
Lambek Grisin Proofnets and Hyperedge

Replacement Grammars

paper Logical Methods in Natural Language

Processing

A.M.Leeuwenberg ; 3666328

July 17, 2012

Abstract

Lambek-Grishin proofnets (LG proofnets) and Hyperedge Replace-
ment grammars (HR grammars) are both graph-grammars. In Moot
(2008) he gives an overview of how these formalism relate to each other.
Both formalisms are presented and there is made an attempt to show
the connection between LG proofnets and HR2 grammars.

Contents

1 Introduction 1

2 Hyperedge Replacement Grammars 1
2.1 Hypergraphs . 2
2.2 Hyperedge Replacement . 3
2.3 Hyperedge Replacement Grammar: anbncndn 4

3 Lambek Grishin Graphical Calculus 5
3.1 Proofnets for LG . 5
3.2 Structural Rules . 6
3.3 LG Grammar: MIX . 7

4 LG conversion to HR2 grammar 8
4.1 HR2 of LG proofnets . 8
4.2 Limitations to HR2 . 11

5 Conclusions 11

1

1 Introduction

Lambek Grishin proofnets are a nice way to study and parse it’s typelogi-
cal grammars. This paper attemps to show that there is an other way to
represent these proofnets, namely by Hyperedge Replacement grammars.
An introduction to Hyperedge Replacement grammars will be given. Also
Lambek Grishin proofnets will be introduced. After the explanations of
the formalisms it will be shown how Hyperedge Replacement grammars can
model the Lambek Grishin proofnets and some of it’s complications.

2 Hyperedge Replacement Grammars

Hyperedge replacement grammars are graph-grammars. The grammar uses
a special type of graphs called hypergraphs. The operation that manipulates
such graphs is called hyperedge replacement. This is some form of substi-
tution with hypergraphs. Besides hyperedge replacement there is also a set
of grammar rules that can be defined. Hyperedge replacement grammars
are somewhat similar to TAGs. However TAGs are tree-grammars and HR
grammars are graph-grammars.

2.1 Hypergraphs

Hypergraphs are graphs that have labeled edges that can connect multiple
nodes. These edges are called hyperedges. Besides these hyperedges there
is a di↵erentiation between internal and external nodes. This di↵erence will
be important for hyperedge replacement later on. I will start by giving the
definition of a hypergraph[1].

Definition Hypergraph: Let � be an alphabet of edge labels and let
� be an alphabet of selectors. A hypergraph over � and � is a tuple
V,E, lab, nod, ext , where

V is the finite set of vertices,

E is the finite set of hyperedges disjoint with V,

lab is the labeling function, from E to �, assigning an edge label to
each hyperedge,

nod is the incidence function that associates with each edge e E a
partial function nod e : � v, that is, it selects a vertex for every
selector � of the edge.

ext is the external function, a partial function from � to V , that is,
for every selector � of the hypergraph it selects a vertex.

2

An example of a small hypergraph is shown in figure 1.

Figure 1: hypergraph[1]

Hypergraphs and their edges can be assigned a type. This is important
for the hyperedge replacement. The type of a hypergraph H is the domain
of the external function. The type of a hyperedge e is the domain of the
incidence function using e as it’s first argument. The types of hyperedges
’b’ and ’s’ in figure 1 are i, t, f and i, o .

2.2 Hyperedge Replacement

Hyperedge replacement is the basic operation on hypergraphs used in hy-
peredge replacement grammars. You can substitute a hyperedge e in hyper-
graph H by a hypergraph K if e and K have the same type. An example
of a hyperegde replacement is given in figure 2. Hypergraph H has a hy-
peredge s of type i, 0 . Hypergraph K also has type i, 0 . This means
hyperedge replacement can take place. In this case hyperedge s is ’replaced’
by hypergraph K.

Figure 2: hyperedge replacement [1]

3

The formal definition of hyperedge replacement is the following.

Definition Hyperedge Replacement: Let H and K be two disjoint
hypergraphs with the same set of edge labels � and the same set of selectors
�. Let s be an edge of H such that type(s) = type(K). The hyperedge re-
placement of s by K, H s : K V,E, lab, nod, ext is defined as follows.

