Completeness proof for IL Provability logics for relative interpretability by Veltman and De Jongh

March 2021

Preliminaries

The IL logic: Axioms

- $C_1: A \to (B \to A)$
- $C_2: (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- $C_3: (\neg A \to \neg B) \to (B \to A)$
- $K : \Box (A \to B) \to (\Box A \to \Box B)$
- $L: \Box (\Box A \to A) \to \Box A$
- $J_1: \Box (A \to B) \to (A \triangleright B)$
- $J_2: ((A \triangleright B) \land (B \triangleright C)) \rightarrow A \triangleright C$
- $J_3: ((A \triangleright C) \land (B \triangleright C)) \rightarrow (A \lor B \triangleright C)$
- $J_4: (A \triangleright B) \to (\diamondsuit A \to \diamondsuit B)$
- $J_5: \diamondsuit A \triangleright A$

The IL logic **Rules**

- Necessitation: If $\vdash_{H} A$, then $\vdash_{H} \Box A$
- Modus Ponnens: If $\Pi \vdash_{H} A$ and $\Pi \vdash_{H} A \rightarrow B$, then $\Pi \vdash_{H} B$.

- Weakening: If $\Pi \vdash_{H} A$, then $B, \Pi \vdash_{H} A$
- Structurality: For any substitution σ and $\Pi \vdash_{IL} A$, then $\sigma(\Pi) \vdash_{IL} \sigma(A)$
- Conjunction: $\Pi \vdash_{H} A \land B$ iff $\Pi \vdash_{H} A$ and $\Pi \vdash_{H} B$

Example of Hilbert-style proof in IL $A \triangleright A \land \Box \neg A$

- $\Box (\Box \neg A \rightarrow \neg A) \rightarrow \Box \neg A$
- $\Diamond A \to \Diamond \neg (\Box \neg A \to \neg A)$
- $\Diamond A \to \Diamond (\Box \neg A \land A)$
- $(A \land \Diamond A) \triangleright \Diamond (\Box \neg A \land A)$
- $\Diamond(\Box \neg A \land A) \triangleright (\Box \neg A \land A)$
- $A \triangleright (A \land \Box \neg A) \lor (A \land \Diamond A)$
- $((A \land \Box \neg A) \lor (A \land \Diamond A)) \triangleright (A \land \Box \neg A) \lor (A \land \Box \neg A)$
- $A \triangleright (A \land \Box \neg A)$

Applying Löbs-axiom to $\neg A$, By contraposition, By definition, By the \wedge -tautology $A \rightarrow C \Rightarrow A \wedge B \rightarrow C$, necessitation and J1, Applying J5 to $(\Box \neg A \land A)$, Since $B \leftrightarrow (B \land \neg C) \lor (B \land C)$, applying necessitation and J1, Cases, What we wanted to prove!

Semantics of IL

- For an GL-Frame $F = \langle W, R \rangle$ we define $W[u] = \{v \in W | uRv\}$ We say that F is an IL-frame with an additional relation S_u , for each $u \in W$ with the following properties: * S_u is reflexive
- * S_u is transitive
- * for $v, w \in W[u]$ if vRw then vS

$$\delta_u W$$
.

Interpretation

 $u \Vdash \Box A \text{ iff } \forall v (uRv \Rightarrow v \Vdash A)$

An *IL*—model is given by an *IL*—frame $\langle W, R, \{S_{\mu}\}_{\mu \in W} \rangle$ such that $u \Vdash A \triangleright B \text{ iff } \forall v (uRv \land v \Vdash A \Rightarrow \exists w (vS_uw \land w \Vdash B))$

Example of proof in IL $A \triangleright A \land \Box \neg A$

- $\begin{array}{c} \Box (\Box \neg A \rightarrow \neg A) \rightarrow \Box \neg A \\ \diamond A \rightarrow \Diamond \neg (\Box \neg A \rightarrow \neg A) \\ \diamond A \rightarrow \Diamond (\Box \neg A \wedge A) \\ \circ (A \wedge \Diamond A) \triangleright \Diamond (\Box \neg A \wedge A) \\ \circ (\Box \neg A \wedge A) \triangleright (\Box \land A \wedge A) \\ \bullet A \triangleright (A \wedge \Box \neg A) \lor (A \wedge \Diamond A) \\ \bullet A \triangleright (A \wedge \Box \neg A) \lor (A \wedge \Diamond A) \\ \bullet A \triangleright (A \wedge \Box \neg A) \lor (A \wedge \Diamond A) \\ \bullet A \land A \land A \land A \land A \\ \bullet A \land A \land A \land A \land A \\ \bullet A \land A \land A \land A \land A \\ \bullet A \land A \land A \land A \\ \bullet A \land A \land A \land A \\ \bullet A \land A \land A \land A \\ \bullet A \land A \land A \land A \\ \bullet A \land A \land A \land A \\ \bullet A \land A \land A \land A \\ \bullet A \land A \land A \\ \bullet A \land A \land A \\ \bullet A \\ \bullet A \land A \\ \bullet A$
- $A \triangleright (A \land \Box \neg A)$ ADA 174

