Lambek Grammars, Tree Adjoining Grammars and Hyperedge Replacement Grammars, Moot (2008)

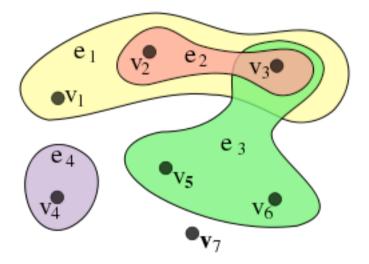
René van Gasteren LMNLP

Goal

Show that both $NL\lozenge_R$ and LG generate the same class of languages as TAGs, using hyperedge replacement grammars as an intermediate step.

Hypergraphs

A hypergraph generalises the notion of graph by allowing the edges, called hyperedges, to connect not just two but any number of nodes.



Definition hypergraphs

Definition 2.1 Let Γ be an alphabet of edge labels and let σ be an alphabet of selectors. A hypergraph over Γ and σ is a tuple $\langle V, E, lab, nod, ext \rangle$, where

V is the finite set of vertices,

E is the finite set of hyperedges disjoint with V,

lab is the labeling function, from E to Γ , assigning an edge label to each hyperedge,

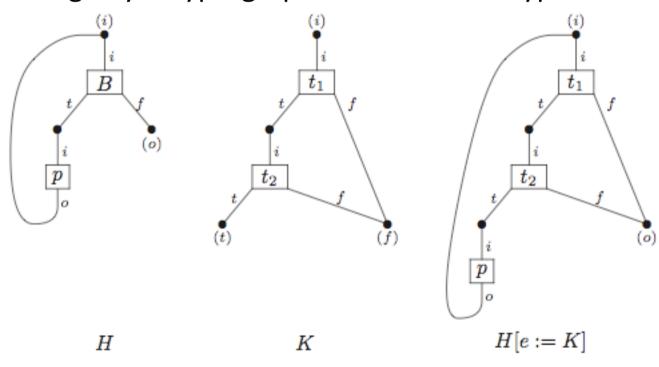
nod is the incidence function that associates with each edge $e \in E$ a partial function $nod(e) : \sigma \rightarrow V$, that is, it selects a vertex for every selector σ of the edge.

ext is the external function, a partial function from σ to V, that is, for every selector σ of the hypergraph it select a vertex.

Definition 2.2 The type of a hypergraph H is the domain of the external function, type(H) = dom(ext). The type of an edge e is the domain of the incidence function type(e) = dom(nod(e)).

Hyperedge Replacement

The operation of hyperedge replacement replaces a hyperedge by a hypergraph H of the same type



Definition Hyperedge Replacement

Definition 2.4 Let H and K be two disjoint hypergraphs with the same set of edge labels Γ and the same set of selectors σ . Let e be an edge of H such that type(e) = type(K). The hyperedge replacement of e by G, $H[e := G] = \langle V, E, lab, nod, ext \rangle$ is defined as follows.

$$V = V_H \cup V_K$$

 $E = (E_H - e) \cup E_k$
 $lab = lab_H \cup lab_K$ restricted to the members of E .
 $nod = nod_H \cup nod_K$ restricted to the members of E .
 $ext = ext_H$
For all $s \in type(e)$, $nod_H(e, s) = ext_K(s)$.

Definition 2.6 A hyperedge replacement grammar (or HR grammar) is a tuple $G = \langle N, T, \sigma, P, S \rangle$ such that.

N is the alphabet of nonterminal edge labels.

T is the disjoint alphabet of terminal edge labels.

 σ is the alphabet of selectors.

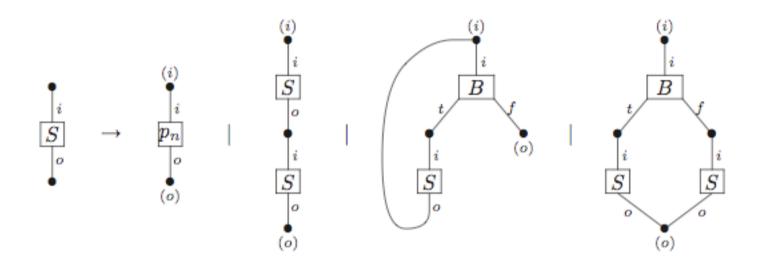
P is the finite set of productions.

