuple (N, T, F, P, S, dim)
such that:
@ N is a finite set of non-terminal symbols, and dim assigns a
dimension to every non-terminal,

@ T is a finite set of terminal symbols,
@ F is a finite set of mcf-functions,

@ P is a finite set of production rules of the form
Ao > f[Al, ...,Ak] with k>0
£ (T*)dim(Al) X ... X (T*)dim(Ak) N (T*)dim(Ao) and feF.

@ S e N is a distinguished start symbol such that dim(S) = 1.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

amm

mcf-function

f is a mcf-function if:
o f(X1,....,Xk) = a1f1...an 3, Where aj € T* and Bj a variable
from some x,.

@ Each variable xj; from some vector x,, occurs at most (or
exactly) once in the right hand side (linearity)

Definition

The dimension of a MCFG G is given by the maximal dimension of
the non-terminals, i.e. max(dim(N)). We call a MCFG of
dimension k a k-MCFG.

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

MCFGs
00@000

Grammar

Example & Notation: {a"b"c"d"|n > 1}

5 — fi[A] A= H[A] A~ f3]]

f1[<X7 Y)] = <XY> f2|:<X7 Y)] = <aXba CYd> f?)[] = <ab7 Cd)

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

MCFGs
00@000

Grammar

Example & Notation: {a"b"c"d"|n > 1}

S~ fi[A] A~ h[A] A~ f]
AKX, V) =(XY) &[(X,Y)]=(aXb,cYd) £[] =(ab,cd)
Example run:
S — A[A] = A[L[A]] > A[L[A[]]]

= fi[K[(ab, cd)]] = A1[(aabb, ccdd)] = (aabbccdd).

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

MCFGs
[e]ele] Tole}

Grammar

sRCG notation

In equivalent notation:

S(XY) = A(X,Y)
A(aXb, cYd) - A(X,Y)
A(ab,cd) — ¢

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

MCFGs
[e]ele] Tole}

Grammar

sRCG notation

In equivalent notation:
S(XY) - A(X,Y)
A(aXb,cYd) - A(X,Y)
A(ab,cd) — ¢

Example run:

S(aabbccdd) — A(aabb, ccdd) — A(ab, cd) — e.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

MCFGs
000080

Grammar

String language

Let G=(N,T,F,P,S) be a MCFG.
@ For every Ae N:
@ For every (A— f[]) € P:f[] € yield(A),
@ For every (A— f[Ay,...,Ak]) € P(k>1) and all tuples
T1 € yie/d(Al)...Tk € y/eld(Ak) : f[Tl, ...,Tk] € y/e/d(A)
© Nothing else is in yield(A).

@ The string language of G is L(G) = {w|(w) € yield(S)}.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

Closure Properties

Theorem

For every k, the class of k-MCFLs is closed under:
@ substitution
@ homomorphism and inverse homomorphism
@ union,concatenation and Kleene closure
@ intersection with a regular language

So the class of k-MCFLs forms a substitution closed full Abstract
Family of Languages.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

[Jele}

Generative Capacity

Mild Context Sensitivity

o Every MCFL is semilinear,
@ The (fixed) recognition problem for k-MCFGs is polynomial,

o county ={af...a}|n>0} € (k—1)-MCFL for k odd,
(k - 2)-MCFL o.w.

o cross, = {afby"...,alb7|l, k >0} € k-MCFL,
o copyi = {wk|w e X*} e k-MCFL.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

[Jele}

Generative Capacity

Mild Context Sensitivity

o Every MCFL is semilinear,
@ The (fixed) recognition problem for k-MCFGs is polynomial,

o county ={af...a}|n>0} € (k—1)-MCFL for k odd,
(k - 2)-MCFL o.w.

o cross, = {afby"...,alb7|l, k >0} € k-MCFL,
o copyi = {wk|w e X*} e k-MCFL.

So, mild context-sensitivity?

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

oeo

Generative Capacity

MIX is a MCFL

o M/Xk = {W € {31, ...,ak}||31|w =..= |ak|W}. MIX3 € 2-MCFL
(Salvati 2011). General case: can show with shuffle closure
that MIX, € k-MCFL.

