▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

On lower bounds for circuit complexity and algorithms for satisfiability

April 2021

Context	Preliminaries	Williams' method	Future work
●0	00000	oooooooooooooo	

Circuit lower bounds

We are interested in classifying the computational power of circuits. In particular we want to find for different types of circuits what are they limitations. Example:

 $\forall C \in \mathsf{AC}^0 \ |C| = O(n^k) \implies C$ cannot compute PARITY

Context	Preliminaries	Williams' method	Future work
00			

Previous results

The circuit lower bounds area was most active during the 80's

- NEXP^{NP} requires superpolynomial circuits [Kannan '82]
- PARITY is not in AC⁰ [Ajtai '83, Håstad '86]
- PARITY with mod 3 gates is not in ACC⁰ [Razborov '87, Smolensky '87]

Context	Preliminaries	Williams' method	Future work
	●0000		

Turing machine

- A Turing machine is a tuple composed of
 - An alphabet Γ
 - A set of states Q
 - A function

 $\delta: \Gamma \times Q \mapsto \Gamma \times Q \times H$ where $H = \{\text{left}, \text{stay}, \text{right}\}$

We can be interested in the number of steps they take (time) or the amount of tape cells they use (space).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Context	Preliminaries	Williams' method	Future work
	00000		

Circuits

Circuits are DAGs where

- $V = \{v_1, \ldots, v_k\}$ with $v_i \in \{I, O, \land, \lor, \neg\}.$
- $E \subseteq V \times V$.

A circuit has exactly *n* input vertices and 1 output vertex. We can be interested in the number of vertices (size) or the longest path from input to output (depth).

Context	Preliminaries	Williams' method	Future work
00	00●00		00
Complexity cl	ass		

A complexity class C is a collection of sets $\{A_1, A_2, A_3 ...\}$ with $A_i \subseteq \mathbb{N}$, such that computing $\chi(x, A_i)$ (the charachteristic function of A_i) takes a "similar" amount of resources between all *i*. We usually call the A_i 's "languages".

Context 00	Preliminaries 00●00	Williams' method 00000000000000	Future work 00

A complexity class C is a collection of sets $\{A_1, A_2, A_3 \ldots\}$ with $A_i \subseteq \mathbb{N}$, such that computing $\chi(x, A_i)$ (the charachteristic function of A_i) takes a "similar" amount of resources between all *i*. We usually call the A_i 's "languages". Some useful classes

- NEXP = $\bigcup_{c>0}$ NTIME (2^{n^c}) .
- $P/poly = \bigcup_{c>0} SIZE(n^c)$.
- PSPACE = $\bigcup_{c>0}$ SPACE(n^c).
- MA.

Complexity class

Context	Preliminaries	Williams' method	Future work
	00000		

A verifier V for a language L is a polynomial time Turing machine such that on input x

 If x ∈ L then there exists y ∈ {0,1}^{t(n)} such that V(x, y) = 1 where t(n) depends on L

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• If $x \notin L$ then for every $y \in \{0,1\}^* V(x,y) = 0$

Verifier

Williams' method

Future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Universal "Small" witness circuits

A witness is the string y with which the a verifier V certifies the membership of x in L. A circuit C is a witness circuit if the string z defined as

$$\forall i \in \{1,\ldots,t(n)\} \quad z_i = C(x,i)$$

implies V(x, z) = 1. For us a circuit will be "small" if it has polynomial size.

L has universal "small" witness \iff for all correct V we have such C

Co	n	te	
oc			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Williams' method

Williams' method yields the conditional lower bound NEXP $\not\subseteq$ P/poly. The method has two parts:

- If NEXP ⊆ P/poly then there exists universal "small" witness circuits
- If there exists a better-than-trivial algorithm for CIRCUIT SAT then there cannot exist universal "small" witness circuits

Williams' method

Future work

Williams' method II

Part (A) yields the witness circuits W of the appropriate size. Part (B) says that unsatisfiability of $D_{x,W}$ can be decided "fast" using W.

