GLP Lecture 1: Calibration of Proof-theoretical Strength

Joost J. Joosten

Dept. Lògica, Història i Filosofia de la Ciència
Universitat de Barcelona

Wednesday 15-11-2010
Logic Seminar, Barcelona
Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations.
Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations.

Most notably, David Hilbert proposed (1900) a programme to justify the use *non-finitary* methods by finitary means only.
Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations.

Most notably, David Hilbert proposed (1900) a programme to justify the use non-finitary methods by finitary means only.

In meta-mathematical language:

$$\mathcal{F} \vdash \text{Con}(\mathcal{R})$$
Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations

Most notably, David Hilbert proposed (1900) a programme to justify the use non-finitary methods by finitary means only

In meta-mathematical language:

\[\mathcal{F} \vdash \text{Con}(\mathcal{R}) \]

where \(\mathcal{F} \) is some undisputed part of mathematics consisting of finitary methods only, and \(\mathcal{R} \) denotes ‘real’ mathematics
The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

$$\mathcal{F} \vdash \text{Con}(\mathcal{F})$$

under some very reasonable assumptions of \mathcal{F}.
The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

\[\mathcal{F} \vdash \text{Con}(\mathcal{F}) \]

under some very reasonable assumptions of \(\mathcal{F} \).

Thus proving the impossibility of Hilbert’s programme.
The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

$$\mathcal{F} \vdash \text{Con}(\mathcal{F})$$

under some very reasonable assumptions of \mathcal{F}.

Thus proving the impossibility of Hilbert’s programme.

However, partial realizations of Hilbert’s programme have been obtained.
The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

$$\mathcal{F} \vdash \text{Con}(\mathcal{F})$$

under some very reasonable assumptions of \mathcal{F}.

Thus proving the impossibility of Hilbert’s programme.

However, partial realizations of Hilbert’s programme have been obtained.

Most notably, Gentzen’s consistency proof for Peano Arithmetic (1936)
Peano Arithmetic (PA) is the formal arithmetical theory in the language \(\{0, S, +, \cdot, 2^x\} \) axiomatized by the regular axioms for the constant and function symbols together with full induction:

\[
\varphi(0, \vec{y}) \land \forall x \ [\varphi(x, \vec{y}) \rightarrow \varphi(Sx, \vec{y})] \rightarrow \forall x \varphi(x, \vec{y}).
\]
Peano Arithmetic (PA) is the formal arithmetical theory in the language \(\{0, S, +, \cdot, 2^x\} \) axiomatized by the regular axioms for the constant and function symbols together with full induction:

\[
\varphi(0, \vec{y}) \land \forall x \ [\varphi(x, \vec{y}) \rightarrow \varphi(Sx, \vec{y})] \rightarrow \forall x \varphi(x, \vec{y}).
\]

Gentzen showed

\[
\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(PA)
\]
Peano Arithmetic (PA) is the formal arithmetical theory in the language \(\{0, S, +, \cdot, 2^x\} \) axiomatized by the regular axioms for the constant and function symbols together with full induction:

\[
\varphi(0, \bar{y}) \land \forall x [\varphi(x, \bar{y}) \rightarrow \varphi(Sx, \bar{y})] \rightarrow \forall x \varphi(x, \bar{y}).
\]

Gentzen showed

\[
\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(\text{PA})
\]

Here PR-TI(\(\epsilon_0 \)) is transfinite induction up to \(\epsilon_0 \) for primitive recursive (p.r.) predicates

\[
\forall \alpha \in S [\forall \beta < \alpha A(\beta) \rightarrow A(\alpha)] \rightarrow \forall \alpha A(\alpha)
\]

where \(S \) is some set on which \(< \) defines a (p.r.) well-order of order type \(\epsilon_0 \) and \(A \) is a p.r. predicate.
\[
\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(\text{PA})
\]
With \(\mathcal{F}\) some finitistic part of mathematics (for example Primitive Recursive Arithmetic).
\[\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(\text{PA}) \]

With \(\mathcal{F} \) some finitistic part of mathematics (for example Primitive Recursive Arithmetic).

It is tempting to conceive of PR-TI(\(\epsilon_0\)) as the non-finitistic part encompassed by PA.
\[F + \text{PR-TI}(\varepsilon_0) \vdash \text{Con}(\text{PA})\]

With \(F\) some finitistic part of mathematics (for example Primitive Recursive Arithmetic).

It is tempting to conceive of \(\text{PR-TI}(\varepsilon_0)\) as the non-finitistic part encompassed by \(\text{PA}\).

And in analogy to this, one can define a norm that measures proof strengths for theories \(T\) as follows:

\[|T|_{\text{con}} := \min\{\alpha \mid \text{PRA} + \text{PR-TI}(\alpha) \vdash \text{Con}(T)\}\]
The norm $|T|_{\text{con}}$ is very sensitive to

- The way ordinals are notated
- The way these notations are represented in a theory dealing with natural numbers (PRA)

Ad (a.) Recall that an ordinal is just defined as a transitive set that is well-ordered by \in. They live out there but to pick out one particular ordinal one needs a recipe. A uniform recipe makes up an ordinal notation system.

(where x being transitive means $\forall y \in x \forall z (z \in y \rightarrow z \in x)$, that is, each element y of x is also a subset of x)

Ad (b.): There are pathological orderings known (Kreisel) such that ω would be $|T|_{\text{Con}}$ for any T.
The norm $|T|_{\text{con}}$ is very sensitive to
(a.) The way ordinals are notated
The norm $|T|_{\text{con}}$ is very sensitive to

(a.) The way ordinals are notated

(b.) The way these notations are represented in a theory dealing with natural numbers (PRA)
The norm $|T|_{\text{con}}$ is very sensitive to
(a.) The way ordinals are notated
(b.) The way these notations are represented in a theory dealing with natural numbers (PRA)

Ad (a.) Recall that an ordinal is just defined as a transitive set that is well-ordered by \in. They live out there but to pick out one particular ordinal one needs a recipe. A uniform recipe makes up an ordinal notation system.
The norm $|T|_{\text{con}}$ is very sensitive to
(a.) The way ordinals are notated
(b.) The way these notations are represented in a theory dealing with natural numbers (PRA)

Ad (a.) Recall that an ordinal is just defined as a transitive set that is well-ordered by \in. They live out there but to pick out one particular ordinal one needs a recipe. A uniform recipe makes up an ordinal notation system.

(where x being transitive means $\forall y \in x \forall z(z \in y \rightarrow z \in x)$, that is, each element y of x is also a subset of x)
The norm $|T|_{\text{con}}$ is very sensitive to

(a.) The way ordinals are notated

(b.) The way these notations are represented in a theory dealing with natural numbers (PRA)

Ad (a.) Recall that an ordinal is just defined as a transitive set that is well-ordered by \in. They live out there but to pick out one particular ordinal one needs a recipe. A uniform recipe makes up an ordinal notation system.

