Recursion Theory

Joost J. Joosten

Institute for Logic Language and Computation
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
Room P 3.26, +31 20 5256095
jjoosten@phil.uu.nl
www.phil.uu.nl/~jjoosten
Natural examples of incomputability

- Incomputable sets:
Natural examples of incomputability

- Incomputable sets: K,
Natural examples of incomputability

Incomputable sets: K, K_0,
Natural examples of incomputability

Incomputable sets: K, K_0, Simple sets
Natural examples of incomputability

- Incomputable sets: K, K_0, Simple sets
- Are there mathematical examples?
Natural examples of incomputability

- Incomputable sets: K, K_0, Simple sets
- Are there mathematical examples?
- Hilbert’s tenth problem
Natural examples of incomputability

- Incomputable sets: K, K_0, Simple sets
- Are there mathematical examples?
- Hilbert’s tenth problem
- Diophantine equations (Alexandria, +- 250 AD) have solutions?
Natural examples of incomputability

- Incomputable sets: K, K_0, Simple sets
- Are there mathematical examples?
- Hilbert’s tenth problem
- Diophantine equations (Alexandria, +- 250 AD) have solutions?
- $\{n \mid x^n + y^n = z^n \text{ for some natural numbers } x, y, z\}$ undecidable?
Natural examples of incomputability

- Incomputable sets: K, K_0, Simple sets
- Are there mathematical examples?
- Hilbert’s tenth problem
- Diophantine equations (Alexandria, +- 250 AD) have solutions?
 \[\{ n \mid x^n + y^n = z^n \text{ for some natural numbers } x, y, z \} \text{ undecidable?} \]
- General definition of a Diophantine set (we can interpret the integers into the natural numbers)
Natural examples of incomputability

- Incomputable sets: K, K_0, Simple sets
- Are there mathematical examples?
- Hilbert’s tenth problem
- Diophantine equations (Alexandria, +- 250 AD) have solutions?
 \[\{ n \mid x^n + y^n = z^n \text{ for some natural numbers } x, y, z \} \]
 undecidable?
- General definition of a Diophantine set (we can interpret the integers into the natural numbers (and also the other way around))
Example: \(\{ x \mid x \neq 2(4) \} \) is Diophantine
Example: \(\{ x \mid x \neq 2(4) \} \) is Diophantine

The polynomial that does it is: \(y_1^2 - y_2^2 - x \) by some non-trivial number theory
Example: \(\{ x \mid x \neq 2(4) \} \) is Diophantine

The polynomial that does it is: \(y_1^2 - y_2^2 - x \) by some non-trivial number theory

Conjecture of Martin Davis (1950): every c.e. set is Diophantine.
Example: \(\{x \mid x \neq 2(4)\} \) is Diophantine

The polynomial that does it is: \(y_1^2 - y_2^2 - x \) by some non-trivial number theory

Conjecture of Martin Davis (1950): every c.e. set is Diophantine.

Together with Putnam and Julia Robinson: almost proved, provided there exists an exponential set which is Diophantine.
Matiasevich

Matiasevich, 1970: The Fibonacci sequence is Diophantine. Chudnovsky claims to have simultaneously solved it.

)
Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it.)
Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it (Post (21)/Gödel (31)))
Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it (Post (21)/Gödel (31)))

Matiasevich calls it the DPRM-theorem!
Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it (Post (21)/Gödel (31)));

Matiasevich calls it the DPRM-theorem!

Fibonacci sequence grows about as

\[\frac{1}{\sqrt{5}} \left[\frac{1}{2} (1 + \sqrt{5}) \right]^{n+1} \]
Matiasevich

• Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it (Post (21)/Gödel (31)))
• Matiasevich calls it the DPRM-theorem!
• Fibonacci (Liber Abaci, 1202, Leonardo Pisano) sequence grows about as

\[\frac{1}{\sqrt{5}} \left[\frac{1}{2} \left(1 + \sqrt{5}\right) \right]^{n+1} \]
Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it (Post (21)/Gödel (31))

Matiasevich calls it the DPRM-theorem!

