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Goal

Show that both NL(, and LG generate the same class
of languages as TAGs, using hyperedge replacement
grammars as an intermediate step.



Hyperedge Replacement Grammars
Hypergraphs
A hypergraph generalises the notion of graph by allowing

the edges, called hyperedges, to connect not just two but
any number of nodes.



Hyperedge Replacement Grammars

Definition hypergraphs
Definition 2.1 Let I be an alphabet of edge labels and let o be an alphabet of selectors.
A hypergraph over I' and o is a tuple (V, E, lab, nod, ext), where

V' is the finite set of vertices,

E is the finite set of hyperedges disjoint with V,

lab is the labeling function, from E to T', assigning an edge label to each hyperedge,

nod is the incidence function that associates with each edge e € E a partial function
nod(e) : o — V, that is, it selects a vertex for every selector o of the edge.

ext is the external function, a partial function from o to V, that is, for every selector
o of the hypergraph it select a vertex.

Definition 2.2 The type of a hypergraph H is the domain of the external function,
type(H) = dom(ext). The type of an edge ¢ is the domain of the incidence fuction

type(e) = dom(nod(e)).



Hyperedge Replacement Grammars

Hyperedge Replacement

The operation of hyperedge replacement replaces a
hyperedge by a hypergraph H of the same type
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Hyperedge Replacement Grammars

Definition Hyperedge Replacement

Definition 2.4 Let H and K be two disjoint hypergraphs with the same set of edge
labels T and the same set of selectors o. Let e be an edge of H such that type(e) =
type(K'). The hyperedge replacement of e by G, He := G| = (V, E, lab, nod, ext)
is defined as follows.

V=VyUVk

E=(Ey—e)UE;

lab = laby; U laby restricted to the members of E.
nod = nod y; \J nod g restricted to the members of E.
ext = exty

Forall s € type(e), nody (e, s) = extx(s).



Hyperedge Replacement Grammars

Definition 2.6 A hyperedge replacement grammar (or HR grammar) is a tuple
G = (N,T,o, P, S) such that.

N is the alphabet of nonterminal edge labels.

T is the disjoint alphabet of terminal edge labels.

o is the alphabet of selectors.

P is the finite set of productions.

S € N is the start nonterminal symbol.

Definition 2.9 Let G be a hyperedge replacement grammar. The language generate
by G is the set of hypergraphs without hyperedges labeled by nonterminal edge labels
derivable from S.

Definition 2.10 The rank of a terminal or nonterminal symbol is the number of its
tentacles.

The rank of a hyperedge replacement grammar is the maximum rank of a nonter-
minal symbol in the grammar.



Hyperedge Replacement Grammars




Tree Adjoining Grammars as HR
Grammars

Tree Adjoining Grammars can be see as a special case of

hyperedge replacement grammars where:

- every non-terminal hyperedge label has at most two tentacles, that is, the rank of
the grammar is (at most) two.

- every right-hand side of a HR rule is either: a tree with the root as its sole external
node. a tree with a root and a leaf as its external nodes.




Tree Adjoining Grammars as HR
Grammars

Moot in a presentation:
“Tree Adjoining Grammars can be seen as a special case of

hyperedge replacement grammars.”

Moot in his paper:
“HR, grammars generating trees and TAG grammars are strongly
equivalent.”

Question: Is this the same?



LTAG in normal form

An LTAG_ ; grammar G is an LTAG satisfying the following

additional conditions:

- all internal nodes of elementary trees have exactly two daughters,

- every adjunction node either specifies the null adjunction or the
obligatory adjunction con- straint without any selectional restrictions,

- every adjunction node is on the path from the lexical anchor to the root
of the tree.

For every LTAG grammar G there is a weakly equivalent
LTAG’ grammar G~



LTAG . as proof nets for NL(),

If G is an LTAG, ; grammar, then there exists a strongly
equivalent NL{), grammar G’ and a strongly equivalent LG

grammar G” tree.
Proof sketch

For each lexical tree t of G we construct a lexical tree t’ in G” and a lexical tree t” in G”, translating
every adjunction point by the left hand side of the figure for G’ and by its right hand side for G”
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Proof nets as HRG

Links for proof structure
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Proof nets as HRG

Example
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Proof nets as HRG

Contractions
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Same for other
structural rules



Proof nets as HRG
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Proof nets as HRG

If G is a Lambek Grammar, then there exists a strongly
equivalent HR grammar G’ .



Conclusion?

NL(; and LG are mildly context-sensitive formalisms and
therefore benefit from the pleasant properties this entails,
such as polynomial parsability.



Conclusion?

Logic NL | L 7?77 NLO &
Complexity | P NP | P PSPACE
Languages | CFL | CFL | MCSL | CSL

Melissen(2011) shows that LG recognises more than LTAG
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