 $D_{x,W} \in \texttt{UNSAT} \iff x \in L$

For appropriate *L*, we get a contradiction.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Context	Preliminaries	Williams' method	Future work
		000000000000000000000000000000000000000	
proof of (A): NEXP \subseteq P/poly	\implies universal "small" witness circui	ts	
Outline			

We will show that if NEXP \subseteq P/poly and there exists $L \in$ NEXP without universal "small" witness circuits we are lead to the following inclusion:

 $\mathsf{EXP} \subseteq \mathsf{io}\mathsf{-}\mathsf{SIZE}(n^q)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Context 00	Preliminaries 00000	Williams' method ००●००००००००००	Future work 00
proof of (A): NEXP \subseteq P/poly	\implies universal "small" witness circui	ts	
Outline			

We will show that if NEXP \subseteq P/poly and there exists $L \in$ NEXP without universal "small" witness circuits we are lead to the following inclusion:

$$\frac{\mathsf{EXP}}{\mathsf{PSPACE}} \subseteq \mathsf{io}\mathsf{-}\mathsf{SIZE}(n^q)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $PSPACE \subseteq io-SIZE(n^q)$ is a contradiction (proof by diagonalization)

Context	Preliminaries	Williams' method	Future work
		000000000000000000000000000000000000000	
proof of (A): NEXP \subseteq P/poly	\implies universal "small" witness circuit	ts	
Outline			

The proof of the inclusion

 $\mathsf{PSPACE} \subseteq \mathsf{io}\mathsf{-SIZE}(n^q)$

is divided in three inclusions:

- $\mathsf{PSPACE} \subseteq \mathsf{MA}$
- MA \subseteq io-NTIME $(2^n)/n$
- io-NTIME $(2^n)/n \subseteq$ io-SIZE (n^q)

Context 00	Preliminaries 00000	Williams' method	Future work 00
proof of (A): NEXP ⊆	$P/\mathit{poly} \implies$ universal "small" wi	tness circuits	
A note on	pseudorandomn	ess	

Let $x \in L$ and suppose that L does not have universal "small" witness circuits.

Then for some V and $y \in \{0,1\}^*$, such that V(x,y) = 1 we have that for any circuit C with $|C| \le n^k$

 $\exists z \text{ such that } C(z) \neq y_z$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Context 00	Preliminaries 00000	Williams' method	Future work 00
proof of (A): NEXP ⊆	$P/\mathit{poly} \implies$ universal "small" w	itness circuits	
A note on	nseudorandomn	ess	

Let $x \in L$ and suppose that L does not have universal "small" witness circuits.

Then for some V and $y \in \{0,1\}^*$, such that V(x,y) = 1 we have that for any circuit C with $|C| \le n^k$

 $\exists z \text{ such that } C(z) \neq y_z$

y is the truth table of a "hard" function \implies Can construct a pseudorandom generator.

Context	Preliminaries	Williams' method	Future work
		000000000000000000000000000000000000000	
proof of (A): NEXP \subseteq P/poly	\implies universal "small" witness circuit	IS	
The proof			

Assumption: NEXP \subseteq P/poly and there exists $L \in$ NEXP that does not have universal polynomial size witness circuits. We must prove:

- $\mathsf{PSPACE} \subseteq \mathsf{MA}$
- $MA \subseteq io-NTIME(2^n)/n$
- io-NTIME $(2^n)/n \subseteq$ io-SIZE (n^q)

Putting everything together:

 $\mathsf{PSPACE} \subseteq \mathsf{MA} \subseteq \mathsf{io}\mathsf{-NTIME}(2^n)/n \subseteq \mathsf{io}\mathsf{-SIZE}(n^q)$

for constant q.

Context	Preliminaries	Williams' method	Future work
		000000000000	
proof of (A): NEXP \subseteq P/poly	\implies universal "small" witness circuit	S	
The proof			

Assumption: NEXP \subseteq P/poly and there exists $L \in$ NEXP that does not have universal polynomial size witness circuits. We must prove:

- $\mathsf{PSPACE} \subseteq \mathsf{MA}$ easy simulation
- MA \subseteq io-NTIME $(2^n)/n$ using witness as hard function
- io-NTIME $(2^n)/n \subseteq$ io-SIZE (n^q) careful simulation

Putting everything together:

$$\mathsf{PSPACE} \subseteq \mathsf{MA} \subseteq \mathsf{io}\mathsf{-NTIME}(2^n)/n \subseteq \mathsf{io}\mathsf{-SIZE}(n^q)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for constant q.

