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Circuit lower bounds

We are interested in classifying the computational power of
circuits. In particular we want to find for different types of circuits
what are they limitations. Example:

VC e AC? |C| = O(n¥) = C cannot compute PARITY
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Previous results

The circuit lower bounds area was most active during the 80's
o NEXPNP requires superpolynomial circuits [Kannan '82]
@ PARITY is not in ACC [Ajtai '83, Hastad '86]

@ PARITY with mod 3 gates is not in ACC® [Razborov '87,
Smolensky '87]
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Turing machine

A Turing machine is a tuple
composed of State

o An alphabet I
@ A set of states Q ““Ox““

@ A function e
Transitions

0:TxQ—TxQxH 0o )
where H = {left, stay, right} (0 (e d)

(€)= (A5, ¢)

We can be interested in the
number of steps they take (time)
or the amount of tape cells they
use (space).
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Circuits

Circuits are DAGs where
o V=A{w,..., v} with
Vi € {I, O,/\,\/,ﬂ}.
e ECVxV.

A circuit has exactly n input
vertices and 1 output vertex. We
can be interested in the number
of vertices (size) or the longest
path from input to output
(depth).
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Complexity class

A complexity class C is a collection of sets {A1, Az, A3 ...} with

A; C N, such that computing x(x, A;) (the charachteristic function
of A;) takes a “similar” amount of resources between all i. We
usually call the A;'s “languages”.
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Complexity class

A complexity class C is a collection of sets {A1, Az, A3 ...} with

A; C N, such that computing x(x, A;) (the charachteristic function
of A;) takes a “similar” amount of resources between all i. We
usually call the A;'s “languages”.

Some useful classes

o NEXP = (J..q NTIME(2™).
e P/poly = J.~qSIZE(n®).
o PSPACE = .. SPACE(n®).

o MA.
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Verifier

A verifier V for a language L is a polynomial time Turing machine
such that on input x
o If x € L then there exists y € {0,1}*(") such that V(x,y) =1
where t(n) depends on L

o If x & L then for every y € {0,1}* V(x,y) =0
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Universal “Small” witness circuits

A witness is the string y with which the a verifier V certifies the
membership of x in L. A circuit C is a witness circuit if the string
z defined as

Vie{l,...,t(n)} z = C(x,i)

implies V/(x,z) = 1. For us a circuit will be “small” if it has
polynomial size.

L has universal “small” witness <= for all correct V we have such C
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Williams' method

Williams' method yields the conditional lower bound

NEXP & P/poly. The method has two parts:

@ If NEXP C P/poly then there exists universal “small” witness
circuits

@ If there exists a better-than-trivial algorithm for CIRCUIT SAT
then there cannot exist universal “small” witness circuits
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Williams' method I

Part (A) yields the witness
circuits W of the appropriate
size. Part (B) says that
unsatisfiability of D, v can be
decided “fast” using W.

m=n+dlogn

D,y € UNSAT <= x €L

For appropriate L, we get a
contradiction.
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proof of (A): NEXP C P/poly == universal “small” witness circuits

Outline

We will show that if NEXP C P/poly and there exists L € NEXP
without universal “small” witness circuits we are lead to the

following inclusion:
EXP C io-SIZE(n9)
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proof of (A): NEXP C P/poly == universal “small” witness circuits

Outline

We will show that if NEXP C P/poly and there exists L € NEXP
without universal “small” witness circuits we are lead to the
following inclusion:

EXP C io-SIZE(n%)
PSPACE

PSPACE C io-SIZE(n?) is a contradiction (proof by
diagonalization)
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proof of (A): NEXP C P/poly == universal “small” witness circuits

Outline

The proof of the inclusion
PSPACE C io-SIZE(n9)

is divided in three inclusions:
e PSPACE C MA
e MA Cio-NTIME(2")/n
@ io-NTIME(2")/n C io-SIZE(n)



Williams' method
00®00

proof of (A): NEXP C P/poly == universal “small” witness circuits

A note on pseudorandomness

Let x € L and suppose that L does not have universal “small”

witness circuits.
Then for some V and y € {0,1}*, such that V(x,y) =1 we have
that for any circuit C with |C| < nk

3z such that C(z) # y,
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proof of (A): NEXP C P/poly == universal “small” witness circuits

A note on pseudorandomness

Let x € L and suppose that L does not have universal “small”

witness circuits.
Then for some V and y € {0,1}*, such that V(x,y) =1 we have
that for any circuit C with |C| < nk

