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Chapter 1

Introduction

Het leven is een toovertuin.
L.E.J. Brouwer
(uit een brief aan C.S. Adama van Scheltema)

In this thesis we wander through two different landscapes: intuitionistic proposi-
tional logic and intuitionistic provability logic. Both theories are based on intu-
itionistic logic, the logic of constructive reasoning. Although constructive tenden-
cies are as old as mathematics, they only became explicit at the beginning of the
twentieth century through the work of the Dutch mathematician L. E. J. Brouwer.
Constructivism in itself is a conception of mathematical truth, but one can also
consider it from the outside by studying the properties of constructive theories.
This is the path we follow in this thesis. In particular, we are interested in the
formal aspects of constructive theories. Thus we find ourselves in the realm of
mathematical logic.

We consider two aspects of constructive proofs, one in the context of propositional
logic and the other in the context of provability logic. Although the results we
prove in the different areas are related, we treat them independently in part I
and part IT of the thesis. In the following we summarize what we have (and have
not) done in these fields. More extensive and technical introductions will follow
in Chapters 2 and 6.

Since we are interested in what is true about constructive theories, and not neces-
sarily in what is constructively true about them, we consider these theories from
the classical point of view. However, we have some evidence that many of our
results are constructively valid as well, and therefore, also the constructivists will
probably find something to their taste in the following chapters.

11



12 Chapter 1. Introduction

1.1 Intuitionistic provability logic

Ever since Godel (1931) we know that arithmetical theories can reason about
themselves, by encoding properties about the theory in the theory itself. In par-
ticular, such theories 7" allow a formalization of ‘being provable in 7": one can
define a predicate Proofy(x,y) in the language of T which is a formalization of
the statement that y is the code of a proof in 1" of the formula with code x. If we
let "7 denote the code! (Godelnumber) of the formula ¢, then JyProofr ("™, y)
denotes the statement that ¢ is provable in 7. We write Orp for JyProofr (T, y)
and call it the formalized provability predicate of T.

We can ensure that the proof predicate has natural properties like
for all n, for all p: IN = Proofr ("¢ ™, n) iff T F Proofr (T, n).

However, Godel’s well-known second incompleteness result shows that 7' cannot
prove everything that is true about its provability predicate. Namely, if T is
consistent, then 7" does not prove the formalized version of this statement, i.e. if
—Or.L holds in IN then we have T't/ =O7 L (O L is the formalization of ‘T derives
falsum’, thus =07 L expresses that 7" is consistent). Given this difference, one can
compare what IN and T say about O7. This question becomes more interesting
when one abstracts from particular sentences. For example, instead of asking if
T proves (Orp — ¢) for a specific formula ¢, we want to know if 7" proves the
principle (Ory — @) for all . That is, whether it proves soundness (it does
not, as the previous example implies). Thus intuitively we want to ask questions
like, does T prove all substitution instances of (p — Orp), where we replace p by
arithmetical sentences.

This is how one arrives at provability logic. Intuitively, the provability logic of
a theory consists of the (propositional) schemes that the theory can prove about
its provability predicate. The idea behind provability logic can be applied to any
predicate which can be encoded in arithmetical theories. We will see an example
of this below: the notion of preservativity.

Provability logics of classical theories are well-investigated. One remarkable thing
is their stability; many theories, like for example Peano Arithmetic PA and set
theory ZF, have the same provability logic, GL (Solovay 1976)(Visser 1984)(Bek-
lemishev 1990). Until recently, provability logics of intuitionistic theories have
hardly been considered. This is probably due to the fact that the logic on which
these theories are based is already rather complicated. On the classical side, the
first theory studied in the context of provability logic was PA, for it is strong
enough to allow the formalization of provability notions in an easy way. For
the same reason the questions in intuitionistic provability logic focus on Heyting
Arithmetic HA, the intuitionistic counterpart of PA.

In Part T of the thesis we discuss what is known about the provability logic of HA
and present our own contributions to the field. We will see that in combination

'We will not distinguish between a number and its numeral.
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with results by Visser (1994)(1998), these results lead to a fragment of the prov-
ability logic of HA which captures the main features of HA that are expressible
in provability logic. Whence for the first time there is a reasonable conjecture
concerning the provability logic of HA, namely that it is equal to this fragment.
The rest of the section is a summary of the results treated in part I.

It is not difficult to see that the axioms of the provability logic of PA are also part
of the provability logic of HA. In contrast to the stability of classical provability
logics mentioned above, one expects more valid schemes in the case of HA. This is
due to the fact that for some of its properties, the statement that says that HA has
this property is expressible in provability logic. Consider for example Markov’s
Rule, which reads

Markov’s Rule for all p € ¥;: if HA = ==, then HA F .

The principle O—-—0A — OOA partly expresses Markov’s Rule, since formulas of
the form OA are ¥;-formulas (as we will see in Chapter 2, more of Markov’s Rule
can be expressed in provability logic, but we do not want to complicate matters
in this informal exposition). To describe the provability logic of HA one has to
make sure whether HA proves this statement or not. If it does, then the principle
belongs to the provability logic and otherwise it does not.

In general, for any such property of HA, similar questions have to be answered in
order to be able to describe the provability logic of HA. There are three properties
involved: Markov’s Rule, the

Disjunction Property if HAF ¢V 1, then HA F ¢ or HA I ¢,

and the admissible rules of HA. The admissible rules of a theory are the rules
under which the theory is closed. Visser (1982) showed that HA proves that it
has Markov’s Rule, i.e. the statement that expresses Markov’s Rule is part of the
provability logic of HA. The second problem was settled by Friedman (1975) and
Leivant (1975): Friedman proved that although HA has the Disjunction Property,
the statement that expresses this fact is not contained in the provability logic
of HA, and Leivant showed that a slightly weaker version does belong to the
provability logic of HA. As we will show in Chapter 2, the third problem is solved
through results in Chapter 7 and (Visser 1994)(1998). There we show that HA
recognizes its admissible rules, i.e. that for any admissible rule A/B, the principle
(0DA — OB) belongs to the provability logic of HA.

Visser (1994) proposed an extension of provability logic in which many principles
of the provability logic of HA have a more elegant formulation. This extension is
called preservativity logic and is based on the the notion of ¥;-preservativity, which
for classical theories is equivalent to IIj-conservativity. In fact, ¥;-preservativity
is the constructive analogue of interpretability. We will see (Chapter 2) that
preservativity logic captures the principles of the interpretability logic of PA (and
more). Moreover, the fact that many of these axioms have a simple formulation
in preservativity logic, implies that preservativity probably is the more natural



14 Chapter 1. Introduction

approach of the two. For example, in Chapter 2 we show that there is a natural
strengthening of Lob’s Principle (L6b’s Preservativity Principle) that is directly
expressible in preservativity logic. The principles of the preservativity logic of HA
given by Visser (1994) captured all the principles of the provability logic of HA
known at that time, as we will prove in this thesis (Section 3.3).

However, the most important feature of this extension of provability logic is that
besides the characteristic axioms of the provability logic of PA it captures exactly
the three main properties of HA that are expressible in provability logic: the
Disjunction Property (the weaker version by Leivant), Markov’s Rule and the
propositional admissible rules. Together with the fact that it does so in such a
natural way, this leads us to the conjecture that it axiomatizes the preservativity
logic of HA. Clearly, if this would be true we have a characterization of the
provability logic of HA as well.

The first step in showing that a logic is the provability logic of some theory is
to prove that the provability logic is complete with respect to a modal semantics.
Moreover, if this semantics is simple it can be used to determine in an easy manner
whether an expression belongs to the provability logic or not. In Chapter 5 we
prove such a completeness theorem for the conjectured preservativity logic of HA.
This is the heart of part I of the thesis. In this proof we use the results of Chapter 4
where we consider the principles separately.

We also prove (Chapter 5) the completeness of the fragment of the provability logic
of HA obtained by omitting the principles that correspond to the propositional
admissible rules. This was the first known part of the provability logic of HA,
and therefore the first logic we worked on. In contrast to the (preservativity
and provability) logic we know now, this logic still has the finite model property.
However, its completeness proof is much more complicated than that of the former
logic. This strengthens our expectation that the principles we know now are a
complete axiomatization of the preservativity and provability logic of HA.

Although our first aim was to prove the modal completeness of preservativity
and intuitionistic provability logic, part I of the thesis could also be viewed as a
study in intuitionistic modal logic. The characterization of the principles required
many technical tools from modal logic. Moreover, these logics deviate considerably
from the logics that are regularly studied in intuitionistic modal logic. Therefore,
some surprising properties and problems come to light, and many proofs are quite
different from the ones for the modal logics one usually encounters. Therefore,
also from the modal point of view these logics are interesting.

As explained above, the modal completeness of the preservativity logic could be
seen as a first step to prove that it is the preservativity logic of HA. Clearly, as long
as no proof has been provided, the question remains whether the preservativity
logic we know at the moment really axiomatizes all of the preservativity logic of
HA. However, we have gained some insight in the provability (and preservativity)
logic of HA during our journey.
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1.2 Intuitionistic propositional logic

One of the most salient differences between intuitionistic and classical proposi-
tional logic is that the former has nonderivable admissible rules while the latter
has not. The admissible rules of a theory are the rules under which the theory is
closed. Hence a description of the admissible rules of intuitionistic propositional
logic IPC sheds light on the nature of constructive (propositional) inference.

It is often not very difficult to prove that some specific rule is a nonderivable
admissible rule of intuitionistic propositional logic, i.e. an admissible rule for which
the corresponding implication is constructively invalid. The following is a well-
known example of such a rule:

if IPCF (~=A — A) = (AV =A), then IPCF ~—=AV —A.

On the other hand, more general questions concerning admissible rules are more
difficult to answer. One of the first things one would like to know is whether it
is decidable if a rule is admissible or not and whether there exists a transparent
axiomatization of the admissible rules.

Rybakov (1992) gave an algorithm that decides whether a rule is admissible or not,
and that settled the first part of the problem. In this thesis we provide an answer
to the second part. Namely, some ten years ago both de Jongh and Visser isolated
a simple computably enumerable (c.e.) set of rules V which they conjectured to
be a basis for the admissible rules of IPC. This means that they conjectured that
this set of rules generates all the admissible rules of intuitionistic propositional
logic. In Chapter 7 we prove this conjecture. This provides us with a perspicuous
description of the admissible rules of IPC, and that settles the second part of the
question mentioned above. This result is the heart of Part II of the thesis.

We also define a proof system for the admissible rules and characterize them in a
semantical way. The simplicity of V and the proof system make them very useful
for further research on admissible rules. We will see that the basis V is infinite.
This cannot be improved, because IPC does not have a finite basis, as was shown
by Rybakov (1997).

This description of the admissible rules of IPC also leads to a characterization of
IPC. Many intuitionistic theories, for example IPC, have the Disjunction Property,
which says that

Disjunction Property if IPCF ¢V 9, then IPCF ¢ or IPCF 9.

Kreisel and Putnam (1957) showed that IPC is not characterized by its Disjunction
Property. This means that there exist intermediate logics, i.e. logics between IPC
and classical propositional logic CPC, which are proper extensions of IPC that
have the Disjunction Property. It is easy to see that IPC is not characterized by
its admissible rules either. For example, all its admissible rules are admissible for
CPC, and CPC clearly is an extension of IPC. However, in Chapter 8 we show that
IPC is characterized by the Disjunction Property plus its admissible rules: IPC is
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the only intermediate logic with the Disjunction Property for which all admissible
rules of IPC are admissible. In the proof of this fact we use the mentioned result
that V is a basis for the admissible rules of IPC. We actually show that IPC is the
only intermediate logic with the Disjunction Property for which all rules in V' are
admissible.

Thus for any intermediate logic which is a proper extension of IPC with the Dis-
junction Property, there is a rule in V' which is not admissible. In Chapter 8 we
show that for the well-known intermediate logics with the Disjunction Property
from Gabbay and de Jongh (1974) we know which rules in V are admissible and
which not. Moreover, we prove that like IPC these logics are also characterized by
their admissible rules plus the Disjunction Property.

There even is a correspondence between the rules in V and the logics from (Gabbay
and de Jongh 1974). The logics and the rules in V can be enumerated in a natural
way. We will see that if a rule is admissible for a logic then so are all the rules
that precede it in this enumeration. We will prove that for every rule there is a
logic for which the rule is admissible and for which the rule that follows it is not
admissible, and we will also prove the converse: for every logic there is a rule such
that the next rule is not admissible while the rule itself is admissible for the logic.

The characterization of the admissible rules of IPC mentioned above, also leads to
insights in the provability logic of Heyting Arithmetic HA. Namely, in combination
with results by Visser (1994)(1998) they imply that HA recognizes its propositional
admissible rules, as was explained in the previous section.

1.3 Overview

Part I of the thesis contains the material discussed in Section 1.1: Chapter 2 is
the introduction, Chapters 4 and 5 contain the results, and Chapter 3 contains
the tools for these results. Part II of the thesis contains the material discussed
in Section 1.2: Chapter 6 is the introduction and Chapters 7 and 8 contain the
results.

Chapters 4 and 5 are based on the articles (Iemhoff 1998) and (Iemhoff 2000b).
Chapter 7 is more or less equal to the article (Iemhoff 1999) and Chapter 8 to
(Iemhoff 2000a).



Part 1

Intuitionistic Provability Logic
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Chapter 2

Concepts

In this chapter we introduce the notions studied in part I of the thesis. Sections 2.1,
2.2 and 2.5 explain what provability, preservativity, and intuitionistic provability
logic are. We introduce preservativity and intuitionistic provability logic in more
detail than classical provability logic, for which there are many nice overview
articles and books: (Boolos 1979)(Smoryriski 1985)(Boolos 1993)(Japardize and
de Jongh 1997) (Visser 1997). Section 2.6 briefly summarizes the literature on
intuitionistic modal logic and explains how in the case of provability logic the
presented results deviate from the regular literature. Section 2.8 gives an overview
of the next chapters of part I.

2.1 Provability logic

In Chapter 1 we explained the idea behind provability logic. There we saw that
the provability logic of an arithmetical theory 7" consists of all the propositional
schemes that 7' can prove about its provability predicate. In this section we give
the formal definition of provability logic. Recall that Op denotes the provability
predicate of T" and that a sentence Org expresses the statement that ¢ is provable
inT.

Let L be the language of propositional logic extended with one modal operator
0. The formulas in L are called modal formulas. Let T be an arithmetical
theory that is strong enough to allow the formalization of its provability predicate!.
An arithmetical realization of L into the language of T is a mapping * from
the formulas of £ to sentences in the language of T" that commutes with the
propositional connectives and such that (OA)* = Or("A* 7). The provability logic
of T is the set of modal formulas A such that T proves A* for any arithmetical
realization *, i.e. the set {A | V* T+ A*}. The truth provability logic of T is the

We will not discuss the minimal requirements that such a theory should satisfy, they can be
found in (Smorynski 1985) or (Héjek and Pudldk 1991).

19



20 Chapter 2. Concepts

set of modal formulas A such that A* is valid in the standard model IN for any
arithmetical realization *, i.e. the set {A | V* IN = A*}.

Note that in general the provability logic of a theory T" may depend on T as well
as on the chosen formalization of the proof predicate Proofr. We will be a bit
ambiguous in this respect. When talking about ‘the provability logic’ of a certain
theory, we will always assume that a not-to-unusual proof predicate is fixed in
advance.

The famous article by Solovay (1976) may well be seen as the starting point
of provability logic. In this paper Solovay proves that the the provability logic
of Peano Arithmetic PA is the logic now known as L or GL, consisting of the
principles K,4 and L (Section 2.5), the tautologies of classical propositional logic
and the rules Necessitation (A/0A) and Modus Ponens. Moreover, the proof gives
a method to construct for any formula A which is not a principle of the provability
logic of PA an actual counterexample A*, that is, a realization such that PA does
not prove A*. The way A* is obtained employs a modal completeness result for GL.
First, it is shown that GL is complete with respect to the class of finite, transitive,
conversely well-founded Kripke models. And second, it is shown that for every
such Kripke model K there exists a realization * such that

for all nodes k of K (if IC, k I A, then —A* is consistent with PA ).

This shows the usefulness of a semantical characterization of provability logics.

As mentioned before, provability logics of classical theories are well-investigated.
One remarkable thing is their stability; many theories, like for example PA and
ZF, have the same provability logic, GL (Solovay 1976)(Visser 1984)(Beklemishev
1990). Although for intuitionistic theories we know much less, we do know that
there is in general no stability in going from a classical theory to its intuitionistic
counterpart, as can be seen in the comparison of HA and PA. This will be explained
in Section 2.5 on intuitionistic provability logic.

It is clear that the idea behind provability logic can be applied to any predicate
which can be encoded in arithmetical theories. We will see examples of this in the
next section.

2.2 Preservativity logic

In this section we introduce the notion of ¥-preservativity which is an extension
of provability. This notion was invented by Visser (1994) and arose from the
study of the admissible rules of Heyting Arithmetic HA, the constructive theory
of the natural numbers (a definition of HA can be found in (Troelstra and van
Dalen 1988)). It turns out that many principles of the provability logic of Heyting
Arithmetic have an elegant formulation in this setting. Therefore, the questions
in provability logic can better be studied in the context of preservativity.
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The definition of preservativity

Let ¥; and II; denote the well-known levels of the arithmetical hierarchy (Hajek
and Pudlak 1991). For an arithmetical theory T and sentences ¢ and ¢ in the
language of T', ¢ is said to ¥ -preserve ¢ with respect to T, if for all ¥;-sentences
6 it holds that T+ (# — ) implies T (# — ). We denote this with @>7.
Since we will not consider any other forms of preservativity than ¥;-preservativity
we will, as in the title, always refer to preservativity instead.

On the modal side the notion of preservativity gives rise to a modal language
L with one binary modal operator, >. Analogous to provability logic the
preservativity logic of T is defined as the collection of L -formulas A such that
T F A* for any arithmetical realization *. In this context the definition of an
‘arithmetical realization’ is extended to cover formulas in which the preservativity
symbol > occurs: an arithmetical realization * is a mapping from L -formulas
to arithmetical formulas which commutes with the connectives and such that
(A>B)* = Presp(TA*7,"B*7), where Presy(x,y) is a formula in the language
of T that is the formalized version of the statement A>,B. Like in the case for
Lm0, the formulas in L are called modal formulas.

Clearly, preservativity is an extension of provability because we have
DTSO iff TI>T(p

In Section 2.5 we will return to this relation with provability logic.

For classical theories T' the notion of preservativity is equivalent to the notion
of IIj-conservativity: we have that ¢ Yi-preserves v if and only if —p is IIi-
conservative over —n). For many classical theories, for example PA, the notion
of TI;-conservativity is again equivalent to the well-investigated notion of inter-
pretability. Therefore, for these theories the preservativity logic is known, although
the notion is not studied directly but only via the equivalence with interpretability.
In Section 2.4 we will discuss the connection with interpretability logic in more
detail.

For constructive theories like HA, the situation is completely different. In the
next section we will explain how in this setting the notion of preservativity arises
in a natural way from the admissible rules and that the admissible rules play a
prominent role in the provability and preservativity logic of HA. Moreover, we will
see that the notion of preservativity seems to give the right view on questions in
provability logic of constructive theories.