@ This is bad, we do not want completely free word order.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

oeo

Generative Capacity

MIX is a MCFL

o M/Xk = {W € {al, ...,ak}||31|w =..= |ak|W}. MIX3 € 2-MCFL
(Salvati 2011). General case: can show with shuffle closure
that MIX € k-MCFL.

@ This is bad, we do not want completely free word order.

o (Kanazawa, 2009,2010) discusses well-nested MCFG, which
also is capable of describing county, crossy, copyy. It is not
known (but suspected) that MIX is not a well-nested MCFL.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

ooe

Generative Capacity

Beyond MCFL

We saw the definition of k-pumpability for a string, but:

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

MCFGs

ooe

Generative Capacity

Beyond MCFL

We saw the definition of k-pumpability for a string, but:
@ The pumping lemma for k-MCFLs is weak in the sense that it

is existential:
Theorem

(Seki et al. 1991) For any infinite MCFL L, there exists a
2k-pumpable string w € L.

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

MCFGs
ooe

Generative Capacity

Beyond MCFL

We saw the definition of k-pumpability for a string, but:

@ The pumping lemma for k-MCFLs is weak in the sense that it
is existential:

(Seki et al. 1991) For any infinite MCFL L, there exists a
2k-pumpable string w € L.

@ In contrast, the pumping lemma for well-nested MCFL is
universal:

(Kanazawa,2010) For any MCFL,,, L, all but finitely many strings
w € L are 2k-pumpable.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

Automaton

MCFL=OUT(DTWT) (D.J.Weir)

The class of string languages that can be described by MCFGs are
also characterized by Deterministic Tree Walking Transducers:

A DTWT is a 6-tuple (Q, G, A, d, qo, F) where:
@ @ is a finite set of states,
e G=(N,T,S,R)is a CFG without e-rules,
@ A is a finite set of output symbols,
0 0:Qx(NuUT)—> Qx{stay,up} u{d(k)|k>1} x A* is the
transition function,
@ qo is the initial state,
@ F c @ is the set of final states.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

oe

Automaton

A DTWT for {a"b"c"d"|n > 1}

Consider M = ({qo, 1, G2, 93}, G, {a, b, c,d},d,q0,{q3}) where
G=({S,A},{e},S,{S>AA-> A A-e}) and:

6(qo,S) = (qo,d(1),¢) (g2, A) =(g2,d(1),¢)
6(qo,A) = (qo,d(1),a) d(qa,e) = (g3, up,€)
6(qo, e) = (qu, up,e€) 6(q3,S) = (g3, up, €)
6(q1,5) = (q2,d(1),¢) (g3, A) = (g3, up,d)
6(q1,A) = (q1, up, b)

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

oe

Automaton

A DTWT for {a"b"c"d"|n > 1}

Consider M = ({qo, 1, G2, 93}, G, {a, b, c,d},d,q0,{q3}) where
G=({S,A},{e},S,{S>AA-> A A-e}) and:

6(qo,S) = (qo,d(1),¢) (g2, A) =(g2,d(1),¢)
6(qo,A) = (qo,d(1),a) d(qa,e) = (g3, up,€)
6(qo, e) = (qu, up,e€) 6(q3,S) = (g3, up, €)
6(q1,5) = (q2,d(1),¢) (g3, A) = (g3, up,d)
6(q1,A) = (q1, up, b)

Exercise: Draw the derivation tree + traversal for aabbccdd.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

@®0000000
Lexicalization of MCFG

Introduction

Lexicalization is important for our purposes because dependency
structures correspond precisely to lexicalised grammars.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

MCFGs
00000000
Lexicalization of MCFG

Substitution

Given some rule Ag(ag) — Ar(a1)...An(a@;), we substitute Ay by
—

considering all rules A, () — 7 and replacing the variables of ay

in ag by their corresponding chunks in Sy, and replacing Ak(OTk))

by v:

A(X,YZ) - B(X,Y)D(Z)
B(aX,bY) - C(X,Y)

|
A(aX,bYZ) - C(X,Y)D(Z)

