Lambek Grammars, Tree Adjoining
Grammars and Hyperedge
Replacement Grammars, Moot
(2008)

Goal

Show that both NL(, and LG generate the same class
of languages as TAGs, using hyperedge replacement
grammars as an intermediate step.

Hyperedge Replacement Grammars
Hypergraphs
A hypergraph generalises the notion of graph by allowing

the edges, called hyperedges, to connect not just two but
any number of nodes.

Hyperedge Replacement Grammars

Definition hypergraphs
Definition 2.1 Let I be an alphabet of edge labels and let o be an alphabet of selectors.
A hypergraph over I' and o is a tuple (V, E, lab, nod, ext), where

V' is the finite set of vertices,

E is the finite set of hyperedges disjoint with V,

lab is the labeling function, from E to T', assigning an edge label to each hyperedge,

nod is the incidence function that associates with each edge e € E a partial function
nod(e) : o — V, that is, it selects a vertex for every selector o of the edge.

ext is the external function, a partial function from o to V, that is, for every selector
o of the hypergraph it select a vertex.

Definition 2.2 The type of a hypergraph H is the domain of the external function,
type(H) = dom(ext). The type of an edge ¢ is the domain of the incidence fuction

type(e) = dom(nod(e)).

Hyperedge Replacement Grammars

Hyperedge Replacement

The operation of hyperedge replacement replaces a
hyperedge by a hypergraph H of the same type

W) 1) (%)

Hyperedge Replacement Grammars

Definition Hyperedge Replacement

Definition 2.4 Let H and K be two disjoint hypergraphs with the same set of edge
labels T and the same set of selectors o. Let e be an edge of H such that type(e) =
type(K'). The hyperedge replacement of e by G, He := G| = (V, E, lab, nod, ext)
is defined as follows.

V=VyUVk

E=(Ey—e)UE;

lab = laby; U laby restricted to the members of E.
nod = nod y; \J nod g restricted to the members of E.
ext = exty

Forall s € type(e), nody (e, s) = extx(s).

Hyperedge Replacement Grammars

Definition 2.6 A hyperedge replacement grammar (or HR grammar) is a tuple
G = (N,T,o, P, S) such that.

N is the alphabet of nonterminal edge labels.

T is the disjoint alphabet of terminal edge labels.

o is the alphabet of selectors.

P is the finite set of productions.

S € N is the start nonterminal symbol.

Definition 2.9 Let G be a hyperedge replacement grammar. The language generate
by G is the set of hypergraphs without hyperedges labeled by nonterminal edge labels
derivable from S.

Definition 2.10 The rank of a terminal or nonterminal symbol is the number of its
tentacles.

The rank of a hyperedge replacement grammar is the maximum rank of a nonter-
minal symbol in the grammar.

Hyperedge Replacement Grammars

Tree Adjoining Grammars as HR
Grammars

Tree Adjoining Grammars can be see as a special case of

hyperedge replacement grammars where:

- every non-terminal hyperedge label has at most two tentacles, that is, the rank of
the grammar is (at most) two.

- every right-hand side of a HR rule is either: a tree with the root as its sole external
node. a tree with a root and a leaf as its external nodes.

Tree Adjoining Grammars as HR
Grammars

Moot in a presentation:
“Tree Adjoining Grammars can be seen as a special case of

hyperedge replacement grammars.”

Moot in his paper:
“HR, grammars generating trees and TAG grammars are strongly
equivalent.”

Question: Is this the same?

LTAG in normal form

An LTAG_ ; grammar G is an LTAG satisfying the following

additional conditions:

- all internal nodes of elementary trees have exactly two daughters,

- every adjunction node either specifies the null adjunction or the
obligatory adjunction con- straint without any selectional restrictions,

- every adjunction node is on the path from the lexical anchor to the root
of the tree.

For every LTAG grammar G there is a weakly equivalent
LTAG’ grammar G~

LTAG . as proof nets for NL(),

If G is an LTAG, ; grammar, then there exists a strongly
equivalent NL{), grammar G’ and a strongly equivalent LG

grammar G” tree.
Proof sketch

For each lexical tree t of G we construct a lexical tree t’ in G” and a lexical tree t” in G”, translating
every adjunction point by the left hand side of the figure for G’ and by its right hand side for G”

o o
0 2
01| RS
1/ \2 1 0
, Tn ?o Whenever we substitute a
AT AT tree....
< .
| [B‘U | (: Whenever we adjoin a tree....
1 /2 1\ 0
Ls;]
0 2

Proof nets as HRG

Links for proof structure

A/B B A B B B\A
NIV SN SN
S
A AeB A
A AeB A
b 1 2

/BL) Sl]/&
O A S AN
A/B B A B B B\A

Proof nets as HRG

Example
sl

book which o Jim

n (n\n)/(s/<©0Onp) i np
A A (h]
s1 s1 s1

o o
s1 ¢ s1
LO]

=} o
sl s1
np]|
s1
o

Proof nets as HRG

Contractions
L
O
1 N \;
\\
o o
...'\ /"/
1\ 3

Same for other
structural rules

Proof nets as HRG

3

Le
3 1 2 }
3 1 2 }
o
3
IS
o
3
3 1 2 }
3 1 2)
R®
3
o

!

Proof nets as HRG

If G is a Lambek Grammar, then there exists a strongly
equivalent HR grammar G’ .

Conclusion?

NL(; and LG are mildly context-sensitive formalisms and
therefore benefit from the pleasant properties this entails,
such as polynomial parsability.

Conclusion?

Logic NL | L 7?77 NLO &
Complexity | P NP | P PSPACE
Languages | CFL | CFL | MCSL | CSL

Melissen(2011) shows that LG recognises more than LTAG

Thanks