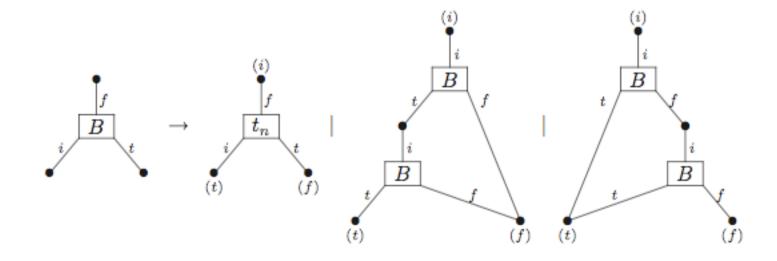
 $S \in N$ is the start nonterminal symbol.

Definition 2.9 Let G be a hyperedge replacement grammar. The language generate by G is the set of hypergraphs without hyperedges labeled by nonterminal edge labels derivable from S.

Definition 2.10 The rank of a terminal or nonterminal symbol is the number of its tentacles.

The rank of a hyperedge replacement grammar is the maximum rank of a nonterminal symbol in the grammar.

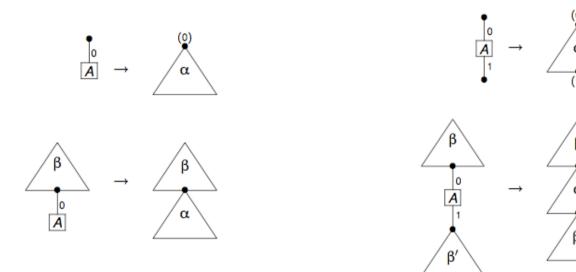




Tree Adjoining Grammars as HR Grammars

Tree Adjoining Grammars can be see as a special case of hyperedge replacement grammars where:

- every non-terminal hyperedge label has at most two tentacles, that is, the rank of the grammar is (at most) two.
- every right-hand side of a HR rule is either: a tree with the root as its sole external node. a tree with a root and a leaf as its external nodes.



Tree Adjoining Grammars as HR Grammars

Moot in a presentation:

"Tree Adjoining Grammars can be seen as a special case of hyperedge replacement grammars."

Moot in his paper:

"HR₂ grammars generating trees and TAG grammars are strongly equivalent."

Question: Is this the same?

LTAG in normal form

An LTAG_{nf} grammar G is an LTAG satisfying the following additional conditions:

- all internal nodes of elementary trees have exactly two daughters,
- every adjunction node either specifies the null adjunction or the obligatory adjunction con- straint without any selectional restrictions,
- every adjunction node is on the path from the lexical anchor to the root of the tree.

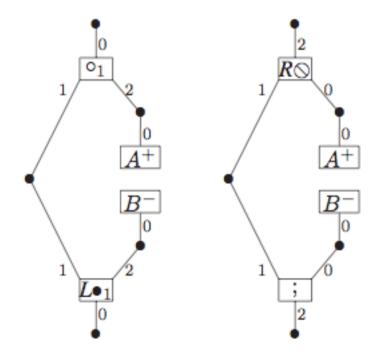
For every LTAG grammar G there is a weakly equivalent LTAG' grammar G'

LTAG_{nf} as proof nets for $NL\Diamond_R$

If G is an LTAG_{nf} grammar, then there exists a strongly equivalent $NL\lozenge_R$ grammar G' and a strongly equivalent LG grammar G'' tree.