On the classical side, the first theory studied in the context of provability logic
was Peano Arithmetic PA (Héjek and Pudlédk 1991), the well-known theory of the
natural numbers, for it is strong enough to allow the formalization of provability
notions in an easy way. For the same reason the questions in intuitionistic prov-
ability logic focus on Heyting Arithmetic HA (Troelstra and van Dalen 1988), the
intuitionistic counterpart of PA. In this thesis we will only consider preservativity
with respect to HA.
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2.3 Heyting Arithmetic

An (c.e.) axiomatization of the preservativity logic (or the provability logic) of HA
is not known. However, Visser (1994) has given some principles of the preservativ-
ity logic of HA, which capture all principles of the provability logic of HA known
before that time. In the following years the meaning of these principles became
clear (Visser 1999)(Iemhoff 2000b) (Chapter 7). These insights in the system led
us to the conjecture that it is the preservativity logic of HA. In this section we
introduce the system, discuss its meaning and explain why we conjecture it to be
the preservativity logic of HA.

To state the principles of the preservativity logic of HA known so far, we need
the following notation. For formulas A, By, ..., B,, the formula (A)(B,..., B,)
is inductively defined to be

(A)(B,Cy,....Cn) =ur (A)(B)V (A)(Ch, ..., Ch)
(A)(L) =ur L

(A)(BAB) =u (A)(B) A (A)(B)
(A)(OB) =,, OB

(4)(B) = (A= B)

B not of the form L, (C'AC") or OC.

Note that we have (A)(C1,...,Cy) = (A)(Cy) V...V (A)(C,), and that (A)(T) =
(A— T), hence (A)(T) « T.

The expression (-)(+) is an abbreviation and not an operator, because applying it to
equivalent formulas does not give equivalent results. For example, Op is equivalent
to (T — Op), but (A)(T — Op) = (A4 — (T — Op)) and (A)(Op) = Op. Hence
the formulas (A)(T — Op) and (A)(Op) are in general not equivalent.

In (Visser 1994) the following principles of the preservativity logic of HA known
so far are given. In fact, we give here a slightly different axiomatization then the
one used by Visser. In Chapter 3 we will see that Visser’s system is equivalent
to the one introduced here. We denote intuitionistic propositional logic with IPC
(Troelstra and van Dalen 1988). Recall that ¢ is provable if and only if T preserves
. This accounts for the definition of O in the system.
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Principles of the preservativity logic of HA

OA=,, T>A
Taut all tautologies of IPC
Pl A>BAB>C — A>C
P2  C>AANCP>B— C>(ANAB)

Dp A>C AB>C — (AV B)>C (Disjunctive Principle)
4p A>OA
Lp (ODA— AP>A (L6b’s Preservativity Principle

)
Mp A>B — (OC — A)>(0OC — B) (Montagna’s Principle)
Vo (N (A = Bi) = At VA 0)> (AL Ai = Bi)(Ar, ..o Aygo)

(Visser’s Principles)
)

Vp  Vp1,Vpe, Vps, ... (Visser’s Scheme

We use the name iPH for the logic given by these principles and the rules Modus
Ponens and the

Preservation Rule if (A — B) then + A>B.

In Sections 2.4 and 2.5 we discuss the relation between the logic iPH and inter-
pretability and provability logic. In Section 2.4 we will see that all principles
except the Disjunctive Principle hold for PA as well. In Section 2.7 we repeat the
proofs by Visser (1994) that these principles and rules belong to the preservativity
logic of HA. Visser’s Scheme is a special and complicated scheme. In Section 3.2
we elaborate on the technical details of this scheme and show that our formulation
of the scheme is equivalent to the one used by Visser (1994).

Here we discuss the meaning of the given principles. We will see that these prin-
ciples form a natural fragment of the preservativity logic of HA. Namely, each of
them corresponds to either a principle of the provability logic of PA or to one of
the following characteristic properties of HA: its propositional admissible rules,
Markov’s Rule and the Disjunction Property.

The definition of O and the first two principles are easily seen to be principles
of the preservativity logic of HA. The principles 4p and Lp resemble the two
characteristic axioms for the provability logic of PA, which are

4 OA—0OO0A

L 0O(0A— A) — OA.
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Since A>B implies (0A — OB) in the system (Section 3.1), the principles 4p
and Lp imply their provability counterparts 4 and L. The principle 4 is derivable
from L, but usually it is still included in the axioms. We will see that in the same
way 4p is derivable from Lp (Section 4.3). The principle Mp is baptized after its
classical counterpart in interpretability logic, which is discussed below. It is easy
to see that it belongs to the preservativity logic of HA, using the fact that the
arithmetical realization of a formula OC' is always ¥; (Section 2.7).

The Disjunctive Principle and the Disjunction Property

The Disjunctive Principle Dp is related to the Disjunction Property of HA, which
reads

(Disjunction Property) if HAF ¢V 1, then HA = ¢ or HA ).

Friedman (1975) proved that HA does not prove its Disjunction Property, i.e. HA
does not derive the true formula O(¢ V ¢) — (Op vV O). Leivant (1975) showed
that HA does prove the weaker version

HAFO(p V1Y) — O(e VvV OY).

Hence the so-called Leivant Principle O(A V B) — O(A Vv OB) is part of the
provability logic of HA. In the preservativity logic of HA this principle occurs as a
consequence of the two principles 4p and Dp. Note that the fact that Dp and 4p
are in the preservativity logic of HA imply the following strengthening of Leivant’s
Principle:

HA - (o vV ¥)>(p v OY).

The arithmetical validity of the Disjunctive Principle was shown by Visser (1994)
and will be treated in Section 2.7.

Visser’s Scheme and the admissible rules

The scheme Vp is called after A. Visser who proved its arithmetical validity (Visser
1994). Note that it is not a principle but a collection of infinitely many principles.
They describe (some) admissible rules of HA. For propositional formulas A, B
we say that the rule A/B is a propositional admissible rule of HA if HA + cA
implies HA = ¢ B, for all substitutions ¢ which replace the propositional variables
by arithmetical formulas. Observe that if (O0A — OB) is in the provability logic
of HA this implies that A/B is an admissible rule of HA. Since A>B implies
(0DA — OB), it follows that if A>B is in the preservativity logic of HA, then A/B
is an admissible rule for HA. The two most meaningful instances of Vp describe
the propositional admissible rules and Markov’s Rule for HA. We will discuss them
briefly.

If one restricts Visser’s Scheme to pure propositional formulas, i.e. without O or
D>, it characterizes the propositional admissible rules of HA, as will be proved in
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Chapter 7. There we will see that if we let AR be the logic given by the principles
Taut, P1, P2, Dp, Vp and the Preservation Rule, then we have

for propositional formulas A, B:
A/B is a propositional admissible rule of HA iff AR - A>B.

This will be explained in more detail in Section 2.3.1. Here we consider one
example. It is well-known that

-A—BVC/(-A—= B)V(—-A—= ()

is an admissible rule of HA (Harrop 1960). We show how we can derive the
corresponding statement,

(A —= BVvVO)>((-wA—= B)V(-A—=())

in the system AR:

Far (WA = BV CO)>(—A)(A,B,C) (Vp) (1)
(mA)(A,B,C)+ (A= A V(A= B)V(-A=0C) (2
(wA— A) - A (Taut) (3)
-—A — (mA — B) (Taut) (4)
(A —- A V(EEA—-B)V(mA—-C)—

(wA—= B)V (-4 — () (3)(4)( Taut) (5)
(wA— A)V (mA— B)V (A= C)>
(nA—= B)V(-A—= () (5)(PreservationRule) (6)

(mA—- BVO)>((-mA—=B)V(-A—=C)). (1)(2)(6)(P1)

This shows that the admissible rule given above is captured by Visser’s Scheme.
Markov’s Rule, a well-known rule for HA, reads

(Markov’s Rule) for all ¢ € Iy: if HA = ==, then HA - ¢.

To see how Markov’s Rule is captured by Visser’s Scheme, observe that the fol-
lowing formula is one of the consequences of Visser’s Scheme,

——0A>0OA. (2.1)
Namely, =—0A is short for ((0A — L) — L), and by Visser’s Scheme

(OA— 1) = L)>(0A — L)(O4, 1) =
(0A — L)(OA) vV (OA — 1)(L) = (OAV 1) < OA.
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Now (2.1) implies that HA proves the arithmetical realizations of the formula
(0-—-0A — 0O0A), which is a partial formalization of Markov’s Rule. Thus the
fact that (2.1) is in the preservativity logic of HA implies that HA proves Markov’s
Rule: HA - (O0—-—-0A4 — OOA).

We saw that Visser’s Scheme describes admissible rules of HA and considered
various consequences of it. In Section 4.6 we will discuss more instances of Visser’s
Scheme. We will return to the correspondence between preservativity logic and
admissible rules in Section 2.3.1.

Summarizing we could say that the preservativity logic presented by Visser (1994)
seems a very natural part (if not all) of the preservativity logic of HA. It con-
tains three basic principles, P1, P2 and Montagna’s Principle, which arithmetical
validity is trivial. It contains the (preservativity form of the) two characteristic
principles of the provability logic of PA, namely 4p and Lp. And it contains two
axioms, the Disjunctive Principle and Visser’s Scheme, which are directly related
to three well-known properties of HA: the Disjunction Property, Markov’s Rule
and the propositional admissible rules.

2.3.1 Three fragments

Although the preservativity logic of HA is not known, for three of its fragments
there exists a decent axiomatization: for its propositional fragment, for the closed
fragment of the provability logic and for that part of the preservativity logic that
is connected with the admissible rules of HA.

The characterization of the propositional fragment

Recall that o ranges over substitutions which replace propositional variables by
arithmetical formulas, and that IPC denotes intuitionistic propositional logic. It
was shown by de Jongh (1982) that

for all propositional A: Vo(HA F ¢ A) iff IPC - A.

Note that for propositional formulas, an arithmetical realization A* is nothing
more than a substitution instance o A, for some o. Therefore, we have

for all propositional A: A is in the provability logic of HA iff IPC - A.

This means that the propositional fragment of the provability logic of HA is equiv-
alent to IPC.

The characterization of the closed fragment

Visser (1994) described the closed fragment of the provability logic of HA. This is
the fragment without propositional variables. He shows that for every formula ¢
in the closed fragment there exists a number n > 0 such that

HA - Op < O L.
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This resembles the situation for PA, where every formula in the closed fragment
is a boolean combination of formulas O" 1L, T and L.

The characterization of the admissible rules

The other fragment of the preservativity logic of HA that is axiomatized describes
its propositional admissible rules. As mentioned in Section 2.2, if A>B is in the
provability logic of HA, then A/B is an admissible rule of HA. The combination
of results by Visser (1994)(1998) and results in part II of this thesis imply that
the converse holds too: for all propositional formulas A, B we have that
A/B is a propositional admissible rule of HA iff
AD>B is in the preservativity logic of HA.
In part IT (Chapter 7) of this thesis we give an axiomatization of the propositional

admissible rules of HA. In particular, we construct a perspicuous preservativity
logic AR such that

A/B is a propositional admissible rule of HA iff AR - A>B. (2.2)

This logic is axiomatized by the preservativity principles (Section 2.2) P1, P2, Dp
and all the instances A>B of Vp, where A and B are propositional formulas. In
combination with Visser’s (1994) result that states that all these principles belong
to the preservativity logic of HA, we arrive at the following axiomatization:
for propositional A, B: (2.3)
AD>B is in the preservativity logic of HA iff AR - A>B.
This completes our discussion on the three fragments of the preservativity logic of
HA for which we have a c.e. axiomatization.
There are two other aspects of (2.2) worth noting. First, it shows that HA proves
the admissibility of every instance of its propositional admissible rules:
for propositional A, B:
Vo(HA F oA implies HA - o B) iff (by definition)
A/B is an admissible rule of HA iff (by (2.3) (2.2))
(0A — OB) is in the provability logic of HA iff (by definition)
Vo(HAF OcA — OoB).
And second, from (2.2) it follows that
for propositional A, B: A> B is in the preservativity logic of HA iff
(0DA — OB) is in the provability logic of HA.
In Section 5.2 of part IT we will see that this actually holds for all formulas (O0A —
OB) of which we know that they are in the preservativity logic of HA. Observe
that for example for classical provability principles of the form (0A — OB), like
L6b’s Principle O(OA — A) — OA, we already saw that the stronger A>B holds

as well. Of course, the rule does not hold for all arithmetical formulas, as we will
see in Section 3.1.
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2.4 Interpretability logic

In this section we explain the connection between preservativity logic and in-
terpretability logic. A theory T is II;-conservative over T' if T' proves all the
IT;-formulas that 7" proves. From the definition of X;-preservativity it follows
that for classical theories ¥i-preservativity is equivalent to II;-conservativity, in
the sense that > if and only if —¢ is II;-conservative over —). For theories
that are classical c.e. extensions of PA, this again is equivalent to interpretability
(Orey 1961)(Hajek 1971, Héjek 1972). We will not define interpretability here, but
remark only that intuitively, ‘¢ interprets ¢’ means that we can define a model
for (a translation of) the theory T plus ¢ in the theory T plus ¢. Thus for PA we
have (in PA) that p>pat) if and only if PA plus —¢ interprets PA plus —¢.

In a similar manner as for preservativity one can define the interpretability logic of
a theory. We denote ‘A interprets B’ by A>;B (in the literature this is denoted by
AP B). Interpretability logic has been extensively studied (Shavrukov 1988)(Be-
rarducci 1990)(de Jongh and Veltman 1990)(Zambella 1992) (Visser 1997). The
interpretability logic of PA is known to be ILM (a definition follows below). Since
for PA the notions of preservativity and interpretability are the same, it seems
natural to ask which principles of ILM are inherited by HA. That is, if we refor-
mulate ILM in terms of preservativity by replacing =A>;—B by A>B, which of
the principles belong to the preservativity logic of HA?

As we will see, under this translation all axioms of ILM are provable in iPH. Here
follow the axioms of ILM. With every axiom we give its preservativity translation.
The diamond <> denotes —O—.

L 0O0WA— A) - DA L

J1 O(A— B)— A>;B 0(A — B) — A>B
J2 Arx,B A B>,C — A>,C P1

J3 A>,CAB>;C — (AVB)>,C P2

J4 A>,B — (0A — $B) A>B — (O0A — OB)
J5 QA>A 4p

M A>,B— (AANDOC)>,(BAOC) Mp

(The rules of ILM are Modus Ponens and Necessitation.) In Section 3.1 we will see
that the translations of J1 and .J4 belong to iPH. Therefore, clearly all translations
of ILM belong to iPH.

The converse, i.e. the statement that all translation of axioms of iPH belong to
ILM, does not hold. Namely, the translation of Dp, which is C>;A A C>;B —
C>;(A A B), is not valid for PA. It is easy to see that the translations of Vp, and
Lp are derivable in PA. Therefore, the only axiom in iPH which does not hold for
classical theories is the Disjunctive Principle.
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2.5 Intuitionistic provability logic

In this section we explain what is known so far about intuitionistic provability
logic and summarize its history.

On the classical side provability logics are well-investigated. On the intuitionistic
side we know much less. As stated earlier, it is not known what the provability
logic of HA is. The first principles known for this logic were

K O(A— B)— (0A— OB)

4 0A — OOA

L 0O(0OA— A —0OA (Lob’s Principle)
Le O(AVB)— O(AVOB) (Leivant’s Principle)
Mo O--(0A— \VOB;,) —»0O(0A— \/OB))

(Formalized Markov Scheme)

We use the name iH for the logic given by these principles and the rules Modus
Ponens and the

Necessitation Rule if F A then F OA.

In Section 3.1 we show that all these principles and rules are derivable in the
preservativity logic iPH discussed in Section 2.3, and that the latter contains prin-
ciples not captured by iH. This disproves the conjecture that iH is the provability
logic of HA.

The first three principles axiomatize the provability logic GL of PA, discussed
in Section 2.1. Recall (Section 2.2) that Leivant’s Principle is related to the
Disjunction Property of which the formalized version is not provable in HA.

For the Formalized Markov Scheme as such there is no proof in the literature of
its arithmetical validity. Visser (1981) showed that O—-—0A — OOA belongs to
the provability logic of HA. From this proof it is not difficult to infer that then
also the Formalized Markov Scheme is in the provability logic of HA. This scheme
is the partial formalization of Markov’s Rule for HA:

for all p € IIy: if HA = ==y, then HA F ¢.

Clearly any arithmetical realization of formulas of the form (0A — \/ OB;) is Il,.
Arithmetical realizations of formulas (\/ OA; — \/ OB;) are II, too. Note that

o--(\/04; = \/ 0B,) = o(\/04; —» \/ 0B))

is derivable from the Formalized Markov Scheme. As all formulas not equivalent
to a formula of the form (\/ OA; — \/ OB;) have arithmetical realizations that are
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not Il,, the Formalized Markov Scheme is all we can capture of Markov’s Rule in
provability logic.

As long as we stay on the classical side (truth) provability logics are very sta-
ble; many arithmetical theories have the same provability logic, namely GL (Sec-
tion 2.1). However, there is in general no stability in going from a classical theory
to its intuitionistic counterpart, as can be seen in the comparison of HA and PA.
For example, Leivant’s Principle O(A V B) — O(A V OB) is not a provability
principle of PA. This can be seen easily. If GL would derive the Leivant Principle
it would also derive O(OLVO-0OL), as it clearly derives O(OLV—0OL). But then
an application of L shows that it would derive OOL. Hence the provability logic
of HA is not a part of GL. The converse is not true either. The principle (pV —p) is
a theorem of the provability logic of PA, but not of the corresponding logic of HA.
Note that this also shows that there is no monotonicity (converse monotonicity)
in provability logics; stronger theories do not necessarily have stronger (weaker)
provability logics.

In the context of intuitionistic logic the notion of intuitionistic truth provability
logic is less natural, because the intuitionistic notion of truth is much more com-
plex. Therefore, we will in the sequel only discuss provability logic. But let us
note in passing that J(AV B) — OAV OB is an example of a principle that is in
the truth provability logic of HA but not in the provability logic of HA.

History

The history of intuitionistic provability logic does not reach far back. The first
results in this area come from Friedman (1975) and Leivant (1975). As mentioned
above, Friedman showed that HA does not prove the formalized version of its
Disjunction Property, and Leivant showed that the slightly weaker version O(¢ V
) — O(p V OY) is part of the provability logic of HA. Another related result
is from Gargov (1984). He has shown that if a c.e. extension of HA has the
Disjunction Property then so does its provability logic. Sambin (1976) proved a
fixed point theorem for the diagonalizable algebras of intuitionistic theories, which
were also studied by Ursini (1979a).

Then there is some work on the algebraic and on the frame characterization of
the principles K, 4 and L: Ursini (1979b) and Kirov (1984) both show the com-
pleteness and the finite model property of iL, and so do Bozi¢ and Dosen (1984)
for iK, and Wolter and Zakharyaschev (1999b) for iK4.

Of a more arithmetical nature is the paper by Visser (1982). Here he gives some
principles of the provability logic of HA, among which the one on the cover of his
thesis (Visser 1981): O(—=—0A — OA) — OOA. All the principles mentioned
there are derivable from principles he found later (Visser 1994); they belong to
the logic iPH.

The closed fragment of GL and of the provability logic of HA have also been studied.
Kirov (1990) shows that the closed fragment of GL is complex in the sense that
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any free Heyting algebra with countably many generators can be embedded in the
algebra of this fragment. An inspection of the proof shows that this still holds for
iPH. As mentioned before, Visser (1994) characterizes the closed fragment of the
provability logic of HA by showing that for every formula ¢ in this fragment there
exists a number n > 0 such that

HA b Op < O" L.

Finally, there is the introduction to preservativity logic by Visser (1994)(1998)
discussed in Section 2.2 and Chapter 6. Related work has been done by de Jongh
and Visser (1996), who studied which c.e. Heyting algebras can be embedded in
the Heyting algebras of IPC or HA.