(where x being transitive means $\forall y \in x \forall z (z \in y \rightarrow z \in x)$, that is, each element y of x is also a subset of x)

Ad (b.): There are pathological orderings known (Kreisel) such that ω would be $|T|_{\text{Con}}$ for any T
Kreisel’s pathological ordering for a consistent theory T:
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

\[
m < n \text{ and } \forall x < \max\{n, m\} \neg \text{Proof}_T(x, \downarrow 0 = 1) \quad (PRA \text{ proves})\]

The ordering $<_T$ looks like

\[
0 <_T 1 <_T 2 <_T \ldots
given\]

in case T is consistent

\[
x <_{T,x} 0 >_{T,x} 1 >_{T,x} 2 >_{T,x} \ldots
\]
given\]

in case x_0 is the smallest proof of $0 = 1$

Now, in PRA:

\[
\text{If } \exists x \text{ Proof}(x, \downarrow 0 = 1) \text{ then for any } z:\n\neg \forall y < T z \neg \text{Proof}(y, \downarrow 0 = 1).
\]

As there are arbitrary large proofs of anything that has a proof.

\[
\forall y < T z \neg \text{Proof}(y, \downarrow 0 = 1) \rightarrow \neg \text{Proof}(z, \downarrow 0 = 1).
\]

By induction along $<_T$ we prove in PRA consistency of T.

Note that, as T is consistent, $\text{OT}(\mathbb{N},<_T) = \omega$.

Joost J. Joosten

Modal Logic Course, 2011
Kreisel’s pathological ordering for a consistent theory T:
We define $n <_T m$ iff
- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \neg 0 = 1)$
Kreisel’s pathological ordering for a consistent theory T:
We define $n <_T m$ iff
\begin{itemize}
 \item $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \neg 0 = 1)$
 \item $m < n$ and $\exists x < \max\{n, m\} \text{ Proof}_T(x, \neg 0 = 1)$
\end{itemize}
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \neg 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \ \text{Proof}_T(x, \neg 0 = 1)$

(PRA proves) The ordering $<_T$ looks like
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \lnot 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \text{ Proof}_T(x, \lnot 0 = 1)$

(PRA proves) The ordering $<_T$ looks like

- $0 <_T 1 <_T 2 <_T \ldots$

in case T is consistent
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \neg 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \text{Proof}_T(x, \neg 0 = 1)$

(PRA proves) The ordering $<_T$ looks like

- $0 <_T 1 <_T 2 <_T \ldots$ in case T is consistent
- $x_0 >_T x_0 - 1 >_T \ldots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \ldots$ in case x_0 is the smallest proof of $0 = 1$
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

1. $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \lnot 0 = 1)$
2. $m < n$ and $\exists x < \max\{n, m\} \text{ Proof}_T(x, \lnot 0 = 1)$

(PRA proves) The ordering $<_T$ looks like

1. $0 <_T 1 <_T 2 <_T \ldots$ in case T is consistent
2. $x_0 >_T x_0 - 1 >_T \ldots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \ldots$ in case x_0 is the smallest proof of $0 = 1$

Now, in PRA:
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

1. $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \neg 0 = 1)$
2. $m < n$ and $\exists x < \max\{n, m\} \text{ Proof}_T(x, \neg 0 = 1)$

(PRA proves) The ordering $<_T$ looks like

1. $0 <_T 1 <_T 2 <_T \ldots$
 in case T is consistent
2. $x_0 >_T x_0 - 1 >_T \ldots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \ldots$
 in case x_0 is the smallest proof of $0 = 1$

Now, in PRA:

- If $\exists x \text{ Proof}(x, \neg 0 = 1)$ then for any z:
 $\neg \forall y <_T z \neg \text{ Proof}(y, \neg 0 = 1)$.
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T (x, \lnot 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \text{Proof}_T (x, \lnot 0 = 1)$

(PRA proves) The ordering $<_T$ looks like

- $0 <_T 1 <_T 2 <_T \ldots$
 in case T is consistent
- $x_0 >_T x_0 - 1 >_T \ldots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \ldots$
 in case x_0 is the smallest proof of $0 = 1$

Now, in PRA:

- If $\exists x \text{Proof}(x, \lnot 0 = 1)$ then for any z:
 $\neg \forall y <_T z \neg \text{Proof}(y, \lnot 0 = 1)$.

As there are arbitrary large proofs of anything that has a proof.
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \neg 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \text{Proof}_T(x, \neg 0 = 1)$

(PRA proves) The ordering $<_T$ looks like

- $0 <_T 1 <_T 2 <_T \ldots$ in case T is consistent
- $x_0 >_T x_0 - 1 >_T \ldots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \ldots$ in case x_0 is the smallest proof of $0 = 1$

Now, in PRA:

- If $\exists x \text{Proof}(x, \neg 0 = 1)$ then for any z:
 $\neg \forall y <_T z \neg \text{Proof}(y, \neg 0 = 1)$.
 As there are arbitrary large proofs of anything that has a proof.
 Whence $\forall y <_T z \neg \text{Proof}(y, \neg 0 = 1) \rightarrow \neg \text{Proof}(z, \neg 0 = 1)$
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \lnot 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \text{Proof}_T(x, \lnot 0 = 1)$

(PRA proves) The ordering $<_T$ looks like

- $0 <_T 1 <_T 2 <_T \ldots$
 in case T is consistent
- $x_0 >_T x_0 - 1 >_T \ldots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \ldots$
 in case x_0 is the smallest proof of $0 = 1$

Now, in PRA:

- If $\exists x \text{Proof}(x, \lnot 0 = 1)$ then for any z:
 $\neg \forall y <_T z \neg \text{Proof}(y, \lnot 0 = 1)$.
 As there are arbitrary large proofs of anything that has a proof. Whence $\forall y <_T z \neg \text{Proof}(y, \lnot 0 = 1) \rightarrow \neg \text{Proof}(z, \lnot 0 = 1)$
- If $\forall x \neg \text{Proof}(x, \lnot 0 = 1)$ then certainly
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \lnot 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \text{ Proof}_T(x, \lnot 0 = 1)$

(PRA proves) The ordering $<_T$ looks like

- $0 <_T 1 <_T 2 <_T \ldots$
 in case T is consistent
- $x_0 >_T x_0 - 1 >_T \ldots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \ldots$
 in case x_0 is the smallest proof of $0 = 1$

Now, in PRA:

- If $\exists x \text{ Proof}(x, \lnot 0 = 1)$ then for any z:
 $\neg \forall y <_T z \neg \text{Proof}(y, \lnot 0 = 1)$.
 As there are arbitrary large proofs of anything that has a proof.
 Whence $\forall y <_T z \neg \text{Proof}(y, \lnot 0 = 1) \rightarrow \neg \text{Proof}(z, \lnot 0 = 1)$

- If $\forall x \neg \text{Proof}(x, \lnot 0 = 1)$ then certainly
 $\forall y <_T z \neg \text{Proof}(y, \lnot 0 = 1) \rightarrow \neg \text{Proof}(z, \lnot 0 = 1)$
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \lnot 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \text{Proof}_T(x, \lnot 0 = 1)$

(PRA proves) The ordering $<_T$ looks like

- $0 <_T 1 <_T 2 <_T \ldots$
 in case T is consistent

- $x_0 >_T x_0 - 1 >_T \ldots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \ldots$
 in case x_0 is the smallest proof of $0 = 1$

Now, in PRA:

- If $\exists x \text{Proof}(x, \lnot 0 = 1)$ then for any z:
 $\neg \forall y <_T z \neg \text{Proof}(y, \lnot 0 = 1)$.

