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Abstract

Lambek’s Syntactic Calculus (1961) is a logic
completely without structural rules: rules af-
fecting multiplicity (contraction, weakening)
or structure (commutativity, associativity) of
the grammatical resources are not considered.
Originally conceived with linguistics in mind,
Lambek’s calculus (both the 61 and the asso-
ciative 58 variant or its modern pregroup in-
carnation) have found many models outside
linguistics: as the logic for composition of in-
formational actions, for example, and in fields
such as mathematical morphology or quantum
physics.

In terms of expressivity, Lambek’s calculi are strictly context-free. The context-
free limitation makes itself felt in situations where syntactic and semantic composi-
tion seem to be out of sync: long distance dependencies in syntax, or the dynamics
of scoping in semantics. In the talk, I discuss the Lambek-Grishin calculus, a sym-
metric generalization of the syntactic calculus allowing multiple conclusions. I show
how its symmetry principles resolve the tension at the syntax-semantics interface.

Background reading: Symmetric categorial grammar. JPL, 38 (6) 681-710.



1. Motivation

Lambek’s syntactic calculus — (N)L, pregroup grammar — is strictly context-free.

Expressive limitations Problematic are discontinuous dependencies: information flow
between detached parts of an utterance

I extraction. Who stole the tarts? vs What did Alice find there?

I infixation. Alice thinks someone is cheating local vs non-local interpretation.
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Lambek’s syntactic calculus — (N)L, pregroup grammar — is strictly context-free.

Expressive limitations Problematic are discontinuous dependencies: information flow
between detached parts of an utterance

I extraction. Who stole the tarts? vs What did Alice find there?

I infixation. Alice thinks someone is cheating local vs non-local interpretation.

Stragegies for reconciling form/meaning

I NL3: controlled structural options, embedding translations; ∼ linear logic !,?

I Lambek-Grishin calculus LG, after Grishin 1983

. symmetry: residuated, Galois connected operations and their duals

. structural rules ; logical distributivity principles

. continuation semantics: relieves the burden on syntactic source calculus



2. Lambek-Grishin calculus: fusion vs fission

Lambek-Grishin calculus NL has ⊗, left and right division \, / forming a residuated
triple. LG adds a dual residuated triple: coproduct ⊕, right and left difference �,;.

A→ C/B ⇔ A⊗B → C ⇔ B → A\C
B ; C → A ⇔ C → B ⊕A ⇔ C �A→ B



2. Lambek-Grishin calculus: fusion vs fission

Lambek-Grishin calculus NL has ⊗, left and right division \, / forming a residuated
triple. LG adds a dual residuated triple: coproduct ⊕, right and left difference �,;.

A→ C/B ⇔ A⊗B → C ⇔ B → A\C
B ; C → A ⇔ C → B ⊕A ⇔ C �A→ B

Interpretation Algebraic (Ono, Buszkowski); Kripke-style relational (Dunn, Kurton-
ina). For the latter: frames (W,R⊗, R⊕), with operations defined on subsets of W .

x 
 A⊗B iff ∃yz.R⊗xyz and y 
 A and z 
 B

y 
 C/B iff ∀xz.(R⊗xyz and z 
 B) implies x 
 C

z 
 A\C iff ∀xy.(R⊗xyz and y 
 A) implies x 
 C

x 
 A⊕B iff ∀yz.R⊕xyz implies (y 
 A or z 
 B)

y 
 C �B iff ∃xz.R⊕xyz and z 6
 B and x 
 C

z 
 A; C iff ∃xy.R⊕xyz and y 6
 A and x 
 C

Note As yet no assumptions about relation between fusion R⊗, fission R⊕.



3. Through the Looking Glass

Two symmetries To the left-right symmetry ·./ of NL, LG adds an arrow reversal
symmetry ·∞. Together with identity and composition: Klein group.

A./
f./
−−→ B./ ⇔ A

f
−−→ B ⇔ B∞

f∞
−−→ A∞

Translation tables

./
C/D A⊗B B ⊕A D ; C

D\C B ⊗A A⊕B C �D
∞

C/B A⊗B A\C
B ; C B ⊕A C �A



3. Through the Looking Glass

Two symmetries To the left-right symmetry ·./ of NL, LG adds an arrow reversal
symmetry ·∞. Together with identity and composition: Klein group.