Fibonacci (Liber Abaci, 1202, Leonardo Pisano) sequence grows about as

$$\frac{1}{\sqrt{5}} \left[\frac{1}{2} (1 + \sqrt{5}) \right]^{n+1}$$

There is a nice exercise in Terwijn’s reader to the effect that

$$a_n := \frac{1}{\sqrt{5}} \left[\frac{1}{2} (1 + \sqrt{5}) \right]^{n+1} - \frac{1}{\sqrt{5}} \left[\frac{1}{2} (1 - \sqrt{5}) \right]^{n+1}$$
More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
- It is not known if this can be lowered
More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
- It is not known if this can be lowered
- Corollary: there is a polynomial enumerating the primes
More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
- It is not known if this can be lowered
- Corollary: there is a polynomial enumerating the primes
- No polynomial for K has yet been found
More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
- It is not known if this can be lowered
- Corollary: there is a polynomial enumerating the primes

- No polynomial for K has yet been found
- Hilbert over algebraic fields is unknown
More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
- It is not known if this can be lowered
- Corollary: there is a polynomial enumerating the primes

- No polynomial for K has yet been found
- Hilbert over algebraic fields is unknown
- In particular: is \mathbb{Z} Diophantine over \mathbb{Q}?
Natural simple sets

Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
Natural simple sets

Randomness and Kolmogorov complexity (7.3 of reader Terwijn)

Fix a universal TM U
Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
- Fix a universal TM U
- Kolm. Compl. of a string σ is \pm the length of the shortest TM program that on empty input outputs σ
Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
- Fix a universal TM U
- Kolm. Compl. of a string σ is +- the length of the shortest TM program that on empty input outputs σ
- Is dependent on U
Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
- Fix a universal TM U
- Kolm. Compl. of a string σ is +- the length of the shortest TM program that on empty input outputs σ
- Is dependent on U but only in a $O(1)$ sense
Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)

- Fix a universal TM U

- Kolm. Compl. of a string σ is \pm the length of the shortest TM program that on empty input outputs σ

- Is dependent on U but only in a $O(1)$ sense

- A string σ is k-random if $C(\sigma) \geq |\sigma| - k$
Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
- Fix a universal TM U
- Kolm. Compl. of a string σ is +- the length of the shortest TM program that on empty input outputs σ
- Is dependent on U but only in a $O(1)$ sense
- A string σ is k-random if $C(\sigma) \geq |\sigma| - k$
- The set of non-k-random strings is simple
Comparing incomputability

Compare the incomputable sets
Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of *many-one reducability*
Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of *many-one reducability*
- Important features:
Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of *many-one reducability*
- Important features:
 - $B \leq_m A$ and A decidable, then B decidable
Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of many-one reducability

Important features:
- $B \leq_m A$ and A decidable, then B decidable
- $B \leq_m A$ and B undecidable, then A undecidable
Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of *many-one reducability*
- Important features:
 - $B \leq_m A$ and A decidable, then B decidable
 - $B \leq_m A$ and B undecidable, then A undecidable
 - $B \leq_m A$ and A c.e, then B c.e.
Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of many-one reducability

Important features:
- \(B \leq_m A \) and \(A \) decidable, then \(B \) decidable
- \(B \leq_m A \) and \(B \) undecidable, then \(A \) undecidable
- \(B \leq_m A \) and \(A \) c.e., then \(B \) c.e.

Application: \(K_0 \) is undecidable (not computable)
Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of *many-one reducability*
- Important features:
 - $B \leq_m A$ and A decidable, then B decidable
 - $B \leq_m A$ and B undecidable, then A undecidable
 - $B \leq_m A$ and A c.e., then B c.e.
- Application: K_0 is undecidable (not computable)
- Actually $K \leq_1 K_0$
Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of *many-one reducability*

Important features:
- \(B \leq_m A \) and \(A \) decidable, then \(B \) decidable
- \(B \leq_m A \) and \(B \) undecidable, then \(A \) undecidable
- \(B \leq_m A \) and \(A \) c.e, then \(B \) c.e.