2.6 The main roads in intuitionistic modal logic

In this section we introduce intuitionistic modal logic in an informal way, and refer
briefly to the different ways in which it has been studied in the literature. The
account here is only historical. In Section 3.4 we introduce the modal logics used
in this thesis in more detail.

Intuitionistic modal logic is modal logic on an intuitionistic basis. This means
that an intuitionistic modal logic is a logic in the language of propositional logic
extended with modal operators, that contains IPC. Thus the provability and
preservativity logics introduced in the previous sections are modal logics. Intu-
itionistic polymodal logics have hardly been considered in the literature. Probably
this is due to the fact that in the presence of an intuitionistic basis a monomodal
logic is almost a bimodal logic; compare the Godel translation of intuitionistic
logic into S4 (Godel 1933). Most of the logics deal with O as well as <, which in
general are not interdefinable in an intuitionistic setting. From the point of view
of provability logic it is still not clear what a natural interpretation of < should
be. Therefore, in our case we only consider O (and >).

In the literature on intuitionistic modal logic one often encounters logics of which
it is claimed that they are the ‘true’ intuitionistic counterparts of some classical
modal logic, for example Lob’s logic. Of course, what one will accept as an intu-
itionistic counterpart of a given (classical) logic, will depend on the interpretation
one has in mind for the modal operators, hence on the properties one wants it to
have. In this thesis we always have the provability /preservativity interpretation in
mind. A striking difference between this interpretation and most others is that it
is in ¢tself of a mathematical nature. Thus verification of the validity of principles
can be executed in a formal rigorous way.

Different interpretations of O lead to different modal logics. In the literature
there have been three prominent perspectives. Prior (1957) first proposed an
axiomatization of a modal logic which corresponds to the monadic fragment of
intuitionistic predicate logic, by replacing O, & and p; by respectively Vo, dr and
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P;(x) (Bull 1965)(Bull 1966)(Ono 1977)(Bezhanishvili 1998) (Bezhanishvili 1999).
Then there are many studies on intuitionistic modal logics whose modal axioms
are equivalent to that of a well-known classical system, like K, L, S4 or S5. They
contain various possible proof systems (Bierman, Meré and de Paiva 1997) (Simp-
son 1993), or different possible semantics and completeness results (Fischer-Servi
1977)(Ursini 1979b) (Vakarelov 1981)(Bozi¢ and Désen 1984)(Sotirov 1984) (Simp-
son 1993)(Wolter and Zakharyaschev 1997)(Wolter and Zakharyaschev 1999b).
Fischer-Servi (1977) and Wolter and Zakharyaschev (1999a) also formulate crite-
ria for being the intuitionistic analogue of a classical modal logic. For example,
following the definition of Servi, it is not difficult to see that iL is the intuition-
istic counterpart of GL. Vakarelov (1981) also shows that above iK there are a
continuum of strongly intuitionistic modal logics, i.e. consistent logics that are
incompatible with the law of excluded middle. Note that for proper intermediate
logics there are none (Rasiowa and Sikorski 1963). Observe that the logic axioma-
tized by L and Le over iK is only strongly intuitionistic in the weaker sense that it
derives OO, see Section 2.5. Modal logics motivated by computer science often
turn out to be weaker than iK (Sotirov 1984)(Plotkin and Stirling 1986)(Wije-
sekera 1990), as do the logics in which the modal operators are viewed as new
intuitionistic connectives (Gabbay 1977).

As can be seen from this brief summary of the literature, principles like Le or
Vp do not occur, because they neither have a classical counterpart nor do they
arise in a natural way from the mentioned interpretations. Thus, looking through
the spectacles of provability logic one finds surprising intuitionistic modal logics.
Moreover, also on the semantical side certain new possibilities become visible.
Besides many other semantics, frame semantics occurs in many of the articles
mentioned above. This semantics, defined in Section 3.4.2, consist of a combi-
nation of the intuitionistic and the modal frame semantics. That is, frames are
sets with two relations: a partial order < (the intuitionistic relation) and a binary
relation R (the modal relation). In the presence of only the modal operator O
the canonical frames (Section 3.4.6) satisfy (R;<) C R. Thus it seems harmless
to demand this property for frames. However, as we will see in Proposition 4.4.2,
some principles can have incompatible frame characterizations with respect to
the classes of frames with or without this property. Here again we encounter a
deviation from the regular literature on intuitionistic modal logic.

2.7 Arithmetical validity

In this section we prove that the principles and rules given in Section 2.2 and
Section 2.5 indeed belong to the preservativity logic of HA. Therefore, the latter
belong to the provability logic of HA as well. The main proofs are the one for the
Disjunctive Principle and the one for Visser’s Scheme. For the principles Taut,
P1, P2 and Montagna’s Principle, these proofs are rather trivial. For the char-
acteristic axioms and rules of the provability logic of PA, namely the principles
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K, 4 and Lob’s Principle and the Necessitation Rule, the proofs are analogous to
the corresponding proofs for PA. Therefore, we do not include them but refer to
the literature instead. The proofs for 4p and Lob’s Preservativity Principle follow
easily from the ones for 4 and Lob’s Principle. Finally, we treat the principles
that are related to the Disjunction Property and the admissible rules of HA (Sec-
tion 2.2), the Disjunctive Principle, Visser’s Scheme and the Formalized Markov
Scheme. For the first two we repeat the proofs by Visser (1994). Then we show
that the proof for the last one follows from the fact that Montagna’s Principle and
Visser’s Scheme belong to the preservativity logic of HA.

Note that the fact that a principle belongs to the preservativity logic of HA implies
that it is arithmetically valid, i.e. the principle holds for HA. However, it shows
more, namely it shows that HA can also prove this fact.

In this section, we write O for Opa, and similarly for > and . We will use various
properties of HA that hold for PA as well, for example the fact that HA proves
(0 — O0) for every ¥j-formula §. We have not included the proofs of these facts,
but will refer to the similar proofs for PA in (Héjek and Pudlak 1991) instead. We
write I' F,, ¢ for a derivation, in HA, of ¢ from I', that uses the finitely many
axioms of 1Ay + EXP plus the axioms of HA which Godelnumber is smaller than
m. Similarly for O,,. The reason that we include 1Ag + EXP is that this system
is strong enough to allow all coding tricks explained in Section 2.1.

2.7.1. Proposition.

(1) The principles K, 4 and Lob’s Principle belong to the provability logic of
HA (and hence to its preservativity logic as well).

(i1) Modus Ponens, the Necessitation Rule and the Preservation Rule are
rules of the preservativity logic of HA (and hence Modus Ponens and the
Necessitation Rule are rules of the provability logic of HA as well).

(77i) The principles Taut, P1, P2 and Montagna’s Principle belong to the
preservativity logic of HA (and hence Taut belongs to its provability logic as
well).

Proof (i) The proofs that K, 4 and Lob’s Principle belong to the provability logic
of HA are similar to the ones for PA, see for example (Smorynski 1985).

(¢7) Tt is trivial that Modus Ponens is a rule of the preservativity logic of HA,
because it is a rule of the logic of HA. The proof that HA satisfies the Necessitation
Rule, if HA F ¢ then HA Oy, is similar to the one for PA, see (Smoryriski
1985). The fact that HA satisfies the Preservation Rule, if HA F (¢ — %) then
HA F ¢, follows almost immediately. Suppose HA F (o — ). Hence by
Necessitation Rule we have HA F O(¢ — ). It is easy to see that this implies
HA = pr>1). In the next chapter, Section 3.1, we will see that there is an equivalent
formulation of preservativity logic for which the Preservation Rule is replaced by
the Necessitation Rule.
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(i7i) The statement that Taut belongs to the preservativity logic of HA is trivial,
since the logic of HA is intuitionistic predicate logic, which contains IPC. The
proofs for P1 and P2 are left to the reader. For Montagna’s Principle, consider
formulas A, B, C and an arithmetical translation *. We have to show that

HA - A*>B* — (OC* — A")>(QC* — BY).

Recall that the arithmetical realization of OC' is a ¥;-formula (Section 2.1). There-
fore, it suffices to show that for all arithmetical formulas ¢, 1) we have

for all ¥;-formulas 6: HAF p>¢ — (6 — ¢)>(0 — ¢). (2.4)

In fact, HA even proves: for all ¥;-formulas 0, o>t implies (0 — ¢)>(0 — ).
As we do not need this stronger statement, we prove the weaker (2.4) instead. We
use that if a formula is ¥, then HA proves this fact, and that HA proves that
Yi-formulas are closed under conjunction. These properties of HA are proved in
a similar way as for PA, see (Hé4jek and Pudlak 1991).

The proof of (2.4) runs as follows. Let § be a ¥;-formula. Reason in HA. Suppose
o>1). We have to prove that for all ¥;-formulas &', if - (¢ — (0 — ¢)) holds, then
F (0" — (0 — 1)) holds as well. Therefore, suppose - (8 — (6 — ¢)), for some
¥ -formula ¢. Note that (¢ — (6 — ¢)) is equivalent to (6' A0 — ). Thus by
Necessitation Rule (i7) and the axiom K (i), we also have that - (8" — (0 — ¢))
is equivalent to = (6/ A @ — ¢). The conjunction of two ¥;-formulas is a ;-
formula, and whence (6" A 0) is a ¥;-formula. Therefore, by o>, = (0’ A0 — )
implies - (0" A 0 — ). The latter is again equivalent to - (0" — (0 — 1)), which
completes the proof. o

2.7.2. Proposition. The principle 4p and Lob’s Preservativity Principle belong
to the preservativity logic of HA.

Proof In Section 4.3 we show that Lob’s Preservativity Principle derives the
principle 4p. Therefore, it suffices to show that Lob’s Preservativity Principle is
a principle of the preservativity logic of HA. We use the well-known fact that,
like PA, HA proves Y¥;-completeness i.e. HA proves that for every ¥;-formula # we
have HA I (6 — 0O60). A proof for PA, which is analogous to the one for HA, can
be found in (Hajek and Pudlak 1991).

Reason in HA. If for some 6 € ¥; we have - (# — (Qdp — ¢)), then we also
have F (00 — O(O¢ — ¢)) by the Necessitation Rule and the axiom K (Propo-
sition 2.7.1). Since (0 — 0O6) by X;-completeness, also = (0 — O(Op — ¢)).
Applying Ldb’s Principle (Proposition 2.7.1) gives - (0 — Oy). Thus by assump-
tion also F (0 — ). O

The proofs (Visser 1994) that the Disjunctive Principle and Vissers’s Scheme be-
long to the preservativity logic of HA are related but not similar. This difference
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is not surprising, as in contrast to the Disjunctive Principle, Visser's Scheme is
classically valid, i.e. it belongs to the preservativity logic of PA (see Section 2.3).
Before giving those proofs, we will briefly sketch the ideas behind them. They
both use a translation on formulas by D. de Jongh. Translations, like for example
realizability or the Friedman translation, are a much used tool in meta proofs for
constructive theories. In such proofs one often shows that if a formula is derivable
then the translation of that formula is also derivable. In our case, we proceed
in a similar way. We construct some kind of ¥;-approximations to the formulas
involved, and use the de Jongh translation to show that if the original formula is
derivable then these ¥;-approximations have the desired properties.

In the case of the Disjunctive Principle we have to show, in HA, that if o>y and
>y hold, then also (¢ V ¢)>y. Thus we have to prove, in HA, that for all ;-
formulas 0 with - (0 — (¢ V ¢)), we have = (0 — ). It suffices to show that
for every ¥j-formula 6 with - (0 — (¢ V ©)), we can find ¥;-formulas 6;, the
disjunction of which is implied by 6, and such that F (#; — ¢) and = (6 — ).
Namely, in that case o>y implies = (§; — y) and similarly for .

We will see that for some m, we can take the formulas O,,» and O,,% for 6;:
(i) for ¥i-formula 6: F (0 — (¢ V 4)) implies - (6 — O, V O,,0)
(i) = (Omp = ¢) and E (OpY = ¥).

Only one of these statements has to do with the constructive properties of HA.
Namely, (i7) holds for PA as well, while (i) does not. For the latter, this is easy
to see. Consider the case 1) = - and # = T. Then (i) would show that for all
v, PA derives O, V O,,7p, a fact which is not even true. However, we will see
that in the context of HA both properties hold and this will complete the proof.

As mentioned before, Vissers’s Scheme is classically valid, and we will see that
PA occurs in the proof that Vissers’s Scheme belongs to the preservativity logic
of HA. Namely, we use the well-known fact that PA is [I,-conservative over HA,
and that HA proves this fact (Friedman 1977). To explain the idea of this proof,
consider the following instance of Visser’s Scheme:

(1 = ) = p2)> (1 = ) (1) V (o1 = ¥)(2))-
We have to show, in HA, that for all ¥;-formulas # it holds that
F6 = ((p1 = ¥) = p2)) implies =6 = (o1 = ¥)(p1) V (o1 = 1) (p2).

We consider only the case that & = T. Therefore, suppose

F ({1 = ¥) = ¢2)). (2.5)

We have to show that

= (o1 = ¥) (1) V (01 = ) (p2). (2.6)



36 Chapter 2. Concepts

Note that in the case that the formulas ¢; are not of the form O¢’, the fact that
(2.5) implies (2.6), expresses a well-known admissible rule of HA. Therefore, the
following proof sketch shows that HA recognizes this admissible rule (compare the
part of Section 2.2 on Visser’s Scheme).

Since HA is part of PA, the latter derives (2.5) too. By classical reasoning it follows
that

PAE (o1 V ©2).

If (o1 V ¢2) is Iy then by the mentioned II-conservativity of PA over HA, we
can conclude that HA derives this formula. This already explains the instance of
Visser’s Scheme for which the formulas ¢; are of the form ¢ = O¢’, and hence ¥;.

However, the formula (¢; V ¢2) is not I, in general. Therefore, we have to find
some kind of ¥j-approximation of ¢;, which means a ;-formula ¢! such that
(pi = ¢!) and (¢} — (g1 — ¥)(¢;)). Namely, in that case (2.5) implies that
F((p] = ¥) = ¢)). And the same reasoning as above shows that PA derives
(@] V ¢h). Since this is a IIy-formula, by II,-conservativity we can conclude that
HA F (¢ vV ¢h). Using the other property of ¢} we arrive at the desired conclusion
(2.6).

As we will see, these formulas ¢} actually do not have the property (p; — ¢}).
However, using the de Jongh translation we can show that (2.5) implies that for
some ¢, F ((¢}] — ') — ¢)) holds. Then we reason as before and get (2.6) as
well.

The properties of ¥;-formulas in the previous discussion already hints at the spe-
cial treatment of formulas of the form OC', which arithmetical translations are ¥,
in Visser’s Scheme.

Before giving the formal proofs of the two principles discussed above, we need

some definitions and lemmas. The translation on arithmetical formulas by D. de
Jongh, is given by the following inductive definition.

Xl () s, for atomic ¢

(
[x]m(-) commutes with A,V, 3
[XIm(e = ) =ar (IXIm(@) = DX (¥)) A Bm(x = (¢ = 4))
X[ (Vapz) =y Va[x]m(ox) A Op(x = Yaeo).
We write [x](I') for {[x]m(¢) | ¥ € I'}. Define

@, for atomic ¢

S
I

-) commutes with A, V, 3
m(e = ¥) =i Onlx — (¢ =)
m(Vepz) =, Op(x — Yaeo)
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2.7.3. Lemma. We have, verifiably in HA, that

XD () — ( Jm()-

[XDn (@) = Bamlx = ¢).

(X)m(p) € X1

for all 6 € L1z [x]m(0) < 0 < (X)m(0).

Proof Using induction on ¢, the proofs of the first and the third statement are
straightforward. For the last equation, use the fact that HA derives the formula
Ve < yO,(pz) — O,V < y(ez) (a proof for PA can be found in (Hé4jek and
Pudldk 1991)). This implies that HA F [x]n (Ve < yox) < Vo < y[x]m(ex),
and the rest of the statement follows easily. The proof of the second statement
follows from the fact that, verifiably in HA, 1Ay + EXP proves ¥;-completeness:
for ¥,-formulas 6 it holds that (# — 0O6). An analogous proof for PA can be found
in (Héjek and Pudlak 1991). Once this is known, the rest of the proof is easy. ©

2.7.4. Lemma. For all formulas A,B in preservativity logic, for all arithmetical
realizations *, and for all m, we have

HA F (A%),,(B*) — (A")(B").

Proof First note that for all natural numbers m, HA proves O,,0o — ¢. The
proof is completely similar to the one for PA (Héjek and Pudlédk 1991). Recall the
definition of (A)(B,..., B,) for the case n = 1:

(A) (L) =u L

(A)(BAB) =. (A)B)A(A)(B)

(A)(OB) =,, OB

(A)(B) =,; (A — B), for B not of the form L, (C'AC") or OC.

For all these cases we have to prove that HA derives (A*),,(B*) — (A*)(B*).
Reason in HA. From the definition of (), (y) and Lemma 2.7.3 it follows that we
have,

(Om(L) & L

(X)m(p) < @, if pis a ¥;-formula.

We show that (A*),,(B*) — (A)(B)* holds with induction to B. In the case that
B = 1 it is easy to see that (A*),,(B*) — (A)(B)*.

If B=0C, then B* is a ¥;-formula. Hence it holds that (A*),,(B*) <» OC*, and
OCc* = (A*)(B*). If B = C>D, then B* is of the form Vxpz, because C*>D*
says ‘for all x, if x is the code of a ¥;-formula 6 and O(¢ — C*) holds, then
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0(6 — D*) holds as well’. Thus (A*),,(B*) = O,,(A* — B*). By the observation
above this implies that we have (A* — B*), which is (A*)(B*).

If B = (C A D), then (A*),(B*) = (A*)(C*) A (A%),,(D*). By the induction
hypothesis, (A*),,(C*) A (A*),,(D*) implies (A*)(C*) A (A*)(D*). By definition,
(A7) (C™) A (A7) (D7) = (A")(C" A D7) = (A7) (B7),

If B=(CV D), then (A*),(B*) = (A*),(C*) V (A%),,(D*). By the induction
hypothesis, (A*);,(C*)V (A*),,(D*) implies (A*)(C*) Vv (A*)(D*). It is easy to see
that (A*)(C*) v (A*)(D*) implies (A*)(C* v D*) (Lemma 3.2.1 (7)).

If B=(C — D), then (A4%),,(B*) = O,,(A* — B*). By the observation above
this gives (A* — B*), which is (A*)(B*).

O

2.7.5. Lemma. (Visser 1994) Let ¢ = Al_;(»; — ti). We have, verifiably in
HA,

[XDm () < (IxXTm(@i) = IXTn(0)) A Om(x — )
' b ¢ implies [x ] (T) E [X]m ().

Proof The proof of the first equation is left to the reader. For the second statement
we use induction to the length of the derivation I' Fya,, ¢. We treat the two
difficult cases:

Case 1. T is empty and ¢ = 0 A Va(xr — (x + 1)) — Var, ie. ¢ is an
induction axiom. Since F O,,¢, also O,,(x — ¢). It remains to show that we have
F X (Y0 AV (Y — (2 + 1)) = [X]m(Vepa), which is equivalent to

[XTm (100) AV ([XIm o = [xJmt(z + 1))A
AOp(x = Ya(va — (x4 1)) = Ve[ x]m(vx) A Oy (x — Vo).

As we observed in Lemma 2.7.3, [x]»(¢0) implies O,,(x — ¢0). Hence from
O (X — ) it follows that O,,(x — Va(yYr — ¢(x+1))) implies O,,(x — Yayz).
By induction we have

[T (10) AV2([X]m 02 — [X]m¥(2 4 1)) = Ya[x]m ().

And this concludes Case 1.