A./
f./
−−→ B./ ⇔ A

f
−−→ B ⇔ B∞

f∞
−−→ A∞

Translation tables

./
C/D A⊗B B ⊕A D ; C

D\C B ⊗A A⊕B C �D
∞

C/B A⊗B A\C
B ; C B ⊕A C �A

; theorems form quartets — below the (co)unit laws:

B ; (B ⊕A)→ A→ B ⊕ (B ;A) oo // (A⊕B)�B → A→ (A�B)⊕B
OO

∞

��

(A/B)⊗B → A→ (A⊗B)/B
��

OO

B ⊗ (B\A)→ A→ B\(B ⊗A)//
./

oo



4. Distributivity

Interaction fusion, fission Two groups of structure-preserving, linear distributivities.

Option A Recipe: select a ⊗/⊕ factor in the premise; simultaneously introduce the
residual operations for the remaining two in the conclusion. Note: ·./ symmetry.

A⊗B → C ⊕D
C ;A→ D / B

A⊗B → C ⊕D
B �D → A \ C

A⊗B → C ⊕D
C ;B → A \D

A⊗B → C ⊕D
A�D → C / B



4. Distributivity

Interaction fusion, fission Two groups of structure-preserving, linear distributivities.

Option A Recipe: select a ⊗/⊕ factor in the premise; simultaneously introduce the
residual operations for the remaining two in the conclusion. Note: ·./ symmetry.

A⊗B → C ⊕D
C ;A→ D / B

A⊗B → C ⊕D
B �D → A \ C

A⊗B → C ⊕D
C ;B → A \D

A⊗B → C ⊕D
A�D → C / B

Option B Converses of A. Characteristic theorems: (A⊕B)⊗C → A⊕ (B⊗C) etc

Entropy The distributivity rules are non-invertible entropy principles. For the combi-
nation of Option A and B, structure-preservation in fact is lost.



5. The dynamics of information flow

As a deductive system, the arrow calculus is quite unwieldy.

Within the proofs-as-computations tradition, we have two presentations that better
capture the information flow in the composition of utterances.

I display sequent calculus

. MM 2007; with focusing Bastenhof 2010

. flow: continuation-passing-style

I graphical calculus: nets

. Moot 2007, after Moot and Puite 2002

. net assembly: ’exploded parts’ diagram

Below, we’ll use nets to illustrate how LG captures syntactic dependencies beyong CF,
and display derivations for continuation-passing in meaning assembly.



Exploded Parts-SG Gas Models  

L20-221 Rev 4  (06/06) 51

Pump Assembly Pre 3/04 Drawing L1



6. Graphical calculus: LG proof nets

I Basic building blocks: links.

. type: tensor, cotensor

. premises P1, . . . , Pn, conclusions C1, . . . , Cm, 0 ≤ n,m

. Main formula: empty or one of the Pi, Cj
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6. Graphical calculus: LG proof nets

I Basic building blocks: links.

. type: tensor, cotensor

. premises P1, . . . , Pn, conclusions C1, . . . , Cm, 0 ≤ n,m

. Main formula: empty or one of the Pi, Cj

I Proof structure. Set of links over finite set of frm’s s.t. every frm is at most once
premise and at most once conclusion of a link.

. hypotheses: ¬ conclusion of any link

. conclusions: ¬ premise of any link

. axioms: ¬ main formula of any link

I Abstract proof structure: PS with formulas at internal nodes erased.

I Rewriting: logical and structural conversions ; next slides

I Proof net: APS converting to a tensor tree (possibly unrooted)



7. Binary links, contractions: tensor
Links
NL!

A / B B

A

A / B B

A A B

A⊗ B

A B

A⊗ B

A A \ B

B

A A \ B

B

!A

A

A

"A!A

A

A

"A

Richard Moot Proof Nets For LG

Contractions
Binary Residuated

!
C

! !H

!

!
C

! !

!H

!
C

!H !

!

[R\] [L⊗] [R/]

Richard Moot Proof Nets For LG



8. Binary links, contractions: tensor∞Links
LG

A B

A ⊕ B

A " B B

A

A A ! B

BA B

A ⊕ B

A " B B

A

A A ! B

B

Richard Moot Proof Nets For LG

Contractions
Binary Dual Residuated

!H

!

! !
C

! !

!H

!

!
C

!H

!
C

!

!