This preserves string language and does not affect dimension.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

MCFGs
[e]e] lelelele]e]
Lexicalization of MCFG

Elimination of left-recursion

Given left-recursive rules Ag(ag) — Ao(é_l))...A,,(cT,,) and other
rules Ag(Bp) — =, we eliminate left-recursion by choosing a fresh
non-terminal B with dim(B) = dim(Ao) and for each of the
left-recursive rules:
@ Add the rules B(ag) — A1 (a})...A,(a;)B(31) and
3 — —
Bo(og) = A1(aq)...An(an)
where o = ap/a.
@ Add the rule Ag(5g) - vB(B1) where 3] = Bo + +/1 (variables
inserted).

© Remove the left-recursive rule.

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

MCFGs
[e]e]e] lelele]e]
Lexicalization of MCFG

Example

AXY,Z) - A(X,Z)C(Y)
AX,Y) > D(X,Y)
AX,YZ) - E(X,Y,Z)

U
B'(X,e) » C(X)

B'(XY,Z) - C(Y)B'(X,2)
A(XTy, ToY) > D(X,Y)B'(T1, T»)
AXT1, ToYZ) - E(X,Y,Z)B'(T1, T»)
AX,Y) > D(X,Y)
A(X,YZ) - E(X,Y,Z)

Preserves string language and dimension.

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

MCFGs
[e]e]e]e] Jelele]
Lexicalization of MCFG

Algorithm

On a MCFG G with e ¢ L(G), we lexicalize it by the following
algorithm:
@ Order the clauses, say {Ai,...,An},
@ Ensure (with substitution) that if
Aj(al, ...,am) - Ak(Xl, ...,Xn)’y, Jj <k,
© Eliminate left-recursive clauses Ay — Ax~y, thereby introducing
new clauses B,
@ Lexicalize the clauses, starting with A,_1 and ending with Az,
@ Lexicalize the By clauses,
@ Add a new start clause S'(X) — S(X).
The construction only uses substitution and elimination of
left-recursive rules, and hence preserves both string language and

dimension.
Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

MCFGs
[e]e]e]ele] le]e]
Lexicalization of MCFG

Example

S(XYZ) - A(X,Z)B(Y)
A(X,YZ) » A(X, Y)C(2)
AX,Y) = D(X)E(Y)
B(b) — ¢

C(c)—e

D(d) - ¢

E(e) > ¢

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

MCFGs
[e]e]e]e]e]e] o]
Lexicalization of MCFG

Result

S/(X) - S(X)
S(dYel) » C(U)B(Y)
S(dXYeZ) » B'(X,Z)B(Y)
A(dX,eY) - B'(X,Y)
A(d,e) — ¢

B'(X, Yc) - B'(X,Y)
B'(e,c) > ¢

B(b) — ¢

C(c)—>e

D(d) - ¢

E(e) > ¢

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

MCFGs
[e]e]e]e]e]ele])
Lexicalization of MCFG

Some questions

Q@ A DTWT takes a CFG G and produces a MCFL L using the
derivation trees of G. Is there a relation with dependency
structures? Not trivial, because DTWT just produce string
languages, unknown whether the derivation trees of MCFGs
have a connection with configurations of a DTWT.

@ MIXy is a shuffle language (see Bergland et al. 2011,Salvati
2011). Suspicion: SLc MCFL, SL ¢ MCFL.
SL A RL (shuffle languages intersected with regular languages)
contain county, cross;, MIXy but not copyy. Is there a relation
with MCFL — MCFL,,, and LG?

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy

Introduction

@ MCFGs induce exactly the dependency structures of bounded
degree. More specifically, the dimension k of some MCFG G
corresponds to the maximal block degree of the induced
dependency structure.

@ In the case of CFG, the induction was quite simple: given a
derivation tree t, the induced dependency structure is simply
an ordering of the nodes v in t with respect to the string
position of the anchor produced by v.