Applying Löbs-axiom to $\neg A$, By contraposition, By definition, autology $A \to C \Rightarrow A \land B \to C$, tation and J1, A $\square A$ $\square A$ A $\square A$ A, Since $B \leftrightarrow (B \land \neg C) \lor (B \land C)$, applying necessitation and J1, Cases, What we wanted to prove!

Theorem (soundness):

If F is an IL-Frame, for each formula A:

if H_{II} A, then $F \models A$.

Completeness theorem for IL (Preliminaries)

Definition **Adequate sets**

A set of formulae Φ is adequate if:

(i). Φ is closed under the taking of sub formulae, (ii). If $B \in \Phi$, and B is no negation of another formula, then $\neg B \in \Phi$, (iii). $\bot \triangleright \bot \in \Phi$,

(iv). If $B \triangleright C \in \Phi$, then also $\langle B, \langle C \in \Phi, \rangle$

 $B \triangleright C \in \Phi$.

- (v). If B and C are the antecedent or consequent of a \triangleright -formula in Φ , then

Definition <-relation

only if:

- for each $\Box A \in \Gamma$, then $\Box A, A \in \Delta$
- there is some $\Box A \notin \Gamma$, but $\Box A \in \Delta$

For Γ and Δ two maximal *IL*-consistent subsets of formulae of some finite adequate Φ , we say that Δ is a successor of Γ , $\Gamma \prec \Delta$ if and

Let I be a maximal IL-consistent subset of some finite adequate Φ , and let W_{Γ} be the smallest set such that: (i). $\Gamma \in W_{\Gamma}$ (ii). If $\Delta \in W_{\Gamma}$ and Δ' be an *IL*-consistent subset of Φ such that $\Delta \prec \Delta'$, then $\Delta' \in W_{\Gamma}$

- < is transitive and irreflexive on W_{Γ}
- For each $\Gamma \in W_{\Gamma}$,

 $\Box A \in \Gamma \text{ if and only if } A \in \Delta \text{, for every } \Delta \text{ such that } \Gamma \prec \Delta$

Definition C-critical successors

We say that Δ is a *C*-critical successor of Γ if and only if

(i).
$$\Gamma \prec \Delta$$

(ii). $\neg A$, $\Box \neg A \in \Delta$ for each for

Note: every successor of Γ is \perp -critical successor of Γ .

Let I and Δ be maximal *IL*-consistent subsets of some given adequate Φ .

mula A such that $A \triangleright C \in \Gamma$

Lemma Let Γ be a maximal *IL*-consistent in Φ

- -consistent in Φ , such that $B \in \Delta$.
- there is some Δ' , D-critical successor of Γ , such that $C \in \Delta'$.

• If $\neg(B \triangleright C) \in \Gamma$, there exists a C-critical successor Δ of Γ , maximal IL

• If $B \triangleright C \in \Gamma$ and $B \in \Delta$ for some Δ is an D-critical successor of Γ , then

Completeness theorem for IL

Proof:

Let Φ be some finite adequate set that contains $\neg A$, and Γ_0 be a maximally consistent subset of Φ containing $\neg A$. We define W_{Γ_0} as the smallest set of pairs such that: i. $(\Gamma_0, <>) \in W_{\Gamma_0}$, where <> represents the empty sequence.

- ii. If $(\Gamma, \tau) \in W_{\Gamma_0}$, then for any Δ such that $\Gamma \prec \Delta$, we have that $(\Delta, \tau) \in W_{\Gamma_0}$.
- iii. If $(\Gamma, \tau) \in W_{\Gamma_0}$, then $(\Delta, \tau^* < C >) \in W_{\Gamma_0}$ for every *C*-critical successor.