Case 2. Suppose p = (¢p — ') and the last step in the proof is T',¢ F,, ¢/
implies T' +,, (¢ — ¥'). By the induction hypothesis, T',¢ t,, ¢’ implies
IX1m (D), IX]m(¥) Fua [x]m (). And thus

[ (T) = DD (&) = DXl (-

Therefore, it remains to shows that

[XJm (D) F Om(x = (¥ = 4")).

Clearly, we have 6,1 F,, ¢/ for some conjunction @ of elements of a finite subset
of I'. Thus we have [x](T') F On,(x — 0) and F 0,,(0 — (¢ — ¢')). And this
leads to the desired conclusion. O
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2.7.6. Theorem. (Visser 1994) The Disjunctive Principle belongs to the preser-
vativity logic of HA.

Proof It is a well-known fact that, like PA, HA proves reflection for its finite
fragments, i.e. for every natural number n, HA proves (0,0 — ¢). Moreover,
HA can prove this fact, that is, HA proves that for every x, F (0,9 — ¢). A
proof of this fact for PA, which is similar to the one for HA, can be found in
(H4jek and Pudlédk 1991). The proof that the Disjunctive Principle belongs to the
preservativity logic of HA now runs as follows.

Reason in HA. Suppose that >y and ¢>x hold. We have to show that (¢V))>y
holds, i.e. that for all ¥;-formulas 6, F (6 — (¢V)) implies - (6 — x). Therefore,
consider a ¥;-formula 6 and suppose F (6 — (¢ V ). Thus 6 b, (¢ V1), for
some m. By Lemma 2.7.5 we have

[T1(0) F [Tm() V [ TIn(¥).
By Lemma 2.7.5 this implies
O One VvV Opt. (2.7)

Note that O,,¢0 and 0,1 are ¥ -formulas. As observed above, we have that
F (Onp — ¢) and F (0,1 — ). Therefore, from ¢>y and >y, we conclude

= (Bme = ) A (Omt = X)-
Together with (2.7) this gives
(0 — x).

This completes our proof. o

2.7.7. Theorem. (Visser 1994) Visser's Scheme belongs to the preservativity
logic of HA.

Proof We have to show that for all arithmetical formulae ¢;, v;, for all n, if
X = A_,(¢i — ¢;), then we have

HA = (X = @ni1 V oni2)>(\ (Om(90))- (2.8)

=1

Clearly, this implies that for all formulas A;, B; in the language of preservativity
and for all arithmetical translations *, if A = A (4; — B;), then

n—+2
HA F (A" = A5 VAL ) ua(\/ (A7) (A])-

i=1
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By Lemma 2.7.4, HA derives (A*),,(Af) — (A*)(A}). Thus by Preservation Rule
(Proposition 2.7.1), HA derives (A*),,(Af)>(A*)(AZ). Applying the principle P1
(Proposition 2.7.1) now gives

n+2

HAE (A" = AL VAL )> (\/(A*)(A:))

1=1
Using the fact that (\/777(A*)(A?)) = (A*)(AL,..., A%,,), this implies Visser’s
Scheme:

HA b (A% = A% VAL ) (AY)(AL, .. ALL).

Therefore, to show that Visser’s Scheme belongs to the preservativity logic of HA
it suffices to show that (2.8) holds, i.e. that HA derives that for all 6§ € ¥,
F (0= (X = @ns1 V @na2)) implies E (0 — (x)(©1,- -+, Pna2))-
Reason in HA. Let 6 € ¥; and assume - (0 — (X — @n11 V @ni2)). Hence for
some m, we have 6 F,, (x = ¢ni1 V @nio). From Lemma 2.7.5 it follows that
Ix]m (@) F [x]m(X = @nt1 V @ni2). Hence by the same lemma:

0+ /\([[X]]m(SOi) = [XIm (3)) A On(X = X) = IXIm(@ns1 V Ong2).

Thus clearly,

0 ADdn(9) = I (60) = Dl (@ns1 V onso).

=1

By Lemma 2.7.3 and elementary reasoning this implies that

QF/\ m(25) = I (@) = (O (@ni1) V (Vm (Pn12).

Hence

n

PAE 60— (\((Om(e) = DXl (@) = ()m(ns1) V ()m(@nt2)).

1=1

Using classical logic we can conclude that PA F 6 — \/"*(\)n(:). By Lemma 2.7.3,
0 — V"2 (X)m (i) is a Tp-formula. By the ITy-conservativity of PA over HA men-
tioned above, we have

n+2

O — \/(x)

This completes the proof of (2.8). O
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2.7.8. Corollary. The Formalized Markov Scheme belongs to the provability
logic of HA (and hence to its preservativity logic).

Proof In Chapter 3 (Section 3.3) we show that the Formalized Markov Scheme is
derivable from Visser’s Scheme and Montagna’s Principle, using the rules Modus
Ponens and Necessitation. 0

2.8 Overview of part I

Part I of this thesis is a modal study of the principles of the preservativity logic of
HA known so far. In particular, we prove the frame completeness of the conjectured
preservativity logic iPH of HA, the main result of this part of the thesis (Chapter 5).
As explained in Section 2.1 such a characterization is often the first step for finding
embeddings of a provability logic in the corresponding arithmetical theory, i.e. for
showing that a system is the provability logic of some theory. We also show in
Chapter 5 that the system iPH contains principles of the provability logic of HA
that are not captured by iH. This disproves the conjecture that iH is the provability
logic of HA.

The proofs in Chapter 5 use the results of Chapter 4, where we study the principles
separately. Here we also show that besides the principles Vp, all principles are
independent, as expected. Moreover, there we will see that Visser’s Scheme is
infinite in an essential way: it is not equivalent to a finite number of Visser’s
Principles.

As mentioned in the introduction, the characterization of the principles requires
many technical tools from modal logic. Moreover, these logics deviate a lot from
the logics that are regularly studied in intuitionistic modal logic. Whence some
surprising properties and problems become visible, and many proofs are quite
different from the ones for the modal logics one usually encounters. Therefore,
also from the modal point of view these logics are interesting.

Chapter 7 of part II of this thesis could also be seen in the light of provability
logic. This was explained in Section 2.3.1 where we discussed three particular
fragments of the preservativity logic of HA.

In Chapter 3 we introduce the tools used in the following chapters of part I.
Section 3.4 contains preliminaries. In Section 3.3 we show how the principles of
the provability logic of HA, i.e. of the logic iH, are captured by its conjectured
preservativity logic iPH.






Chapter 3

Tools and preliminaries

In this chapter we introduce the tools used in the following chapters of part I.
In Section 3.1 we discuss some principles that are derivable in preservativity and
provability logic. In Section 3.2 we discuss some basic properties of Visser’s Scheme
and we prove that our formulation of the scheme is equivalent to the one used by
Visser (1994). In Section 3.3 we show that all principles of the provability logic
we consider are derivable in preservativity logic, and that the converse does not
hold. In Section 3.4 we introduce a semantics for preservativity logic, and we
define various constructions on the models given by this semantics.

3.1 Basic observations

In this section we discuss some basic principles derivable in preservativity logic.
When we say that a principle is arithmetically valid we mean that all the arithmeti-
cal realizations of the principle hold. We let * range over arithmetical realizations.
Let iP~ be the logic given by the axioms Taut, P1 P1, P2 and the rule Modus Po-
nens and the Preservation Rule, and let iK be the logic given by the axioms Taut,
and K, and the rule Modus Ponens and the Necessitation Rule (Section 3.4).

3.1.1. Lemma.
(1) for any logic iT containing iP~: 1 A implies F OA.

Proof (i) Observe that F (A — B) implies =1+ T — (A — B). Hence by the
Preservation Rule 1 T>(A — B), which is equivalent to O(A — B).

(#7) The second implication follows immediately from P1, using the fact that OA
is defined as Tr>A. The following derivation proofs the first implication.

43
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We have
Fp- O(A— B) ¢ T>(A — B) (1)

A>T (Preservation Rule) (2)
0O(A — B) — A>(A — B) (1)(P1) (3)
A>A (Preservation Rule) (4)
O0(A — B) — A>(AA (A — B)) (3)(4)(P2) (5)
(AN(A— B))>B (Preservation Rule) (6)
0O(A — B) — A>B. (5)(6)(P1)

This completes the proof. o

Neither A>B « 0O(A — B) nor A>B + (OA — OB) are arithmetically valid.
For the first one, we show that if this principle would hold, then so would O—-—-O_L.
This means that HA derives =—0O1. By Markov’s Rule it follows that then it
derives its own inconsistency O, quod non. The following derivation shows that
in the presence of A>B + O(A — B), also O—-—0.1 is arithmetically valid.

-01l>0-01 (4p)
O(-0Ll — O-0l)
O(-ol —0l) (L)
O(—-—01).

A counterexample to the second principle is given by the Rosser sentence; a con-
sistent Y¥;-sentence R such that (OR — OL). If R>_1 would hold, then by the
definition of >, we have O(p — L) for all ¥j-sentences ¢ such that O(¢ — R)
holds. Therefore, we would have O(R — L), which contradicts the fact that R is
consistent with HA.

The following lemma shows that there is an equivalent formulation of iP~ which,
like iK, contains the Necessitation Rule instead of the Preservation Rule. This
system is the one that Visser (1994) introduced as a basic system of preservativity.

3.1.2. Lemma.

(1) The logic iP~ is equivalent to the logic consisting of the axioms P1, P2
and O(A — B) — AP B, and the rules Modus Ponens and Necessitation.

(17) iP~ is conservative over iK w.r.t. formulas in the language of provability
logic.
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Proof (ii) follows from (i) and Lemma 3.1.1. The proof of (i) is straightforward,
using the same lemma. o

The following lemma states that O distributes over conjunction. This is a well-
known property of many modal logics.

3.1.3. Lemma. Fp- (DAAOB) < O(AA B).

Proof Since (AAB — A) en (AA B — B) are derivable in IPC, the Preservation
Rule gives Fp- (A A B)>A and Fp- (A A B)>B. The implication from right
to left now follows by Lemma 3.1.1. For the other direction, observe (A — (B —
A A B)) is derivable in IPC. Thus by Lemma 3.1.1 (i) also Fp— O(A — (B —
A A B)). Hence by (ii) of the same lemma, Fp- O0A — O(B — A A B)).
Applying the same step again gives Fp- 0A — (OB — O(AAB)), which implies
Fp- (DAAOB) — O(AA B). O

Equivalent formulas preserve the same formulas and are preserved by the same
formulas, as the following lemma shows.

3.1.4. Lemma. For any logic iT containing iP~ we have:
if =t A+ B, then 7 CD> A+ C>B and H1 A>C < B>C.

Proof It suffices to show that if it (A — B), then also 1 (C>A — C>B) and
Fir (B>C — A>C'). The proof is given by the following derivation.

Fr (A— B) by Preservation Rule implies
Ht+ A>B by P1 implies

FHr (C>A — C>B)

Fr (B>C — A>C).

O

In the next lemma we state a property of preservativity logic that we will often
use.

3.1.5. Lemma. Fip A>B — (AVCO)>(BVCO)A(ANC)>(BAC).
Proof Left to the reader. O

We leave it to the reader to verify that the converse of the previous lemma is also
valid: the logic given by adding the principle

A>B — (AV CO)>(BVC)
to iP~ derives Dp.

The next lemma contains a useful consequence of iP~.
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3.1.6. Lemma. F.p- A>(B — C) — (AA B)>C.

Proof The proof is given by the following derivation.

Fp- (AAB)>BA(AAB)>A (Preservation) (1)
A>(B = C) = (ANB)>(B — C) (1)(P1) (2)
A>(B—=C) = (AAB)>(BA(B—C) (1)(2)(P2)  (3)
(BA(B—C))>C (Preservation) (4)
A>(B — C) — (AN B)>C. (3)(4)(P1)

The converse of Lemma 3.1.6,
(ANB)>C — A>(B — C) (3.1)

is not arithmetically valid. A counterexample is given by A = T, B = =01 and
C =0L. By 4p we have -0 1 >0-01. And thus by Lp and P1 also —~O1>0O1.
But O(-01L — 0O.L1) does not hold, since this gives O—-—0O1.

However, Montagna’s principle shows that if in (3.1) we restrict C' to boxed for-
mulas it becomes derivable in the preservativity logic of HA (and hence is arith-
metically valid):

3.1.7. Lemma. Fipy (AAOC)>B — A>(0C — B).

Proof By Montagna’s Principle we have that
HpH (AAOC)>B — (OC — AAOC)>(0C — B).
By the Preservation Rule it follows that
}_iPH AD(DC — AN DC)
Combining these two consequences and applying P1 gives,
}_iPH (A A DC)DB — AD(DC — B)

This completes the proof. o

Together with (3.1.6) the last lemma shows that (substituting T for A)

}_iPH aC>B « D(DC — B)

Observe that 4p and Lp can be replaced by equivalent principles in which only >
occurs. First note that OA implies B> A, for all B. Therefore, we can replace OA
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in 4p and Lp by Br>A and still have arithmetically valid principles which are also
derivable from our principles:

Observe that Montagna’s Principle derives for all formulas C' = \/; A\, 0D;; the
following formula

A>B — (C — A)>(C — B). (3.2)

The arithmetical validity of this principle is not surprising since the arithmetical
realizations of such formulas C' are ¥;. It is a well-known fact that HA proves
completeness (¢ — Oyp), for ¥;-formulas ¢. Hence O(C' — OC) is in the prov-
ability logic of HA for the mentioned formulas C. This follows already from (3.2):
if for all A, B, (3.2) is in the preservativity logic of HA then also

(ANC)>B — A>(C — B). (3.3)

Thus in particular, O(C' — OC) is in the provability logic: by 4p we have C>0OC,
and thus by (3.3) T>(C — OC), which is O(C — OC).

Noteworthy consequences

The logic iL, given by K and Lob’s Principle O(0A — A) — OA, derives that ‘if
a theory is consistent then it cannot prove that a formula is unprovable’ (a slight
generalization of Gddels second incompleteness theorem):

3.1.8. Lemma. l—”_ O0-04 — 0Ol.

Proof Observe that =0A implies (OA — A). By the Necessitation Rule we have
L O(-0A — A). Whence ;; O0-04 — OA by Lemma 3.1.2. In Section 4.3
we show that iL derives the principle 4. Therefore, we have - O-0A — OOA.
Applying Lemma 3.1.3 gives ;) O0-0A4 — 0O(-~0A4 A OA). Hence Lemmas 3.1.3
and 3.1.2 leads to ;) O-0A — OL. O

The logic iLLe (the logic axiomatized by L and Le over iK, see Section 3.4) derives
that ‘if there is a proof of either ¢ or the unprovability of ¢, then ¢ is provable’
(note that this implies the formula in iL mentioned above):

3.1.9. Lemma. Let & be short for (B A OB). We have
(2) |_|LLe D(A V —|DB> — OA.

(ZZ) l_iLe D(A\/ B) — D(A\/ EB).
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Proof First we prove (ii):

FiLe O(AV B)— 0O(AvVOB)
O(AvV B) —0O(AV B)
O(AV B) - 0O((AV B)A(AV OB))
O(AV B) — O(AVEB).

Now the proof of (i) follows from (ii) and the fact that iL derives (0—-0OB — 0OB),
as was shown in the lemma above. O

There is a consequence of the Formalized Markov Scheme that states that for
formulae (\/ OA; — \/ OB;) a stronger variant of Lob’s Principle is derivable:

3.1.10. Lemma. For D = (\/ OA; — \/ OB;) we have
l_iLMa D(DD — —|—|D) — abD.
Proof This follows from the following derivation. Let D = (\/ OA; — \/ OB;).

LM 2(0D — ==D) — 0O(0--D — ==D)
— O0--D
— ObD.

This stronger version of L is not for arbitrary D a principle of HA. For instance,
HA derives =—(0OL v —O.L1), thus also O(——(OL vV =OL)) by the Necessitation
Rule. Therefore, HA derives O(O(OL vV -OL1) — ——(OL Vv —-OL1)). But it does
not derive O(OL V ~O.L) as the discussion of iLLe above shows.

3.2 Remarks on Visser’s Scheme

In this thesis we use a slightly different formulation of Visser’s Scheme then the
one used by Visser (1994). The reason for this is that when we use our formulation,
the modal characterization of the scheme runs smoother. In this section we prove
that the two formulations are equivalent. We also explain that outside the modal
context Visser’s formulation is to be preferred.

Recall that Visser’s Scheme consists of the principles

n

Vpn (/\(Az — Bi) = Apy1 V An+2>l>(/\ Ai = Bi) (A, ... App).

i=1 =1
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The notation (-)(-) is given by

(A)(B,Cr,...,Cn) =ay (A)B)V (A)(Ch,..., )
(4)(L) =ur L

(A)(BAB) =u (A)(B) A (A)(B)
(A)(OB) =,; OB

(4)(B) =.; (A— B)

B not of the form L, (C'AC") or OC.

An equivalent formulation of Visser’s Scheme

The notation used in (Visser 1994) is the following

{A}(B,Cy,...,C,) =. {A}B)V{AHCY,...,C))
{A}(B) =,;, (A)(B), for B no disjunction or conjunction
{-}(*) commutes with A and V.
Note that the only difference between (-)(-) and {-}(-) lies in the treatment of
disjunctions: we have (4)(BV C) = (A —- BV () and {A}(BV C) ={A}(B)V

{A}C). If we replace (-)(-) by {-}(-) in Visser’s Principles, the result is the
following principle

n n

VR, (\(Ai = B)) = App)>{ \ A = Bi} (A1, ..., Auir).

=1 =1

Let us call the scheme that consists of all the principles VR,,, Visser’s Real Scheme
and denote it by VR. Visser (1994) has shown that Visser’s Real Scheme belongs
to the preservativity logic of HA. In the next proposition we show that Visser’s
Scheme and Visser’s Real Scheme are interderivable. We need (i7) of the following
lemma. Part (i) of the lemma will be used in other chapters.

3.2.1. Lemma.
(1) (A)(B) implies (A — B), and (A)(B) V (A)(C) implies (A4)(B Vv C).

(ii) For A= (A\_,(A; — B;)), for all m, we have



50 Chapter 3. Tools and preliminaries

Proof (i) Left to the reader; for the first statement, use induction on B, for the
second statement, use the first one.

(i7) Use induction on m. For m = 1, observe that (4 — A, ;) is equivalent
to (A — A,V L). We leave the rest of this case to the reader. For m = 2
the statement holds by the definition of Visser’'s Scheme. For m > 2, we let
C=A,2V...V A, Itisclear that

FHpy (A— A, V.. VA ) (A = A v O).
By the definition of Visser’s Scheme we have that
Fpy (A — A, VO)>(A) (AL .., Apg, O).

Note that because C' is a disjunction it holds that (A)(C) = (A — C). By
induction hypothesis we have

}_iPV (A — C)D(A)(Al, e Apy Apia, -aAn—I—m)'

We leave it to the reader to check that, using the Disjunctive Principle and P1,
all this leads to the desired result,

3.2.2. Proposition. Visser’s Scheme derives Visser’s Real Scheme and vice versa.

Proof We leave the proof that Visser’s Real Scheme derives Visser’s Scheme to
the reader (use the fact that {A}(B) implies (A)(B)). For the other part, consider
a formula (A — A1), where A = A_,(A; — B;). We have to show that

Fipv (A = Anp)>{A} (AL A, (3.4)

It is easy to see that every A; is equivalent to a formula of the form

ki mij

Aj = \/ /\(Cijh A ODyp),

j=1h=1

where every Cjp, is a propositional variable, an implication or a preservation that is
not a boxed formula, and such that for every E, { E}(A;) is equivalent to { E'}(A}).
Namely, A can be obtained by replacing, in A;, occurrences (B V C) A D by
(BAD)V (CAD,).