@ Here, we will show how to construct a derivation algebra
Ts(c) for a MCFG G, and define linearization and
dependency semantics.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[Jelelele}

Derivation and String Algebras

Derivation Algebra

Definition
Let G=(N,T,F,P,S,dim) be an MCFG. Define X(G) to be the
N-sorted set given by P, where

Types () (A= f[A1, ..., An]) = A1 x ... x Ay > A.

The derivation algebra of G is defined as the term algebra Ty (¢)
over X(G).

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e] lelele}

Derivation and String Algebras

Example

Consider the grammar

S—h[Al A[(X)] = (Xb)

S = R[AB] A[(X),(YZ)] = (XYbZ)
A~ f] f[] = (a)

BohlA] KX (X.b)

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e] le]e}

Derivation and String Algebras

Example
Then £(G) ={
(§->f[A]):A->S
(§—>hH[AB]):AxB—>S
(A () A
(B> f[AB]):AxB - B
(B~ KA]): A~ B

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

k-MCFG induces Dy
[e]e] le]e}

Derivation and String Algebras

Example

Then X(G) = { And 5 HlAB]
(§->nA[A]):A=>S

(§->h[AB]):AxB->S A - f3[] B — f4[A, B]
(A=f[]):A

(B f[AB]):AxB B A=Kl B f[A]
(B f[A]): A B |

}- A—f[]

is the tree representation of some
term in Ts(g).

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

CFG induces Dy

ivat nd String Algebras
String Algebra

Kuhlmann’s way of defining the string language of an MCFG:

Let G=(N,T,F,P,S,dim) be an MCFG. The string algebra for
G is the X(G)-algebra © with:
o dom(©)a = (T*)¥™A) for all Ae N.
@ For each production rule p= A - f[A1, ..., Apn] with
fikx...xkyn— k and body '7:
fo(Qi1, ..., @m) = 7 [xj/cv] for x;; the corresponding variable
for ajj in a;.

@ The string language of G is
L(G) = {_a>|3t € TZ(G),S- : (_a>) € [[tﬂ@}

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e]ee]]

Derivation and String Algebras

Reading off a string

Consider the running example:

S = RK[A, B]

PR

A= K] B — fi[A, B]
/\
A= f[] B-f5[A]

|
A - f3[]

fo[f[], fal B[], 6H[1]]]

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

k-MCFG induces Dy
[e]e]ee]]

Derivation and String Algebras

Reading off a string

Consider the running example:

S = RK[A, B]
A - f3]] B — f[A, B]

RS

A- B[] B-f5[A]

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

k-MCFG induces Dy
[e]e]ee]]

Derivation and String Algebras

Reading off a string

Consider the running example:

A-fl] B f[A B]

A_’fii[] (avb)

f2[f5’>[]7 f4[fs[], <37 b)]]

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e]ee]]

Derivation and String Algebras

Reading off a string

Consider the running example:

A~B[] B~ f[AB]

folf[1, fa[{a), (a, b)]]

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e]ee]]

Derivation and String Algebras

Reading off a string

Consider the running example:
S > RK[A,B]

A— f3[] (aa, bb)

fo[f[1, (aa, bb)]

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e]ee]]

Derivation and String Algebras

Reading off a string

Consider the running example:
S > hK[A, B]

PR
(a) (aa, bb)

f[(a), (aa, bb)]

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e]ee]]

Derivation and String Algebras

Reading off a string

Consider the running example:

(aaabbb)

(aaabbb)

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[Jelelele}

Linearization and Dependency Semantics

Linearization Semantics

@ Kuhlmann first gets rid so-called non-essential concatenation
functions, i.e.:
o e-rules. Example: A(b,¢) — e.
o lll-ordered rules. Example: A(XY) — B(Y)C(X).
@ Kuhlmann does this by relabelling = there are also normal
form algorithms for this (Kallmeyer, §7.2)

Lemma

(Kuhlmann, lemma 6.2.1) For each lexicalized MCFG G, there is
an equivalent lexicalized MCFG G’ such that the derivation trees of
G and G’ are isomorphic modulo relabelling, the string semantics
are equal, and G’ does not contain useless, ill-ordered, or e-rules.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