 As there are arbitrary large proofs of anything that has a proof.
 Whence $\forall y <_T z \neg \text{Proof}(y, \lnot 0 = 1) \rightarrow \neg \text{Proof}(z, \lnot 0 = 1)$

- If $\forall x \neg \text{Proof}(x, \lnot 0 = 1)$ then certainly
 $\forall y <_T z \neg \text{Proof}(y, \lnot 0 = 1) \rightarrow \neg \text{Proof}(z, \lnot 0 = 1)$

By induction along $<_T$ we prove in PRA consistency of T.
Kreisel’s pathological ordering for a consistent theory T:

We define $n <_T m$ iff

- $n < m$ and $\forall x < \max\{n, m\} \neg \text{Proof}_T(x, \neg 0 = 1)$
- $m < n$ and $\exists x < \max\{n, m\} \text{ Proof}_T(x, \neg 0 = 1)$

(PRA proves) The ordering $<_T$ looks like

- $0 <_T 1 <_T 2 <_T \ldots$
 in case T is consistent
- $x_0 >_T x_0 - 1 >_T \ldots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \ldots$
 in case x_0 is the smallest proof of $0 = 1$

Now, in PRA:

If $\exists x \text{ Proof}(x, \neg 0 = 1)$ then for any z:

$\neg \forall y <_T z \neg \text{Proof}(y, \neg 0 = 1)$.

As there are arbitrary large proofs of anything that has a proof.

Whence $\forall y <_T z \neg \text{Proof}(y, \neg 0 = 1) \rightarrow \neg \text{Proof}(z, \neg 0 = 1)$

If $\forall x \neg \text{Proof}(x, \neg 0 = 1)$ then certainly

$\forall y <_T z \neg \text{Proof}(y, \neg 0 = 1) \rightarrow \neg \text{Proof}(z, \neg 0 = 1)$

By induction along $<_T$ we prove in PRA consistency of T.

Note that, as T is consistent, $\text{OT}(\mathbb{N}, <_T) = \omega$.

Joost J. Joosten

Modal Logic Course, 2011
Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{\text{CK}}$ such that PRA together with transfinite induction along β does not prove $\text{Con}(PA)$.

Gentzen: $\text{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(PA)$

Consequently, $\text{PA} \nvdash \text{PR-TI}(\alpha)$ for any $\alpha < \epsilon_0$

This leads to another measure for prove-strength of a theory T: the supremum of the order types of those recursive well-orders that are provably (in T) well founded

$|T| := \sup \{ \alpha | \alpha \text{ is the ordertype of a, provably in } T, \text{recursive well-order} \}$

There are some technical details here as well-foundedness is a Π_1 predicate and as such not definable in first-order theories.
Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{CK}$ such that PRA together with transfinite induction along β does not prove $\text{Con}(\text{PA})$.

Gentzen: $\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(\text{PA})$
Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{CK}$ such that PRA together with transfinite induction along β does not prove $\text{Con}(PA)$.

Gentzen: $\mathcal{F} + \text{PR-TI}(\varepsilon_0) \vdash \text{Con}(PA)$

Consequently, $\text{PA} \not\models \text{PR-TI}(\varepsilon_0)$
Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{CK}$ such that PRA together with transfinite induction along β does not prove $\text{Con}(PA)$.

Gentzen: $\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(PA)$

Consequently, $PA \nvdash \text{PR-TI}(\epsilon_0)$

However, Gentzen later also showed that $PA \vdash \text{PR-TI}(\alpha)$ for any $\alpha < \epsilon_0$
Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{CK}$ such that PRA together with transfinite induction along β does not prove $\text{Con}(PA)$.

Gentzen: $\mathcal{F} + \text{PR-TI}(\varepsilon_0) \vdash \text{Con}(PA)$

Consequently, $\text{PA} \not\vdash \text{PR-TI}(\varepsilon_0)$

However, Gentzen later also showed that $\text{PA} \vdash \text{PR-TI}(\alpha)$ for any $\alpha < \varepsilon_0$

This leads to another measure for prove-strength of a theory T: the supremum of the order types of those recursive well-orders that are provably (in T) well founded
Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{CK}$ such that PRA together with transfinite induction along β does not prove $\text{Con}(PA)$.

Gentzen: $\mathcal{F} + \text{PR-TI}(\epsilon_0) \vdash \text{Con}(PA)$

Consequently, $\text{PA} \nvdash \text{PR-TI}(\epsilon_0)$

However, Gentzen later also showed that $\text{PA} \vdash \text{PR-TI}(\alpha)$ for any $\alpha < \epsilon_0$

This leads to another measure for prove-strength of a theory T: the supremum of the order types of those recursive well-orders that are provably (in T) well founded

$|T|_{\text{sup}} := \{\alpha \mid \alpha \text{ is the ordertype of a, provably in } T, \text{ recursive well-order}\}$
Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{CK}$ such that PRA together with transfinite induction along β does not prove $\text{Con}(\text{PA})$.

Gentzen: $\mathcal{F} + \text{PR-TI}(\varepsilon_0) \vdash \text{Con}(\text{PA})$

Consequently, $\text{PA} \nvdash \text{PR-TI}(\varepsilon_0)$

However, Gentzen later also showed that $\text{PA} \vdash \text{PR-TI}(\alpha)$ for any $\alpha < \varepsilon_0$

This leads to another measure for prove-strength of a theory T: the supremum of the order types of those recursive well-orders that are provably (in T) well founded

$|T|_{\text{sup}} := \{\alpha \mid \alpha \text{ is the ordertype of a, provably in } T, \text{ recursive well-order}\}$

There are some technical details here as well-foundedness is a Π^1_1 predicate and as such not definable in first-order theories.
\[|T|_{\text{sup}} \text{ is more robust and less prone to pathological counter-examples.} \]
\[|T|_{\text{sup}} \] is more robust and less prone to pathological counter-examples.

As a matter of fact, it is a bit too robust:
\[|T|_{\text{sup}} \text{ is more robust and less prone to pathological counter-examples.} \]

\[\text{As a matter of fact, it is a bit too robust:} \]

\[\text{Let } S \text{ be a set of true } \Sigma_1^1 \text{ sentences, then, under some fairly reasonable conditions} \]

\[|T|_{\text{sup}} = |T + S|_{\text{sup}} \]
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.

This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.

This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:

- $T_0 := T$

\[T_\alpha := T_{\alpha+1} + \text{Con}(T_\alpha) \]

\[T_\lambda := \bigcup_{\beta < \lambda} T_\beta \text{ for limit } \lambda \]

We can define the proof theoretic measure $|T|_\text{it} := \min \{ \alpha : F_\alpha \vdash \text{Con}(T) \}$ where F is a suitably chosen finitistic fragment of arithmetic.
We know that, if \(T \) is consistent, then \(T + \text{Con}(T) \) is consistent too.

