Provability logics with transfinitely many modalities in the foundations of mathematics

Joost J. Joosten

Dept. Lògica, Història i Filosofia de la Ciència
Universitat de Barcelona

Wednesday 15-11-2010
Logic Seminar, Barcelona
My current main research interests comprise:
My current main research interests comprise:

- Relating various notions of complexity, most notably, computational and geometrical
My current main research interests comprise:

- Relating various notions of complexity, most notably, computational and geometrical
- Interpretability logics.
My current main research interests comprise:

- Relating various notions of complexity, most notably, computational and geometrical
- Interpretability logics.
- Foundations of mathematics: iterated reflection principles.
Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations.
Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations.

Most notably, David Hilbert proposed (1900) a programme to justify the use *non-finitary* methods by finitary means only.
Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations.

Most notably, David Hilbert proposed (1900) a programme to justify the use *non-finitary* methods by finitary means only.

In meta-mathematical language:

\[\mathcal{F} \vdash \text{Con}(R) \]
Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations.

Most notably, David Hilbert proposed (1900) a programme to justify the use non-finitary methods by finitary means only.

In meta-mathematical language:

\[\mathcal{F} \vdash \text{Con}(\mathcal{R}) \]

where \(\mathcal{F} \) is some undisputed part of mathematics consisting of finitary methods only, and \(\mathcal{R} \) denotes ‘real’ mathematics.
The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

\[\mathcal{F} \vdash \text{Con}(\mathcal{F}) \]

under some very reasonable assumptions of \(\mathcal{F} \).
The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

\[\mathcal{F} \vdash \text{Con}(\mathcal{F}) \]

under some very reasonable assumptions of \(\mathcal{F} \).

Thus proving the impossibility of Hilbert’s programme.
The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

\[\mathcal{F} \vdash \text{Con}(\mathcal{F}) \]

under some very reasonable assumptions of \(\mathcal{F} \).

Thus proving the impossibility of Hilbert’s programme.

However, partial realizations of Hilbert’s programme have been obtained.
The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

\[\mathcal{F} \vdash \text{Con}(\mathcal{F}) \]

under some very reasonable assumptions of \(\mathcal{F} \).

Thus proving the impossibility of Hilbert’s programme.

However, partial realizations of Hilbert’s programme have been obtained

Most notably, Gentzen’s consistency proof for Peano Arithmetic (1936)
Peano Arithmetic (PA) is the formal arithmetical theory in the language \(\{0, S, +, \cdot, 2^x\} \) axiomatized by the regular axioms for the constant and function symbols together with full induction:

\[
\varphi(0, \vec{y}) \land \forall x \left[\varphi(x, \vec{y}) \rightarrow \varphi(Sx, \vec{y}) \right] \rightarrow \forall x \varphi(x, \vec{y}).
\]
Peano Arithmetic (PA) is the formal arithmetical theory in the language \(\{0, S, +, \cdot, 2^x\} \) axiomatized by the regular axioms for the constant and function symbols together with full induction:

\[
\varphi(0, \vec{y}) \land \forall x \ [\varphi(x, \vec{y}) \rightarrow \varphi(Sx, \vec{y})] \rightarrow \forall x \varphi(x, \vec{y}).
\]

Gentzen showed

\[
\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(PA)
\]
Peano Arithmetic (PA) is the formal arithmetical theory in the language \(\{0, S, +, \cdot, 2^x\} \) axiomatized by the regular axioms for the constant and function symbols together with full induction:

\[
\varphi(0, \vec{y}) \land \forall x \left[\varphi(x, \vec{y}) \rightarrow \varphi(Sx, \vec{y}) \right] \rightarrow \forall x \varphi(x, \vec{y}).
\]

Gentzen showed

\[
\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(\text{PA})
\]

Here PR-TI(\(\epsilon_0\)) is transfinite induction up to \(\epsilon_0\) for primitive recursive (p.r.) predicates

\[
\forall \alpha \in S \left[\forall \beta < \alpha A(\beta) \rightarrow A(\alpha) \right] \rightarrow \forall \alpha A(\alpha)
\]

where \(S\) is some set on which \(\prec\) defines a (p.r.) well-order of order type \(\epsilon_0\) and \(A\) is a p.r. predicate.
\(\mathcal{F} + \text{PR-TI}(\varepsilon_0) \vdash \text{Con}(\text{PA}) \)

With \(\mathcal{F} \) some finitistic part of mathematics (for example Primitive Recursive Arithmetic).
\(\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(\text{PA}) \)

With \(\mathcal{F} \) some finitistic part of mathematics (for example Primitive Recursive Arithmetic).

It is tempting to conceive of \(\text{PR-TI}(\epsilon_0) \) as the non-finitistic part encompassed by \(\text{PA} \).
\[F + \text{PR-TI}(\varepsilon_0) \vdash \text{Con}(\text{PA}) \]

With \(F \) some finitistic part of mathematics (for example Primitive Recursive Arithmetic).

It is tempting to conceive of \(\text{PR-TI}(\varepsilon_0) \) as the non-finitistic part encompassed by \(\text{PA} \).

And in analogy to this, one can define a norm that measures proof strengths for theories \(T \) as follows:

\[
| T |_{\text{con}} := \min\{\alpha \mid \text{PRA} + \text{PR-TI}(\alpha) \vdash \text{Con}(T)\}
\]
The norm $|T|_{\text{con}}$ is very sensitive to
The norm $|T|_{\text{con}}$ is very sensitive to

(a.) The way ordinals are notated
The norm $|T|_{\text{con}}$ is very sensitive to

(a.) The way ordinals are notated
(b.) The way these notations are represented in a theory dealing with natural numbers (PRA)
The norm $|T|_{\text{con}}$ is very sensitive to

(a.) The way ordinals are notated

(b.) The way these notations are represented in a theory dealing with natural numbers (PRA)

Ad (a.) Recall that an ordinal is just defined as a transitive set all of whose members are also transitive. They live out there but to pick out one particular ordinal one needs a recipe. A uniform recipe makes up an ordinal notation system.
The norm $|T|_{\text{con}}$ is very sensitive to

(a.) The way ordinals are notated
(b.) The way these notations are represented in a theory dealing with natural numbers (PRA)

Ad (a.) Recall that an ordinal is just defined as a transitive set all of whose members are also transitive. They live out there but to pick out one particular ordinal one needs a recipe. A uniform recipe makes up an ordinal notation system.

(where x being transitive means $\forall y \in x \forall z (z \in y \rightarrow z \in x)$, that is, each element y of x is also a subset of x)
The norm $|T|_{\text{con}}$ is very sensitive to
(a.) The way ordinals are notated
(b.) The way these notations are represented in a theory dealing with natural numbers (PRA)

Ad (a.) Recall that an ordinal is just defined as a transitive set all of whose members are also transitive. They live out there but to pick out one particular ordinal one needs a recipe. A uniform recipe makes up an ordinal notation system.

(where x being transitive means $\forall y \in x \forall z (z \in y \rightarrow z \in x)$, that is, each element y of x is also a subset of x)

Ad (b.): There are pathological orderings known (Kreisel) such that ω would be $|T|_{\text{Con}}$ for any T
Kreisel’s pathological ordering for a consistent theory T:

- $n < T m$ iff $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \lceil 0 = 1 \rceil)$
- $m < n$ and $\exists x < \max\{n, m\} \text{Proof}_T(x, \lceil 0 = 1 \rceil)$
- $\forall n < T m \left[\forall n' < n \neg \text{Proof}_T(n', \lceil 0 = 1 \rceil) \rightarrow \forall m' < m \neg \text{Proof}_T(m', \lceil 0 = 1 \rceil) \right]$ provably in PRA holds for any m by construction of $< T$:
 - if $\exists m' < m \text{Proof}_T(m', \lceil 0 = 1 \rceil)$ then $m + 1 < T m$ whence by the induction hypothesis $\forall m' < m + 1 \neg \text{Proof}_T(m', \lceil 0 = 1 \rceil)$ which is a contradiction.