[L!] [R⊕] [L"]

Richard Moot Proof Nets For LG



9. Structural rewriting

Example Two of Grishin’s distributivity laws.

Structural Rules
Examples: Grishin

!
X

!

!V

!W

!
Y

←Gr1

!
X

!
Y

!V !W

!
!
X

!W

!V

!
Y

!→Gr2

Richard Moot Proof Nets For LG

X ·; · V → Y · / ·W Gr1⇐ V · ⊗ ·W → X · ⊕ · Y Gr2⇒ X ·; ·W → V · \ · Y



10. Beyond context-free

The original Lambek calculus (N)L is strictly context-free, whereas natural languages
exhibit patterns beyond CF. Below some examples from formal language theory.

I squares: {w2 | w ∈ {a, b}+}

I counting dependencies: {anbncn | n > 0}

I crossed dependencies: {anbmcndm | n,m > 0}
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10. Beyond context-free

The original Lambek calculus (N)L is strictly context-free, whereas natural languages
exhibit patterns beyond CF. Below some examples from formal language theory.

I squares: {w2 | w ∈ {a, b}+}

I counting dependencies: {anbncn | n > 0}

I crossed dependencies: {anbmcndm | n,m > 0}

Mildly context-sensitive formalisms The above patterns are recognized by a family
of grammar formalisms, the so-called ‘mildly context-sensitive’ family. MCS formalisms
include the following. They recognize the same languages.

I (L)TAG: (Lexicalized) Tree Adjoining Grammars (Joshi)

I LIG: Linear Indexed Grammars (Gazdar)

I CCG: Combinatory Categorial Grammars (Steedman)

Moot 2007 shows that LTAG can be straightforwardly translated in LG.
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(L)TAG is a rewrite system for trees (rather than strings). Σ (vocabulary) and N
(non-terminals) as in CFG.
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11. (L)TAG

(L)TAG is a rewrite system for trees (rather than strings). Σ (vocabulary) and N
(non-terminals) as in CFG.

Elementary trees These are either:

I initial trees: internal nodes ∈ N , leafs from (Σ ∪N);

I auxiliary trees: internal nodes ∈ N , leafs from (Σ ∪ N) one of which (the foot
node, marked ∗) labeled with the same non-terminal as the root of the aux tree

In an LTAG (Lexicalized TAG), every elementary tree has at least one element from Σ
in its yield: the lexical anchor.

Operations Elementary trees are combined by two operations:

I substitution: replace a leaf (6= α∗) by an initial tree with the same label

I adjunction: expand an internal node α with an auxiliary tree with root/foot
labeled α



12. Counting dependencies: LTAG and LG

{anbncn | n > 0}

LTAG Auxiliary tree on the right; adjunction node (T ).

A

a

;

C

c

;

S

C(T )

bA

;

T

C(T )

T

bT ∗

A



12. Counting dependencies: LTAG and LG

{anbncn | n > 0}

LTAG Auxiliary tree on the right; adjunction node (T ).

A

a

;

C

c

;

S

C(T )

bA

;

T

C(T )

T

bT ∗

A

LG Type assignments with T̂ such that T̂ → T but not v.v. a :: A, c :: C and

b :: A\((T � (S/C)) ; T̂ ) ; b :: T̂\(A\((T � (T/C)) ; T̂ ))



13. Deriving aabbcc: the auxiliary formula

Step 1 For n > 1, we use n−1 times the auxiliary formula b :: t̂\(a\((t�(t/c)); t̂)).

The nth use (no further adjunction) is internally connected, and contracts.

·b ·c

· · t

·t̂ · ·

·a ·̂t ·t
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13. Deriving aabbcc: the auxiliary formula

Step 1 For n > 1, we use n−1 times the auxiliary formula b :: t̂\(a\((t�(t/c)); t̂)).

The nth use (no further adjunction) is internally connected, and contracts.

·b ·c

· · t

·t̂ · ·

·a ·̂t ·t

·

After contraction:

·b ·c

· · t

·t̂ ·

·a



14. Deriving aabbcc: adjunction

Step 2 To obtain aabbcc, take the contracted auxiliary graph of the previous slide
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·b ·c

· · t

·t̂ ·

·a
·c

·b · s

· ·
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15. Deriving aabbcc: adjunction

Step 2 To obtain aabbcc, take the contracted auxiliary graph of the previous slide

·b ·c

· · t

·t̂ ·

·a
·c

·b · s

· ·

·a ·̂t ·t

·

and adjoin into the initial graph for b :: a\((t� (s/c)) ; t̂)



16. Deriving aabbcc: distribution

Step 3 In the rectangle is the input configuration for distribution. You can slide the
rightmost tensor link to the matching cotensor link across the highlighted path. The
graph then contracts to its final form: a tree.