This idea leads us to consider transfinite progressions of consistency iterations for some basic theory \(T \):

- \(T_0 := T \)
- \(T_{\alpha + 1} := T_\alpha + \text{Con}(T_\alpha) \)
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.

This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:

- $T_0 := T$
- $T_{\alpha+1} := T_\alpha + \text{Con}(T_\alpha)$
- $T_\lambda := \bigcup_{\beta < \lambda} T_\beta$ for limit λ
We know that, if T is consistent, then $T + \text{Con}(T)$ is consistent too.

This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:

$T_0 := T$

$T_{\alpha+1} := T_\alpha + \text{Con}(T_\alpha)$

$T_\lambda := \bigcup_{\beta < \lambda} T_\beta$ for limit λ

We can define the proof theoretic measure

\[|T|_{it} := \min\{\alpha \mid \mathcal{F}_\alpha \vdash \text{Con}(T)\} \]

where \mathcal{F} is a suitably chosen finitistic fragment of arithmetic.
It is to be expected that $|T|_{it}$ is more fine-grained than the other notions as it is defined in terms of a central notion: \textit{consistency}
It is to be expected that $|T|_{it}$ is more fine-grained than the other notions as it is defined in terms of a central notion: consistency.

We can expect that $|T|_{it}$ is again very sensible to pathological orderings and representations thereof.
It is to be expected that $|T|_{it}$ is more fine-grained than the other notions as it is defined in terms of a central notion: *consistency*

We can expect that $|T|_{it}$ is again very sensible to *pathological* orderings and representations thereof

However, provability logics yield two main advantages
It is to be expected that \(|T|_{it}\) is more fine-grained than the other notions as it is defined in terms of a central notion: *consistency*.

We can expect that \(|T|_{it}\) is again very sensible to *pathological* orderings and representations thereof.

However, provability logics yield two main advantages:

- All the calculations involved in determining \(|T|_{it}\) can be done within these logics.
It is to be expected that $|T|_{it}$ is more fine-grained than the other notions as it is defined in terms of a central notion: consistency.

We can expect that $|T|_{it}$ is again very sensible to pathological orderings and representations thereof.

However, provability logics yield two main advantages:

- All the calculations involved in determining $|T|_{it}$ can be done within these logics.
- The logics suggest a very natural ordinal notation which is completely unambiguous up to the Feferman-Shütte ordinal Γ_0.
Surprise to me:
Surprise to me:

There is an intimate connection between consistency statements and arithmetic.
Surprise to me:

There is an intimate connection between consistency statements and arithmetic.

In particular, the fragments Π^Σ_n can be fully characterized in terms of consistency statements.
Surprise to me:

There is an intimate connection between consistency statements and arithmetic.

In particular, the fragments Π^0_n can be fully characterized in terms of consistency statements.

We need some notation and terminology to make this precise.
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

For a formula φ, we denote the representation by $\lbrack \varphi \rbrack$.
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- For a formula φ, we denote the representation by $\llbracket \varphi \rrbracket$.
- A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time.
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- For a formula φ, we denote the representation by $\lceil \varphi \rceil$.
- A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time.
- A theory is called *elementary represented* if it is represented by some elementary formula.
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- For a formula φ, we denote the representation by $\llbracket \varphi \rrbracket$.
- A formula in the language of arithmetic is **elementary** if it can be decided in elementary (multi-exponential) time.
- A theory is called **elementary represented** if it is represented by some elementary formula.
- For elementary represented theories T, one can write down a formula $\text{Proof}_T(p, \llbracket \varphi \rrbracket)$ that is true only when p is the code of a proof in T of a formula φ.
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- For a formula φ, we denote the representation by $\llbracket \varphi \rrbracket$.
- A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time.
- A theory is called *elementary represented* if it is represented by some elementary formula.
- For elementary represented theories T, one can write down a formula $\text{Proof}_T(p, \llbracket \varphi \rrbracket)$ that is true only when p is the code of a proof in T of a formula φ.
- $\text{Proof}_T(p, \llbracket \varphi \rrbracket)$ is a decidable formula.
Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- For a formula φ, we denote the representation by $\lbrack \varphi \rbrack$.
- A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time.
- A theory is called *elementary represented* if it is represented by some elementary formula.
- For elementary represented theories T, one can write down a formula $\text{Proof}_T(p, \lbrack \varphi \rbrack)$ that is true only when p is the code of a proof in T of a formula φ.
- $\text{Proof}_T(p, \lbrack \varphi \rbrack)$ is a decidable formula.
- We will write $\square_T \varphi$ for $\exists p \text{ Proof}_T(p, \lbrack \varphi \rbrack)$.

Joost J. Joosten

Modal Logic Course, 2011
Our base theory/finitistic theory will be EA: elementary arithmetic
Our base theory/finitistic theory will be EA: elementary arithmetic.

EA is in the language of PA but the induction axioms are restricted to *bounded formulas only*.
Our base theory/finitistic theory will be EA: elementary arithmetic

EA is in the language of PA but the induction axioms are restricted to \textit{bounded formulas only}

A bounded formula is a formula where each quantifier is bounded by a term in the language of PA which we recall is \{0, S, +, \cdot, 2^x\}
Our base theory/finitistic theory will be EA: elementary arithmetic

EA is in the language of PA but the induction axioms are restricted to \textit{bounded formulas only}

A bounded formula is a formula where each quantifier is bounded by a term in the language of PA which we recall is \{0, S, +, \cdot, 2^x\}

Bounded formulas define the elementary predicates
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

Σ_{n+1}-formulas are of the form $\exists \vec{x} \, \chi(\vec{x})$ with $\chi \in \Pi_n$
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

Σ_{n+1}-formulas are of the form $\exists \vec{x} \chi(\vec{x})$ with $\chi \in \Pi_n$

Π_{n+1}-formulas are of the form $\forall \vec{x} \chi(\vec{x})$ with $\chi \in \Sigma_n$
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

- Σ_{n+1}-formulas are of the form $\exists \bar{x} \, \chi(\bar{x})$ with $\chi \in \Pi_n$
- Π_{n+1}-formulas are of the form $\forall \bar{x} \, \chi(\bar{x})$ with $\chi \in \Sigma_n$

Weak theories like EA prove all true Π_0 statements ψ, that is,

$$\mathbb{N} \models \psi \implies \text{EA} \vdash \psi$$
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

Σ_{n+1}-formulas are of the form $\exists \bar{x} \; \chi(\bar{x})$ with $\chi \in \Pi_n$

Π_{n+1}-formulas are of the form $\forall \bar{x} \; \chi(\bar{x})$ with $\chi \in \Sigma_n$

Weak theories like EA prove all true Π_0 statements ψ, that is,

$$\mathbb{N} \models \psi \Rightarrow \text{EA} \vdash \psi$$

Thus, weak theories like EA also prove all true Σ_1 formulas
The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

Σ_{n+1}-formulas are of the form $\exists \vec{x} \, \chi(\vec{x})$ with $\chi \in \Pi_n$