Observe that A is equivalent to A’, where

A= /\(/\(/\(C'Uh A ODyjp) — By)).
i=1 j=1 h
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By Lemma 3.2.1 and the definition of (-)(-) we have

n+1

Fipy (4= AL e\ A /\ ' Cign) A BDign)).

i=1 g
Since clearly, {A"}H(A]) = A;(A,((A" = Cyjn) A ODjjp)), this implies that
Fipy (A" = A )B{AT (AL AL,

As we just observed, {A'}(A}) is equivalent to { A'}(A;). Moreover, A is equivalent
to A’. Thus we can conclude (3.4), and we are done. O

The logic given by Visser’s Scheme

In contrast to the other principles of preservativity logic, Visser’s Scheme consists
of infinitely many principles; in Section 4.6.1 we will prove that it cannot be re-
duced to one principle. However, also in another respect Visser’s Scheme deviates
from the other principles of iPH. Namely, for all of these principles it is trivial
to see that the set of all (substitution) instances of the principle is closed under
substitution, and hence the logic given by the principle is closed under substitu-
tion. For Visser’s Scheme the latter holds but the former does not. Consider for
example the following two instances of Visser’s Scheme:

(01 = @) = p2Vps) > ((pr = q) = 1) V(1 = q) = p2) V
V ((p1 = q) = p3))) (3.5)
((Opy — q) — Opy V Ops) > (Opy V Opy V Ops). (3.6)

If we substitute Op; for p; in (3.5) we arrive at the formula

((Op1 — q) — Opy vV Ops) > (((Opy — q) — Opy) V (3.7)
vV ((Op1 — ¢q) — Op2) V ((Op1 — q) — Op3))).

This formula is not an instance of Visser’s Scheme, as (3.6) shows. However,
this formula is derivable in the system iPV: it is easy to see that it follows from
(3.6), using the fact that (Op; V Opy V Ops) implies the formula ((Op; — ¢q) —
Op1) V (Opr — q) — Ops) V ((Opy — ¢q) — Ops)) by propositional logic. Similar
reasoning shows that the logic iPV is closed under substitution. However, in
contrast to the other principles of iPH, this example shows that the collection of
all instances of Visser’s Scheme is not closed under substitution.

Visser’s Scheme versus Visser’s Real Scheme

Although Visser’'s Real Scheme and Visser’s Scheme are interderivable, it is not
difficult to see that {A}(B) derives (A)(B), while in general the converse does not
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hold. In this sense Visser’s Real Scheme is more efficient than Visser’s Scheme.
Let us also illustrate this with one example.

Let Ay = (p1 Vp2) and Ay = ((ps V pa) V (05 A ps)), and consider the formula
A= ((A; — q) = Ay). It is clear that

4

{A} (A, Ay) = (\/(A = i) V ((A = ps) A(A = ps))).

i=1
Thus by Proposition 3.2.2 it follows that

l_IPV AD(\/(A — pi) vV ((A — p5> A (A - p6>>>'

=1

However, while the derived formula is an instance (hence just one application)
of Visser’s Real Scheme, this derivation in iPV uses many application of Visser’s
Scheme. Namely, the application of Visser’s Scheme to A is

A>((A = p1Vp2) V(A= psVpg) V((A—ps) A(A— ps))).

Is is clear that (\/i_,(A" — p;) V (A" = ps) A (A" — pg))) derives the formula
(A—=piVp) V(A= p3sVps)V((A—ps)A(A— pg))), but not vice versa.

Note that if A>B is an instance of one of the schemes, then B derives A, while in
general the converse does not hold. Thus A can be a stronger formula than A (see
the previous examples). For now, let us call a formula simple when either it is a
propositional variable, a preservation or it is an implication for which either the
antecedent is not a conjunct of implications or the consequent is a propositional
variable, an implication or a preservation. Note that for simple formulas, the
application of Visser’s Real Scheme or Visser’s Scheme does not lead to stronger
formulas. We do not prove this fact, but the previous discussion indicates that if
AP B is an instance of Visser’s Real Scheme, then every subformula of B that is
not in the scope of an implication is simple. Therefore, the application of Visser’s
Real Scheme does no longer lead to stronger formulas. This does not hold for
Visser’s Scheme, as the example above shows. Thus in this sense Visser’s Real
Scheme is more efficient than Visser’s Scheme. However, as mentioned before, for
the modal study of the logic given by the scheme, we prefer to work with Vissers
Scheme instead of Visser’s Real Scheme.

3.3 Preservativity versus provability

In this section we explain that the logic iH is contained in the system iPH, i.e.
the principles of the provability logic of HA discussed in Section 2.5 are derivable
in iIPH. Then we show that the converse does not hold: iPH derives principles
in the language of provability which are not captured by the system iH. These
two facts show that iH is properly contained in the Lg-part of iPH. It would be
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interesting to know if one can obtain a decent axiomatization of the L-part of
iPH. Although we did not find such an axiomatization yet, we conjecture that it
exists.

First of all, the Necessitation Rule (A/OA) is an admissible rule for iPH: If - A
then = (T — A). Hence by the Preservation Rule - T>A, which is F OA.
Lemma 3.1.1 shows that the axioms K, 4 and L belong to iPH. Leivant’s Principle
can be derived as follows.

Fpy A>AAB>OB
A>(AvOB)AB>(AvOB) (Lemma 3.1.4)(P1)
(AV B)>(AvOB) (Dp)
O(AV B) — O(A vV OB). (Lemma 3.1.1)

Finally, we have to see that the Formalized Markov Scheme belongs to iPH. It is
easy to see that (-—\/, 0B;)>(\/, 0B;) is derivable from Visser’s Scheme:

Fpn (mVis 8B:) < (AL, ~OB))
=(Aizy —0B:)>(AiZ, =0B;)(L, 0By, ..., 0B,)
(/\?:1 ﬁDBi)(J—a DBb R DBn) = V?:l DBZ"

By Montagna’s Principle we then have (0A — —-—\/,0B;)>(04 — \/,0OB)).
Since ——=(0A — \/, OB;) implies, (OA — ——\/, OB;), this leads to the Formal-
ized Markov Scheme =—(0A — \/,OB;)>(0A4 — \/, OB)).

We show that iPH is not conservative over iH. Note that for all axioms of iH
of the form (OA — OB), iPH derives A>B. For example, (OA — A)>A and
(=—0OB)>0B belong to iPH. Using the Disjunctive Principle it follows that iPH
derives ((OA — A) vV —-—-0OB)>(AV OB) as well. Therefore, by Lemma 3.1.1 also
O((O0A — A)Vv-—-0OB) — O(AV OB) is derivable in iPH. In Section 5.4 we show
that this formula does not belong to iH.

The observation above has some interesting consequences. For example it shows
that

}_iPH ((DA — A) V (DB — B))D(A V B)
And hence O((0A — A) V (OB — B)) — O(A V B) holds for HA, a principle
which does not hold for PA.
3.4 Preliminaries

In this section we introduce a semantics for the preservativity and provability
operators, and we define the canonical model and the construction method. These
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are all fairly standard definitions except for the way in which the operator > is
interpreted in models. This semantics for > is an idea from Visser. We also
define the ‘new’ notion of an extendible property. In the proofs that this or that
logic is canonical we need extensions of given sets of formulas. These extensions
are all special instances of a ‘general’ principle of extension, which gave rise to
the definition of an extendible property. First we introduce all these notions for
preservativity logic. Most definitions are similar for provability logic. The ones
that do differ are discussed in Section 3.4.6.

3.4.1 Definitions

The language L of preservativity logic is that of propositional logic extended
with one binary modal operator, . We assume L (falsum) and T (true) to be
present as primitive symbols in our propositional language. Recall that OA
is defined as T>A. A formula of the form A>B is called a preservation and a
formula of the form OA is called a bozed formula. We adhere to some reading
conventions and omit parentheses when possible. The negation binds stronger
than > which binds stronger than A and V, which in turn bind stronger than —.
We use a ‘sequent-calculus’ abbreviation: I'™>A is short for A I'>\/ A.

A logic is a theory closed under substitution. We call the logic in £ which has as
axioms all tautologies of intuitionistic propositional logic IPC and the principles
P1, P2 (and Dp) and as rules Modus Ponens and the Preservation Rule (Sec-
tion 2.2) the arithmetical (semantical) base preservativity logic and denote it with
iP~ (iP). Following the notation of (Chagrov and Zakharyaschev 1997) we define
iP(AEB) to be the preservativity logic consisting of the axioms of iP plus A and
B, and the Preservation Rule and Modus Ponens. When X denotes the infinite
set of principles Ay, As, ..., we also write iPX for iP(A;& Ay & ...). When Xp is
one of the principles of the preservativity logic given above we write iPX for iPXp.
We write H1 A when A is derivable in iT. We write I' 1 A when there is a
derivation of A in iT from I without use of the Preservation Rule, in other words,
when A is derivable by Modus Ponens from theorems of iT and formulae in I'.

The name ‘semantical base preservativity logic’ for iP arises from the fact that it is
sound and complete with respect to the frame semantics defined in Section 3.4.2.
Thus, semantically seen, it is a base preservativity logic. On the other hand, the
only axioms of iP for which it is trivial to see that HA derives all their arithmetical
realizations are Taut, P1 and P2, and this accounts for the name ‘arithmetical
base preservativity logic’ for iP~.

3.4.2 Semantics

A possible semantics for preservativity logic can be produced via frames: we just
add one extra clause for the interpretation of I>. The frames we use occur already
in the literature (Section 2.6). The semantics for I> came from Visser.
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First some notation. When R and S are two binary relations, (R;S) is the relation
defined via w(R;S)u = Jv(wRvSu).

A frame is a triple F = (W, <, R), where W is a nonempty set (the set of nodes),
< is a partial ordering on W (the intuitionistic relation) and R a binary relation
on W (the modal relation) such that (;R) C R.

A model is a quadruple M = (W, <, R, V), where (W, <, R) is a frame and V
a valuation relation on pairs consisting of nodes and propositional variables. We
demand that V' is persistent, i.e.

(persistence) if w < v and wVp, then vVp.

We inductively define what it means for a formula A to be forced (or valid) at a
node w of a model M (M, w I+ A):

M,wlkp
MwlFAANB =,; M,wlFAand M,wl-B

def wVp

M,wl-AV B w MywlEAor Mwl- B
MwlFA—B =, Yvi=w (M,vlFAimplies M, v+ B)
M,wlFA>B =, Yv (if wRv and M,v |- A then M,v Ik B)

M, wlFOA =,, Vv (if wRv then M, v - A).

Note that the definition of forcing for OA agrees with the fact that OA is defined
as TD>A, and that OA gets the standard interpretation on frames. When M is
clear from the context we write w IF A instead of M, w Ik A. The formula A is
valid or forced in M, notation M = A, if A is forced in all nodes in M. The
formula A is valid in a frame F, notation F = A, if A is valid in all models with
underlying frame F.

Note that w IF A and w < v implies v IF A, and that w I OA and wRv implies
vl A.

A node v in a frame is called a successor of w if wRwv, in which case w is called a
predecessor of v. We use an abbreviation for the relation (R;<):

R =aef (R§$)-

For a relation R we define wR = {v | wRv}. For a set U , we write u < U if for
all z e U, u < x. We write ‘e < y1,...,yp for ‘e < yn Ax Ly A A2 Ly, .
Similarly for other relations. A node v in a frame is above w if w < v. In this
case w is called below v. A node z is called an (intuitionistic) top node if there is
no element above it except the node itself. Top(F) is the set of all top nodes in a
frame F. We write Top instead of Top(F) if no confusion is possible. When w is
a node, T'(w) is the set of all top nodes above w.
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3.4.1. Remark. The condition (x;R) C R, included to guarantee persistence for
formulas A>B, may be weakened to

(55R) C (R;X) (w < w' RV = Fu(wRu < v')).

However we prefer to work with the simple condition where possible. For more
discussion on this topic, see (Simpson 1993).

A property P on frames corresponds to a set T of formulas if for all frames F:
F E T iff F has property P. Note that in this case we have

if F1 A then A is valid on all frames with property P.

When a frame F has a property P we say that F is a P-frame. We call F a
P, ... P,-frame when it has the properties P, ... P,. If C is a class of frames, a
logic iT is called complete with respect to C if

for all A: F1 A iff A valid on all frames in C.

The logic iT is called complete if C is the class of frames to which iT corresponds.

3.4.3 Canonicity

Canonical models are defined in a similar manner as in classical modal logic. To
define the canonical (X)-model for a logic we have to introduce the notion of
an X-saturated set. A set of formulas X is called adequate if it is closed under
subformulas and contains T and 1. A set of formulas I' is called X-saturated with
respect to a logic T if it is a consistent subset of X such that

e 'y Aimplies A€l forall A e X,
e ' AV Bimplies Ac"or Bel, forall AV B e X.

If X is the set of all formulas, an X-saturated set is just called saturated. It can
be easily seen that for any (finite) adequate set X and for any A for which t/ A,
there is an (finite) X-saturated set I" such that T' t/ A. Note also that any A C X
for which A I A, can be extended to an X-saturated I' such that ' / A.

For any logic T', for any adequate set X, the T-canonical X-model is the model
(W, %, R, V) defined as follows:

W consists of the X-saturated sets (with respect to Fr)

w=xv =4 wCo

wRv =, itA,...,A,,Be X,wkr Ay,...,A,>B and
Ay, . A, €v, then Bew

w«; P € w, for propositional variables p € X.

wlFp
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Recall that Ay, ..., A,>B is short for (/\ 4;)>B (Section 3.4.1). Note that in the
definition of R we take formulas A>B into account which do not belong to X.

To see that this indeed defines a model, see the completeness proof for iP. This
proof shows another fact we will often use, namely that for any canonical X-model:

for all nodes w, forall Ae X : wlF Aiff A € w.

When X is the set of all formulas, we call the canonical X-model the canonical
model of T. We call a logic iT canonical if the canonical model has the frame
property to which the logic corresponds. Note that canonical logics are always
complete, namely with respect to the class of frames to which they correspond.

Note that in the iT-canonical frame in general (R;<) C R does not hold. On
the other hand, if we restrict our language to O and the connectives, the canon-
ical models do satisfy (R;x) C R, see Section 3.4.6. That (R;<) C R is too
strong a requirement in the context of preservativity logic follows from the fact
that A>B — O(A — B) is valid on such frames. This principle is not in the
preservativity logic of HA as was explained in Section 3.1.

3.4.4 Extendible properties

In this section we introduce a general construction to make certain extensions of
sets of formulas. In many proofs to come we will extend certain sets of formulas to
saturated sets with certain properties. It turns out that the way these extensions
are made follow the same pattern. Therefore, we choose to define a general notion
of extension which covers this.

Let iT be a preservativity logic and X an adequate set (Section 3.4.3). A property
(+) on sets of formulas such that we have both

for all A € X: if x(z) and x 1 A, then * (z U{A})
forall (AVv B) € X: if x(t U{AV B}), then
x(xU{A}) or * (x U{B}),

is called an iT-extendible property (w.r.t. X). If in addition it holds that
forall A€ X: if x(z) and y b 2> A, then * (z U {A})

then it is called an iT-extendible y-successor property. For a property * such
that *(T") holds, the x-extension of T is the union x = |Jz; of sets x; which are
constructed as follows. Given an enumeration By, By, ... of all formulas in X, in
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which every formula occurs infinitely often, we define

To =T
(2 if  not *(z; U{B;})
xr; U{B;} it *(x; U{B;}), B; no disjunction
Tiy1 = r; U{B;, EF} if x(z; U{B;}),Bi=CV D,

E=Cif % (x; U{B;,C}),
E = D otherwise.

\

Observe that x D I' is X-saturated. Thus, x is a node in the canonical X-model,
and if [' is a node in the canonical X-model as well, then I' < x. If in addition %
is an iT-extendible y-successor property, then also y Rz holds in the iT-canonical
X-model.

3.4.2. Remark. Note that for an iT-extendible w-successor property, the first
requirement is redundant, because it follows from the third one. Namely, if z - A
holds we have 1 (r — A), and hence by Preservation Rule 1 2>A. Thus
clearly w 7 o> A.

In the completeness proofs in the next chapters we often use extendible properties
in the following way. Given a set A with a certain property, we want to extend
it to a saturated set with this property, i.e. to a node in the canonical model
with this property. There are two particular properties which often occur in
this setting. The following lemma shows that these properties are extendible w-
successor properties.

3.4.3. Lemma. For any logic iT containing iP, for any formula C' and for all
nodes w, v in the iT-canonical model, the following two properties are extendible
w-successor properties:

#(z) w T a>C.
x(x) for all D: w 7 > D implies D € v.

Proof We write F for Ft. First we consider the property *(-). We have to show
that

for all A € X: if wt/ x>C and x + A, then w tf x, A>C
forall (Av B)e X: ifwltz, (AV B)>C, then wt/ z, A>C or

wt x, B>C
for all A € X: if wt x>C and wt 2> A, then wt/ x, A>C.
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Recall that we write z, A-C for (A x A A)>C. By Remark 3.4.2 we know that if
the third requirement holds, so does the first. Therefore, it suffices to show that
the last two requirements holds.

For the second requirement, assume w + x, A>C" and w + x, B>>C'. To show that
*(-) satisfies the second requirement we have to prove that w F x, (A Vv B)>C.
This follows immediately from Dp.

For the third requirement assume w F z>A and w + x, A>C. We show that
w F z>C, and this will show that *(-) satisfies the third requirement. By the
Preservation Rule we have = x> A , which is short for = A 2> A . Therefore,
we certainly have w F x> A x. Thus by P2 we have w b a>(/ x A A). Together
with w F o, A>C and P1 this leads to w F 2>C'.

Consider the property x. To show that % is an extendible w-successor property we
have to prove that

for all A € X: if x(z) and o - A, then

(for all D: wF x, A>D implies D € v)
forall (Av B) € X: if x(x U{AV B}), then

(for all D: wF x, A>D implies D € v) or

(for all D: w F x, B>D implies D € v)
for all A € X: if x(z) and w F x>A, then

(for all D: w F a, A>D implies D € v).

By Remark 3.4.2, it suffices to show that the last two requirements holds.

For the second requirement, assume that neither x(xU{A}) nor x(x U{B}) holds.
We prove that x(x U {AV B}) does not hold. By assumption there are formulas
C and D such that C' € v and D ¢ v, and both w - z, A>C and w + z, B>D.
Clearly, both C' and D imply (C'V D). Hence by Preservation Rule we have
F C>(C Vv D) and = D>(C'V D). Applying P1 gives w = x, A>(C' vV D) and
w = x, B>(C'V D). Thus by Dp we have w - z, (AVB)>(CV D). If x(xU{AV B})
would hold, this would imply that (C'V D) € v. Since v is a node in the canonical
model it is a saturated set. Therefore, this would imply that C' € v or D € v,
which contradicts our assumption.

We show that the third requirement holds. Assume that (x) and w F 2>A hold,
and that we have w F x, A>D, for some D. We have to show that D € v. The
same reasoning as above for *(-), shows that we have w F x>(/ x A A). Therefore,
w F x, A D implies w F 2>D by P1. The fact that x(z) holds, gives D € v. o
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3.4.5 The Construction Method

We define a method, the construction method, to obtain from a given model a new
one. This method is similar to the construction method in classical model logic.
The construction method is often used to obtain a completeness result with respect
to some class of finite frames. Let M = (W, %, R, V') be some canonical model,
let X be an adequate set for which A>B € X implies OB € X. The method
allows us to construct for any w € W a model M" = (W', 5/, R", V') the domain
of which consists of (copies of) nodes in W, which intuitively is the minimal set
of nodes required to have w forcing the same formulae in X in the models M and
M'. We will restrict ourselves to a construction method for models that besides
iP also satisfy Lp and Mp.