V VH VK

E EH s EK

lab labH labK restricted to the members of E.

nod nodH nodK restricted to the members of E.

ext extH

For all v type(s), nodH s, v extK v .

2.3 Hyperedge Replacement Grammar: anbncndn

A hyperedge replacement grammar can be thought of as an initial hyper-
graph and a set of allowed hyperedge replacements. The set of hypergraphs
that can be constructed by starting with the initial hypergraph and replac-
ing it’s hyperedges according to the grammar rules, in such way that there
are no non-terminal edge labels left, is the graph-language the hyperedge
replacement grammars describes. The formal definition of a hyperedge re-
placement grammar is the following.

Definition Hyperedge Replacement Grammar (HR grammar): A
HR grammar is a tuple G N,T,�, P, S such that:

N is the alphabet of nonterminal edge labels.

T is the disjoint alphabet of terminal edge labels.

� is the alphabet of selectors.

P is the finite set of productions.

S N is the start nonterminal symbol.

An example of a HR grammar is shown in figure 3. The graph-grammar
corresponds to the string language L anbncndn . A derivation of the
hypergraph corresponding to the string ”aabbccdd” would be S R
R T .

4

Figure 3: HR grammar for L anbncndn [1]

HR grammars can be assigned a rank. This rank represents the max-
imum number of tentacles of a nonterminal symbol in the grammar. The
rank of the HR grammar in figure 3 would be 2 since there is only one
nonterminal symbol, namelijk S and S has two tentacles. The rank of a
HR grammar relates to the potential expressivity of the grammar [1]. HR
grammars with rank 2 (HR2 grammars) are strongly equivalent with TAG
[2].

3 Lambek Grishin Graphical Calculus

Lambek Grishin calculus (LG calculus) is an extension of the nonassociative
Lambek calculus (NL). The LG calculus is the symmetric version of the
NL calculus. With this symmetry also comes a set of postulates that allow
a controlled form of associativity and commutativity that applies to the
Grishin connectives. This is somewhat similar to NL} where the structural
rules apply to the } and operator. Like with NL and NL} there is also
a proofnet calculus of LG.

3.1 Proofnets for LG

The symmetry of the LG can be seen clearly in the proofnets. The Grishin
connectives are a copy of their Lambek counterpart except for the fact that
they allow reasoning in the opposite direction, by having multiple conclu-
sions. The Lambek proofnet links and their Grishin counterparts are shown
in figure 4.

5

Figure 4: Proonet links for LG [3]

There are also slightly di↵erent contraction rules for the Grishin connec-
tives (figure 5) to allow contraction to take place in the opposite direction.

Figure 5: LG Contractions [3]

3.2 Structural Rules

These new links and contractions however do not deal with the postulates of
LG that allow associativity and commutativity on the Grishin connectives.
These postulates are represented in the form of structural manipulations
that can be applied to the proof nets. In figure 6 the four types of manipu-
lation are shown.

6

Figure 6: Structural rules for ’mixed associativity’ and ’mixed commutativ-
ity’ [3]

The G1 and G3 are allowing ’mixed associativity’ and the G2 and G4
are allowing ’mixed commutativity’. The commutativity can easily be seen
because the horizontal (and vertical) order of x and y, and v and w has
changed. Which does not happen with the G1 and G3 rules.

3.3 LG Grammar: MIX

LG proofnets can be used as a graph-grammar. Take a grammar G that de-
scribes a language L. G would consist of types or proofnets that are assigned
to the members of a string alphabet. This would be called the lexicon. If it
is possible to derive a certain conclusion say S from the proofnets that cor-
respond to a string of lexical items, the string corresponding to those lexical
items is a member of language L. You can only derive an S by constructing
a tensor tree with your lexical items as hypotheses and S as their conclu-
sion. An example of an LG grammar that describes the MIX language
(MIX w a, b, c w a w b w c) would be the following.

a :: A �
b :: � S A S C
c :: � C

Where � is S S unless it appears in the lexical item that is last in the to
be derived string. An example derivation of the word ”bca” would require
the following types:

a :: A S
b :: S S S A S C
c :: S S C

7

Their lexical axiom unfolding results in a set of proofnets that can be con-
nected and then contracted to a tensor tree using the contractions rules and
the Grishin interactions. The unfoldings and their connections are shown
in figure 7 on the left. The graph on the right is when the connections are
made. Note that the connections are crossed. From this you can see that
the rules for ’mixed commutativity’ are needed to derive a tensor tree.