Beklemishev has provided pathological representations for arbitrary large $\beta < \omega^1_{CK}$ such that PRA together with transfinite induction along β does not prove Con(PA).
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

1. $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \psi(0 = 1))$
2. $m < n$ and $\exists x < \max\{n, m\} \text{Proof}_T(x, \psi(0 = 1))$
3. $\forall n < T^m [\forall n' < n \neg \text{Proof}_T(n', \psi(0 = 1)) \rightarrow [\forall m' < m \neg \text{Proof}_T(m', \psi(0 = 1))]]$ provably in PRA holds for any m by construction of $<_T$: if $\exists m' < m \text{Proof}_T(m', \psi(0 = 1))$ then $m + 1 < T^m$ whence by the induction hypothesis $\forall m' < m + 1 \neg \text{Proof}_T(m', \psi(0 = 1))$ which is a contradiction.

Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_{CK}$ such that PRA together with transfinite induction along β does not prove Con(PA).
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \ulcorner 0 = 1 \urcorner)$
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

$n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \lceil 0 = 1 \rceil)$

$m < n$ and $\exists x < \max\{n, m\} \text{Proof}_T(x, \lceil 0 = 1 \rceil)$
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \neg 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \text{ Proof}_T(x, \neg 0 = 1)$

$\forall n <_T m \left[\forall n' < n \neg \text{Proof}_T(n', \neg 0 = 1) \rightarrow \left(\forall m' < m \neg \text{Proof}_T(m', \neg 0 = 1) \right) \right]$ provably in PRA holds for any m by construction of $<_T$:

...
Kreisel’s pathological ordering for a consistent theory T:

- We define $n <_T m$ iff
 - $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \lnot 0 = 1)$
 - $m < n$ and $\exists x < \max\{n, m\} \text{ Proof}_T(x, \lnot 0 = 1)$

- $\forall n <_T m [\forall n' < n \neg \text{Proof}_T(n', \lnot 0 = 1) \rightarrow \forall m' < m \neg \text{Proof}_T(m', \lnot 0 = 1)]$ provably in PRA holds for any m by construction of $<_T$:

- if $\exists m' < m \text{ Proof}_T(m', \lnot 0 = 1)$ then $m + 1 <_T m$ whence by the induction hypothesis $\forall m' < m + 1 \neg \text{Proof}_T(m', \lnot 0 = 1)$ which is a contradiction.
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \neg 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \text{Proof}_T(x, \neg 0 = 1)$

$\forall n <_T m [\forall n' < n \neg \text{Proof}_T(n', \neg 0 = 1) \rightarrow [\forall m' < m \neg \text{Proof}_T(m', \neg 0 = 1)]]$ provably in PRA holds for any m by construction of $<_T$:

- if $\exists m' < m \text{Proof}_T(m', \neg 0 = 1)$ then $m + 1 <_T m$ whence by the induction hypothesis $\forall m' < m + 1 \neg \text{Proof}_T(m', \neg 0 = 1)$ which is a contradiction

Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{ck}$ such that PRA together with transfinite induction along β does not prove Con(PA).
Gentzen: $\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(\text{PA})$
Gentzen: $\mathcal{F} + \text{PR-TI}(\varepsilon_0) \vdash \text{Con}(\text{PA})$

Consequently, $\text{PA} \not\vdash \text{PR-TI}(\varepsilon_0)$
Gentzen: $\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(\text{PA})$

Consequently, $\text{PA} \not\vdash \text{PR-TI}(\epsilon_0)$

However, Gentzen later also showed that $\text{PA} \vdash \text{PR-TI}(\alpha)$ for any $\alpha < \epsilon_0$
Gentzen: $\mathcal{F} + \text{PR-TI}(\varepsilon_0) \vdash \text{Con(PA)}$

Consequently, $\text{PA} \not\vdash \text{PR-TI}(\varepsilon_0)$

However, Gentzen later also showed that $\text{PA} \vdash \text{PR-TI}(\alpha)$ for any $\alpha < \varepsilon_0$

This leads to another measure for prove-strength of a theory T: the supremum of the order types of those recursive well-orders that are provably (in T) well founded
Gentzen: $\mathcal{F} + \text{PR-TI}(\varepsilon_0) \vdash \text{Con}(\text{PA})$

Consequently, $\text{PA} \nvdash \text{PR-TI}(\varepsilon_0)$

However, Gentzen later also showed that $\text{PA} \vdash \text{PR-TI}(\alpha)$ for any $\alpha < \varepsilon_0$

This leads to another measure for prove-strength of a theory T: the supremum of the order types of those recursive well-orders that are provably (in T) well founded

$|T|_{\text{sup}} := \{\alpha \mid \alpha \text{ is the ordertype of a, provably in } T, \text{ recursive well-order}\}$
Gentzen: $\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(\text{PA})$

Consequently, $\text{PA} \not\vdash \text{PR-TI}(\epsilon_0)$

However, Gentzen later also showed that $\text{PA} \vdash \text{PR-TI}(\alpha)$ for any $\alpha < \epsilon_0$

This leads to another measure for prove-strength of a theory T: the supremum of the order types of those recursive well-orders that are provably (in T) well founded

$|T|_{\text{sup}} := \{\alpha \mid \alpha$ is the ordertype of a, provably in T, recursive well-order}$

There are some technical details here as well-foundedness is a Π^1_1 predicate and as such not definable in first-order theories.
\[|T|_{\text{sup}} \text{ is more robust and less prone to pathological counter-examples.} \]
$|T|_{sup}$ is more robust and less prone to pathological counter-examples.

As a matter of fact, it is a bit too robust:
\(|T|_{\text{sup}} \) is more robust and less prone to pathological counter-examples.

As a matter of fact, it is a bit too robust:

Let \(S \) be a set of true \(\Sigma^1_1 \) sentences, then, under some fairly reasonable conditions

\[
|T|_{\text{sup}} = |T + S|_{\text{sup}}
\]
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.

This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.

This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:

$T_0 := T$
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.

This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:

- $T_0 := T$
- $T_{\alpha+1} := T_\alpha + \text{Con}(T_\alpha)$
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.

This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:

- $T_0 := T$
- $T_{\alpha+1} := T_\alpha + \text{Con}(T_\alpha)$
- $T_\lambda := \bigcup_{\beta < \lambda} T_\beta$ for limit λ
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.

This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:

- $T_0 := T$
- $T_{\alpha+1} := T_\alpha + \text{Con}(T_\alpha)$
- $T_\lambda := \bigcup_{\beta < \lambda} T_\beta$ for limit λ

We can define the proof theoretic measure

$$|T|_{\text{it}} := \min\{\alpha \mid \mathcal{F}_\alpha \vdash \text{Con}(T)\}$$

where \mathcal{F} is a suitably chosen finitistic fragment of arithmetic.
It is to be expected that $|T|_{it}$ is more fine-grained than the other notions as it is defined in terms of a central notion: \textit{consistency}.
It is to be expected that $|T|_{it}$ is more fine-grained than the other notions as it is defined in terms of a central notion: *consistency*

We can expect that $|T|_{it}$ is again very sensible to *pathological* orderings and representations thereof
It is to be expected that $|\mathcal{T}|_{it}$ is more fine-grained than the other notions as it is defined in terms of a central notion: consistency.