Π_{n+1}-formulas are of the form $\forall \vec{x} \, \chi(\vec{x})$ with $\chi \in \Sigma_n$

Weak theories like EA prove all true Π_0 statements ψ, that is,

$$\mathbb{N} \models \psi \Rightarrow \text{EA} \vdash \psi$$

Thus, weak theories like EA also prove all true Σ_1 formulas

This fact is formalizable in EA whence for $\sigma \in \Sigma_1$

$$\text{EA} \vdash \sigma \rightarrow \square_{\text{EA}} \sigma$$
From Tarski’s Theorem on the undefinability of truth, we know that there is no arithmetical formula True(\(x\)) such that

\[\mathbb{N} \models \psi \leftrightarrow \text{True}(\neg \psi) \]
From Tarski’s Theorem on the undefinability of truth, we know that there is no arithmetical formula True(⌜x⌝) such that

\[\mathbb{N} \models \psi \leftrightarrow \text{True}(\neg \psi) \]

However, there are partial truth predicates
From Tarski’s Theorem on the undefinability of truth, we know that there is no arithmetical formula $\text{True}(x)$ such that:

$$\mathbb{N} \models \psi \iff \text{True}(\neg \psi)$$

However, there are *partial truth predicates*:

$$\mathbb{N} \models \psi \iff \text{True}_{\Pi_n}(\neg \psi) \text{ for } \psi \in \Pi_n$$
From Tarski’s Theorem on the undefinability of truth, we know that there is no arithmetical formula $\text{True}(x)$ such that
\[
\mathbb{N} \models \psi \iff \text{True}(\neg \psi)
\]

However, there are *partial truth predicates*
\[
\mathbb{N} \models \psi \iff \text{True}_{\Pi_n}(\neg \psi) \text{ for } \psi \in \Pi_n
\]

Moreover, weak theories like EA prove all the Tarski Truth Conditions for these predicates, e.g.,
\[
\text{EA} \vdash \text{True}_{\Pi_n}(\neg \psi \land \chi) \iff [\text{True}_{\Pi_n}(\neg \psi) \land \text{True}_{\Pi_n}(\neg \chi)]
\]
for $\psi, \chi \in \Pi_n$
From Tarski’s Theorem on the undefinability of truth, we know that there is no arithmetical formula $\text{True}(x)$ such that

$$\mathbb{N} \models \psi \leftrightarrow \text{True}(\neg \psi)$$

However, there are partial truth predicates

$$\mathbb{N} \models \psi \leftrightarrow \text{True}_{\Pi_n}(\neg \psi) \text{ for } \psi \in \Pi_n$$

Moreover, weak theories like EA prove all the Tarski Truth Conditions for these predicates, e.g.,

$$\text{EA} \vdash \text{True}_{\Pi_n}(\neg \psi \land \chi) \leftrightarrow [\text{True}_{\Pi_n}(\neg \psi) \land \text{True}_{\Pi_n}(\neg \chi)]$$

for $\psi, \chi \in \Pi_n$

The complexity of True_{Π_n} is itself Π_n
Using partial truth predicates,
\[[n]_T \varphi : \varphi \] is provable in the theory whose axioms are those of \(T \) together with all true \(\Pi_n \) sentences.
Using partial truth predicates,
\([n]_T \varphi : \varphi \) is provable in the theory whose axioms are those of
\(T\) together with all true \(\Pi_n\) sentences.

- We sometimes write \([0]_T \varphi\) for \(\Box_T \varphi\).
Using partial truth predicates,
\([n]_T \varphi : \varphi \text{ is provable in the theory whose axioms are those of } T \text{ together with all true } \Pi_n \text{ sentences.}\)

We sometimes write \([0]_T \varphi \) for \(\square_T \varphi \)

We abbreviate \(\neg[n]_T \neg \varphi \), that is, the \(n\)-consistency of \(\varphi \), by \(\langle n \rangle_T \varphi \)
Using partial truth predicates,
\[[n]_T \varphi : \varphi \text{ is provable in the theory whose axioms are those of } T \text{ together with all true } \Pi_n \text{ sentences.} \]

We sometimes write \([0]_T \varphi\) for \(\square_T \varphi\)

We abbreviate \(\neg[n]_T \neg \varphi\), that is, the \(n\)-consistency of \(\varphi\), by \(\langle n \rangle_T \varphi\)

\(\langle n \rangle_T \top\) will stand for \(T\) is \(n\)-consistent
Uniform reflection over T denoted by RFN(T) is the scheme

$$\forall \vec{x} \ (\Box_T \varphi(\vec{x}) \rightarrow \varphi(\vec{x}))$$
Uniform reflection over T denoted by $\text{RFN}(T)$ is the scheme

$$\forall \vec{x} \ (\square_T \varphi(\vec{x}) \rightarrow \varphi(\vec{x}))$$

Restricted reflection over T denoted by $\text{RFN}_{\Sigma_n}(T)$ is the scheme

$$\forall \vec{x} \ (\square_T \varphi(\vec{x}) \rightarrow \varphi(\vec{x})) \quad \text{with} \quad \varphi \in \Sigma_n$$
Uniform reflection over T denoted by $\text{RFN}(T)$ is the scheme

$$\forall \vec{x} \ (\Box_T \varphi(\vec{x}) \rightarrow \varphi(\vec{x}))$$

Restricted reflection over T denoted by $\text{RFN}_{\Sigma_n}(T)$ is the scheme

$$\forall \vec{x} \ (\Box_T \varphi(\vec{x}) \rightarrow \varphi(\vec{x})) \quad \text{with} \quad \varphi \in \Sigma_n$$

It is an easy theorem that $\text{RFN}_{\Sigma_n}(T)$ is equivalent to Kleene’s rule for Σ_n formulas:

$$\frac{\forall \vec{x} \circ_T \varphi(\vec{x})}{\forall \vec{x} \varphi(\vec{x})} \quad \text{with} \quad \varphi \in \Sigma_n.$$
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

Proof: Suppose $[n]_T \bot$, then
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

Proof: Suppose $[n]_T \bot$, then

\[[0]_T(\pi \rightarrow \bot) \] for some Π_n sentence π (possibly non-standard)
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

Proof: Suppose \([n]_T \bot\), then
\[[0]_T(\pi \rightarrow \bot) \] for some \(\Pi_n\) sentence \(\pi\) (possibly non-standard)

thus, \([0]_T \neg \pi\)
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

Proof: Suppose $[n]_T \bot$, then
\[[0]_T (\pi \rightarrow \bot) \] for some Π_n sentence π (possibly non-standard)
thus, $[0]_T \neg \pi$
whence $[0]_T True_{\Sigma_n}(\neg \pi)$.
From now on, \(T \) will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:
\[
\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)
\]

Proof: Suppose \([n]_T \bot\), then
\[
[0]_T (\pi \rightarrow \bot) \text{ for some } \Pi_n \text{ sentence } \pi \text{ (possibly non-standard)}
\]
thus, \([0]_T \neg \pi\)

whence \([0]_T \text{True}_{\Sigma_n}(\neg \pi)\).