The construction proceeds as follows. We choose step by step, starting with w, a
subset of W which will be the domain W’ of our new model M’. Note that the
elements of W are sets of formulas. First, define

wl = {A>B € X | A>B € w}

wé = {A>B € X | A>B ¢ w}.

Similarly for —. We omit the superscript X when possible. Let % denote the
concatenation function on strings:

(X1, ) % Yty e Ym) = (X1 Ty Yy e ey Y-

Put oy = w. Suppose v = a, is defined. We choose elements a,.4—p) and
Qyyiat>py i W, for all elements (A — B) € e A>B € e

The node agy(a—p) is an element v € W such that v < u, A € v and B & u.
Note that such elements can always be found. The node a,, 4> p 1s an element
u € W such that vRu, A € u, B ¢ v and OB € v. Observe that u contains more
boxed formulas than v, for in the presence of Lp, and hence of 4p and 4, vRu and
OC" € v implies that OC" € u. To prove that such a node u exists it suffices to
show that in any canonical model for a logic containing iPLM, if A>B ¢ v there
exists a v-successor extension of { A, 0B} omitting { B}. Thus we have to see that
v A, OB>B. Suppose not. Then we have, using Lp and Mp:

v - A OB>B
(0B — AANOB)>(OB — B)
A> (OB — B)
A>B.

Define W' = {o | 0 is defined }, and V' via

olFp=.,a,lFp, for pe X.
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We define the intuitionistic and the modal relation such that
forall Ae X, foralloce W': o,k Aiff oIk A.

As the choice of the relations will differ from case to case we do not give any
specific examples here besides the obvious one;

/ —
ox'T —def Oy X Qp

oR'T =, a;Ra;.

It is not difficult to see that this choice gives a model with the desired property,
be it not always on a frame with the desired properties.

3.4.4. Remark. It is easy to see that W' is finite if X is. First note that by
construction, a node (saturated set) o * (B>C) contains more boxed formulas
(formulas of the form OC) that belong to X than . A node o (B — C) contains
more implications that belong to X than o. Moreover, for anode 7 = 0% (B — C)
we have that a, < «, holds in the canonical model, i.e. o, C ;. Clearly, all the
implications that have to be treated, i.e. all implications for which we possibly
have to add a new node in the construction, belong to X. And similarly for
boxed formulas and preservations. Therefore, in going from o to o x (B>C)
or 0 % (B — () either the number of boxed formulas that have to be treated
decreases, or it stays the same and the number of implications that have to be
treated decreases. Finally, if there are no more boxed formulas to be treated this
means that for all OB € X, it holds that OB € «,. Hence for all B>-C € X,
we have OC € a, and thus B>C € «a,. Therefore, if there are no more boxed
formulas to be treated there are no formulas of the form B>C' to be treated either.
Since the preservations and implications that belong to X are the only formulas
that have to be treated in the construction method, this shows that the method
is finite if X is.

3.4.6 The language of provability logic

The language of provability logic £ is that of propositional logic extended with
one modal operator 0. We write

HA=,, ANDA.

The definition of wm is similar to Wi

For any principles A and B, iK(A©B) is the logic in £ consisting of all formulas
provable in intuitionistic propositional logic IPC and the axioms K plus A and B,
and the rules Modus Ponens and Necessitation (C'/OC). Asin classical provability
logic, we write iT for iKT, for any set of principles T. We write F71 A when A
is derivable in iT. We write I' =1 A when there is a derivation of A in iT from
[' without use of Necessitation, in other words, when A is derivable by Modus
Ponens from theorems of iT and formulae in I'.
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A (non)boxed formula is a formula (not) of the form OA.

The definition of a frame, a model and the notion of correspondence are inherited
from preservativity logic, by reading T>A for OA. As observed before, in that
way OA gets the standard interpretation on frames.

Canonicity in provability logic

It is convenient to change the definition of a canonical model (Section 3.4.3)
slightly in the context of provability logic. For any logic T" in L and for any
adequate set X, the T-canonical X-model is the model (W, %, R, V') defined as
follows:

W consists of the X-saturated sets (with respect to Fr)
w=xv = wCo

wRv =,, ifOAcwthen Acv

wlFp =,.; pe€ w, for propositional variables p € X.

Given this definition, the definition of canonicity is similar to the one in preser-
vativity logic. The difference between this definition on canonical model and the
one in the context of preservativity logic lies in the definition of R, which for the
latter would read wRuv iff for all A € X, if wF OA then A € v.

Brilliant frames

Recall that in a frame we always have (5;R) C R. A frame is called brilliant if in
addition it holds that

(brilliant) RCR

where R is defined as (R;<) (Section 3.4.2). Note that in £, canonical models
have brilliant frames. In £ they do not have this property. For example, A>B —
O(A — B) is valid on these frames, a principle which is not arithmetically valid
(see Section 3.1). However, we will see that if we restrict ourselves to L all
provability principles considered are complete with respect to some class of brilliant
frames, even though they are sometimes also complete with respect to some nice
class of non-brilliant frames.

Extendible properties in provability logic

The definition of an extendible property (Section 3.4.4) does not change in the
context of L.

3.4.5. Remark. Let x be a extendible property w.r.t. an adequate set X. Note
that if  is the %-extension of a set which contains {A | OA € y}, then 2 is a node
in the canonical X-model and in this model yRx holds.



Chapter 4

The principles

In Chapter 2 we introduced and discussed the meaning of the principles of the
preservativity logic of HA known so far. In this and the next chapter we consider
these principles from a modal point of view. In this chapter we study them sepa-
rately and in the next chapter together. Here we describe to which frame proper-
ties the principles correspond and prove that all principles but Lob’s Preservativity
Principle are canonical. Since every canonical logic is complete (Section 3.4.3),
this implies that besides Lob’s Preservativity Principle, all these principles are
complete with respect to a certain class of frames. Except for Lob’s Preservativity
Principle and Visser’s Scheme, we show that all these principles have the finite
model property as well, i.e. they are complete with respect to a certain class of fi-
nite frames. For the study of classical modal logics via frame characterizations and
the like, we refer the reader to (van Benthem 1983)(van Benthem 1984)(Chagrov
and Zakharyaschev 1997)(Blackburn, de Rijke and Venema 2001).

In Section 4.4 we show that ilLe is conservative over iP4 with respect to formulas
in £. Thus in the absence of other principles, the Disjunctive Principle does
not capture more of the Disjunction Property than Leivant’s Principle (compare
the discussion on the Disjunctive Principle in Section 2.3). However, in the next
chapter we will see that this no longer holds in the presence of principles like the
Formalized Markov Scheme. Namely, in Section 5.4, we show that iPH derives
O((O0A — A) vV -—-0OB) — O(A v OB), while the logic iH does not derives this
principle, although it contains Leivant’s Principle and the Formalized Markov
Scheme.

We will see in Section 4.7 that besides the principles Vp,, none of the preservativity
principles derive one another, and that the same holds for all provability principles.
In Section 4.6.1 we show that Vp,, does not derive Vp, for n > m. However,
sometimes two principles interfere in a different way. For example, Montagna’s
Principle and Visser’s Scheme are both canonical, i.e. their canonical models have
respectively the Ma- and the Vp*-property to which these principles correspond.
But the canonical model for the logic iPMV given by both these principles has

63
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a stronger frame property than just these two properties, as will be shown in
Corollary 4.6.3.

The results that will be used in Chapter 5 in the completeness proof for the
logic iPH given by all principles together, are the correspondence for the princi-
ple Lp (Lemma 4.3.1), the canonicity of the logics iP4 (Proposition 4.2.1) and
iPM (Proposition 4.2.1), and the mentioned completeness proof for the logic iPV
(Corollary 4.6.3). In Chapter 5 we also give a completeness proof for the logic iH
given by the first known principles of the provability logic of HA. There we use
the following results from this chapter: the completeness proof for the logic iMa
(Proposition 4.6.7), and the completeness proof with respect to finite frames for
the logic iLLe (Proposition 4.4.1).

In Section 4.1 we show that the base logics iP and iK are complete with respect
to their given frame semantics. The completeness proofs for iP, iP4 and iPL are
similar to the ones in classical modal logic. The proofs for iK, iK4 and iL occur
already in the literature (Bozi¢ and Dosen 1984)(Kirov 1984)(Ursini 1979b). We
treat a preservativity principle and its corresponding counterpart, like Lp and L,
in one Section. The only exception is Leivant’s Principle. Although it is derivable
from 4p we treat it in a separate section because in this way all ‘standard’ proofs,
for iP,iK,4p, Lp, 4, L, precede the more interesting and non-standard proofs for
Le, Mp, Vp and Ma.

We recall the known principles of the preservativity logic of HA that were discussed
in Section 2.2.

OA=,, T>A
P1  A>BAB>C — A>C
P2 C>AANCH>B— C>(AANB)

Dp A>C AB>C — (AV B)>C (Disjunctive Principle)
4p  A>OA
Lp (OA— A)P>A (Lob’s Preservativity Principle

Mp A>B — (OC — A)>(0C — B) (Montagna’s Principle

)
)
Vpn (/\?ZI(AZ — Bz) — An—i—l V An+2)l>(/\?:1 Az — Bz)(Ala ey An+2)
)

Vp Vi, Vi, Vps, ... (Visser’s Scheme

The fragment of the provability logic of HA treated in Section 2.5 consists of the
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following principles.

K O(A— B)— (0A— OB)

4 0A — OOA

L 0O(0OA— A —0OA (Lob’s Principle)
Le O(AVB)— O(AVOB) (Leivant’s Principle)
Ma 0O-—(0A—\/0OB;) — 0O(0A4 —\/0OB;)

(Formalized Markov Scheme)

Preservativity logic has the rules Modus Ponens and the
Preservation Rule if - (A — B), then F A>B.

In the case of provability logic the Preservation Rule is replaced by
Neccesitation A/OA.

The logic iP is given by the axioms Taut, Dp, P1 and P2. The logic iK is given
by the axioms Taut and K.

4.1 The base of preservativity logic

In this section we show that the frames defined in Section 3.4.2 are exactly the
frames we need for the semantical base preservativity logic iP and for the base
logic iK of provability logic.

4.1.1. Proposition. F;p A iff A is valid on all finite frames.

Proof We treat the direction from right to left. Suppose iP t/ A. We have to show
that there is a model for iP which does not force A. Let X be a finite adequate
set containing A. We prove that the canonical X-model is such a model. Observe
that the canonical X-model is indeed a model, i.e. (x;R) C R, and that every
model satisfies the axioms of iP. It is easy to see that there is an X-saturated set
(hence a node in this model) which does not contain A. Therefore, to see that A
is not valid on this model it suffices to show that

VBe XVw: Bewiff wlk B.

This can be easily shown by formula induction. We only treat implication and
preservation for the direction from right to left. Suppose B = (C' — D) and
B ¢ w. If wU{C} would derive D, then also w = (C'— D). Thus w U {C} ¥/ D.
This implies that w U {C'} is consistent. Let v be an X-saturated extension of
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w U {C} which does not derive D. Then w < v, v IF C and v I D hold, hence
wlf (C — D).

Now suppose B = C>D ¢ w. It suffices to construct an X-saturated set v such
that wRv and C' € v while D ¢ v. Consider the property

() w i a>D.

By Lemma 3.4.3, x(-) is an iP-extendible w-successor property. Note that (C')
holds. Any x-extension of {C'} can be taken for v. The fact that v does not
contain D follows from the definition of a *-extension. o

4.1.1 The base of provability logic
The defined semantics is correct for the base logic iK of provability logic:
4.1.2. Proposition. In £0: g A iff A is valid on all finite brilliant frames.

Proof This proof is similar to the completeness proof for iP above. The only
difference is that one has to observe that the canonical X-model is brilliant in this
case, see Section 3.4.6. a]

4.2 The principle 4p

The logic iP4 is axiomatized over iP by
4p  A>DA.

We show that iP4 is complete with respect to the class of gathering frames. We
call a model or a frame gathering if it satisfies

(gathering) wRvRu — v X u.

We show that iK4 is complete with respect to a different class of frames (Sec-
tion 4.2.1). Although the Leivant Principle is derivable in iP4 we treat it in a
separate section. The reason for this given at the beginning of this chapter.

4.2.1. Proposition.
(i) The principle 4p corresponds to gatheringness.
(77) The logic iP4 is canonical.
(iit) Fipg A iff A valid on all finite gathering frames.

Proof The three statements are easy to prove. We leave (i), (ii) and the direction
from left to right of (i7i) to the reader. For the the direction from right to left
of the last statement it suffices to observe that for any finite adequate set which
contains OB for any nonboxed B € X, the iP4-canonical X-model is gathering. o
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4.2.1 The principle 4

The logic iK4 is axiomatized over iK by
4 O0A — OOA.

We show that iK4 is complete with respect to finite transitive frames; this is similar
to the situation in the classical case. We will see however that it corresponds to a
weaker property than transitivity (R;R C R) , namely

(semi-transitivity) (R:R) C R.

As is explained in Section 3.4.6 one cannot have both gatheringness and brilliancy.
Here we see that for 4 we have brilliancy and for 4p we have gatheringness. Note
that in the same way as in the classical case it can be shown that b 4 (see
Section 4.3).

4.2.2. Proposition. In L:

(i) 4 corresponds to semi-transitivity.
(17) iK4 is canonical.

(iit) kg A iff Ais valid on all finite transitive brilliant frames.

Proof The first two statements and the direction from left to right of the third
statement are left to the reader. We treat the direction from right to left of (iii).
Assume ;g A. Let X be a finite adequate set which contains A and let I be an
X-saturated set such that I' ;x4 A. Consider the model (W, <, R, V) such that
W, < and V are like in the iK-canonical X-model and R is defined via

wRv =,,YOB € w (B,0B € v).

It is clear that this frame is transitive. Therefore, to see that this model refutes A,
we only have to show that (w IF B iff B € w) holds for all B € X. The only step
which is different from the completeness proof for iK, is the direction from left to
right for the case B = OC. Suppose OC ¢ w. It is not difficult to see that the
following property is an iK4-extendible property w.r.t. X (compare Lemma 3.4.3),

() x i C.

Observe that x({D, 0D | OD € w}) holds. It is easy to see that any k-extension
of the set {D, 0D | OD € w} is an X-saturated set v such that C' & v, and wRuv.
This proves w Iff OC. o
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4.3 Lob’s Preservativity Principle

The logic iPL is axiomatized over iP by Lob’s Preservativity Principle
Lp (OA— A)>A.

We show that Lp corresponds to the gathering conversely well-founded frames.
We call a frame conversely well-founded if the modal relation on the frame is
conversely well-founded. We do not know if iPL is also complete with respect to
these frames. If we restrict ourselves to the language L, then Léb’s Principle is
complete with respect to the gathering conversely well-founded frames, which is
shown in Section 4.3.1. However, the ‘trick’ used in this completeness proof for iL
breaks down for iPL in the absence of the principle Mp. The completeness proof
for iL is similar to the one in classical logic. We have included it for completeness’
sake.

Classically we have, in £, that iL - 4. Here we also have
l_IPL L and l_IPL 4p and l_ip(4p@|_) Lp.

The first deduction is trivial. The second one has a similar proof as the above
mentioned analogue in L7:

FpL A— (O(OAAA) = OANA))
A>(O(OANA) - OANA))
A>(OANA)

A>0OA

The third derivation runs as follows.

=L O(0(0A — A) — OA)

HiL 0(0A — A)>0A

Fipa (0A — A)>DO(O0A — A) A (OA — A)
Fip@par) (OA — A)>(OAA (DA — A))
Fip@pel) (OA — A)>A

4.3.1. Lemma. The principle Lp corresponds to gatheringness plus converse well-
foundedness of the modal relation.

Proof Left to the reader. O
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4.3.1 Lob’s Principle

The logic iL is axiomatized over iK by Lob’s Principle
L O(OA— A) — OA.

In a manner similar to the classical case, we show that iL is complete with respect
to the finite transitive conversely well-founded brilliant frames. We call these
frames L-frames. We saw that although the principle 4 is complete with respect
to transitive frames it corresponds to the weaker property of being semi-transitive.
A similar difference occurs in the case of L. This is not surprising, since iL derives
the principle 4 (the proof of this fact is similar to the one that Lp derives 4p
above).

4.3.2. Proposition. In L7:

(i) L corresponds to semi-transitivity plus converse well-foundedness.

(ii) 5 Aiff Ais valid on all finite transitive conversely well-founded brilliant
frames.

Proof (i) We only treat the direction from left to right. First assume that F is
not semi-transitive; choose w, v, u such that

wRvRu ANV (wRv" — v' & u). (4.1)
Consider the model on F given by the valuation z IF p =,, (x L v Ax £ u).
We have to see that w IF O(Op — p). Therefore, take z,y with wRx, x < y and
y IF Op. Because u Iff p, v If Op and thus y £ v. Also y £ u by (4.1), hence y I p.
But clearly w Iff Op since v If* p.

For the second part, assume F is a semi-transitive but non conversely well-founded
frame. Let woRw;RwsR ... be a chain in F. Define a valuation on F via

xlkp =, Vi(z £ w).

In this model on F, if woRx and x |- Op then x £ w;, for all 7, as z < w; implies
xRw; ;1. Hence w |- O(Op — p). But not w |- Op.

(4i) The direction from right to left. Let A be such that I A. Let X be a finite
adequate set containing A, such that there is an X-saturated I" for which I' I/, A.
We build a model (W, <, R, V'), which does not make A valid. W is the set of
X-saturated sets. <,V are defined in the same way as for the iL-canonical model.
But define

wRv =,,Y0OB € w(OB,B € v) A3OD € v(OD ¢ w).

This makes W into a finite, transitive, conversely well-founded brilliant frame. We
show that w IF B iff B € w, for B € X. We only treat the left to right direction
for the case B = OC. Assume OC ¢ w. Let A = {D,0D | 0D € w} U {OC}.
From A = C' it would follow that w = O(OC — C'), and hence w = OC, which is
false. Therefore, At/ C. Let v be an X-saturated extension of A which does not
derive C, then wRwv, and therefore w I OC'. O
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4.4 Leivant’s Principle

The logic iLe is axiomatized over iK by Leivant’s Principle
Le 0O(AVB)—0O(AvOB).

Although the Leivant Principle is derivable in iP4 (Section 3.3) we have not treated
it in the section on the principle 4p. The reason for this is given at the beginning
of this chapter. As was explained in Sections 2.2 and 2.5, Leivant’s Principle and
the Disjunctive Principle are related to the Disjunction Property. In Section 4.4.1
we show that from the viewpoint of provability logic the Disjunctive Principle, in
combination with the principle 4p, does not capture more than Leivant’s Principle,
i.e. we show that the former is conservative over the latter.

In this section we show that iLe is complete with respect to finite transitive frames
which have the Le-property

(Le-property)  wRv — Jz(wRx < v AVu(vRu — x < u)).

This completeness proof will be the first non-standard proof so far. One cannot use
classical analogies, since in the context of natural classical modal logics Leivant’s
principle does not occur (Section 2.2). We will see that Le corresponds to the

property
(Le>™-property) wRvRu — Jx(wRx ANx L v Ax < u).

However, on finite frames Le corresponds to the Le-property. The proof of this
fact will explain how this difference occurs when no infinite frames are allowed.
Finally we show that iLe is also complete with respect to finite gathering frames.
This implies that

forall Ae Lo: '_iP4 A iff '_iLe A.