Application: \(K_0 \) is undecidable (not computable)
- Actually \(K \leq_1 K_0 \)
- \(A \) is c.e. iff \(A \leq_m K_0 \)
Index sets

\(\mathcal{A} \) is an index set if \(e \in \mathcal{A} \) and \(W_e = W_{e'} \) implies \(e' \in \mathcal{A} \)
Index sets

- \mathcal{A} is an index set if $e \in \mathcal{A}$ and $W_e = W_{e'}$ implies $e' \in \mathcal{A}$
- Examples: Tot and K_1
Index sets

- A is an index set if $e \in A$ and $W_e = W_{e'}$ implies $e' \in A$
- Examples: Tot and K_1
- $K_1 := \{ x \mid W_x \neq \emptyset \}$
Index sets

- \(A \) is an index set if \(e \in A \) and \(W_e = W_{e'} \) implies \(e' \in A \)

- Examples: \(\text{Tot} \) and \(K_1 \)

- \(K_1 := \{ x \mid W_x \neq \emptyset \} \)

- Theorem: \(K \) is not an index set
Index sets

- \(\mathcal{A} \) is an index set if \(e \in \mathcal{A} \) and \(W_e = W_{e'} \) implies \(e' \in \mathcal{A} \)

Examples: Tot and \(K_1 \)

\(K_1 := \{ x \mid W_x \neq \emptyset \} \)

Theorem: \(K \) is not an index set

Proof idea: make a singleton set consisting only of its code \(e \), using the padding lemma, find another code \(e' \) of this set. Then, \(e \in K \) and \(e' \notin K \).
Rice’s Theorem

If A is an index set – not equal to \emptyset or \mathbb{N} –, then A is incomputable
Rice’s Theorem

If A is an index set – not equal to \emptyset or \mathbb{N} –, then A is incomputable.

First step: it is sufficient to show that either $K \leq_m A$ or $K \leq_m \overline{A}$.
Rice’s Theorem

- If A is an index set – not equal to \emptyset or \mathbb{N} –, then A is incomputable.

- First step: it is sufficient to show that either $K \leq_m A$ or $K \leq_m \overline{A}$.

- Case distinction \emptyset has no code in A, or it has
Rice’s Theorem

- If A is an index set – not equal to \emptyset or \mathbb{N} –, then A is incomputable.
- First step: it is sufficient to show that either $K \leq_m A$ or $K \leq_m \overline{A}$.
- Case distinction \emptyset has no code in A, or it has.
- By assumption, there is some $e \in A$ and some $e' \in \overline{A}$.

Recursion Theory – p.9/11
Rice’s Theorem

- If A is an index set – not equal to \emptyset or \mathbb{N} –, then A is incomputable.
- First step: it is sufficient to show that either $K \leq_m A$ or $K \leq_m \overline{A}$.
- Case distinction \emptyset has no code in A, or it has.
- By assumption, there is some $e \in A$ and some $e' \in \overline{A}$.
- First idea: Define $f(x) := e$ if $x \in K$ and
Rice’s Theorem

- If A is an index set – not equal to \emptyset or \mathbb{N} –, then A is incomputable

- First step: it is sufficient to show that either $K \leq_m A$ or $K \leq_m \overline{A}$

- Case distinction \emptyset has no code in A, or it has

- By assumption, there is some $e \in A$ and some $e' \in \overline{A}$

- First idea: Define $f(x) := e$ if $x \in K$ and

- $f(x) := e'$ if $x \notin K$
Rice’s Theorem

- If A is an index set – not equal to \emptyset or \mathbb{N} –, then A is incomputable
- First step: it is sufficient to show that either $K \leq_m A$ or $K \leq_m \overline{A}$
- Case distinction \emptyset has no code in A, or it has
- By assumption, there is some $e \in A$ and some $e' \in \overline{A}$
- First idea: Define $f(x) := e$ if $x \in K$ and $f(x) := e'$ if $x \notin K$
- Then: $K \leq_m A$
Rice’s Theorem

- If A is an index set – not equal to \emptyset or \mathbb{N} –, then A is incomputable.