We can expect that $|\mathcal{T}|_{it}$ is again very sensible to pathological orderings and representations thereof.

However, provability logics yield two main advantages.
It is to be expected that $|T|_{it}$ is more fine-grained than the other notions as it is defined in terms of a central notion: \textit{consistency}

We can expect that $|T|_{it}$ is again very sensible to \textit{pathological} orderings and representations thereof.

However, provability logics yield two main advantages:

- All the calculations involved in determining $|T|_{it}$ can be done within these logics.
It is to be expected that $|T|_{it}$ is more fine-grained than the other notions as it is defined in terms of a central notion: consistency.

We can expect that $|T|_{it}$ is again very sensible to pathological orderings and representations thereof.

However, provability logics yield two main advantages:

- All the calculations involved in determining $|T|_{it}$ can be done within these logics.
- The logics suggest a very natural ordinal notation which is completely unambiguous up to the Feferman-Shütte ordinal Γ_0.
Surprise to me:
 Surprise to me:

 There is an intimate connection between consistency statements and arithmetic
 Surprise to me:

There is an intimate connection between consistency statements and arithmetic

In particular, the fragments $I\Sigma_n$ can be fully characterized in terms of consistency statements
➤ Surprise to me:

➤ There is an intimate connection between consistency statements and arithmetic

➤ In particular, the fragments $I\Sigma_n$ can be fully characterized in terms of consistency statements

➤ We need some notation and terminology to make this precise.
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- For a formula \(\varphi \), we denote the representation by \(\langle \varphi \rangle \).
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- For a formula \(\varphi \), we denote the representation by \(\lfloor \varphi \rfloor \).
- A formula in the language of arithmetic is \textit{elementary} if it can be decided in elementary (multi-exponential) time.
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- For a formula \(\varphi \), we denote the representation by \(\downarrow \varphi \).
- A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time.
- A theory is called *elementary represented* if it is represented by some elementary formula.
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- For a formula \(\varphi \), we denote the representation by \(\Gamma \varphi \).
- A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time.
- A theory is called *elementary represented* if it is represented by some elementary formula.
- For elementary represented theories \(T \), one can write down a formula \(\text{Proof}_T(p, \Gamma \varphi) \) that is true only when \(p \) is the code of a proof in \(T \) of a formula \(\varphi \).
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- For a formula φ, we denote the representation by $\lceil \varphi \rceil$.
- A formula in the language of arithmetic is elementary if it can be decided in elementary (multi-exponential) time.
- A theory is called elementary represented if it is represented by some elementary formula.
- For elementary represented theories T, one can write down a formula $\text{Proof}_T(p, \lceil \varphi \rceil)$ that is true only when p is the code of a proof in T of a formula φ.
- $\text{Proof}_T(p, \lceil \varphi \rceil)$ is a decidable formula.
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

1. For a formula φ, we denote the representation by $\Gamma \varphi^\frown$.
2. A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time.
3. A theory is called *elementary represented* if it is represented by some elementary formula.
4. For elementary represented theories T, one can write down a formula $\text{Proof}_T(p, \Gamma \varphi^\frown)$ that is true only when p is the code of a proof in T of a formula φ.
5. $\text{Proof}_T(p, \Gamma \varphi^\frown)$ is a decidable formula.
6. We will write $\Box_T \varphi$ for $\exists p \ \text{Proof}_T(p, \Gamma \varphi^\frown)$.

Joost J. Joosten
Our base theory/finitistic theory will be EA: elementary arithmetic
Our base theory/finitistic theory will be EA: elementary arithmetic

EA is in the language of PA but the induction axioms are restricted to *bounded formulas only*
Our base theory/finitistic theory will be EA: elementary arithmetic

EA is in the language of PA but the induction axioms are restricted to *bounded formulas only*

A bounded formula is a formula where each quantifier is bounded by a term in the language of PA which we recall is \{0, S, +, ·, 2^x\}
Our base theory/finitistic theory will be EA: elementary arithmetic.

- EA is in the language of PA but the induction axioms are restricted to \textit{bounded formulas only}.

- A bounded formula is a formula where each quantifier is bounded by a term in the language of PA which we recall is \(\{0, S, +, \cdot, 2^x\} \).

- Bounded formulas define the elementary predicates.
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

Σ_{n+1}-formulas are of the form $\exists \bar{x} \chi(\bar{x})$ with $\chi \in \Pi_n$
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

- Σ_{n+1}-formulas are of the form $\exists \vec{x} \chi(\vec{x})$ with $\chi \in \Pi_n$
- Π_{n+1}-formulas are of the form $\forall \vec{x} \chi(\vec{x})$ with $\chi \in \Sigma_n$
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

Σ_{n+1}-formulas are of the form $\exists \vec{x} \; \chi(\vec{x})$ with $\chi \in \Pi_n$

Π_{n+1}-formulas are of the form $\forall \vec{x} \; \chi(\vec{x})$ with $\chi \in \Sigma_n$

Weak theories like EA prove all true Π_0 statements ψ, that is,

$$\mathbb{N} \models \psi \Rightarrow \text{EA} \vdash \psi$$
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

- Σ_{n+1}-formulas are of the form $\exists \vec{x} \, \chi(\vec{x})$ with $\chi \in \Pi_n$
- Π_{n+1}-formulas are of the form $\forall \vec{x} \, \chi(\vec{x})$ with $\chi \in \Sigma_n$

Weak theories like EA prove all true Π_0 statements ψ, that is,

$$\mathbb{N} \models \psi \implies \text{EA} \vdash \psi$$

Thus, weak theories like EA also prove all true Σ_1 formulas
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

- Σ_{n+1}-formulas are of the form $\exists \vec{x} \, \chi(\vec{x})$ with $\chi \in \Pi_n$
- Π_{n+1}-formulas are of the form $\forall \vec{x} \, \chi(\vec{x})$ with $\chi \in \Sigma_n$

Weak theories like EA prove all true Π_0 statements ψ, that is,

$$\mathbb{N} \models \psi \quad \Rightarrow \quad \text{EA} \vdash \psi$$

Thus, weak theories like EA also prove all true Σ_1 formulas

This fact is formalizable in EA whence for $\sigma \in \Sigma_1$

$$\text{EA} \vdash \sigma \rightarrow \Box_{\text{EA}} \sigma$$
From Tarski’s Theorem on the undefinability of truth, we know that there is no arithmetical formula True(x) such that

\[\mathbb{N} \models \psi \leftrightarrow \text{True}(\neg \psi) \]
From Tarski’s Theorem on the undefinability of truth, we know that there is no arithmetical formula True(\(x\)) such that
\[
\mathbb{N} \models \psi \leftrightarrow \text{True}(\neg \psi)
\]

However, there are *partial truth predicates*
From Tarski’s Theorem on the undefinability of truth, we know that there is no arithmetical formula \(\text{True}(x) \) such that

\[
\mathbb{N} \models \psi \leftrightarrow \text{True}(\neg \psi)
\]

However, there are *partial truth predicates*

\[
\mathbb{N} \models \psi \leftrightarrow \text{True}_{\Pi_n}(\neg \psi) \text{ for } \psi \in \Pi_n
\]
From Tarski’s Theorem on the undefinability of truth, we know that there is no arithmetical formula True(\(x\)) such that

\[\mathbb{N} \models \psi \iff \text{True}(\psi) \]

However, there are partial truth predicates

\[\mathbb{N} \models \psi \iff \text{True}_{\Pi_n}(\psi) \text{ for } \psi \in \Pi_n \]