·b ·c

· ·

· · ·

·

·

·a

·b

·c

· s

·a



16. Deriving aabbcc: distribution

Step 3 In the rectangle is the input configuration for distribution. You can slide the
rightmost tensor link to the matching cotensor link across the highlighted path. The
graph then contracts to its final form: a tree.

·b ·c

· ·

· · ·

·

·

·a

·b

·c

· s

·a

·b ·c

· ·

· ·

·

·a

·b

·c

· s

·a 2



17. Beyond TAG cs

MIX has an equal number of a, b, c, in any order. Its recognition is beyond TAG.

{w ∈ {a, b, c}+ | |w|a = |w|b = |w|c}

LG Below an LG lexicon. Each entry abbreviates two type assignments: φ = s for
an occurrence of the letter as the final item of the word, φ = s/s otherwise.

a :: a; φ
b :: φ� (s; (a; (s� c)))
c :: φ� c

Idea: after distribution, antecedent s/s, . . . , s/s, s reducing to s which expands to
context-free an s (ψ c)n, where ψ = s; (a; (s� c)).
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MIX has an equal number of a, b, c, in any order. Its recognition is beyond TAG.

{w ∈ {a, b, c}+ | |w|a = |w|b = |w|c}

LG Below an LG lexicon. Each entry abbreviates two type assignments: φ = s for
an occurrence of the letter as the final item of the word, φ = s/s otherwise.

a :: a; φ
b :: φ� (s; (a; (s� c)))
c :: φ� c

Idea: after distribution, antecedent s/s, . . . , s/s, s reducing to s which expands to
context-free an s (ψ c)n, where ψ = s; (a; (s� c)).

Generalization (Melissen 2009) All languages which are the intersection of a context-
free language and the permutation closure of a context-free language are recognizable
in LG. (E.g. for k = |Σ|, k-MIX, counting dependencies an1 . . . a

n
k).

Open question Upper bound LG recognition?



18. Connections for MIX

Below the partial nets for a :: a; s, c :: (s/s)� c, and b :: (s/s)� (s; (a; (s� c)))
Connections producing the string bca.

·

·

·

a

a

s

·

·

·

·

·

c

c

s

s

·

·

·

· ·

·

·

·

·

·

·

b

s

s s

c

a

s



18. Connections for MIX

Below the partial nets for a :: a; s, c :: (s/s)� c, and b :: (s/s)� (s; (a; (s� c)))
Connections producing the string bca. The input for distribution is highlighted.

·

·

a

s

·

·

·

·

c

s

s

·

·

·

· ·

·

·

·

·

·

·

b

s

s s

c

a

s



19. Continuation semantics for LG

Bernardi & MM 2007, 2010, after Curien/Herbelin; Bastenhof 2010, after Andreoli.
The program schematically:

LGA
d·e
−−−−→ LP

A∪{⊥}
×,·⊥

V·W
−−−−→ IL{e,t}

Two-step interpretation

I d·e : double-negation/continuation-passing-style translation

. maps multiple conclusion source logic to single conclusion linear logic/LP

. response type ⊥, linear products, negation A⊥ , A→⊥



19. Continuation semantics for LG

Bernardi & MM 2007, 2010, after Curien/Herbelin; Bastenhof 2010, after Andreoli.
The program schematically:

LGA
d·e
−−−−→ LP

A∪{⊥}
×,·⊥

V·W
−−−−→ IL{e,t}

Two-step interpretation

I d·e : double-negation/continuation-passing-style translation

. maps multiple conclusion source logic to single conclusion linear logic/LP

. response type ⊥, linear products, negation A⊥ , A→⊥

I V·W : combining lexical with derivational semantics

. atomic types: VnpW = e, VsW = V⊥W = t

. terms: possible nonlinearity restricted to constants;

V(M N)W = (VMW VNW) ; Vλx.MW = λx̃.VMW



20. LG display sequent calculus

Unfocused sequents statements X ` Y , with X (Y ) input (output) structures.