3z such that C(z) # y,

y is the truth table of a “hard” function = Can construct a
pseudorandom generator.
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proof of (A): NEXP C P/poly == universal “small” witness circuits

The proof

Assumption: NEXP C P/poly and there exists L € NEXP that
does not have universal polynomial size witness circuits.
We must prove:

e PSPACE C MA

e MA Cio-NTIME(2")/n

e io-NTIME(2")/n C io-SIZE(n9)
Putting everything together:

PSPACE C MA C io-NTIME(2")/n C io-SIZE(n9)

for constant q.
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proof of (A): NEXP C P/poly == universal “small” witness circuits

The proof

Assumption: NEXP C P/poly and there exists L € NEXP that
does not have universal polynomial size witness circuits.
We must prove:

e PSPACE C MA

e MA Cio-NTIME(2")/n

@ io-NTIME(2")/n C io-SIZE(n9) careful simulation
Putting everything together:

PSPACE C MA C io-NTIME(2")/n C io-SIZE(n9)

for constant q.
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proof of (A): NEXP C P/poly == universal “small” witness circuits

The proof

Since the inclusion PSPACE C io-SIZE(n?) is false, we get that

NEXP C P/poly = NEXP has universal “small” witnesses
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proof of (B): better-than-trivial CIRCUIT SAT algorithms == no universal “small” witness circuits

An unsatisfiable circuit

Fix L € NTIME(2"). Let x with
|x| = n be an input. Suppose

L =n+dl L
that C, encodes a Boolean m o dlogn

formula @, such that Daw
&b, € SAT <— x €L, and Wis Ce
a witness circuit for some correct
V. Then .
w
D,w € UNSAT <= x€ L . . .
H | =[(b1® 1)V (b2 £2) V (b3 & l3)]
The input is the index of a clause
of @, and d is a constant

independent of L and x.



Williams' method
oce

proof of (B): better-than-trivial CIRCUIT SAT algorithms == no universal “small” witness circuits

No universal “small” witness circuits

Pick L € NTIME(2") \ NTIME(2"~«(l°e ") (which exists by the
non-deterministic time hierarchy). Build D, . Suppose that
CIRCUIT SAT can be solved in time

2" (nk*)c _ n+c-k* log n—w(log n)
o) =oe )

where f(n) is superpolynomial. Then, we could decide L in time
O(2n—«(logn)) a contradiction.
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The circuit Cy

A first reduction

The Cook-Levin theorem offers a construction such that for a fixed
language L, given an input x there exists a Boolean formula ¥,
such that

VU, € SAT <— x €L

and |@,| = O(n?). Moreover the i-th clause of ¥, can be
computed in time O(log®™) n).
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The circuit Cy

A first reduction |l

Thus, we get C, of size

O((log®W 27)2) = O(nk) (as ~
needed) but with 2n inputs, m=2n
which would make D, v have 2n Daw

inputs. G

H ‘ (b1 @ 1) V (b @ L2) V (b3 ® 3)]
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The circuit Cy

A first reduction IlI

If we apply the previous reasoning, we can decide the membership
to L in time

Not necessarily o(zn—w(log n))
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The circuit Cy

A more efficient reduction

We can use quite old work from Stearns & Hunt and from Robson
to construct a formula @, with

&, € SAT <— x €L

and |®,| = O(nlog®® n). The i-th clause of @, is also
computable in time O(log®™M)n).
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The circuit Cy

Summary

Fix L € NTIME(2") \ NTIME(2"~«(l°g ")) Assuming that
NEXP C P/poly we get that L has universal “small” witness
circuits. Construct D,y and execute the better-than-trivial
algorithm for CIRCUIT SAT with input D, . Thus, decide L in
time O(2"~<(1°%€")) 3 contradiction.
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The circuit Cy

Relating two branches

In principle, proving circuit lower bounds and designing algorithms
need not be related

@ The former concerns showing that for all circuits some
function is not computable

@ The latter concerns showing that there exists a circuit that
computes some function
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Future work

Interesting research paths after this work:

@ Produce and/or publish a complete proof of the construction
of Cs.

@ Can we use other NP-complete problems to construct C,?
(Maybe more efficient).

o Consider sorting networks to construct the efficient reduction
for C,.

@ Thorough study of Williams' method against complexity
barriers
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The presentation has finished
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