Moreover, weak theories like EA prove all the Tarski Truth Conditions for these predicates, e.g.,

\[\text{EA} \vdash \text{True}_{\Pi_n}(\psi \land \chi) \iff [\text{True}_{\Pi_n}(\psi) \land \text{True}_{\Pi_n}(\chi)] \]

for \(\psi, \chi \in \Pi_n\)
From Tarski’s Theorem on the undefinability of truth, we know that there is no arithmetical formula $\text{True}(\chi)$ such that

$$\mathbb{N} \models \psi \leftrightarrow \text{True}(\neg \psi)$$

However, there are *partial truth predicates*

$$\mathbb{N} \models \psi \leftrightarrow \text{True}_{\Pi_n}(\neg \psi) \text{ for } \psi \in \Pi_n$$

Moreover, weak theories like EA prove all the Tarski Truth Conditions for these predicates, e.g.,

$$\text{EA} \vdash \text{True}_{\Pi_n}(\neg \psi \land \chi) \leftrightarrow [\text{True}_{\Pi_n}(\neg \psi) \land \text{True}_{\Pi_n}(\neg \chi)]$$

for $\psi, \chi \in \Pi_n$

The complexity of True_{Π_n} is itself Π_n
Using partial truth predicates,
\([n]T\varphi : \varphi \text{ is provable in the theory whose axioms are those of } T \text{ together with all true } \Pi_n \text{ sentences.} \)
Using partial truth predicates,
\([n]_T \varphi : \varphi \text{ is provable in the theory whose axioms are those of } T \text{ together with all true } \Pi_n \text{ sentences.}\)

We sometimes write \([0]_T \varphi \) for \(\Box_T \varphi\)
Using partial truth predicates,

\[[n]_T \varphi : \varphi \text{ is provable in the theory whose axioms are those of } T \text{ together with all true } \Pi_n \text{ sentences.} \]

We sometimes write \([0]_T \varphi\) for \(\square_T \varphi\)

We abbreviate \(\neg[n]_T \neg \varphi\), that is, the \(n\)-consistency of \(\varphi\), by \(\langle n \rangle_T \varphi\)
Using partial truth predicates, $[n]_T \varphi : \varphi$ is provable in the theory whose axioms are those of T together with all true Π_n sentences.

We sometimes write $[0]_T \varphi$ for $\Box_T \varphi$.

We abbreviate $\neg[n]_T \neg \varphi$, that is, the n-consistency of φ, by $\langle n \rangle_T \varphi$.

$\langle n \rangle_T \top$ will stand for T is n-consistent.
Uniform reflection over T denoted by $\text{RFN}(T)$ is the scheme

$$\forall \vec{x} \left(\square_T \varphi(\vec{x}) \rightarrow \varphi(\vec{x}) \right)$$
Uniform reflection over T denoted by $\text{RFN}(T)$ is the scheme

$$\forall \overrightarrow{x} \left(\square_T \varphi(\overrightarrow{x}) \rightarrow \varphi(\overrightarrow{x}) \right)$$

Restricted reflection over T denoted by $\text{RFN}_{\Sigma_n}(T)$ is the scheme

$$\forall \overrightarrow{x} \left(\square_T \varphi(\overrightarrow{x}) \rightarrow \varphi(\overrightarrow{x}) \right) \text{ with } \varphi \in \Sigma_n$$
Uniform reflection over T denoted by $\text{RFN}(T)$ is the scheme

$$\forall \vec{x} \ (\square_T \varphi(\vec{x}) \rightarrow \varphi(\vec{x}))$$

Restricted reflection over T denoted by $\text{RFN}_{\Sigma_n}(T)$ is the scheme

$$\forall \vec{x} \ (\square_T \varphi(\vec{x}) \rightarrow \varphi(\vec{x})) \quad \text{with} \quad \varphi \in \Sigma_n$$

It is an easy theorem that $\text{RFN}_{\Sigma_n}(T)$ is equivalent to Kleene’s rule for Σ_n formulas:

$$\frac{\forall \vec{x} \ \square_T \varphi(\vec{x})}{\forall \vec{x} \ \varphi(\vec{x})} \quad \text{with} \quad \varphi \in \Sigma_n.$$
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[\langle n \rangle_T^\top \equiv RFN_{\Sigma_n}(T) \]
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

Proof: Suppose $[n]_T \perp$, then
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

Proof: Suppose $[n]_T \bot$, then

\[[0]_T(\pi \rightarrow \bot) \] for some Π_n sentence π (possibly non-standard)
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:

$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$

Proof: Suppose $[n]_T \bot$, then

$[0]_T(\pi \rightarrow \bot)$ for some Π_n sentence π (possibly non-standard)

thus, $[0]_T \neg \pi$
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

Proof: Suppose $[n]_T \bot$, then
\[[0]_T (\pi \rightarrow \bot) \] for some Π_n sentence π (possibly non-standard)

thus, $[0]_T \neg \pi$

whence $[0]_T \text{True}_{\Sigma_n}(\neg \pi)$.

From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

Proof: Suppose $[n]_T \bot$, then

$[0]_T (\pi \rightarrow \bot)$ for some Π_n sentence π (possibly non-standard)

thus, $[0]_T \neg \pi$

whence $[0]_T \text{True}_{\Sigma_n}(\neg \pi)$.

We obtain $\text{True}_{\Sigma_n}(\neg \pi)$ using $RFN_{\Sigma_n}(T)$
▶ From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

▶ Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

▶ Proof: Suppose $[n]_T \bot$, then
\[[0]_T (\pi \rightarrow \bot) \] for some Π_n sentence π (possibly non-standard)

▶ thus, $[0]_T \neg \pi$

▶ whence $[0]_T \text{True}_{\Sigma_n}(\neg \pi)$.

▶ We obtain $\text{True}_{\Sigma_n}(\neg \pi)$ using $RFN_{\Sigma_n}(T)$

▶ contradicting $\text{True}_{\Pi_n}(\pi)$
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[
\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)
\]

Proof: Suppose $[n]_T \bot$, then
\[
[0]_T (\pi \rightarrow \bot) \text{ for some } \Pi_n \text{ sentence } \pi \text{ (possibly non-standard)}
\]

thus, $[0]_T \neg \pi$

whence $[0]_T \text{True}_{\Sigma_n}(\neg \pi)$.

We obtain $\text{True}_{\Sigma_n}(\neg \pi)$ using $RFN_{\Sigma_n}(T)$

contradicting $\text{True}_{\Pi_n}(\pi)$

whence $\neg [n]_T \bot$, i.e., $\langle n \rangle_T \top$
Theorem:
\[
\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)
\]
Theorem:
\[\langle n \rangle^T \top \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
\[EA \vdash \sigma \rightarrow [n]^T \sigma \text{ for } \sigma \in \Sigma_{n+1} \]
Theorem:
\[\langle n \rangle_T^{\top} \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
\[\text{EA} \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1} \]

Suppose [0]_T \varphi \text{ with } \varphi \in \Sigma_n
Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
EA ⊢ σ → [n]_T σ for σ ∈ \(\Sigma_{n+1} \)

Suppose \[0\]_T φ with φ ∈ \(\Sigma_n \)

suppose, for a contradiction, that \neg φ
Theorem:
\[\langle n \rangle_T^T \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
\[EA \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1} \]

Suppose \([0]_T \varphi\) with \(\varphi \in \Sigma_n\)

Suppose, for a contradiction, that \(\neg \varphi\)

as \(\neg \varphi \in \Sigma_{n+1}\)
Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
EA \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1}