I ::= x :A | I · ⊗ · I | I · � · O | O ·; · I
O ::= α :A | O · ⊕ · O | I · \ · O | O · / · I
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20. LG display sequent calculus

Unfocused sequents statements X ` Y , with X (Y ) input (output) structures.

I ::= x :A | I · ⊗ · I | I · � · O | O ·; · I
O ::= α :A | O · ⊕ · O | I · \ · O | O · / · I

Focus For the mapping to LP, we now allow at most one formula to be unlabeled;
this formula is said to be in focus.

I the focus formula determines the type of the LP target term

I three types of sequents:

. X ` Y , no formula in focus: domain of application of structural rules

. A ` Y , focus left

. X ` B, focus right

We first adjust the LG inference rules for the focus information. Then we impose the
restrictions on the choice of the focus formula that lead to normal proofs.
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x : p ` p
X ` A A ` Y

X ` Y Cut
p ` α : p
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21. Focus-sensitive rules

Axioms, cut

x : p ` p
X ` A A ` Y

X ` Y Cut
p ` α : p

Rewrite rules Composing a passive formula from passive subformulas. Examples:

X ` x : A · \ · β : B

X ` γ : A\B
\R

x : A · � · β : B ` Y
z : A�B ` Y

�L

Monotonicity rules Focus propagates from conclusion to premises. Examples:

X ` A B ` Y
A\B ` X · \ · Y

\L X ` A B ` Y
X · � · Y ` A�B

�R



22. (De)focusing

To connect the different stages of a proof, we need rules for (de)focusing a formula.

A ` Y
x : A ` Y

µ̃∗
X ` A

X ` α : A
µ∗

x : A ` Y
A ` Y

µ̃
X ` α : A

X ` A
µ



22. (De)focusing

To connect the different stages of a proof, we need rules for (de)focusing a formula.

A ` Y
x : A ` Y

µ̃∗
X ` A

X ` α : A
µ∗

x : A ` Y
A ` Y

µ̃
X ` α : A

X ` A
µ

In the presence of µ(∗)/µ̃(∗) one can do with one axiom schema. For example:

p ` α : p
?

;

x : p ` p
x : p ` α : p

µ∗

p ` α : p
µ̃



23. Sample derivation

In the following derivation, the focus formula is highlighted.

ny ` n np ` npβ

np/n ` npβ · / · ny
/L

(np/n)x ` npβ · / · ny
µ̃∗

(np/n)x · ⊗ · ny ` npβ
r

(np/n)x · ⊗ · ny ` np
µ

s ` sα

np\s ` ((np/n)x · ⊗ · ny) · \ · sα
\L

(np\s)z ` ((np/n)x · ⊗ · ny) · \ · sα
µ̃∗

((np/n)x · ⊗ · ny) · ⊗ · (np\s)z ` sα
r

((np/n)x · ⊗ · ny) · ⊗ · (np\s)z ` s
µ

As long as the choice of the focus formula is free, there is another derivation, that first
focuses on np/n . . . the spurious ambiguity problem.



24. Restricting (de)focusing

Complementary to the distinction between input/output structures, we distinguish
input (negative) and output (positive) formulas:

(negative) If ::= A⊕B | A\B | B/A

(positive) Of ::= A⊗B | A�B | B ;A

I If (negative): monotonicity rule is sequent (L) rule

I Of (positive): monotonicity rule is sequent (R) rule



24. Restricting (de)focusing

Complementary to the distinction between input/output structures, we distinguish
input (negative) and output (positive) formulas:

(negative) If ::= A⊕B | A\B | B/A

(positive) Of ::= A⊗B | A�B | B ;A

I If (negative): monotonicity rule is sequent (L) rule

I Of (positive): monotonicity rule is sequent (R) rule

Conditions on (de)focusing µ, µ̃∗: provided A ∈ If ; µ̃, µ∗: provided A ∈ Of ∪A.

A ` Y
x : A ` Y

µ̃∗
X ` A

X ` α : A
µ∗

x : A ` Y
A ` Y

µ̃
X ` α : A

X ` A
µ



25. Pruning effect

The derivation on the right violates the formula restriction on the (µ) rule: np 6∈ If .