We obtain \(\text{True}_{\Sigma_n}(\neg \pi)\) using \(RFN_{\Sigma_n}(T)\)
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

Proof: Suppose $[n]_T \bot$, then

$$[0]_T (\pi \rightarrow \bot)$$

for some Π_n sentence π (possibly non-standard)

thus, $[0]_T \neg \pi$

whence $[0]_T \text{True}_{\Sigma_n}(\neg \pi)$.

We obtain $\text{True}_{\Sigma_n}(\neg \pi)$ using $RFN_{\Sigma_n}(T)$

contradicting $\text{True}_{\Pi_n}(\pi)$
From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.

Theorem:

\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

Proof: Suppose \([n]_T \perp\), then

\[[0]_T (\pi \rightarrow \bot) \] for some \(\Pi_n\) sentence \(\pi\) (possibly non-standard)

thus, \([0]_T \neg \pi\)

whence \([0]_T \text{True}_{\Sigma_n}(\neg \pi)\).

We obtain \(\text{True}_{\Sigma_n}(\neg \pi)\) using \(RFN_{\Sigma_n}(T)\)

contradicting \(\text{True}_{\Pi_n}(\pi)\)

whence \(\neg [n]_T \perp\), i.e., \(\langle n \rangle_T \top\)
Theorem:
\[\langle n \rangle^T \top \equiv RFN_{\Sigma_n}(T) \]
Theorem:
\[\langle n \rangle^T \top \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
EA \vdash \sigma \rightarrow [n]^T \sigma \text{ for } \sigma \in \Sigma_{n+1}
Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
EA \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1}

Suppose \([0]_T \varphi \text{ with } \varphi \in \Sigma_n\)
Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
\[\text{EA} \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1} \]

Suppose \([0]_T \varphi\) with \(\varphi \in \Sigma_n\)

Suppose, for a contradiction, that \(\neg \varphi\)
Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
\[\text{EA} \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1} \]

Suppose \([0]_T \varphi\) with \(\varphi \in \Sigma_n\)

Suppose, for a contradiction, that \(\neg \varphi\)

as \(\neg \varphi \in \Sigma_{n+1}\)
Theorem:
\(\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \)

For the other direction, we need a very easy lemma:
EA \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1}

Suppose \([0]_T \varphi\) with \(\varphi \in \Sigma_n\)

suppose, for a contradiction, that \(\neg \varphi\)

as \(\neg \varphi \in \Sigma_{n+1}\)

we have \([n]_T \neg \varphi\), whence
Theorem:
\[\langle n \rangle_T \top \equiv \text{RFN}_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
\[\text{EA} \vdash \sigma \rightarrow [n]T \sigma \text{ for } \sigma \in \Sigma_{n+1} \]

Suppose \[0\]T ϕ with ϕ ∈ Σn

Suppose, for a contradiction, that ¬ϕ

as ¬ϕ ∈ Σn+1

we have \[n\]T ¬ϕ, whence

\[[n]T \bot \]
Theorem:
\[\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T) \]

For the other direction, we need a very easy lemma:
EA \vdash \sigma \rightarrow [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1}

Suppose \[0\]_T \varphi \text{ with } \varphi \in \Sigma_n

suppose, for a contradiction, that \(\neg \varphi \)

as \(\neg \varphi \in \Sigma_{n+1} \)

we have \([n]_T \neg \varphi\), whence

\([n]_T \bot\)

contradicting \(\langle n \rangle_T \top\)
Theorem:
$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

For the other direction, we need a very easy lemma:
$$EA \vdash \sigma \rightarrow \lbrack n \rbrack_T \sigma \quad \text{for} \quad \sigma \in \Sigma_{n+1}$$

Suppose $$\lbrack 0 \rbrack_T \varphi$$ with $$\varphi \in \Sigma_n$$

Suppose, for a contradiction, that $$\neg \varphi$$

as $$\neg \varphi \in \Sigma_{n+1}$$

we have $$\lbrack n \rbrack_T \neg \varphi$$, whence

$$\lbrack n \rbrack_T \bot$$

contradicting $$\langle n \rangle_T \top$$

All of the steps can be done within EA!
Let $I \Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas.
Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas

Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$
Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas

Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

It is not hard to see that

$$\forall x \Box_{EA}((\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x+1)]) \rightarrow \varphi(\dot{x}))$$
Let $I \Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas

Theorem: $I \Sigma_n \equiv \text{RFN}_{\Sigma_{n+1}}(\text{EA})$

It is not hard to see that

$\forall x \Box_{\text{EA}}((\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x+1)]) \rightarrow \varphi(\dot{x}))$

Note, the complexity of this formula

$(\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x+1)]) \rightarrow \varphi(\dot{x})$ ‘is’ Σ_{n+1}
Let $I \Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas

Theorem: $I \Sigma_n \equiv \text{RFN}_{\Sigma_{n+1}}(\text{EA})$

It is not hard to see that
$$\forall x \Box_{\text{EA}}((\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x}))$$

Note, the complexity of this formula
$$(\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x}) \; \text{‘is’} \; \Sigma_{n+1}$$

By Kleene’s rule: $\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)] \rightarrow \forall x \varphi(x)$
Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas

Theorem: $I\Sigma_n \equiv \text{RFN}_{\Sigma_{n+1}}(\text{EA})$

It is not hard to see that
\[
\forall x \square_{\text{EA}}((\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x}))
\]

Note, the complexity of this formula
\[
(\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)]) \rightarrow \varphi(\dot{x}) \text{ ‘is’ } \Sigma_{n+1}
\]

By Kleene’s rule: $\varphi(0) \land \forall x [\varphi(x) \rightarrow \varphi(x + 1)] \rightarrow \forall x \varphi(x)$

Note, this direction is fully formalizable in EA
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$
Proof-strength of theories
Reflection, Consistency and Arithmetic

Preliminaries and definitions
Equivalences
The Reduction Property

Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$.
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\square_T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \text{ Proof}_T(p, \lceil \sigma \rceil)$
Theorem: $I\Sigma_n \equiv \text{RFN}_{\Sigma_{n+1}}(\text{EA})$

For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \text{ Proof}_T(p, \langle \sigma \rangle)$

Now, employ cut-elimination to obtain a cut-free proof of σ
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\square_T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \text{ Proof}_T(p, \Box \sigma)$

Now, employ cut-elimination to obtain a cut-free proof of σ

Now, prove by induction on p that

$\text{Cut-Free-Proof}_T(p, \chi) \rightarrow \text{True}_{\Sigma_{n+1}}(\Box \chi)$
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \text{ Proof}_T(p, \neg \neg \sigma)$

Now, employ cut-elimination to obtain a cut-free proof of σ

Now, prove by induction on p that $\text{Cut-Free-Proof}_T(p, \chi) \rightarrow \text{True}_{\Sigma_{n+1}}(\neg \neg \chi)$

This requires Σ_{n+1} induction
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\Box^T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \text{ Proof}_T(p, \Gamma \sigma)$

Now, employ cut-elimination to obtain a cut-free proof of σ

Now, prove by induction on p that

$\text{Cut-Free-Proof}_T(p, \chi) \rightarrow \text{True}_{\Sigma_{n+1}}(\Gamma \chi)$