Context	Preliminaries	Williams' method	Future work
		000000000000	
proof of (A): NEXP \subseteq P/poly	\implies universal "small" witness circuit	:S	
The proof			

Since the inclusion PSPACE \subseteq io-SIZE (n^q) is false, we get that NEXP \subseteq P/poly \implies NEXP has universal "small" witnesses

Context	Preliminaries	Williams' method	Future work
		00000000000000	
proof of (B): better-than-trivial	CIRCUIT SAT algorithms \implies	no universal "small" witness circuits	

An unsatisfiable circuit

Fix $L \in NTIME(2^n)$. Let x with |x| = n be an input. Suppose that C_x encodes a Boolean formula Φ_x such that $\Phi_x \in SAT \iff x \in L$, and W is a witness circuit for some correct V. Then

 $D_{x,W} \in \texttt{UNSAT} \iff x \in L$

The input is the index of a clause of Φ_x and d is a constant independent of L and x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

mush of (D). Letter then trivial		universal "anall" units and singular	
		00000000000000	
Context	Preliminaries	Williams' method	Future work

No universal "small" witness circuits

Pick $L \in \text{NTIME}(2^n) \setminus \text{NTIME}(2^{n-\omega(\log n)})$ (which exists by the non-deterministic time hierarchy). Build $D_{x,W}$. Suppose that CIRCUIT SAT can be solved in time

$$O\left(\frac{2^n \cdot (n^{k^*})^c}{f(n)}\right) = O(2^{n+c \cdot k^* \log n - \omega(\log n)})$$

where f(n) is superpolynomial. Then, we could decide *L* in time $O(2^{n-\omega(\log n)})$, a contradiction.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Context 00	Preliminaries 00000	Williams' method	Future work 00
The circuit C_x			
A first rec	luction		

The Cook-Levin theorem offers a construction such that for a fixed language L, given an input x there exists a Boolean formula Ψ_x such that

$$\Psi_x \in \mathtt{SAT} \iff x \in L$$

and $|\Psi_x| = O(n^2)$. Moreover the *i*-th clause of Ψ_x can be computed in time $O(\log^{O(1)} n)$.

Context 00 Preliminaries

Williams' method

Future work

The circuit C_x

A first reduction II

Thus, we get C_x of size $O((\log^{O(1)} 2^n)^2) = O(n^k)$ (as needed) but with 2n inputs, which would make $D_{x,W}$ have 2n inputs.

・ロト・日本・日本・日本・日本・日本

Context 00	Preliminaries 00000	Williams' method ○○○○○○○○○○●○○○	Future work 00
The circuit C_x			
A first red	uction III		

If we apply the previous reasoning, we can decide the membership to \boldsymbol{L} in time

$$O\left(\frac{2^{2n}\cdot(n^{k^*})^c}{f(n)}\right)=O(2^{2n+c\cdot k^*\log n-\omega(\log n)})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Not necessarily $O(2^{n-\omega(\log n)})$

Context 00	Preliminaries 00000	Williams' method ○○○○○○○○○○○○○○○	Future work
The circuit C_x			
A more effic	ient reduction		

We can use quite old work from Stearns & Hunt and from Robson to construct a formula $\varPhi_{\rm X}$ with

$$\Phi_x \in \mathtt{SAT} \iff x \in L$$

and $|\Phi_x| = O(n \log^{O(1)} n)$. The *i*-th clause of Φ_x is also computable in time $O(\log^{O(1)} n)$.

Context	Preliminaries	Williams' method	Futur
00	00000	○○○○○○○○○○○○	00
The circuit C_x			

Summary

Fix $L \in \text{NTIME}(2^n) \setminus \text{NTIME}(2^{n-\omega(\log n)})$. Assuming that NEXP $\subseteq P/poly$ we get that L has universal "small" witness circuits. Construct $D_{x,W}$ and execute the better-than-trivial algorithm for CIRCUIT SAT with input $D_{x,W}$. Thus, decide L in time $O(2^{n-\omega(\log n)})$, a contradiction. work

Co	nte		

Preliminaries

Williams' method

Future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The circuit C_x

Relating two branches

In principle, proving circuit lower bounds and designing algorithms need not be related

- The former concerns showing that **for all** circuits some function is not computable
- The latter concerns showing that **there exists** a circuit that computes some function

Context 00	Preliminaries 00000	Williams' method	Future work ●0
Euturo wo	el e		

Interesting research paths after this work:

- Produce and/or publish a **complete** proof of the construction of *C_x*.
- Can we use other NP-complete problems to construct C_x ? (Maybe more efficient).
- Consider sorting networks to construct the efficient reduction for C_x .

• Thorough study of Williams' method against complexity barriers

Context	Preliminaries	Williams' method	Future work
			00

The presentation has finished

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)