·n· ` n

·np· ` np

·s· ` s
·s· ` ·s·

µ∗

s ` ·s·
µ̃

np\s ` np · \ · s
\L

·(np\s)· ` np · \ · s
µ̃∗

np · ⊗ · (np\s) ` ·s·
r

·np· ` s · / · (np\s)
r

np ` s · / · (np\s)
µ̃

np/n ` (s · / · (np\s)) · / · n
/L

·(np/n)· ` (s · / · (np\s)) · / · n
µ̃∗

(np/n) · ⊗ · n ` s · / · (np\s)
r

((np/n) · ⊗ · n) · ⊗ · (np\s) ` ·s·
r

 

(np/n) · ⊗ · n ` np
µ

·s· ` s
·s· ` ·s·

µ∗

s ` ·s·
µ̃

np\s ` ((np/n) · ⊗ · n) · \ · s
\L

·(np\s)· ` ((np/n) · ⊗ · n) · \ · s
µ̃∗

((np/n) · ⊗ · n) · ⊗ · (np\s) ` ·s·
r

Remark L∗ allows the derivation on the right, and breaks off the one on the left.



26. Focus shifting

We compile a branch from (µ̃∗) via a sequence (possibly empty) of structural rules and
rewrite rules to (µ) in a derived inference rule with the µ̃∗ restrictions on A and the µ
restrictions on B.

A ` Y
x : A ` Y

µ̃∗

...

(res, distr , rewrite)
...

X ` β : B

X ` B
µ

;

A ` Y
X ` B

�



26. Focus shifting

We compile a branch from (µ̃∗) via a sequence (possibly empty) of structural rules and
rewrite rules to (µ) in a derived inference rule with the µ̃∗ restrictions on A and the µ
restrictions on B.

A ` Y
x : A ` Y

µ̃∗

...

(res, distr , rewrite)
...

X ` β : B

X ` B
µ

;

A ` Y
X ` B

�

For the four combinations of µ∗, µ̃∗ and µ, µ̃, this results in the following rules.

A ` Y
X ` B

�
X ′ ` A
X ` B

⇀⇁
X ` A
B ` Y



A ` Y ′
B ` Y

↼↽

Remark For the endsequent, we can relax the formula restriction on B.



27. Sample derivation: focus shifting

Compare the verbose derivation of the left with the result of compiling away the display
equivalences.

·n· ` n

·np· ` np

·s· ` s
·s· ` ·s·

µ∗

s ` ·s·
µ̃

np\s ` np · \ · s
\L

·(np\s)· ` np · \ · s
µ̃∗

np · ⊗ · (np\s) ` ·s·
r

·np· ` s · / · (np\s)
r

np ` s · / · (np\s)
µ̃

np/n ` (s · / · (np\s)) · / · n
/L

·(np/n)· ` (s · / · (np\s)) · / · n
µ̃∗

(np/n) · ⊗ · n ` s · / · (np\s)
r

((np/n) · ⊗ · n) · ⊗ · (np\s) ` ·s·
r

((np/n) · ⊗ · n) · ⊗ · (np\s) ` s
µ

· n · ` n

· np · ` np

· s · ` s

s ` · s ·



np\s ` np · \ · s
\L

np ` s · / · np\s
↼↽

np/n ` (s · / · np\s) · / · n
/L

(np/n · ⊗ · n) · ⊗ · np\s ` s
�



28. From normal LG proofs to LP terms

For normal LG derivations, we have the following term construction rules:

I monotonicity rules: linear pairs 〈M,N〉

I rewrite rules: case ξ of 〈φ, ψ〉 in M

I µ̃∗, µ∗: linear application (x M), (α M)

I µ̃, µ: linear abstraction λx.M , λα.M



28. From normal LG proofs to LP terms

For normal LG derivations, we have the following term construction rules:

I monotonicity rules: linear pairs 〈M,N〉

I rewrite rules: case ξ of 〈φ, ψ〉 in M

I µ̃∗, µ∗: linear application (x M), (α M)

I µ̃, µ: linear abstraction λx.M , λα.M

X ` A B ` Y
A\B ` X · \ · Y

\L
X ` x : A · \ · β : B

X ` γ : A\B
\R

d\Le = 〈M,N〉 d\Re = case γ of 〈x, β〉 in M

A ` Y
x : A ` Y

µ̃∗ dµ̃∗e = (x M)
X ` A

X ` α : A
µ∗ dµ∗e = (α M)

x : A ` Y
A ` Y

µ̃ dµ̃e = λx.M
X ` α : A

X ` A
µ dµe = λα.M



29. Computing the proof term

We calculate the LP proof term for our example.