This requires Σ_{n+1} induction

With techniques from proof-theory, this can actually be brought back to Σ_n induction
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\Box T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \ \text{Proof}_T(p, \neg \neg \sigma)$

Now, employ cut-elimination to obtain a cut-free proof of σ

Now, prove by induction on p that

$\text{Cut-Free-Proof}_T(p, \chi) \rightarrow \text{True}_{\Sigma_{n+1}}(\neg \neg \chi)$

This requires Σ_{n+1} induction

With techniques from proof-theory, this can actually be brought back to Σ_n induction

Note that the proof can only be formalized in a setting where cut-elimination can be proved
Theorem: $I\Sigma_n \equiv RFN_{\Sigma_{n+1}}(EA)$

For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$

$\exists p \text{ Proof}_T(p, \neg \neg \sigma)$

Now, employ cut-elimination to obtain a cut-free proof of σ

Now, prove by induction on p that

$\text{Cut-Free-Proof}_T(p, \chi) \rightarrow \text{True}_{\Sigma_{n+1}}(\neg \neg \chi)$

This requires Σ_{n+1} induction

With techniques from proof-theory, this can actually be brought back to Σ_n induction

Note that the proof can only be formalized in a setting where cut-elimination can be proved

that is, the sup-exp function must be provably total
Summarizing: $I\Sigma_n \equiv \langle n + 1 \rangle_{EA} \top \equiv RFN_{\Sigma_{n+1}}(EA)$
Summarizing: $I\Sigma_n \equiv \langle n + 1 \rangle_{EA} \equiv RFN_{\Sigma_{n+1}}(EA)$

Using similar techniques one can prove an analogous for the induction rules:
Summarizing: \(I\Sigma_n \equiv \langle n + 1 \rangle_{EA} \top \equiv RFN_{\Sigma_{n+1}}(EA) \)

Using similar techniques one can prove an analogous for the induction rules:

\(I\Sigma_n^R \) is the closure of \(EA \) under the rule

\[
\frac{\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}
\]
Summarizing: $I\Sigma_n \equiv \langle n+1 \rangle_{\text{EA}} \top \equiv \text{RFN}_{\Sigma_{n+1}}(\text{EA})$

Using similar techniques one can prove an analogous for the induction rules:

$I\Sigma^R_n$ is the closure of EA under the rule

$\frac{\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1))}{\forall x \varphi(x)}$

Theorem

$I\Sigma^R_n \equiv \Pi_{n+1} - \text{RR}^n(\text{EA})$
Summarizing: $I\Sigma_n \equiv \langle n + 1 \rangle_{EA} \top \equiv RFN\Sigma_{n+1}(EA)$

Using similar techniques one can prove an analogous for the induction rules:

$I\Sigma^R_n$ is the closure of EA under the rule

\[
\frac{\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}
\]

Theorem

$I\Sigma^R_n \equiv \Pi_{n+1} - RR^n(EA)$

Here $\Pi_{n+1} - RR^n(EA)$ is the rule

\[
\frac{\pi}{\langle n \rangle_{EA} \pi} \quad \text{with} \quad \pi \in \Pi_{n+1}
\]
Summarizing: $I\Sigma_n \equiv \langle n + 1 \rangle_{EA} \top \equiv RFN_{\Sigma_{n+1}}(EA)$

Using similar techniques one can prove an analogous for the induction rules:

$I\Sigma_n^R$ is the closure of EA under the rule:

\[
\begin{align*}
\varphi(0) & \land \forall x (\varphi(x) \rightarrow \varphi(x+1)) \\
\forall x \varphi(x) &
\end{align*}
\]

Theorem

$I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA)$

Here $\Pi_{n+1} - RR^n(EA)$ is the rule:

\[
\frac{\pi}{\langle n \rangle_{EA} \pi} \quad \text{with } \pi \in \Pi_{n+1}
\]

It is not hard to see that $RFN_{\Sigma_{n+1}}(EA) \vdash \pi \rightarrow \langle n \rangle \pi$ for $\pi \in \Pi_{n+1}$ whence
Summarizing: $I\Sigma_n \equiv \langle n+1 \rangle_{\text{EA}} \top \equiv \text{RFN}_{\Sigma_{n+1}}(\text{EA})$

Using similar techniques one can prove an analogous for the induction rules:

$I\Sigma^R_n$ is the closure of EA under the rule

$$\frac{\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}$$

Theorem

$I\Sigma^R_n \equiv \Pi_{n+1} - \text{RR}^n(\text{EA})$

Here $\Pi_{n+1} - \text{RR}^n(\text{EA})$ is the rule

$$\pi \quad \pi \in \Pi_{n+1}$$

$$\frac{\pi}{\langle n \rangle_{\text{EA}} \pi}$$

It is not hard to see that $\text{RFN}_{\Sigma_{n+1}}(\text{EA}) \vdash \pi \rightarrow \langle n \rangle \pi$ for $\pi \in \Pi_{n+1}$ whence

$\text{RFN}_{\Sigma_{n+1}}(\text{EA}) \vdash \Pi_{n+1} - \text{RR}^n(\text{EA})$
Theorem

\[I\Sigma^R_n \equiv \Pi_{n+1} - RR^n(EA) \]
Theorem

\[I \Sigma_n^R \equiv \Pi_{n+1} - \text{RR}^n(\text{EA}) \]

RFN_{\Sigma_{n+1}}(\text{EA}) turns out to be \(\Pi_{n+1} \) conservative over \(\text{EA} + \Pi_{n+1} - \text{RR}^n(\text{EA}) \)
Theorem

\[I^R \equiv \Pi_{n+1} - \text{RR}^n(EA) \]

RFN_{\Sigma_{n+1}}(EA) turns out to be \(\Pi_{n+1} \) conservative over \(EA + \Pi_{n+1} - \text{RR}^n(EA) \)

We write

\[EA + \text{RFN}_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - \text{RR}^n(EA) \]
Theorem

\[I\Sigma^R_n \equiv \Pi_{n+1} - \text{RR}^n(EA) \]

RFN_\Sigma_{n+1} (EA) turns out to be \(\Pi_{n+1} \) conservative over \(EA + \Pi_{n+1} - \text{RR}^n(EA) \)

We write

\[EA + \text{RFN}_\Sigma_{n+1} (EA) \equiv_n EA + \Pi_{n+1} - \text{RR}^n(EA) \]

This is formalizable in \(EA^+ \), and can be generalized to theories other than \(EA \)
Theorem

\[I \Sigma^R_n \equiv \Pi_{n+1} - \text{RR}^n(EA) \]

RFN_{\Sigma_{n+1}}(EA) turns out to be \(\Pi_{n+1} \) conservative over \(EA + \Pi_{n+1} - \text{RR}^n(EA) \)

We write

\[EA + \text{RFN}_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - \text{RR}^n(EA) \]

This is formalizable in \(EA^+ \), and can be generalized to theories other than \(EA \)