Proof:

Let Φ be some finite adequate set that contains $\neg A$, and Γ_0 be a maximally consistent subset of Φ containing $\neg A$.

We define W_{Γ_0} as the smallest set of pairs such that:

i. $(\Gamma_0, <>) \in W_{\Gamma_0}$, where <> represents the empty sequence. ii. If $(\Gamma, \tau) \in W_{\Gamma_0}$, then for any Δ such that $\Gamma \prec \Delta$, we have that $(\Delta, \tau) \in W_{\Gamma_0}$. iii. If $(\Gamma, \tau) \in W_{\Gamma_0}$, then $(\Delta, \tau^* < C >) \in W_{\Gamma_0}$ for every *C*-critical successor.

Notation: for $u = (\Delta, \tau) \in W_{\Gamma_0}$, we denote $(u)_0 = \Delta$ and $(u)_1 = \tau$

Proof:

What do we know about W_{Γ_0} :

- It is finite.

- If $u \in W_{\Gamma_0}$ and the formula E occurs in the sequence $(u)_1$, then $\neg E$, $\Box \neg E \in (u)_0$

Proof: Definition: Let $v, w \in W_{\Gamma_0}$, then vRw if and only if $(v)_0 \prec (w)_0$, and $(v)_1 = (w)_1 * \sigma$, for some sequence σ .

- Claim: R is transitive and Noetherian.

Proof: **Definition**: Let $u, v, w \in W_{\Gamma_{\alpha'}}$, then $vS_{u}w$ if and only if $(u)_{1} = 0$ for some

$$(v)_1 \subseteq (w)_1$$
, or
 $e C, \sigma \text{ and } \tau, (v)_1 = (u)_1 * < C > * \sigma,$
 $and (w)_1 = (u)_1 * < C > * \tau,$

- **Claim**: S_u is well defined on $W_{\Gamma_0}[u]$, transitive and reflexive relation.

Proof: **Definition**: for every proposition variable p, and for $u \in W_{\Gamma_0}$

- **Claim**: for every formula E, $u \Vdash E$ if and only if $E \in (u)_0$
- $u \Vdash p$ if and only if $p \in (u)_0$

Proof: $B \triangleright C \in (u)_0 \text{ iff } \forall v(uRv \land B \in (v)_0 \Rightarrow \exists w(vS_uw \land C \in (w)_0))$ (\Rightarrow) Suppose $B \triangleright C \in (u)_0$. Consider any $v \in W_{\Gamma_0}$ such that uRvand $B \in (v)_0$.

Lemma Let Γ be a maximal *IL*-consistent in Φ

- -consistent in Φ , such that $B \in \Delta$.
- there is some Δ' , D-critical successor of Γ , such that $C \in \Delta'$.

• If $\neg(B \triangleright C) \in \Gamma$, there exists a C-critical successor Δ of Γ , maximal IL

• If $B \triangleright C \in \Gamma$ and $B \in \Delta$ for some Δ is an D-critical successor of Γ , then

Lemma Let Γ be a maximal *IL*-consistent in Φ

- -consistent in Φ , such that $B \in \Delta$.
- If $B \triangleright C \in U$ and $B \in A$ for some A is an D-critical successor of Γ , then there is some Δ', D -critical successor of U such that $C \in \Delta'$.

• If $\neg(B \triangleright C) \in \Gamma$, there exists a C-critical successor Δ of Γ , maximal IL

Proof: $B \triangleright C \in (u)_0 \text{ iff } \forall v(uRv \land B \in (v)_0 \Rightarrow \exists w(vS_u w \land C \in (w)_0))$ (\Rightarrow) Suppose $B \triangleright C \in (u)_0$. Consider any $v \in W_{\Gamma_0}$ such that uRv and $B \in (v)_0$. Take $w = (\Delta, (u)_0 * < E >).$ <u>Case 2</u>: $(u)_1 = (v)_1$, then $(u)_0 \prec (v)_0$.

- <u>Case 1</u>: $(u)_1 * < E > * \tau = (v)_1$, $(u)_0$ is an *E*-critical successor of $(w)_0$ such that $B \in (u)_0$. Then there is a Δ an *E*-critical successor of $(v)_0$ such that $C \in \Delta$.

