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Circuit lower bounds

We are interested in classifying the computational power of
circuits. In particular we want to find for different types of circuits
what are they limitations. Example:

∀C ∈ AC0 |C | = O(nk) =⇒ C cannot compute PARITY
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Previous results

The circuit lower bounds area was most active during the 80’s

NEXPNP requires superpolynomial circuits [Kannan ’82]

PARITY is not in AC0 [Ajtai ’83, Håstad ’86]

PARITY with mod 3 gates is not in ACC0 [Razborov ’87,
Smolensky ’87]
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Turing machine

A Turing machine is a tuple
composed of

An alphabet Γ

A set of states Q

A function
δ : Γ× Q 7→ Γ× Q × H
where H = {left, stay, right}

We can be interested in the
number of steps they take (time)
or the amount of tape cells they
use (space).

State
q

(ζ, r) 7→ (λ, s,←)

(α, q) 7→ (β, q′,→)

(χ, t) 7→ (ι, t, ↓)

...

Transitions

α
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Circuits

Circuits are DAGs where

V = {v1, . . . , vk} with
vi ∈ {I ,O,∧,∨,¬}.
E ⊆ V × V .

A circuit has exactly n input
vertices and 1 output vertex. We
can be interested in the number
of vertices (size) or the longest
path from input to output
(depth).
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Complexity class

A complexity class C is a collection of sets {A1,A2,A3 . . .} with
Ai ⊆ N, such that computing χ(x ,Ai ) (the charachteristic function
of Ai ) takes a “similar” amount of resources between all i . We
usually call the Ai ’s “languages”.

Some useful classes

NEXP =
⋃

c>0 NTIME(2n
c
).

P/poly =
⋃

c>0 SIZE(nc).

PSPACE =
⋃

c>0 SPACE(nc).

MA.
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Verifier

A verifier V for a language L is a polynomial time Turing machine
such that on input x

If x ∈ L then there exists y ∈ {0, 1}t(n) such that V (x , y) = 1
where t(n) depends on L

If x 6∈ L then for every y ∈ {0, 1}∗ V (x , y) = 0
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Universal “Small” witness circuits

A witness is the string y with which the a verifier V certifies the
membership of x in L. A circuit C is a witness circuit if the string
z defined as

∀ i ∈ {1, . . . , t(n)} zi = C (x , i)

implies V (x , z) = 1. For us a circuit will be “small” if it has
polynomial size.

L has universal “small” witness ⇐⇒ for all correct V we have such C
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Williams’ method

Williams’ method yields the conditional lower bound
NEXP 6⊆ P/poly . The method has two parts:

(A) If NEXP ⊆ P/poly then there exists universal “small” witness
circuits

(B) If there exists a better-than-trivial algorithm for CIRCUIT SAT

then there cannot exist universal “small” witness circuits
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Williams’ method II

Part (A) yields the witness
circuits W of the appropriate
size. Part (B) says that
unsatisfiability of Dx ,W can be
decided “fast” using W.

Dx ,W ∈ UNSAT ⇐⇒ x ∈ L

For appropriate L, we get a
contradiction.

m = n+ d log n

Cx

i︸︷︷︸

¬[(b1 ⊕ ℓ1) ∨ (b2 ⊕ ℓ2) ∨ (b3 ⊕ ℓ3)]

W W W

Dx,W

ℓ1b1 ℓ2b2 ℓ3b3

m m m

H
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proof of (A): NEXP ⊆ P/poly =⇒ universal “small” witness circuits

Outline

We will show that if NEXP ⊆ P/poly and there exists L ∈ NEXP
without universal “small” witness circuits we are lead to the
following inclusion:

EXP ⊆ io-SIZE(nq)
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proof of (A): NEXP ⊆ P/poly =⇒ universal “small” witness circuits

Outline

We will show that if NEXP ⊆ P/poly and there exists L ∈ NEXP
without universal “small” witness circuits we are lead to the
following inclusion:

EXP
PSPACE

⊆ io-SIZE(nq)

PSPACE ⊆ io-SIZE(nq) is a contradiction (proof by
diagonalization)
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proof of (A): NEXP ⊆ P/poly =⇒ universal “small” witness circuits

Outline

The proof of the inclusion

PSPACE ⊆ io-SIZE(nq)

is divided in three inclusions:

PSPACE ⊆ MA

MA ⊆ io-NTIME(2n)/n

io-NTIME(2n)/n ⊆ io-SIZE(nq)
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proof of (A): NEXP ⊆ P/poly =⇒ universal “small” witness circuits

A note on pseudorandomness

Let x ∈ L and suppose that L does not have universal “small”
witness circuits.
Then for some V and y ∈ {0, 1}∗, such that V (x , y) = 1 we have
that for any circuit C with |C | ≤ nk

∃z such that C (z) 6= yz

y is the truth table of a “hard” function =⇒ Can construct a
pseudorandom generator.
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proof of (A): NEXP ⊆ P/poly =⇒ universal “small” witness circuits

The proof

Assumption: NEXP ⊆ P/poly and there exists L ∈ NEXP that
does not have universal polynomial size witness circuits.
We must prove:

PSPACE ⊆ MA

MA ⊆ io-NTIME(2n)/n

io-NTIME(2n)/n ⊆ io-SIZE(nq)

Putting everything together:

PSPACE ⊆ MA ⊆ io-NTIME(2n)/n ⊆ io-SIZE(nq)

for constant q.