Here \(EA^+ \) is the theory \(EA \) together with the axiom stating that super-exponentiation is a total function
\[\mathbf{EA} + \mathbf{RFN}_{\Sigma_{n+1}(EA)} \equiv_n \mathbf{EA} + \Pi_{n+1} - \mathbf{RR}^n(\mathbf{EA}) \]
\[EA + RFN_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - RR^n(EA) \]

From this follows

\[\langle n + 1 \rangle^\top \equiv_n \{ \langle n \rangle^k^\top \mid k < \omega \} \]
EA + RFN_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - RR^n(EA)

From this follows

\langle n + 1 \rangle^\top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \}

Bluffing (fallacious/incomplete argument):
- \(\text{EA} + \text{RFN}_{\Sigma_{n+1}}(\text{EA}) \equiv_n \text{EA} + \Pi_{n+1} \neg \text{RR}^n(\text{EA})\)

- From this follows

\[\langle n + 1 \rangle \top \equiv_n \{\langle n \rangle^k \top \mid k < \omega\}\]

- Bluffing (fallacious/incomplete argument):
 - \(\langle 1 \rangle \top \equiv_0 \langle 0 \rangle^\omega \top\)
\[\text{EA} + \text{RFN}_{\Sigma_{n+1}}(\text{EA}) \equiv_n \text{EA} + \Pi_{n+1} - \text{RR}^n(\text{EA}) \]

From this follows

\[\langle n + 1 \rangle^\top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \} \]

Bluffing (fallacious/incomplete argument):

\[\langle 1 \rangle^\top \equiv_0 \langle 0 \rangle^\omega \top \]

\[\text{I}^\Sigma_1 \equiv \langle 2 \rangle^\top \equiv_1 \langle 1 \rangle^\omega \top \equiv_0 (\langle 0 \rangle^\omega)^\omega \top \equiv \langle 0 \rangle^\omega^\omega \top \]
Underlying logical framework: Proof-theoretic systems

Proof-strength of theories

Reflection, Consistency and Arithmetic

- Preliminaries and definitions
- Equivalences
- The Reduction Property

- **EA + RFN**$_{\Sigma_{n+1}}$(EA) \equiv_n EA + Π_{n+1} − RRn(EA)

- From this follows:

\[
\langle n + 1 \rangle \top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \}
\]

- **Bluffing (fallacious/incomplete argument):**
 - $\langle 1 \rangle \top \equiv_0 \langle 0 \rangle^\omega \top$
 - $I\Sigma_1 \equiv \langle 2 \rangle \top \equiv_1 \langle 1 \rangle^\omega \top \equiv_0 (\langle 0 \rangle^\omega)^\omega \top \equiv \langle 0 \rangle^{\omega^\omega} \top$
 - $I\Sigma_2 \equiv \langle 3 \rangle \top \equiv_2 \langle 2 \rangle^{\omega} \top \equiv_1 \langle 0 \rangle^{\omega^\omega} \top \equiv_0 \langle 0 \rangle^{\omega^\omega^\omega} \top$

- Where $\epsilon_0 = \sup \{ \omega, \omega^\omega, \omega^{\omega^\omega}, ... \}$

 This can be conceived as the proof theoretic ordinal of PA
\[\text{EA + RFN}_{\Sigma_{n+1}}(\text{EA}) \equiv_n \text{EA + } \Pi_{n+1} - \text{RR}^n(\text{EA}) \]

From this follows

\[\langle n + 1 \rangle \top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \} \]

Bluffing (fallacious/incomplete argument):

1. \[\langle 1 \rangle \top \equiv_0 \langle 0 \rangle^\omega \top \]
2. \[I \Sigma_1 \equiv \langle 2 \rangle \top \equiv_1 \langle 1 \rangle^\omega \top \equiv_0 (\langle 0 \rangle^\omega)^\omega \top \equiv \langle 0 \rangle^{\omega^\omega} \top \]
3. \[I \Sigma_2 \equiv \langle 3 \rangle \top \equiv_2 \langle 2 \rangle^\omega \top \equiv_1 \langle 0 \rangle^{\omega^\omega} \top \equiv_0 \langle 0 \rangle^{\omega^\omega} \top \]
4. \[\text{PA} \equiv \langle \omega \rangle \top \equiv_0 \langle 0 \rangle^{\varepsilon_0} \top \]
Proof-strength of theories
Reflection, Consistency and Arithmetic

Preliminaries and definitions
Equivalences
The Reduction Property

- \(EA + RFN_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1}-RR^n(EA) \)
- From this follows

\[
\langle n+1 \rangle^T \equiv_n \{ \langle n \rangle^k^T \mid k < \omega \}
\]
- Bluffing (fallacious/incomplete argument):
 - \(\langle 1 \rangle^T \equiv_0 \langle 0 \rangle^\omega^T \)
 - \(I\Sigma_1 \equiv \langle 2 \rangle^T \equiv_1 \langle 1 \rangle^\omega^T \equiv_0 (\langle 0 \rangle^\omega)^\omega^T \equiv \langle 0 \rangle^{\omega^\omega}^T \)
 - \(I\Sigma_2 \equiv \langle 3 \rangle^T \equiv_2 \langle 2 \rangle^\omega^T \equiv_1 \langle 0 \rangle^{\omega^\omega}^T \equiv_0 \langle 0 \rangle^{\omega^{\omega^\omega}}^T \)
 - \(PA \equiv \langle \omega \rangle^T \equiv_0 \langle 0 \rangle^{\epsilon_0} T \)
- Where \(\epsilon_0 = \sup\{ \omega, \omega^\omega, \omega^{\omega^\omega}, \omega^{\omega^{\omega^\omega}}, \ldots \} \)
Proof-strength of theories
Reflection, Consistency and Arithmetic

1. **Preliminaries and definitions**

2. **Equivalences**

3. **The Reduction Property**

- **EA + RFN**$_{n+1}$**(EA) \equiv_n EA + \Pi_{n+1} - RR^n(EA)**

- From this follows

\[\langle n + 1 \rangle \vdash \equiv_n \{ \langle n \rangle^k \vdash | k < \omega \} \]

- **Bluffing (fallacious/incomplete argument):**
 - \[\langle 1 \rangle \vdash \equiv_0 \langle 0 \rangle^\omega \vdash \]
 - \[\text{I} \Sigma_1 \equiv \langle 2 \rangle \vdash \equiv_1 \langle 1 \rangle^\omega \vdash \equiv_0 (\langle 0 \rangle^\omega)^\omega \vdash \equiv \langle 0 \rangle^\omega^\omega \vdash \]
 - \[\text{I} \Sigma_2 \equiv \langle 3 \rangle \vdash \equiv_2 \langle 2 \rangle^\omega \vdash \equiv_1 \langle 0 \rangle^\omega^\omega \vdash \equiv_0 \langle 0 \rangle^\omega^\omega^\omega \vdash \]

- **PA** \[\equiv \langle \omega \rangle \vdash \equiv_0 \langle 0 \rangle^{\epsilon_0} \vdash \]

- **Where** \[\epsilon_0 = \sup\{ \omega, \omega^\omega, \omega^{\omega^\omega}, \omega^{\omega^{\omega^\omega}}, \ldots \} \]

- This can be conceived as the proof theoretic ordinal of **PA**