Note that one loses the brilliancy in this case. One cannot have both gatheringness
and brilliancy: in these frames O——0_L is valid, which clearly is not arithmetically
valid. A node x < v for which Yu(vRu — wRx < u) holds is called a leivant-node
for the pair (w,v).

We remind the reader of the following consequence of iLe that we will often use
(it is proved in Section 3.1):

e O(AV B) = O(AV EB), (4.2)

Clearly iLe 4. Observe that this is reflected in the corresponding frame proper-
ties; an Le®-frame is semi-transitive.

In Chapter 5 on the completeness of iH we will need the fact that iLLe is complete
with respect to the finite transitive conversely well-founded brilliant Le-frames.
(Recall that iLLe is iKLLe. The principle L is treated in the previous section.)
Since this proof is similar to the completeness proof for iLe we treat it at this
place.
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4.4.1. Proposition. In L7:

i) Le corresponds to the Le*-property.

i1) On finite frames Le corresponds to the Le-property.

(
(
(i) iLe is canonical.
(iv) K e A iff Ais valid on all finite brilliant Le-frames.
(v

) FiLLe A iff A is valid on all finite transitive conversely well-founded bril-
liant Le-frames.

Proof We only treat the direction from left to right of (i) and (i) and the direction
from right to left of (v). The proof of (iv) is similar to the one of (v). The rest of
the statements are easy.

(i) Assume that a frame F does not have the Le™-property. Take wRvRu such
that

Vem(wRr Ax S v Az < u). (4.3)

Now define a model on F via

With this valuation clearly w IF O(pV ¢). It is also easy to see that u I ¢, hence
v I Oq. Moreover, v If p. For, if v IF p, then there is a node x < v such that
wRx A x < u. This contradicts (4.3). Hence v I p, thus v I p vV Og. Therefore,
wlF O(p v Og).

(i7) The direction from left to right. It suffices to show that a finite Le™ frame is
an Le-frame. Let F be a finite Le™-frame. Consider wRv. We show that there
is a node z such that (wRzx < v AVu(vRu — x < u)). Let n be the number of
successors of v. If n = 0, then we can take v = x, and we are done. Therefore,
assume n > 1. We show that there is an enumeration uq, ..., u, of the successors
of v such that there is a sequence x7 = x5 = ... = x, of nodes, for which

wRr; K vAx; < u.

Clearly, x,, has the desired properties, i.e. we can take x = x,, since Vi(z, < u;),
and wRx, < v by construction.

We construct these sequences as follows. Let u; be a successor of v. Since wRvRuq,
by the Le>-property, there is a node xy such that wRz; < v A x1 < u;. Assume
that for j < ¢, z; and u; are defined. Let u;;1 be a successor of v distinct from
Uy, .. wi. Since wRxr; < vRu;yq holds, we also have wRx; Ru; 1. Hence by the
Le™-property there is a node x;,; such that

wWRTi1 X T ATy X Uigre
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Since x;11 < x; < v, we also have x;; < v. Thus x;,; has the desired properties.

(v) The direction from right to left. An adequate set X is called Le-adequate if it is
the single closure under O of an adequate set which is of the form {\/ Z | Z C X,}
for some set Xy which does not contain formulas of the form AV B. Xj is called
the base of X. If I, | A, there is a finite Le-adequate set X which contains
A, and such that there is an X-saturated set I' which does not derive A. For the
base of X just take the set X of all subformulas of A (and their negations) minus
the disjunctive ones. Consider the model (W, <, R, V'), where W, < and V are
defined as on the iLe-canonical X-model, and R is defined via

wRv =,, YZ C X, (if OV Z) € wthen 37; € Z(Z;,07Z; € v)) A
JOB € v (OB ¢ w).

First, we show that
forall Be X: wlF Biff B € w. (4.4)

And second we show that the given frame is an Le-frame. This will complete the
proof, because is easy to see that it is a transitive conversely well-founded brilliant
frame. Just consider singleton sets Z in the definition of R.

The proof of (4.4). We need some notation. Let ¢ range over all functions on
{Z | Z C XogNZ # 0} for which 0Z € Z. For any set z, x, denotes the set
{oZ,00Z | O(\| Z) € x}. Note that if w and v are X-saturated, then

wRy iff 3030B ¢ w (w, U{OB} C v). (4.5)

For the proof of (4.4) the only nontrivial step is the direction from left to right in
the case that B = 0OC. Assume OC ¢ w. It is clear that the property

() zC

is an iLLe-extendible property w.r.t. X. We show that if for all o we have w,uU0C
C, then w F OC. Then we can conclude that there is a o such that *(w,, 0C).
Clearly, any x-extension of w,, 0C" is an X-saturated set v such that C' ¢ v and
wRv. This would show that w Iff OC.

Arguing by contradiction suppose that for all ¢ we have w,,0C = C. Let
Zy, ..., Zy be all the subsets Z of X, for which (\/ Z) € w.

Vo(w, F OC —=C
Vo(BoZy,...,B0Z, F

VoVB € Z,(BB,H0Z,,...,H0Z, + 0OC —C
Vo(\ pey, OB, 002y, ..., B0Z,

T
O
Q
1
Q

\/BEZ1 EB? Tt VBeZn LB
OV pez, @B), ..., 05, @B) = 0(3C = C).
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As K1 e O(V Z) = O(V e, @B), this implies that w = O(OC — C). Hence by
L also w F OC, a contradiction. This concludes the proof of (4.4).

To verify the Le-property, let wRv, vR = {uy,...,u,} and u =v Nuy N... N wy,.
We have to find a node 2 such that wRz and « C u. Let

E=\/{D e X,|ul@D}.

In order to find x, we will construct w, and B such that

wy, OB E, w, C v, DBGvﬂwm. (4.6)
Assuming (4.6) to be satisfied, we will show that there is a y such that

we, OB Cy Cu, VZ C Xo(if y = \/ Z then 3Z; € Z(Z; € y)). (4.7)

Then x = {D € X |y D} is X-saturated,  C u and by (4.5) also wRz. So it
meets our conditions. Therefore, it remains to prove (4.6) and (4.7).

Assuming (4.6) we show (4.7) as follows. Let Y7, Y5, ... be an enumeration of all
the subsets of Xy with infinite repetition. We construct sets x,, such that the
required y = J,, n.

r = w,U{0OB}
7 if VY
Tip1 = zU{\VY;, D} if x;FVY;, and D €Y; is such
that 2; U{\VY;, D} I/ E.

Now all x; are subsets of u. The set z is a subset of u since OB € v. Also w, C u;
formulae in w, come in pairs D,0D with D € X,. Suppose D,0D € w, and
either of D,OD ¢ w. Then u t/ ED, so D - E, and thus w, - E, which is not
the case. So D,0D € u. Assume we have already shown z; C u. If x; = x;,, it
is trivial; so let x;.1 = 2; U{\/ Y;, D}, and assume, arguing by contradiction, that
xip1 € w. Since z; F \/Y;, so u B \/Y;, thus \/Y; € u, this implies that D ¢ w.
Hence u I/ D; but then D+ E, and x;,1 = E, a contradiction.

Now we turn to the proof of (4.6). We have two cases.

Case OF ¢ v. If OF & v, then for all OB € v, all w, C v we have w,, OB t/ F;
for otherwise we have OF € v, since v = O(/\ w, A OB). Since wRv by (4.5),
there is a w, Cvand a OB € v N W hence we are done.

Case OF € v. We show that there is a w, C v such that w,, OF t/ E. This would
prove (4.6) with OF for the OB, since it is easy to see that OF ¢ w. Arguing
by contradiction, let us assume that for all w, C v we have w,, OF F E; then we
can derive the incorrect statement w = OF, as follows. Again, let Z;,... Z, be all
subsets Z C X, for which O(\/ Z) € w. First note that

Zi=\/ pv \/ D

DeZ;Nu DeZ;,Dg&u
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Hence also

Zi-EV v D.

DeZ;Nu

And thus
wko(EvV \/ @D).

DeZ;Nu
Now we reason as follows.

Vo( if w, C v, then w,, OF - E)
Vo(if w, C v, then BoZy,...,H0Z,,OF F E)
Vo(if w, C v, then \/ 5., BB, EH0%,,...,00Z, OF - E)

EVVperinn®D,...,EV\pey 8D, 0FFE

O(EV Vpezina @D), .., O(EV \ pey o, BD) - O(OFE — E)
wk O(0OF — E)

wk OE.

This completes the proof of (v). O

4.4.1 Conservativity

As promised, we show that iLe is also complete with respect to finite gathering
frames. This implies that iP4 is conservative over iLe with respect to formulas in
LO. (A theory T is called conservative over T" with respect to formulas in L if T
derives every formula in £ that T derives.) As was explained in Section 4.4, we
cannot have both gatheringness and brilliancy.

As explained before, the fact that iLe is conservative over iP4 with respect to
formulas in £, shows that in the absence of other principles, the Disjunctive
Principle does not capture more of the Disjunction Property than Leivant’s Prin-
ciple. In the next chapter we will see that this no longer holds in the presence of
principles like the Formalized Markov Scheme: in Section 5.4, we show that iPH
derives O((O0A — A) vV —--0OB) — O(A v OB), while the logic iH does not derives
this principle, although it contains Leivant’s Principle and the Formalized Markov
Scheme.

4.4.2. Proposition. t; o A iff A is valid on all finite gathering frames.

Proof Suppose I/j o A. Let M = (W,<,R,V) be a finite brilliant Le-model
which does not validate A in some node b. We define a new relation R C Ron W
such that the the model M' = (W, %, R', V') has a gathering frame and validates
the same formulas as M.
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Intuitively we ‘erase’ those modal relationships R between elements which violate
the gatheringness of the frame, i.e. between nodes w, v such that there is a vRu
with v £ u. That is, we define

wR'v =,,, wRv and Yu(vRu — v < u).
To prove that M, w IF B iff M',w I+ B, is straightforward once one knows
wRv — w(R;%)v.

We will show this last fact. Let S(x) be short for Yu € W(xRu — x < u). Now,
assume wRv. We show that there is a node v" with wR'v' < v, that is, with
wRY" 5 v and S(v'). The idea is as follows. By the Leivant property there is a
node x; below v and all its successors (in M), and such that wRxy. If 21 = v,
we have wR'v and are done. If x; # v we consider a node x5 below 7 and all its
successors, and such that wRz;, which again exists by the Leivant property. If
9 = x1, we can take v' = xy. If x5 # x; we consider a node x3 which is below x5
and all its successors , and such that wRux3, etc.

More formally, we construct a sequence of elements v = a1 = a9 = ... in W
such that for all i, it holds that wRx;. And such that if S(x;) does not hold,
then (x; # x; 1). As M is finite this implies we can find an element x; with the
desired properties. We show how to construct x,,; from z,. If S(x,) holds, put
Tpi1 = Tn. If S(z,) does not hold, x,,; is a node which is below x, and its
successors, and moreover such that wRwx, ;. o

4.4.3. Corollary. The logic iP4 is conservative over iLe with respect to formulas
in L.

4.5 Montagna’s Principle

The logics iIPM is axiomatized over iP by Montagna’s Principle
Mp A>B — (OC — A)>(0C — B).

We show that Mp corresponds to the Mp-property defined as
(Mp-property) wRv < u — Ix(wRr Av <o S uAxR CuR).

Then we prove that iPM is canonical.

If a principle corresponds to a frame property in which expressions like zR C yf%
occur, like Montagna’s Principle, then for a proof of its canonicity we need to
know what xR C yR means on the canonical model, i.e. in terms of saturated
sets. This is the content of the following lemma. Note the difference with the
language L, in which case wy C vy iff vR C wR. The proof is similar to the
proof of the following lemma.
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4.5.1. Lemma. In any canonical model: vR - wR iff wg Coug.

Proof First the direction from left to right. Suppose OA € w while OA € v. By
Lemma 3.4.3, the property

() v a>A,

is an extendible v-successor property. Note that *({T}) holds, and let u be any
x-extension of {T}. Clearly, vRu, and A ¢ u hence w(R;<)u cannot hold.

For the other direction, assume wg C vn and vRu. We have to construct a node
u" such that wRu' C u. By Lemma 3.4.3, the property

() for all A: wk a>A implies A € u,

is an extendible w-successor property. Clearly, x({T}) holds. Therefore, any
x-extension of {T} will do for «/'. O

4.5.2. Proposition.
(i) The principle Mp corresponds to the the Mp-property.

(77) The logic iPM is canonical.

Proof We prove part (ii) of the proposition and leave (i) to the reader. Consider
wRv < v in the iPM-canonical model. Define the property

*(x) forall A: w bk ax>A implies A € w.

It is easy to see that *(-) is an iPM-extendible w-successor property. Thus if
#(v U ug) holds, then any x-extension of v U um is a node z such that wRx
(Section 3.4.4) and v < « < u and 2R C uR hold (Lemma 4.5.1). Thus it remains
to show that *(vUwun) holds. This follows from the fact that for all finite subsets
' Cvand A C ug, and for all B we have that w = I', A>B implies B € u.
Therefore, suppose that for some such I'; A, B it does hold that w F I', A>B.
Replace A by the equivalent OA where A = (A{C | OC € A}). Then

w F T,04>B
(0A —- AT ADA)>(0OA — B)
I'>(0A — B).

This implies that (OA — B) € v, whence that B € u. o
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4.6 Visser’s Scheme
The logic iPV is axiomatized over iP by Visser's Scheme which consists of the
principles Vpy, Vs, ..., where

n

Vpn (/\(A, — Bi) = Apy1 V An+2>l>(/\ Ai = Bi)(Ar, ... Ayp).

i=1 =1

Recall that (A)(By,..., B,) is defined as

(A)(B,Cr, .., Co) =ay (A)B)V (A)(Ch,... )
(4)(L) =ur L

(A)(BAB) =u (A)(B) A (A)(B)
(A)(OB) =,; OB

(4)(B) =.; (A= B)

B not of the form L, (C'AC") or OC.

In Section 2.3 we discussed the meaning of Visser’s Scheme and its relation with
the admissible rules of HA. In Section 3.2 we discussed the workings of the scheme.
In this section we show that Visser’s Scheme Vp corresponds to a certain frame
property Vp>, and that the iPV-canonical frame has a stronger frame property.
This proves that the logic iPV is complete. We also prove that in combination
with Mp the logic is complete with respect to a class of frames which have a
more elegant property, which will be called the Vp-property. In Section 4.6.1 we
show that iPV, does not derive Vp(,41), a result which does not play a role in the
completeness proof of iPH. Of course, this result shows that Visser’s Scheme is an
essentially infinite collection of principles. In Section 4.6.2 we treat the Formalized
Markov Scheme, which is derivable in iPMV.

For the frame characterization of Visser’'s Scheme we need the notion of a tight
predecessor. We will first give the intuition behind it. Let v, u range over finite
sets of nodes, and write e.g. = < v for ‘for all v € v(x < v)’. Consider two main
instances of Visser’s Scheme (see also Section 2.2):

(\/ ﬁﬁmAi)>(\/ OA). (4.9)

The second one is treated in Section 3.3. The first one arises if we restrict Visser’s
Scheme to pure propositional variables, the second one if we restrict it to boxed



78 Chapter 4. The principles

formulas and L. These two principles are related to two parts of the frame charac-
terization of Visser’s Scheme. It is easy to see that (4.9) is valid on frames which
satisfy

wRvRG — 3z (v =< o AzRaA-Tylz < y)). (4.10)
Formula (4.8) holds on frames which satisfy
wRv v — dx(v e 0AVy =23z €0(2 X y)). (4.11)

We show this for n = 3. If for nodes wRv in such a frame we have v I+ ((p; —
q) = p2Vps), and not v I+ (p; — ¢) — p; then there are nodes uy, us, ug = v that
force (p; — ¢) and such that u; does not force p;. Let o = {uy, us, u3} and let x
be the node such that v < < v and such that for all y > z, it holds that u; < y
for some i. Observe that = forces (p; — ¢) but that it does not force (py V p3),
contradicting the assumption that v forces ((p1 — ¢) — pa V p3). For arbitrary n
the reasoning is the same.

The combination of the two frame properties above leads to the frame property
with respect to which Vp is complete. However, Vp does correspond to a weaker
property, which will be called the Vp™-property. This is best illustrated by the
discussion on formula (4.8) above. Namely, one can weaken (4.11) by requiring
that all nodes y above x are either below all nodes in @ or above at least one node
in v:
wRv v — (v 0AVy =2y oV Izen(zxy))).
The same reasoning as above shows that Vp is still valid on frames with this
property.
Tight predecessors (in modal logic)
We say that a node x in K is a semi-tight predecessor of v holding u, if
<L UAzRUAYyY = 2(3z € 0(2 K y) V (y < 0 AyRa)).
It is called a tight predecessor of v holding @ if in addition there holds the stronger
Vy > 23z € 7(z K y).
If in addition we have

végxfm’/\Vy>xElz€17(z$y),

then x is called a tight predecessor of v for v.

We call a frame (model) a Vp™-frame (model) if it has the Vp*-property:

(Vp™-property) for all finite sets of nodes 7, u: wRvAv <0 AvRu —

Jz = v(x is a semi-tight predecessor of © holding @).
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An inspection of the Vp™-property will convince the reader that there are hardly
any finite models that have this property.

Observe that if one reads tight for semi-tight in the Vp®-property, it expresses
(4.10) if © is empty, and (4.11) if @ is empty. To show that iPV is complete with
respect to Vp*>-frames we need the following lemma (compare Lemma 4.5.1 and
the discussion just before it).

4.6.1. Lemma. In any canonical model: wRwv iff for all OA € w, A € v.
Proof Only the direction from right to left. Let %(-) be the property
x(y) for all A: wF y>A implies A € v.

By Lemma 3.4.3, % is an extendible w-successor property. It is easy to see that
(o) holds, where uy = {A | OA € w}. Let u be the x-extension of ug. Clearly,
wRu < v holds. o

4.6.2. Proposition.
(1) Visser’s Scheme corresponds to the Vp*-property.
(77) The logic iPV is canonical.

(7ii) The canonical model iPV satisfies the following property which is stronger
than the Vp>-property:

for all finite sets of nodes v, u: wRv Av < v AvRu —

Jz = v(x is a tight predecessor of © holding u).

Proof We often use lemma 3.2.1 (7) without mentioning. (i) First we show that Vp
holds on a Vp>-frame. Suppose wRv and v Iff (A)(Dy,...,Dyi2) hold, for some
A= A_,(D; — E;), on some Vp®-frame. We show that v [ (A — D1V Dpya).
Assume D; = B; A OC;, where B; is not of the form OC. From the assumption
it follows that v If (A — B;) A OC;, whence either v If OC; or v If (A — B;).
Therefore, there are finite sets of nodes ¥ and @ such that for all 7+ we have that
either there is a node x € w with vRx and x Iff C; or there is a node x € v with
v<x vl Aand x If B;. Let v and u be a smallest pair of sets with these
properties. Let u > v be a semi-tight predecessor of v holding u#. We show that
wlF A and wlff (Dpi1V Dyyo). This will prove that v Iff (A — Dypi1V Dyio).

To see that that u Iff (Dyq1V Dpya), note that for i = n +1,n + 2 we have that
either there is node x € w with x If C; or there is a node x € v with x IF A and
& I B;. In the first case we have that uRz, and hence u If OC;. In the second
case we have that u < = and thus u If (A — B;). Hence in both cases we can
conclude u Iff D;. To see that u I A, consider y % u. Then either y < v and y R,
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or z < y for some z € U. In the last case y forces A because all nodes in ¥ force A.
In the first case, it suffices to show that for all ¢ < n, we have that y I B; A OC;.
Note that for all ¢ < n either there is node x € @ with x Iff C; or there is a node
¢ € v with 2 IF A and 2 If B;. In the first case we have that yRz holds, and
whence y I OC;. In the second case we have y < x, and therefore y I} B;. Hence
in both cases we can conclude y I D;.