Proof: $B \triangleright C \in (u)_0 \text{ iff } \forall v(uRv \land B \in (v)_0 \Rightarrow \exists w(vS_uw \land C \in (w)_0))$ (\Rightarrow) Suppose $B \triangleright C \in (u)_0$. Consider any $v \in W_{\Gamma_0}$ such that uRv and $B \in (v)_0$. <u>Case 1</u>: $(u)_1 * < E > * \tau = (v)_1$, <u>Case 2</u>: $(u)_1 = (v)_1$, then $(u)_0 \prec (v)_0$. Then for $B \triangleright C \in (u)_0$, $B \in (u)_0$ implies that there is a \perp -critical successor Δ of $(u)_0$ such that $C \in \Delta$. Take $v = (\Delta, (u)_1)$.

Proof: $B \triangleright C \in (u)_0 \text{ iff } \forall v(uRv \land B \in (v)_0 \Rightarrow \exists w(vS_uw \land C \in (w)_0))$ (\Rightarrow) Suppose $B \triangleright C \in (u)_0$. (\Leftarrow) Suppose $B \triangleright C \notin (u)_0$, then $\neg (B \triangleright C) \in (u)_0$

Lemma Let Γ be a maximal *IL*-consistent in Φ

- -consistent in Φ , such that $B \in \Delta$.
- there is some Δ' , *D*-critical successor of Γ , such that $C \in \Delta'$.

• If $\neg(B \triangleright C) \in \Gamma$, there exists a C-critical successor Δ of Γ , maximal IL

• If $B \triangleright C \in \Gamma$ and $B \in \Delta$ for some Δ is an D-critical successor of Γ , then

Lemma Let Γ be a maximal *IL*-consistent in Φ

- -consistent in Φ , such that $B \in \Delta$.
- there is some Δ' , D-critical successor of Γ , such that $C \in \Delta'$.

• If $\neg(B \triangleright C) \in (\mathbb{D},)$ there exists a C-critical successor Δ of \mathbb{D} maximal IL

• If $B \triangleright C \in \Gamma$ and $B \in \Delta$ for some Δ is an D-critical successor of Γ , then

Proof: $B \triangleright C \in (u)_0 \text{ iff } \forall v(uRv \land B \in (v)_0 \Rightarrow \exists w(vS_uw \land C \in (w)_0))$ (\Rightarrow) Suppose $B \triangleright C \in (u)_0$. -critical successor of $(u)_0$ such that $B \in \Delta$. Take in $(w)_1$ which implies that $\neg C \in (v)_0$.

 (\Leftarrow) Suppose $B \triangleright C \notin (u)_0$, then $\neg (B \triangleright C) \in (u)_0$. Let Δ be a C $v = (\Delta, (u)_1^* < C >)$. For $w \in W_{\Gamma_0}$ such that $vS_u w$, then C-occurs

More axioms...

Other Axioms

- $M : A \triangleright B \rightarrow (A \land \Box C \triangleright B \land \Box C)$
- $P: A \triangleright B \rightarrow \Box (A \triangleright B)$
- $W: A \triangleright B \rightarrow (A \triangleright B \land \Box \neg A)$

Notation: We write *ILS* standing for the logic IL + S where S is either axiom M, P, W.

Let K_S be the family of frames $F = \langle W, R, S_w \rangle$, for which $S \in \{M, P, W\}$.

• K_M : for each $u, v, w, x \in W$, if $vS_u wRx$, then vRx.

 \cdot

Let K_S be the family of frames $F = \langle W, R, S_w \rangle$, for which $S \in \{M, P, W\}$.

- K_M : for each $u, v, w, x \in W$, if $vS_u wRx$, then vRx.
- K_P : for each $u, v, w, x \in W$, such that uRv and vRw, if $wS_u x$ then $wS_v x$.

.

Let K_S be the family of frames $F = \langle W, R, S_w \rangle$, for which $S \in \{M, P, W\}$.

- K_M : for each $u, v, w, x \in W$, if $vS_u wRx$, then vRx.
- K_P : for each $u, v, w, x \in W$, such that uRv and vRw, if $wS_u x$ then $wS_v x$.
- K_W : $R \circ S_u$ is conversely wellfounded for each $u \in W$.

Theorem (frame conditions): Let K_S be the family of frames $F = \langle W, R, S_w \rangle$, for which $S \in \{M, P, W\}$.

• For any frame $F \in K_S$, we have that

 $F \models ILS$ if and only if $F \in K_S$

Theorem (soundness):

If F is an IL-Frame, for each formula A:

if $\vdash_{IIS} A$, then $K_S \models A$.