Proof sketch

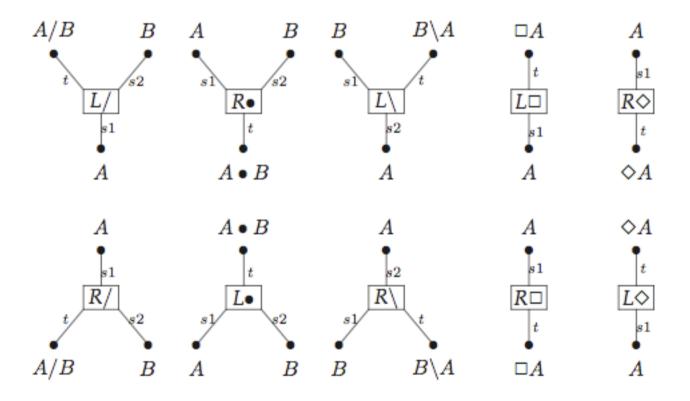
For each lexical tree t of G we construct a lexical tree t' in G' and a lexical tree t" in G", translating every adjunction point by the left hand side of the figure for G' and by its right hand side for G"

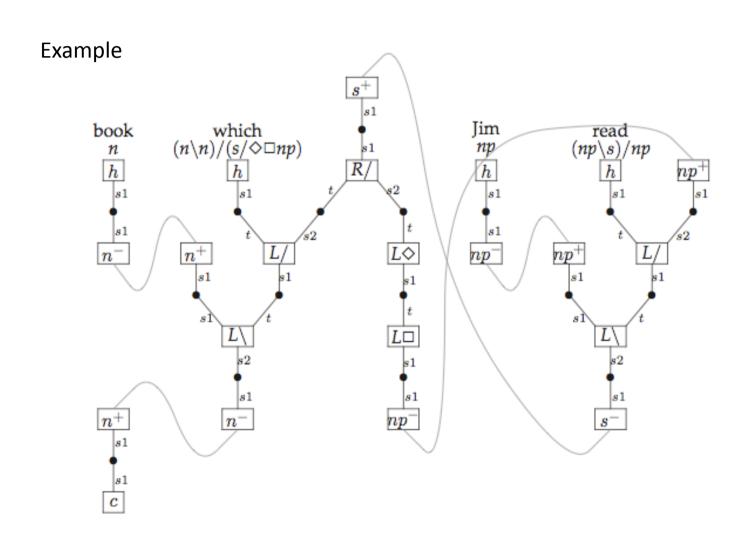


Whenever we substitute a tree....

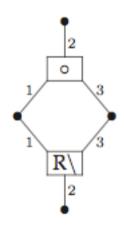
Whenever we adjoin a tree....

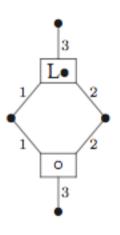
Links for proof structure

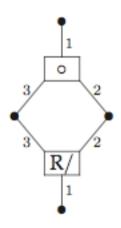




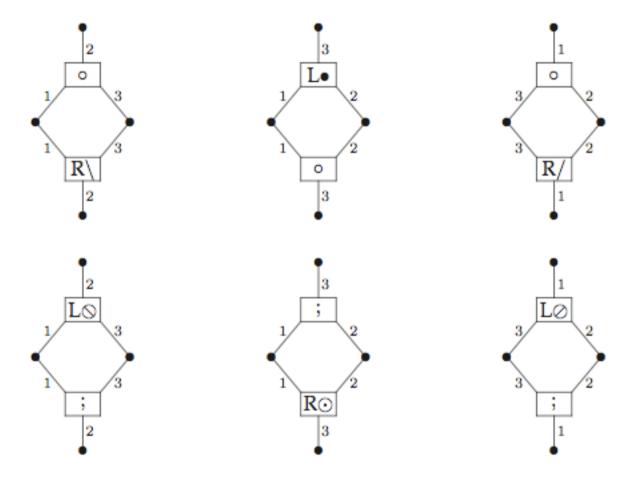
Contractions







Same for other structural rules



If G is a Lambek Grammar, then there exists a strongly equivalent HR grammar G'.

Conclusion?

 $NL\lozenge_R$ and LG are mildly context-sensitive formalisms and therefore benefit from the pleasant properties this entails, such as polynomial parsability.

Conclusion?

Logic	NL	L	???	$NL\diamondsuit_{\mathscr{R}}$
Complexity	Р	NP	Р	PSPACE
Languages	CFL	CFL	MCSL	CSL

Melissen(2011) shows that LG recognises more than LTAG

Thanks