Context Preliminaries Williams’ method Future work

proof of (A): NEXP ⊆ P/poly =⇒ universal “small” witness circuits

The proof

Assumption: NEXP ⊆ P/poly and there exists L ∈ NEXP that
does not have universal polynomial size witness circuits.
We must prove:

PSPACE ⊆ MA easy simulation

MA ⊆ io-NTIME(2n)/n using witness as hard function

io-NTIME(2n)/n ⊆ io-SIZE(nq) careful simulation

Putting everything together:

PSPACE ⊆ MA ⊆ io-NTIME(2n)/n ⊆ io-SIZE(nq)

for constant q.
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proof of (A): NEXP ⊆ P/poly =⇒ universal “small” witness circuits

The proof

Since the inclusion PSPACE ⊆ io-SIZE(nq) is false, we get that

NEXP ⊆ P/poly =⇒ NEXP has universal “small” witnesses
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proof of (B): better-than-trivial CIRCUIT SAT algorithms =⇒ no universal “small” witness circuits

An unsatisfiable circuit

Fix L ∈ NTIME(2n). Let x with
|x | = n be an input. Suppose
that Cx encodes a Boolean
formula Φx such that
Φx ∈ SAT ⇐⇒ x ∈ L, and W is
a witness circuit for some correct
V . Then

Dx ,W ∈ UNSAT ⇐⇒ x ∈ L

The input is the index of a clause
of Φx and d is a constant
independent of L and x .

m = n+ d log n

Cx

i︸︷︷︸

¬[(b1 ⊕ ℓ1) ∨ (b2 ⊕ ℓ2) ∨ (b3 ⊕ ℓ3)]

W W W

Dx,W

ℓ1b1 ℓ2b2 ℓ3b3

m m m

H
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proof of (B): better-than-trivial CIRCUIT SAT algorithms =⇒ no universal “small” witness circuits

No universal “small” witness circuits

Pick L ∈ NTIME(2n) \ NTIME(2n−ω(log n)) (which exists by the
non-deterministic time hierarchy). Build Dx ,W . Suppose that
CIRCUIT SAT can be solved in time

O
(2n · (nk∗)c

f (n)

)
= O(2n+c·k∗ log n−ω(log n))

where f (n) is superpolynomial. Then, we could decide L in time
O(2n−ω(log n)), a contradiction.
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The circuit Cx

A first reduction

The Cook-Levin theorem offers a construction such that for a fixed
language L, given an input x there exists a Boolean formula Ψx
such that

Ψx ∈ SAT ⇐⇒ x ∈ L

and |Ψx | = O(n2). Moreover the i-th clause of Ψx can be
computed in time O(logO(1) n).
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The circuit Cx

A first reduction II

Thus, we get Cx of size
O((logO(1) 2n)2) = O(nk) (as
needed) but with 2n inputs,
which would make Dx ,W have 2n
inputs.

m = 2n

Cx

i︸︷︷︸

¬[(b1 ⊕ ℓ1) ∨ (b2 ⊕ ℓ2) ∨ (b3 ⊕ ℓ3)]

W W W

Dx,W

ℓ1b1 ℓ2b2 ℓ3b3

m m m

H
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The circuit Cx

A first reduction III

If we apply the previous reasoning, we can decide the membership
to L in time

O
(22n · (nk∗)c

f (n)

)
= O(22n+c·k∗ log n−ω(log n))

Not necessarily O(2n−ω(log n))
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The circuit Cx

A more efficient reduction

We can use quite old work from Stearns & Hunt and from Robson
to construct a formula Φx with

Φx ∈ SAT ⇐⇒ x ∈ L

and |Φx | = O(n logO(1) n). The i-th clause of Φx is also
computable in time O(logO(1)n).
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The circuit Cx

Summary

Fix L ∈ NTIME(2n) \ NTIME(2n−ω(log n)). Assuming that
NEXP ⊆ P/poly we get that L has universal “small” witness
circuits. Construct Dx ,W and execute the better-than-trivial
algorithm for CIRCUIT SAT with input Dx ,W . Thus, decide L in
time O(2n−ω(log n)), a contradiction.
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The circuit Cx

Relating two branches

In principle, proving circuit lower bounds and designing algorithms
need not be related

The former concerns showing that for all circuits some
function is not computable

The latter concerns showing that there exists a circuit that
computes some function
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Future work

Interesting research paths after this work:

Produce and/or publish a complete proof of the construction
of Cx .

Can we use other NP-complete problems to construct Cx?
(Maybe more efficient).

Consider sorting networks to construct the efficient reduction
for Cx .

Thorough study of Williams’ method against complexity
barriers
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The presentation has finished
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