- First step: it is sufficient to show that either $K \leq_m A$ or $K \leq_m \overline{A}$.

- Case distinction \emptyset has no code in A, or it has.

- By assumption, there is some $e \in A$ and some $e' \in \overline{A}$.

- First idea: Define $f(x) := e$ if $x \in K$ and $f(x) := e'$ if $x \notin K$.

- Then: $K \leq_m A : x \in K \iff f(x) \in A$.

Recursion Theory – p.9/11
Rice’s Theorem

- If A is an index set – not equal to \emptyset or \mathbb{N} –, then A is incomputable
- First step: it is sufficient to show that either $K \leq_m A$ or $K \leq_m \overline{A}$
- Case distinction \emptyset has no code in A, or it has
- By assumption, there is some $e \in A$ and some $e' \in \overline{A}$
- First idea: Define $f(x) := e$ if $x \in K$ and $f(x) := e'$ if $x \notin K$.
- Then: $K \leq_m A : x \in K \iff f(x) \in A$
- Alas: f is not computable
Rice’s Theorem

Second idea: Define $f(x) := e$ if $x \in K$ and
Rice’s Theorem

- Second idea: Define $f(x) := e$ if $x \in K$ and undefined otherwise.
Rice’s Theorem

Second idea: Define $f(x) := e$ if $x \in K$ and undefined otherwise.

Now f is partially computable.
Rice’s Theorem

- Second idea: Define \(f(x) := e \) if \(x \in K \) and
- and undefined otherwise.
- Now \(f \) is partially computable.
- and: \(x \in K \iff f(x) \downarrow \in A \)
Rice’s Theorem

- Second idea: Define \(f(x) := e \) if \(x \in K \) and
- and undefined otherwise.
- Now \(f \) is partially computable.
- and: \(x \in K \iff f(x) \downarrow \in A \)
- But \(f \) is not total, so no reduction
Rice’s Theorem

- Second idea: Define $f(x) := e$ if $x \in K$ and undefined otherwise.
- Now f is partially computable.
- and: $x \in K \iff f(x) \downarrow \in A$
- But f is not total, so no reduction
- Final idea: $W_f(x) := W_e$ if $x \in K$
Rice’s Theorem

Second idea: Define \(f(x) := e \) if \(x \in K \) and undefined otherwise.

Now \(f \) is partially computable.

and: \(x \in K \iff f(x) \downarrow \in A \)

But \(f \) is not total, so no reduction

Final idea: \(W_{f(x)} := W_e \) if \(x \in K \)

and \(\emptyset \) otherwise.
Rice’s Theorem

- Second idea: Define \(f(x) := e \) if \(x \in K \) and
- and undefined otherwise.
- Now \(f \) is partially computable.
- and: \(x \in K \iff f(x) \downarrow \in A \)
- But \(f \) is not total, so no reduction
- Final idea: \(W_f(x) := W_e \) if \(x \in K \)
- and \(\emptyset \) otherwise.
- The case that \(\emptyset \) has a code in \(A \) goes similar (misprint)
Rice applications

Fin
Rice applications

- Fin
- Inf
Rice applications

- Fin
- Inf
- Cof
Rice applications

- Fin
- Inf
- Cof
- Virus scanner does not exist and \textit{cannot} exist!!!
Rice applications

- Fin
- Inf
- Cof
- Virus scanner does not exist and *cannot* exist!!!
- and much more