Figure 7: Lexical unfoldings and their contractions

The final tensor tree that you would want to derive is shown in figure 8.
This final tree can be derived by using the following rules to the connected
graph in figure 7: G3 G2 L G4 L L .

Figure 8: Final tensor tree

4 LG conversion to HR2 grammar

L5 anbncndnen is not a TAL [4]. Also MIX as presented earlier is not
a TAL [5]. These two languages can be expressed by an LG grammar [6].
There appears to be an equivalence between TAG and HR2 grammars [2].
A certain subset of LG grammars can be converted to an HR2 grammar.
MIX and L5 are clearly not in this subset due to transitivity. There are

8

some conditions that an LG grammar should satisfy in order to be converted
to an HR2 grammar [1].

4.1 HR2 of LG proofnets

In Moot (2008) he shows how to build an HR2 that models the LG proofnets
[1]. I will here present this HR2. The HR2 proofnets for LG are build top
down rather than bottom up. This means you start with an S from which
you can only build tensor trees (which would normally be your goal). From
these tensor trees there are grammar rules that allow you to do ’inverted’
contractions. Also you can apply the Grishin rules. In the end you expect
the lexical items to be constructed (as in figure 7). The lexical items you
would start with when you did your normal LG proofnet derivation. This
is how the HR2 grammar for LG proofnets is build. In figure 8 you see the
HR2-grammar rules to build tensor trees. The nonterminal T constructs
trees and the nonterminal V constructs vertices. The small indices in the
edgelabels stand for the function of the hyperedge. In figure 8 you can also
see the di↵erent types of ’connections’ that a V can end up to be.

00 cut 01 flow down
10 flow up 11 axiom

Figure 9: HR2 for tensor trees [1]

For each tensor-par (or cotensor) pair that could possibly contract there
is a rule that constructs the pair of links before they were contracted. One

9

example of such rules is given in figure 9. It concerns the rules for the par
link L .

Figure 10: HR2 prooftree rules for L [1]

You can visually compare these rules to the normal LG proofnets in
figure 4 and 5. You can then see that the L link can only contract with
it’s tensor counterparts L , R and R .

Now all that’s left are the Grishin Interactions. Instead of manipulating
a tree structurally, which happens in the nornal LG Grishin Interactions,
the rules allow you to immediately construct the ’adjusted’ tree from a Tij

edge. In figure 10 one set of the interactions is shown.

Figure 11: HR2 Grishin interactions IV [1]

10

4.2 Limitations to HR2

However not all LG proofnets can be derived by the HR2 of LG. Since
the proofnet in figure 7, which does derive a valid tensor tree, cannot be
constructed by the HR2. The crossed connections would have to be resolved
by the Grishin rules, since they do in the normal LG proofnets, however
they do not in the HR2. As long as the connections are planair you can
build the prooftree using the HR2 grammar. It is intuitive that the HR2

cannot build all proofnets as said before TAG and HR2 are equivalent and
LG and TAG are not.

5 Conclusions

Lambek Grishin proofnets can be represented by Hyperedge Replacement
grammars of rank 2. For a subset of the LG grammars there is a representa-
tive HR2 however not for every LG. For LG’s that are not well nested, such
as MIX, there is no HR2.

References

[1] Richard Moot. Type-logical and hyperedge replacement grammars. juli
2008. Draft.

[2] Richard Moot. Lambek grammars, tree adjoining grammars and hy-
peredge replacement grammars. Ninth International Workshop on Tree

Adjoining Grammars and Related Formalisms, 2008.

[3] Michael Moortgat and Richard Moot. Proofs nets and the categorial
flow of information. LIRa seminar, 2011.

[4] Laura Kallmeyer. Parsing Beyond Context-Free Grammars. Springer,
first edition, 2010.

[5] Makoto Kanazawa and Sylvain Salvati. Mix is not a tree-adjoining lan-
guage. Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics, 2012.

[6] Matthijs Melissen. The generative capacity of the lambekgrishin cal-
culus: A new lower bound. Proceedings of the 14th Formal Grammar

conference, Bordeaux, 2009.

11