Suppose \[0\]_T \varphi \text{ with } \varphi \in \Sigma_n

suppose, for a contradiction, that \(\neg \varphi \)

as \(\neg \varphi \in \Sigma_{n+1} \)

we have \([n]_T \neg \varphi\), whence

Joost J. Joosten Logic Seminar
Theorem:
\[\langle n \rangle_T T \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
\[EA \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1} \]

Suppose \([0]_T \varphi\) with \(\varphi \in \Sigma_n\)

suppose, for a contradiction, that \(\neg \varphi\)

as \(\neg \varphi \in \Sigma_{n+1}\)

we have \([n]_T \neg \varphi\), whence

\([n]_T \bot\)
Theorem:
\[\langle n \rangle_T^T \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
EA \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1}

Suppose \[0\]_T \varphi \text{ with } \varphi \in \Sigma_n

Suppose, for a contradiction, that \(\neg \varphi \)

as \(\neg \varphi \in \Sigma_{n+1} \)

we have \([n]_T \neg \varphi\), whence

\([n]_T \bot\)

contradicting \(\langle n \rangle_T^T \)
Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
EA \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1}

Suppose [0]_T \phi \text{ with } \phi \in \Sigma_n

suppose, for a contradiction, that \(\neg \phi \)

as \(\neg \phi \in \Sigma_{n+1} \)

we have [n]_T \neg \phi, whence

[n]_T \bot

contradicting \(\langle n \rangle_T \top \)

All of the steps can be done within EA!
Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas.
Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas

Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$
Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas.

Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

It is not hard to see that

$$\forall x \Box_{EA}((\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x}))$$
Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas

Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

It is not hard to see that
$$\forall x \square_{EA}(\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x})$$

Note, the complexity of this formula
$$\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x})$$ 'is' Σ_{n+1}
Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas

Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

It is not hard to see that
\[\forall x \Box_{EA}((\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x})) \]

Note, the complexity of this formula
\[(\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x}) \text{ 'is' } \Sigma_{n+1} \]

By Kleene’s rule:
\[\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)] \rightarrow \forall x \varphi(x) \]
Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas

Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

It is not hard to see that

$$\forall x \Box_{EA}((\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x}))$$

Note, the complexity of this formula

$$(\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x}) \text{ 'is' } \Sigma_{n+1}$$

By Kleene’s rule: $\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)] \rightarrow \forall x \varphi(x)$

Note, this direction is fully formalizable in EA
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\square_T \sigma$ with $\sigma \in \Sigma_{n+1}$
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \text{ Proof}_T(p, \Box \sigma)$
Theorem: $I \Sigma_n \equiv \text{RFN}_{\Sigma_{n+1}}(\text{EA})$

For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \text{ Proof}_T(p, \neg \sigma)$

Now, employ cut-elimination to obtain a cut-free proof of σ
Theorem: \(I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA) \)

For the other direction, suppose \(\Box_T \sigma \) with \(\sigma \in \Sigma_{n+1} \)

\(\exists p \) Proof \(T(p, \framesigma) \)

Now, employ cut-elimination to obtain a cut-free proof of \(\sigma \)

Now, proof by induction on \(p \) that
\[
\text{Cut-Free-Proof}_T(p, \chi) \rightarrow \text{True}_{\Sigma_{n+1}}(\framesigma)
\]
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \text{ Proof}_T(p, \neg\neg \sigma)$

Now, employ cut-elimination to obtain a cut-free proof of σ

Now, proof by induction on p that

$\text{Cut-Free-Proof}_T(p, \chi) \rightarrow \text{True}_{\Sigma_{n+1}}(\neg\neg \chi)$

This requires Σ_{n+1} induction
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\square_T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \text{ Proof}_T(p, \lnot \sigma)$

Now, employ cut-elimination to obtain a cut-free proof of σ

Now, proof by induction on p that $\text{Cut-Free-Proof}_T(p, \chi) \rightarrow \text{True}_{\Sigma_{n+1}}(\lnot \chi)$

This requires Σ_{n+1} induction

With techniques from proof-theory, this can actually be brought back to Σ_n induction
Theorem: \(\exists \sum_n \equiv \text{RFN}_{\sum_{n+1}}(\Sigma) \)

For the other direction, suppose \(\square_T \sigma \) with \(\sigma \in \sum_{n+1} \)

\[\exists \rho \text{ Proof}_T(\rho, \neg \sigma) \]

Now, employ cut-elimination to obtain a cut-free proof of \(\sigma \)

Now, proof by induction on \(\rho \) that

\[\text{Cut-Free-Proof}_T(\rho, \chi) \rightarrow \text{True}_{\sum_{n+1}}(\neg \chi) \]

This requires \(\sum_{n+1} \) induction

With techniques from proof-theory, this can actually be

brought back to \(\sum_n \) induction

Note that the proof can only be formalized in a setting where

cut-elimination can be proved
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \ Proof_T(p, \neg \neg \sigma)$

Now, employ cut-elimination to obtain a cut-free proof of σ

Now, proof by induction on p that
$Cut-Free-Proof_T(p, \chi) \rightarrow True_{\Sigma_{n+1}}(\neg \neg \chi)$

This requires Σ_{n+1} induction

With techniques from proof-theory, this can actually be brought back to Σ_n induction

Note that the proof can only be formalized in a setting where cut-elimination can be proved

that is, the sup-exp function must be provably total
Summarizing: $I\Sigma_n \equiv \langle n + 1 \rangle_{EA} \top \equiv RFN_{\Sigma_{n+1}}(EA)$
Summarizing: $I\Sigma_n \equiv \langle n + 1 \rangle_{EA} \top \equiv RFN_{\Sigma_{n+1}}(EA)$

Using similar techniques one can prove an analogous for the induction rules:
▶ Summarizing: $IΣ_n \equiv \langle n + 1 \rangle_{EA} \top \equiv RFNΣ_{n+1}(EA)$

▶ Using similar techniques one can prove an analogous for the induction rules:

▶ $IΣ^R_n$ is the closure of EA under the rule $\frac{\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1))}{\forall x \varphi(x)}$
Summarizing: \(I\Sigma_n \equiv \langle n + 1 \rangle_{EA} \top \equiv RFN_{\Sigma_{n+1}}(EA) \)

Using similar techniques one can prove an analogous for the induction rules:

\(I\Sigma^R_n \) is the closure of EA under the rule \(\frac{\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)} \)

Theorem

\(I\Sigma^R_n \equiv \Pi_{n+1} - RR^n(EA) \)
Summarizing: $IΣ_n ≜ \langle n+1 \rangle_{EA} \top ≜ RFN_{Σ_{n+1}}(EA)$

Using similar techniques one can prove an analogous for the induction rules:

$IΣ^R_n$ is the closure of EA under the rule

$$\frac{\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}$$

Theorem

$$IΣ^R_n ≜ Π_{n+1}−RR^n(EA)$$

Here $Π_{n+1}−RR^n(EA)$ is the rule

$$\frac{\pi}{\langle n \rangle \pi} \quad \text{with} \quad \pi \in Π_{n+1}$$
▶ Summarizing: \(I\Sigma_n \equiv \langle n+1 \rangle_{EA} \top \equiv RFN_{\Sigma_{n+1}}(EA) \)

▶ Using similar techniques one can prove an analogous for the induction rules:

▶ \(I\Sigma_n^R \) is the closure of EA under the rule

\[
\frac{\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}
\]

▶ Theorem

\(I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA) \)

▶ Here \(\Pi_{n+1} - RR^n(EA) \) is the rule

\[
\frac{\pi}{\langle n \rangle \pi}
\]

with \(\pi \in \Pi_{n+1} \)