· n · ` n

· np · ` np

· s · ` s

s ` · s ·



np\s ` np · \ · s
\L

np ` s · / · np\s
↼↽

np/n ` (s · / · np\s) · / · n
/L

((np/n)x · ⊗ · ny) · ⊗ · (np\s)z ` s
�

/ y

/ v

/ u

/λu.(α u)



/〈v, λu.(α u)〉
\L

/λv.(z 〈v, λu.(α u)〉)
↼↽

/〈y, λv.(z 〈v, λu.(α u)〉)〉
/L

/λα.(x 〈y, λv.(z 〈v, λu.(α u)〉)〉)
�



29. Computing the proof term

We calculate the LP proof term for our example.

· n · ` n

· np · ` np

· s · ` s

s ` · s ·



np\s ` np · \ · s
\L

np ` s · / · np\s
↼↽

np/n ` (s · / · np\s) · / · n
/L

((np/n)x · ⊗ · ny) · ⊗ · (np\s)z ` s
�

/ y

/ v

/ u

/λu.(α u)



/〈v, λu.(α u)〉
\L

/λv.(z 〈v, λu.(α u)〉)
↼↽

/〈y, λv.(z 〈v, λu.(α u)〉)〉
/L

/λα.(x 〈y, λv.(z 〈v, λu.(α u)〉)〉)
�

The final result can be simplified by η conversion, and by applying some canonical
isomorphisms to get rid of the pairs:

A×B → C −→curry A→ B → C −→swap B → A→ C

λα.(x 〈y, λv.(z 〈v, λu.(α u)〉)〉) −→η,swap◦curry λα.(x (z α) y)



30. Lexical insertion

Typing the proof term Here is what the LP typing rules for λα.(xsome (zleft α) ystudent)
tell us about d·e.

some : dnp/ne = dnpe⊥ → dne⊥
student : dne = dne

left : dnp\se = dse⊥ → dnpe⊥

Lexical insertion The second stage of the interpretation is the substitution of lexical
terms for the parameters (variables that remain unbound) of the LP proof term.

Here are translations respecting d·e, assuming V⊥W = VsW = t, VnpW = e, and
VnW = e→ t and nonlogical constants student,left with the indicated type.

V·W :
some 7→ λPλQ.(∃ λx.((Q x) ∧ (P x)))

student 7→ studente→t

left 7→ λcλx.(c (lefte→t x))

Vλα.(xsome (zleft α) ystudent)W = λc.(∃λx.((student x) ∧ (c (left x))))

Remark c of type Vdse⊥W = t→ t, i.e. abstraction over a sentence continuation.



31. Illustration: quantifier scope

The 2-QP sentence below allows for two focused LG proofs.

((np/n)every · ⊗ · nteacher) · ⊗ · (((np\s)/np)likes · ⊗ · ((np/n)some · ⊗ · nstudent)) ` s

M1 : λα @

VteacherW

λxy @

VstudentW

λyy @

x

y
α

VlikesW

VsomeW

VeveryW

With VlikesW = λcλyλx.(c (likese→e→t y x)), we obtain the familiar surface (M1)
and inverted (M2) reading.



31. Illustration: quantifier scope

The 2-QP sentence below allows for two focused LG proofs.

((np/n)every · ⊗ · nteacher) · ⊗ · (((np\s)/np)likes · ⊗ · ((np/n)some · ⊗ · nstudent)) ` s

M2 : λα @

VstudentW

λy @

VteacherW

λxy @

x

y
α

VlikesW

VeveryW

VsomeW

With VlikesW = λcλyλx.(c (likese→e→t y x)), we obtain the familiar surface (M1)
and inverted (M2) reading.



32. Conclusions

The symmetric Lambek-Grishin calculus offers powerful tools to tackle the expressive
limitations of the original Lambek calculi:

I Form

. logical distributivity laws relating dual families

. natural analysis for non-CF patterns

I Meaning

. continuation semantics for multiple-conclusion source calculus

. optimizes division of labour between syntax and semantics

More to explore Categorial type logics. Chapter update. Handbook of Logic and
Language, 2nd edition. Elsevier, 2011.
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