CFG induces Dy

n and Dependency Semantics

Let G=(N,T,F,P,S,dim) be an MCFG. The linearization
algebra for G is the ¥ (G)-algebra © with:
o dom(©)4 = ((N*)*")¥m(A) for all Ae N.
@ For each production rule p= A — f[A1, ..., Am] with
f ki x ... x kyy — k,anchor a and body 7:
fo(Qi1, ..., im) = 7 [af€][xij/ pfxi(aj)] for Xj the
corresponding variable for cj; in a; and pfx; is the string
homomorphism defined by pfx;(u) =i o u.

@ The linearization language of G is
AN(G) = {U3te Tyg)s: (U)e[tle}.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e] le]e}

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

S = RK[A, B]
A - f3]] B - f,[A, B]

RS

A- B[] B-f5[A]

|
A - f3[]

fo[f[], fal B[], 6H[1]]]

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

k-MCFG induces Dy
[e]e] le]e}

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

S = RK[A, B]
A - f3]] B — f[A, B]

RS

A- B[] B-f5[A]

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

k-MCFG induces Dy
[e]e] le]e}

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

5 - R[A,B]

A - f3]] B — 4] A, B]

/\
A— f3[] (176)

f2[f5’>[]7 f4[fs[], <17€>]]

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e] le]e}

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

A~B[] B~ f[AB]
(e) (l,€)

Rl B[], fal{e), (1,€)]]

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e] le]e}

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

S - R[A, B]

A=B[] (1-21€-2)

folf[],(1-21,€-2)]

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e] le]e}

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:
S > hK[A, B]

() (1-21,¢-2)

f2[(6>7 (1 2L 2)]

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e] le]e}

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

(1-21-221-¢-2-22)

(1.21-221-¢-2-22)

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e]e] lo}

Linearization and Dependency Semantics

Dependency Semantics

Definition
Induced dependency structures Let G be an MCFG and let

t € Tx(g)- The dependency structure induced by ¢ is the
segmented structure D := (nod(t), 4, <, =) with:

@ udv iff u dominates v in t,
e u < v iff u precedes v in [t],

e u=v iff u and v appear in the same component of [t];.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e]e]e]]

Linearization and Dependency Semantics

Computing a dependency structure

Running example:

S - h[A,B]

A - fi[] B — 1] A, B]

A- B[] B-f5[A]

|
A f[]

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy
[e]e]e]e]]

Linearization and Dependency Semantics

Computing a dependency structure

Running example: Dependency structure:

S - h[A,B]

0
A»mm Bl ‘O‘——O\O\

Ae@fsw /9

‘ : : : : : :
Asf[] 1 21 21 & 2 2

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

k-MCFG induces Dy

@00

Block-ordered trees

Block-order collect (again)

BLOCK-ORDER-COLLECT (u)

1 L+ N1 calls[u] < calls[u] + 1

2 foreach v in order[u][calls[u]]

3 doif v=1u

4 then L + L - [u]

5 else L + L-BLock-ORDER-COLLECT(v)

6 return L

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

k-MCFG induces Dy

oeo

Block-ordered trees

Relation to block-ordered trees

@ In the case of block-ordered trees, we go over a node / times,
considering every j-th element of the i-th tuple. This is similar
to the semantics for the j-th variable of the i-th component in
an mcf-function. Hence, we obtain the following result:

Kuhlmann, 6.2.1 Vk e N: D(k-MCFG) = Dy.

Gijs Wijnholds & Michiel de Winter
MCFGs and Dy

k-MCFG induces Dy

ooe

Block-ordered trees

Exercises

@ Give the derivation tree + corresponding dependency
structure for aabbccdd using the (lexicalized version of the)
grammar given for {a"b"c"d"}.

@ Draw all possible dependency structures in D3 with 4 nodes.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dy

	MCFGs
	Grammar
	Generative Capacity
	Automaton
	Lexicalization of MCFG

	k-MCFG induces Dk
	Derivation and String Algebras
	Linearization and Dependency Semantics
	Block-ordered trees