▶ It is not hard to see that \(RFN_{\Sigma_{n+1}}(EA) \vdash \pi \rightarrow \langle n \rangle \pi \) for \(\pi \in \Pi_{n+1} \) whence
Summarizing: \(I\Sigma_n \equiv \langle n + 1 \rangle_{EA} \top \equiv RFN_{\Sigma_{n+1}}(EA) \)

Using similar techniques one can prove an analogous for the induction rules:

\(I\Sigma^R_n \) is the closure of EA under the rule

\[
\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1)) \frac{\forall x \varphi(x)}{\langle n \rangle \pi}
\]

Theorem

\(I\Sigma^R_n \equiv \Pi_{n+1} - RR^n(EA) \)

Here \(\Pi_{n+1} - RR^n(EA) \) is the rule

\[
\frac{\pi}{\langle n \rangle \pi} \quad \text{with} \quad \pi \in \Pi_{n+1}
\]

It is not hard to see that \(RFN_{\Sigma_{n+1}}(EA) \vdash \pi \rightarrow \langle n \rangle \pi \) for \(\pi \in \Pi_{n+1} \) whence

\(RFN_{\Sigma_{n+1}}(EA) \vdash \Pi_{n+1} - RR^n(EA) \)
Theorem

\[I\Sigma^R_n \equiv \Pi_{n+1}^- \text{RR}^n(EA) \]
Theorem

\[I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA) \]

RFN_{\Sigma_{n+1}}(EA) turns out to be \(\Pi_{n+1} \) conservative over
EA + \(\Pi_{n+1} - RR^n(EA) \)
Theorem

$I\Sigma_n^R \equiv \Pi_{n+1}^- \text{RR}^n(EA)$

$\text{RFN}_{\Sigma_{n+1}}(EA)$ turns out to be Π_{n+1} conservative over $EA + \Pi_{n+1}^- \text{RR}^n(EA)$

We write

$EA + \text{RFN}_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1}^- \text{RR}^n(EA)$
Theorem

\[I \Sigma_n^R \equiv \Pi_{n+1} - \text{RR}^n(EA) \]

- RFN_{\Sigma_n^{n+1}}(EA) turns out to be \(\Pi_{n+1} \) conservative over \(EA + \Pi_{n+1} - \text{RR}^n(EA) \)
- We write
 \[EA + \text{RFN}_{\Sigma_n^{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - \text{RR}^n(EA) \]
- This is formalizable in \(EA^+ \), and can be generalized to theories other than \(EA \)
Theorem

\[I \Sigma^R_n \equiv \Pi_{n+1} - RR^n(EA) \]

- RFN_{\Sigma_{n+1}}(EA) turns out to be \(\Pi_{n+1} \) conservative over \(EA + \Pi_{n+1} - RR^n(EA) \)

- We write

\[EA + RFN_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - RR^n(EA) \]

- This is formalizable in \(EA^+ \), and can be generalized to theories other than EA

- Here \(EA^+ \) is the theory EA together with the axiom stating that super-exponentiation is a total function
\[\text{EA + RFN}_{\Sigma_{n+1}}(\text{EA}) \equiv_n \text{EA + } \Pi_{n+1} - \text{RR}_n(\text{EA}) \]
\[EA + \text{RFN}_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - \text{RR}^n(EA) \]

From this follows

\[\langle n + 1 \rangle^\top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \} \]
Proof-strength of theories
Reflection, Consistency and Arithmetic
Provability logics
A consistency proof for PA
Beyond PA: Predicative mathematics

Preliminaries and definitions
Equivalences
The Reduction Property

- $\text{EA} + \text{RFN}_{\Sigma_{n+1}}(\text{EA}) \equiv_n \text{EA} + \Pi_{n+1} - \text{RR}^n(\text{EA})$
- From this follows
 \[
 \langle n + 1 \rangle \top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \}
 \]
- The **Reduction Property** follows from the generalized theorem:
 \[
 \langle n + 1 \rangle \varphi \equiv_n \{ \langle n \rangle Q^n_k(\varphi) \mid k < \omega \}
 \]
Proof-strength of theories
Reflection, Consistency and Arithmetic
Provability logics
A consistency proof for PA
Beyond PA: Predicative mathematics

The Reduction Property

\[\text{EA + RFN}_{\Sigma_{n+1}}(\text{EA}) \equiv_n \text{EA + } \Pi_{n+1} - \text{RR}^n(\text{EA}) \]

From this follows

\[\langle n + 1 \rangle \top \equiv_n \{ \langle n \rangle^k \top | k < \omega \} \]

The Reducion Property follows from the generalized theorem:

\[\langle n + 1 \rangle \varphi \equiv_n \{ \langle n \rangle Q^n_k(\varphi) | k < \omega \} \]
Proof-strength of theories

Reflection, Consistency and Arithmetic

Provability logics

A consistency proof for PA

Beyond PA: Predicative mathematics

Preliminaries and definitions

Equivalences

The Reduction Property

- $\text{EA} + \text{RFN}_{\Sigma_{n+1}}(\text{EA}) \equiv_n \text{EA} + \Pi_{n+1} \text{RR}^{n}(\text{EA})$

- From this follows

$$\langle n+1 \rangle \top \equiv_n \{ \langle n \rangle^k \top | k < \omega \}$$

- The **Reduction Property** follows from the generalized theorem:

$$\langle n+1 \rangle \varphi \equiv_n \{ \langle n \rangle Q^n_k(\varphi) | k < \omega \}$$

- $Q^n_0(\varphi) := \langle n \rangle \varphi$
Proof-strength of theories
Reflection, Consistency and Arithmetic
Provability logics
A consistency proof for PA
Beyond PA: Predicative mathematics

Preliminaries and definitions
Equivalences
The Reduction Property

- $\text{EA} + \text{RFN}_{\Sigma_{n+1}}(\text{EA}) \equiv_n \text{EA} + \Pi_{n+1} - \text{RR}^n(\text{EA})$
- From this follows
 $\langle n+1 \rangle \top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \}$
- The **Reduction Property** follows from the generalized theorem:
 $\langle n+1 \rangle \varphi \equiv_n \{ \langle n \rangle Q^n_k(\varphi) \mid k < \omega \}$
- $Q^n_0(\varphi) := \langle n \rangle \varphi$
- $Q^n_{k+1}(\varphi) := Q^n_k(\varphi) \land \langle n \rangle Q^n_k(\varphi)$
Proof-strength of theories
Reflection, Consistency and Arithmetic
Provability logics
A consistency proof for PA
Beyond PA: Predicative mathematics

Preliminaries and definitions
Equivalences
The Reduction Property

▶ EA + RFN_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - RR^n(EA)
▶ From this follows
\[\langle n+1 \rangle \top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \} \]
▶ The **Reduction Property** follows from the generalized theorem:
\[\langle n+1 \rangle \varphi \equiv_n \{ \langle n \rangle Q^n_k(\varphi) \mid k < \omega \} \]
▶ \[Q^n_0(\varphi) := \langle n \rangle \varphi \]
\[Q^n_{k+1}(\varphi) := Q^n_k(\varphi) \land \langle n \rangle Q^n_k(\varphi) \]
▶ As the Reduction Property is provable in EA^+ we can provably substitute the one for the other in $RFN_{\Pi_{m+1}}$
Proof-strength of theories

Reflection, Consistency and Arithmetic

Provability logics

A consistency proof for PA

Beyond PA: Predicative mathematics

The Reduction Property

\[\text{EA} + \text{RFN}_{\Sigma_{n+1}}(\text{EA}) \equiv_n \text{EA} + \Pi_{n+1} - \text{RR}^n(\text{EA}) \]

From this follows

\[\langle n + 1 \rangle \top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \} \]

The **Reduction Property** follows from the generalized theorem:

\[\langle n + 1 \rangle \varphi \equiv_n \{ \langle n \rangle Q^n_k(\varphi) \mid k < \omega \} \]

\[Q^n_0(\varphi) := \langle n \rangle \varphi \]

\[Q^n_{k+1}(\varphi) := Q^n_k(\varphi) \land \langle n \rangle Q^n_k(\varphi) \]

As the Reduction Property is provable in \(\text{EA}^+ \) we can provably substitute the one for the other in \(\text{RFN}_{\Pi_{m+1}} \).

As provably \(\text{RFN}_{\Pi_{m+1}} \equiv \text{RFN}_{\Sigma_m} \) we obtain the following **Important Corollary**

\[\text{EA}^+ \vdash \langle m \rangle \langle n + 1 \rangle \varphi \leftrightarrow \forall k \langle m \rangle Q^n_k(\varphi) \]
We are now almost ready for our consistency proof of PA and a scent of ϵ_0 is already in the air.
We are now almost ready for our consistency proof of PA and a scent of ϵ_0 is already in the air.

A missing step is some framework in which we do our calculations.
We are now almost ready for our consistency proof of PA and a scent of ϵ_0 is already in the air.

A missing step is some framework in which we do our calculations.

The logic GLP.
Language of modal logic GLP: unary modalities [0], [1], [2],... axiomatized by

\[
\begin{align*}
\langle n \rangle \phi & \rightarrow \phi \\
\langle n \rangle \phi & \rightarrow \langle m \rangle \phi & \text{for } m \geq n \\
\langle n \rangle \phi & \rightarrow \langle m \rangle \phi & \text{for } m > n
\end{align*}
\]

Closed under the rules of Modus Ponens and of necessitation for each modality: \(\phi \langle n \rangle \phi \rightarrow \langle m \rangle \phi \)
Language of modal logic GLP: unary modalities $[0], [1], [2], \ldots$ axiomatized by

$\left[n \right] (\varphi \rightarrow \psi) \rightarrow (\left[n \right] \varphi \rightarrow \left[n \right] \psi)$ for all n

- $[n](\varphi \rightarrow \psi) \rightarrow ([n]\varphi \rightarrow [n]\psi)$ for all n
- $[n]\varphi \rightarrow [n][n]\varphi$ for all n
Language of modal logic GLP: unary modalities [0], [1], [2], ... axiomatized by

- $[n](\varphi \rightarrow \psi) \rightarrow ([n]\varphi \rightarrow [n]\psi)$ for all n
- $[n]\varphi \rightarrow [n][n]\varphi$ for all n
- $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$ for all n
Language of modal logic GLP: unary modalities $[0], [1], [2], \ldots$ axiomatized by

- $[n](\varphi \rightarrow \psi) \rightarrow ([n]\varphi \rightarrow [n]\psi)$ for all n
- $[n]\varphi \rightarrow [n][n]\varphi$ for all n
- $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$ for all n
- $[n]\varphi \rightarrow [m]\varphi$ for $m \geq n$
Language of modal logic GLP: unary modalities
[0], [1], [2], . . . axiomatized by

\[[n](\varphi \rightarrow \psi) \rightarrow ([n]\varphi \rightarrow [n]\psi) \] for all \(n \)

\[[n]\varphi \rightarrow [n][n]\varphi \] for all \(n \)

\[[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi \] for all \(n \)

\[[n]\varphi \rightarrow [m]\varphi \] for \(m \geq n \)

\[\langle n \rangle \varphi \rightarrow [m]\langle n \rangle \varphi \] for \(m > n \)
Language of modal logic GLP: unary modalities

[0], [1], [2], \ldots \text{ axiomatized by}

1. \([n](\varphi \rightarrow \psi) \rightarrow ([n]\varphi \rightarrow [n]\psi)\) for all \(n\)
2. \([n]\varphi \rightarrow [n][n]\varphi\) for all \(n\)
3. \([n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi\) for all \(n\)
4. \([n]\varphi \rightarrow [m]\varphi\) for \(m \geq n\)
5. \(\langle n\rangle\varphi \rightarrow [m]\langle n\rangle\varphi\) for \(m > n\)

Closed under the rules of Modus Ponens and of necessitation
for each modality: \(\frac{\varphi}{[n]\varphi}\)
GLP is a decidable logic
GLP is a decidable logic
The closed fragment suffices to do all our calculations
GLP is a decidable logic

The closed fragment suffices to do all our calculations

In particular the fragment S consisting of all formulas like $\langle n_0 \rangle \ldots \langle n_m \rangle \top$
GLP is a decidable logic

The closed fragment suffices to do all our calculations

In particular the fragment S consisting of all formulas like $\langle n_0 \rangle \ldots \langle n_m \rangle \top$

We define an order $<_0$ on S as follows

$$\alpha <_0 \beta \iff \text{GLP} \vdash \beta \rightarrow \lozenge \alpha$$
GLP is a decidable logic

The closed fragment suffices to do all our calculations

In particular the fragment S consisting of all formulas like
$\langle n_0 \rangle \ldots \langle n_m \rangle \top$

We define an order $<_0$ on S as follows

$$\alpha <_0 \beta \iff \text{GLP} \vdash \beta \rightarrow \diamond \alpha$$

Using techniques from modal logic – in particular modal semantics – one can show
GLP is a decidable logic

The closed fragment suffices to do all our calculations

In particular the fragment S consisting of all formulas like $\langle n_0 \rangle \ldots \langle n_m \rangle \top$

We define an order $<_0$ on S as follows

$$\alpha <_0 \beta \iff \text{GLP} \vdash \beta \rightarrow \Diamond \alpha$$

Using techniques from modal logic – in particular modal semantics – one can show

$<_0$ is a well-order on S of order type ϵ_0 which is modulo provably equivalence in GLP linear.
Using GLP, one can show that S is closed under the operation $\langle n + 1 \rangle \alpha \mapsto Q^n_k(\alpha)$.
Using GLP, one can show that S is closed under the operation

$$\langle n + 1 \rangle \alpha \mapsto Q^n_k(\alpha)$$

Moreover, for every non-empty $\langle n + 1 \rangle \alpha \in S$ we have

$$Q^n_k(\alpha) <_0 \langle n + 1 \rangle \alpha$$
We show that \(\text{EA}^+ + \text{TI}^R(\Pi_1, <_0) \vdash \text{Con}(\text{PA}) \)
We show that $EA^+ + TI^R(\Pi_1, <_0) \vdash \text{Con}(PA)$

where $TI^R(\Pi_1, <_0)$ stands for

$$\forall \beta <_0 \alpha \varphi(\beta) \rightarrow \varphi(\alpha)$$

with $\varphi(x) \in \Pi_1$
We show that $\text{EA}^+ + \text{TI}^R(\Pi_1, <_0) \vdash \text{Con}(\text{PA})$

where $\text{TI}^R(\Pi_1, <_0)$ stands for

$$\forall \beta <_0 \alpha \varphi(\beta) \rightarrow \varphi(\alpha) \quad \forall \alpha \in S \varphi(\alpha)$$

with $\varphi(x) \in \Pi_1$

Proof: $\text{EA}^+ \vdash \forall n \diamond \langle n \rangle^T \iff \text{Con}(\text{PA})$ as we have seen that $I\Sigma_n \equiv \langle n + 1 \rangle^T$ is provable in EA^+
We show that $\text{EA}^+ + \text{TI}^R(\Pi_1, <_0) \vdash \text{Con}(\text{PA})$

where $\text{TI}^R(\Pi_1, <_0)$ stands for

$$\forall \beta <_0 \alpha \varphi(\beta) \rightarrow \varphi(\alpha)$$

with $\varphi(x) \in \Pi_1$

Proof: $\text{EA}^+ \vdash \forall n \Diamond \langle n \rangle \top \iff \text{Con}(\text{PA})$ as we have seen that $I\Sigma_n \equiv \langle n + 1 \rangle \top$ is provable in EA^+

Thus, we are finished once we show

$$\forall \beta <_0 \alpha \Diamond \beta \rightarrow \Diamond \alpha$$
\[\forall \beta < 0 \, \alpha \, \Diamond \beta \rightarrow \Diamond \alpha \]

(†):
$\forall \beta < 0 \alpha \diamond \beta \rightarrow \diamond \alpha$ (†):

Lemma: EA$^+$ proves $\langle 1 \rangle_{EA^+}$ which is just RFN$_{\Sigma_1}(EA)$
\[\forall \beta <_0 \alpha \diamond \beta \rightarrow \diamond \alpha \quad \text{(*)):} \]

- Lemma: EA\(^+\) proves \(\langle 1 \rangle_{EA} \top\) which is just RFN\(\Sigma_1\)(EA)
- actually, there is a deep connection between diagonalizing provably total recursive functions and 1-consistency
\[\forall \beta < 0 \alpha \diamond \beta \rightarrow \diamond \alpha \quad (\dagger) : \]

- Lemma: \(\text{EA}^+ \) proves \(\langle 1 \rangle_{\text{EA}} \top \) which is just \(\text{RFN}_{\Sigma_1}(\text{EA}) \)
- actually, there is a deep connection between diagonalizing provably total recursive functions and 1-consistency
- Thus, for \(\alpha = \top \), we see \((\dagger) \) as \(\text{EA}^+ \vdash \diamond_{\text{EA}} \top \)
\[\forall \beta < 0 \alpha \Diamond \beta \rightarrow \Diamond \alpha \quad (\dagger) : \]

Lemma: EA\(^+\) proves \(\langle 1 \rangle_{EA}^\top\) which is just RFN\(\Sigma_1\)(EA)

- actually, there is a deep connection between diagonalizing provably total recursive functions and 1-consistency

Thus, for \(\alpha = \top\), we see \((\dagger)\) as \(\text{EA}^+ \vdash \Diamond_{EA}^\top\)

- If \(\alpha = \Diamond \beta\), by the IH, \(\text{EA}^+ \vdash \Diamond \beta\) whence by RFN\(\Sigma_1\)(EA) we get \(\text{EA}^+ \vdash \Diamond \Diamond \beta\)
\[\forall \beta <_0 \alpha \diamond \beta \rightarrow \diamond \alpha \quad (\dagger) : \]

Lemma: \(EA^+ \) proves \(\langle 1 \rangle_{EA} \top \) which is just \(RFN_{\Sigma_1}(EA) \)

Thus, for \(\alpha = \top \), we see \((\dagger)\) as \(EA^+ \vdash \diamond_{EA} \top \)

If \(\alpha = \diamond \beta \), by the IH, \(EA^+ \vdash \diamond \beta \) whence by \(RFN_{\Sigma_1}(EA) \) we get \(EA^+ \vdash \diamond \diamond \beta \)

If \(\alpha = \langle n + 1 \rangle \beta \), then by the IH \(EA^+ \vdash \forall k \diamond Q^n_k(\beta) \) as we saw that for each \(k \), \(Q^n_k(\beta) <_0 \langle n + 1 \rangle \beta \)
\begin{itemize}
 \item $\forall \beta <_0 \alpha \diamond \beta \rightarrow \diamond \alpha \quad (\dagger)$:
 \item Lemma: $\text{EA}^+ \text{ proves } \langle 1 \rangle_{\text{EA}} \top$ which is just $\text{RFN}_{\Sigma_1}(\text{EA})$
 \item actually, there is a deep connection between diagonalizing provably total recursive functions and 1-consistency
 \item Thus, for $\alpha = \top$, we see (\dagger) as $\text{EA}^+ \vdash \diamond \text{EA} \top$
 \item If $\alpha = \diamond \beta$, by the IH, $\text{EA}^+ \vdash \diamond \beta$ whence by $\text{RFN}_{\Sigma_1}(\text{EA})$ we get $\text{EA}^+ \vdash \diamond \diamond \beta$
 \item If $\alpha = \langle n + 1 \rangle \beta$, then by the IH $\text{EA}^+ \vdash \forall k \diamond Q^n_k(\beta)$ as we saw that for each k, $Q^n_k(\beta) <_0 \langle n + 1 \rangle \beta$
 \item By our important corollary to the Reduction Property, we see
 \[\diamond \langle n + 1 \rangle \beta \leftrightarrow \forall k \diamond Q^n_k(\beta) \]
 \end{itemize}

and we are done
Introduce modalities $[\alpha]$ for each ordinal α satisfying the GLP axioms
Introduce modalities $[\alpha]$ for each ordinal α satisfying the GLP axioms

$[\alpha]\varphi \rightarrow [\beta]\varphi$ for $\alpha \leq \beta$
Introduce modalities $[\alpha]$ for each ordinal α satisfying the GLP axioms

- $[\alpha] \varphi \rightarrow [\beta] \varphi$ for $\alpha \leq \beta$
- $\langle \alpha \rangle \varphi \rightarrow [\beta] \langle \alpha \rangle \varphi$ for $\alpha < \beta$
Introduce modalities $[\alpha]$ for each ordinal α satisfying the GLP axioms

- $[\alpha] \varphi \rightarrow [\beta] \varphi$ for $\alpha \leq \beta$
- $\langle \alpha \rangle \varphi \rightarrow [\beta] \langle \alpha \rangle \varphi$ for $\alpha < \beta$

GLP with modalities for all ordinals is still decidable!
The intuitive reading of $[\alpha]_T \varphi$ is
The intuitive reading of $[\alpha]_T \varphi$ is

φ is provable from T together with all true hyperarithmetical sentences of level α
The intuitive reading of $[\alpha]_T \varphi$ is

- φ is provable from T together with all true hyperarithmetical sentences of level α

- Modal logical part (syntax) of this project is done for ordinals up to Γ_0
The intuitive reading of $[\alpha]_T \varphi$ is

- φ is provable from T together with all true hyperarithmetic sentences of level α
- Modal logical part (syntax) of this project is done for ordinals up to Γ_0
- The closed fragment of the modal logic provides a natural ordinal notation system for ordinals up to Γ_0
The intuitive reading of $[\alpha]_T \varphi$ is

- φ is provable from T together with all true hyperarithmetic sentences of level α

- Modal logical part (syntax) of this project is done for ordinals up to Γ_0

- The closed fragment of the modal logic provides a natural ordinal notation system for ordinals up to Γ_0

- Modal logical part (semantics) is being worked on in Barcelona/Sevilla
The intuitive reading of $[\alpha]_T \varphi$ is

- φ is provable from T together with all true hyperarithmetical sentences of level α

- Modal logical part (syntax) of this project is done for ordinals up to Γ_0

- The closed fragment of the modal logic provides a natural ordinal notation system for ordinals up to Γ_0

- Modal logical part (semantics) is being worked on in Barcelona/Sevilla

- Proof-theory/ model theory part is being worked on in Moscow/Sevilla
Proof-strength of theories
Reflection, Consistency and Arithmetic
Provability logics
A consistency proof for PA
Beyond PA: Predicative mathematics

Moltes gràcies i bon nadal