The other part of (i) follows from part (i) of Lemma 4.6.4; a frame which does
not have the Vp™-property does not have the Vp,-property, for some n.

(#7) This follows from (ii).
(i7i) Consider nodes wRv, v < vy, ..., v, and vRuy, ..., u,, in the iPV-canonical
model. Let 0, % denote v1 N...Nwv,, and u; N...Nwu, respectively. First note that

in general v and @ are not saturated. Therefore, they are not necessarily nodes in
the canonical model. Let

A={(ENOE = F)|FciA(E¢iVE &)}

(Thus in particular the implications (E — F') and (OE — F), for which F' € ¥
and respectively E ¢ v and E ¢ u, are in A.) Note that A C 9. Let %(-) be the

property
() cFAV...VA,VvOB V...VOB, implies 3i (A4; € 0 or B; € @).

Clearly, *(-) is an extendible property (Section 3.4.4). We show that (v U A)
holds. Let C' = A, V...V A, VOB, V...V0OB, and suppose v UA F (. This
implies that there is a conjunct D = A", (E; — F}) of implications in A, such
that v = (D — C). Thus (D — C) € v, because v is saturated. Since

(D — C)D(D)(El, - .Ek,Al, - .,Am, DBI, cey DBn>,

also (D)(FEy,...Ex, Ay,..., Apn, OBy, ...,0B,) € v. From the construction of A it
follows that v does not contain any of (D — E)AOFE’, for E; = EAOE'. Therefore
v contains either (D — A;) or OB; for some i. This proofs that *(vUA) holds. Let
u be the x-extension of v U A. As described in Section 3.4.4, u is saturated. We
show that u is a semi-tight predecessor of ¥ holding u. Clearly, v S u < vy,...,v,
holds, and by Lemma 4.6.1we have uRu;, for all i.

It remains to show that
Vy = udi(z'v; < y).

Arguing by contradiction, suppose u < u’ for some saturated set u’ and assume
that no v; is contained in «’. For all i < m, we choose a formula A; € v; outside
u'. Then the formula (A; V...V A.,) is in © but not in «’. From the construction
of u, and the fact that u' is a superset of u, it follows that there is a formula
(EANOE') € v such that either E ¢ 0 or E' € 4. Now (EAOE — A1 V...V A,)
is an element of A, thus also of u. Hence (A; V...V A,) should be in «/, a
contradiction. This proves that iPV is canonical. o
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We saw that Vp is complete with respect to a stronger frame property than the
property to which it corresponds. On frames for which for every two nodes = < y
there is a node x < z < y such that there is no node z < 2z’ < y, the two frame
properties coincide. Since the canonical model has such a frame, (iii) follows in
fact from (ii).

In the presence of Montagna’s principle

Happily, in the presence of Montagna’s Principle, Visser’s Scheme has a more
compact characterization. It is given by the following property

(Vp-property) wRv L v1, ..., 05 —

Jr(vx o< V1, Um AVR C 2R AYY - x3i(v; L y)).
Recall that in this case x is called a tight predecessor of vy,...,v, for v. The
following corollary of the previous lemma plus the canonicity of Montagna’s Prin-

ciple (Proposition 4.5.2) shows that the logic iPMV is complete with respect to
Mp Vp-frames.

4.6.3. Corollary. Any canonical model of a logic containing the principles Mp
and Vp has the Vp-property.

Proof The proof is analogous to the proof of the canonicity of iPV above. Consider
wRv L vy,...,v,. The set A will now be

A={(ENOE' - F)|FeoAN(E¢€0oVOE €v)}.
In the same way as in the proof of Proposition 4.6.2, define a property
() cF A V...VA,VvOBV...VOB, implies 3i(4; € v or OB; € v).

and construct a node w via this property. This leads to a node u such that
v u<v,...,u, and ug C vgy. Applying Lemma 4.5.1 gives vR C uR.
Following the proof of Proposition 4.6.2 it is easy to see that u has the desired
properties. o

4.6.1 The independence of Visser’s Principles

In this section we show that iPV, does not derive Vp,41). The proof is rather
unpleasant but we think that the result needs to be established. It implies that
Visser’s Scheme is infinite in an essential way. The result does not play a role in
the next chapter on the completeness of iPH.

This proof is based on the fact that iPV, is complete with respect to frames which

satisfy the Vp,-property:

(Vpy-property)  for all finite sets of nodes 7, =0 U , 4y =aUu_
such that |0 + |a| < n, ||+ |a_| < 2: wRvAv <04 AvRuy —
3z = v(zr S 0y AzRig AVy = 2(3z € 54(2 < y) V (y < 7 A yRa))).
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Note that in the formula above, if |0_|+|u_| = 0, then x is just a tight predecessor
of v holding w. Thus a frame which satisfies all Vp,-properties has the Vp™-
property (Section 4.6). This is what we expect, since Visser’s Scheme, which
corresponds to the Vp™-property, consists of all principle Vp,.

Before we treat the completeness proof for Visser’s Principles we clarify the differ-
ence between the Vp-property and the not very elegant Vp,-property. To make
the discussion more transparent, we forget about the special treatment of boxed
formulas in these schemes. Therefore, consider the following principle which is a
special instance of Vp:

(A = B) — Ay vV Ag)> \?)/((Al — B) — A;).

=1

If we look for the minimal requirement on frames for which they validate this
principle, we arrive at the following property

wRy X vy, 09,03 —
(v e L v, 0,03 AVYy = a((vuxyVos <y Vy < u)).

(v1 is © and vg, v3 is U_ in the definition of the Vp,-property above.) We do not
prove that the principle corresponds to this property, but it is instructive to see
why the principle is valid on these frames. Suppose v forces ((4; — B) — A3V Aj)
but not (A; — B) — A;. Select nodes v; = v such that v; I (A4, — B) but
v; I A;. To derive a contradiction, we use the existence of a node x such that
v < x < v, ve,v3 and for all y > x, we have ((v2 K yVu3 < y)Vy < v1). Namely,
since = X vs, v3, it follows that x |f (A2 V A3). We show that z IF (A, — B), and
then we have a contradiction with v < 2 because v IF ((4; — B) — Ay V Aj).
Therefore, consider y »= x and assume y IF A;. From y = x it follows that y = x
or (y x vy Vg gyVug<y). Thus (vy < y Vs <y). But then y IF (4; — B),
and whence y IF B.

The example above showed that the sets ¥ and @_ correspond to the formulas
Apy1 and Ap 4o in the principle Vp,. In the example it could be that v; = wvs,
in which case v_ = wv3. This explains the requirement |o_| + |u_| < 2 in the
Vpp-property.

4.6.4. Lemma.
(i) The principle Vp, corresponds to the Vp,-property.
(77) The logic iPV, is canonical.

Proof (i) We only show that any frame which does not have the Vp,-property
has a valuation which refutes Vp,. Consider such a frame F. We leave it to the
reader to check that if, in the Vp,-property above, we change the words ‘for all
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finite sets of nodes o, = 0UT_, 4 = @Uu_ such that |0|+|a] < n, [0_|+|a_| < 2’
to ‘for all finite sets of nodes v, = v U v_,u; = w U u_ such that
Vo € 1,.Vy € i_ =(xRy) and Va € i¥y € @ —(zRy) and (4.12)
Vo,ycvg(z £y = (x AyAy &)
and 0]+ |a| < n, |[v_|+|u_] <2, we still have an equivalent property. Therefore,

we can conclude that in F there are finite sets of nodes v, =09 Uv i, =aUu_
such that (4.12) holds and || + |a| < n, |0_| + |u_| < 2, for which

wRY < T4 ARG AV = v(u £ Ty V —(uRa) V (4.13)

' = u(Ve € vy (z L u') A (v £ 0V —(u'Ra)))).

Observe that if both © and @ are empty, (4.13) cannot hold. For if so, then there
exists a node u’ = v such that v’ £ v or =(u'Ru) holds, quod non. We have to
consider three cases: (a) v, = {v'}, @y is empty, (b) uy = {v'} and v, is empty,
(¢) both 74 and %, contain at least one node or one of them contains at least two
nodes.

(a) In this case (4.13) cannot hold (take u = v').

(b) If w is empty, (4.13) cannot hold (take u = v). If u = u,, by (4.13), for all
x = v, if xRy’ there exists 2’ = x such that 2’ Ru’ does not hold. Define the
valuation

riEp=,0 4.

Clearly, in this model v If Op holds. We show that v IF =—Op holds, and this
proves that Vp; does not hold on the frame. To see that v IF —=—Op, consider
x = 7y. We have to show that = | =0Op. By assumption there exists a node x’ > x
such that 2/ Ru’ does not hold. Hence ' IF Op, and thus z [ =Op.

(¢) To define a valuation which is going to refute Vp, on F, we want that either
@ contains at least one element or that ¥_ contains two elements. First we show
how we can amend o_ and @_ in such a way that this holds, while keeping (4.13)
and (4.12) valid. If a_ and v_ are empty, we take x1,29 € 0, y1,y2 € @, and
redefine . =y, & =y, or 4 = Yy, Y2 Or U = w1, 2y (if 13 # x5). Let us see
that, depending on ¥ and %, nodes can be chosen such that this can be done and
such that (4.13) and (4.12) hold for the new @, @. If 4 is empty and 7 = x there
are two possibilities. If v contains a node y # = we redefine v_ = x,y. If not,
v = v_ = x. By assumption u contains at least one element y. If for all y € u,
xRy, then (4.13) cannot hold (take u = z). Take y € @ for which xRy does not
hold and redefine #_ = y. This shows that from now on we can assume that u_
contains at least one element or that ¥_ contains two elements.

We only treat the case that both o and @_ contain one element, the other cases
are similar. Let ¥ = vy, ..., 0%, & = U1,..., Uy, and U = Vpi1, U_ = Uyy1. Define
a model on the given frame via the following valuation:

rlbp, =. x4

rlFqg =u. vi<a, forsomei <k+1

rlbr, =, & u.
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Let

k m

A= /\(pz — Qz) VAN /\ —r;.

i=1 i=1

We show that v IF A — peoy V Orpar, v F (A)(P1y - ooy Py, O71, -0, Oryr). To
see that the second statement holds it suffices to see that v; I+ A, v; Iff p; and
u; I r;, which we leave to the reader. We prove that v I A — pryy V Orpg.
Consider a node u 3= v such that u |- A. Hence for all i < m, «' = u, u'Ra.
Furthermore, for all i < m, u' = u, if v’ £ v; then v’ IF ¢;. In particular,

Vu' = u((v' < 0 AGRD)V Ix € Ty (x < u)).

By (4.12), 3z € 0, (x < u) implies that not uRu,, 1. Therefore, we can conclude
u < T or not uRuUmyi. All together this leads, by (4.13), to u # veyy or not
ufm’umﬂ. Hence u IF pgy1 V Orypaq; what we wanted to show.

(i7) Assume that in the iPV,-canonical model we have wRv Av < vy, ..., vpy; and
vRui, ..., Upyj, for some k,m,i, 7 such that & +m < n i+ j = 2. The proof
that there is a node w which is a tight predecessor of vy, ..., v holding uy, ..., un
and such that v < vgq1,. .., kg and uRUp1, - . ., Upyj, is similar to the proof of
Proposition 4.6.2. The only difference occurs in the definition of the set A, which
we define in this case as follows. Let 0 = vy N ... Ny, and v* = vy N ... Nk, and
U=urN... Uy and u* = u; N ... Upyj, and let

A={(E—=F)|Fev" NE¢o}YU{(QE - F)|F € v* AE ¢ 01}
Let () be the property
w(x) A V... VA,vOB, V...V OB, implies 3h (A, € v* or By, € u*).

In a similar way as in Lemma 3.4.3 one can show that *(-) is an extendible property.
We show that x(v U A) holds. Let C' = A, V...V A,vOB, V...V OB, and
suppose v U A = C. This implies that there are conjuncts Dy = ﬁj:l(Eh — F)
and Dy = \’_,(DOE, — F}), such that F,, F € v* and E}, ¢ 0 and E}, ¢ . Let F
be the conjunction of all Fy, Fy, and let H, = (\/y, 4, Ep) and H) = (VE;Leup E}).
Clearly, F' € v*, H, € v, and H}, ¢ u,. Define a new conjunct of formulas in A:
k m
D= \(H,— F)A \(2H, — F).

p=1 p=1
We have v F (D — (') and thus (D — C') € v. Since
(D — C)>(D)(Hy,...,H,OH,,...,0H,,  Ay,...,A,0By,...,0B,)
and £+ m < n, also

(D)(Hi, ..., Hy,0OH{,...,0H, ,Ay,..., A, 0By,...,0B,) € v.
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From the construction of A it follows that v does not contain any of (D — Hj) or
OH,. Therefore v contains either (D — Ap) or OBy, for some h. This proves that
«(vUA) holds. Let u be the x-extension of vUA. The proof that u has the desired
properties is similar to the corresponding part in the proof of Proposition 4.6.2
and is therefore left to the reader. O

4.6.5. Corollary. For all 0 < m < n, Hipy., Vp,.

4.6.2 The Formalized Markov Scheme

The logic iMa is axiomatized over iK by the Formalized Markov Scheme
Ma 0O--(0A —\/OB;) - 0(04 — \/0B)).

Recall that the Formalized Markov Scheme is the partial formalization of Markov’s
Rule (Section 2.5). In Section 2.2 the relation between this rule and Visser’s
Scheme was explained. In Section 3.3 we saw that Ma is derivable in iPMV.

In this section we show that iMa is complete with respect to frames with the
property

(Ma-property) wRv — Jx € Top (wﬁ’x AvR = zR).

Recall (Section 3.4.2) that a node in Top, a top node, is a node x such that there
is no node y with x < y. Note the similarity between the frame property for
the Formalized Markov Scheme and property (4.10) discussed in Section 4.6 on
Visser’s Scheme.

A top node x for which wRx and vR = xR hold will be called a markov-node for
the pair (w,v). On brilliant frames the Ma-property reads

wRv — Jx € Top (WRx AvR = xR).

Note that the logic iMa cannot be complete with respect to gathering frames
which satisfy this stronger property. Since in such frames every top node which is
a successor, satisfies 0L, the formula O-—0O_L holds on such frames.

Before we give the completeness proof for iMa we need a lemma.

4.6.6. Lemma. For the logic iMa we have that if A = {D | ' = OD}, for some set
[, and the set of formulas A, 0A,,..,0A4,,-0By,..,~0B,, is inconsistent, then A
derives (A OA; — \ OB;).

Proof The first derivation shows that from the inconsistency of the formulas
A,04y,..,04,,-0B,..,~0B,, it follows that A =\, =~(OA A — \V/ OB;).

A,0OA,,..,04,,-~0B,,..,-0B8,, '_iMa 1
A, OANA;,-OB;...,-0B, Fma L
A l_IMa D/\AZ —>_|_|\/E|BZ'
A l_IMa _l_|(\:| /\ Az — \/ DBl)



86 Chapter 4. The principles

The following derivation shows that A Fi\, ==(O0A A; — \/ OB;) implies that

l_IMa _l_l(D /\Az — V DBZ>
FiMa O—(OA A4 — VOB;)
FMa D(OAA — VOB
}_IMa D/\Al —>V|:|BZ

}_IMa /\ DAZ' — v OB;.

[ s sl P

Note that the second step of the last derivation is the only place where the For-
malized Markov Scheme is used. The special form of A is used in the first and
the third step of the last derivation. o

4.6.7. Proposition. In L7:

(7) On finite frames Ma corresponds to the Ma-property.

(77) The iMa-canonical model has the Ma-property.

Proof (i) Only the direction from left to right. Let F be a finite frame which
does not have the Ma-property; there are w,v,uq,..,u, with wRv and vR =
{uy, ..., u,} and

Va € Top(wRz A xR C vR — vR € xR)).

Let T; = {y | wRy A yR C vR A ~yRu;}. Define a valuation on F via

xlEp =, vRx
rlibg = eT, (yf%x)

We show that with this valuation, w |- O—-=(0Op — \/ O¢;) and w I (Op — \/ Og;).
The last part is obvious, since wRv and v IF Op. That v I Og; for all 7, follows
from the fact that u; I ¢;, for all 7. Therefore, consider any top node y above
some successor z of w. It suffices to show that y I Op — \/ Og;, because this
would imply z IF ==(0Op — \/ Og;). Note that wRy. If y IF Op, then yR C vR.
Hence, by assumption, =y Ru;, for some i. Therefore, y € T}, and thus y I Og;.

(i7) Let (W,=<,R,V) be the iMa-canonical model. Let w,v be two nodes such
that wRv. We show that there is a fop node x such that wRx and vR = zR.
Let A = {D | OD € w}. It suffices to show that the set A vy, {-0F | OF ¢
v} is consistent, as any maximal consistent extension of this set will have the
desired properties. If it is not consistent, there are OF,, OF,,...,0F, € v and
OBy,...,0B8,, € v such that A, 0By, ...,0B,,,~OF,;...,-0OF, is inconsistent.
But then lemma 4.6.6 implies that A = A OB; — \/ OF;. Hence (OFE,V...VOE,)
is in v, and that cannot be. o
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4.7 Independence

In this section we explain why all principles discussed above are independent. We
call two principles A and B independent if they do not derive one another. In
particular, if A is a principle of the preservativity logic then we say that B is
independent from A if iPA I/ B, i.e. if B is not derivable from A in the system
given by P1, P2 and Dp and the rules Modus Ponens and the Preservation Rule.
If A is a principle of the provability logic, we say that B is independent from A if
A F/ B, ie. if B is not derivable from A in the system given by K and the rules
Modus Ponens and the Necessitation Rule.

To show that B is independent from A it suffices to show that there is a model for
A on which B is not valid. If A is complete with respect to some class of frames,
this model can be obtained by giving a valuation on such a frame such that B is
not valid under this valuation. Using the results in this chapter it is easy to prove
the following proposition.

4.7.1. Proposition.

(i) The following principles are independent: Léb’s Preservativity Principle,
Montagna’s Principle and Visser’'s Scheme. Lob’s Preservativity Principle
derives the principle 4p.

(77) For all n > m, the m-th Visser’s Principle Vp,, does not derive the n-th
Visser’s Principle Vp,,, and Vp, derives Vp,,.

(77i) The following principles are independent: Ldb’s Principle, Leivant’s
Principle and the Formalized Markov Scheme. Lob’s Principle as well as
Leivant’s Principle derive the principle 4.

(iv) Lob’s Preservativity Principle derives Lob’s Principle. The principle 4p
derives the principle 4 and Leivant’s Principle. Montagna’s Principle and
Visser’s Scheme derive the Formalized Markov Scheme.

Proof (i) As explained above this follows easily from the completeness results in
the previous sections. That Lob’s Preservativity Principle derives the principle 4p
is shown in Section 4.3.

(i7) This is Corollary 4.6.5.

(i4i) As explained above this follows easily from the completeness results in the
previous sections. That Lob’s Principle derives the principle 4 is explained in
Section 4.3.1.

(iv) These statements are proved in Section 3.3. O






Chapter 5

Completeness

In this chapter we show that the logic iPH which we conjecture to be the preser-
vativity logic of HA is complete with respect to the gathering conversely well-
founded Mp Vp-frames (Section 5.1). In Section 5.2 we use this result to prove
that some rules are admissible for iPH. These two sections are the heart of Part
I. In Section 5.3 we return to the logic iH in the language L. There we present
a completeness proof for iH with respect to the class of finite transitive irreflexive
brilliant Le Ma-frames. In Section 3.3 we showed that iH is contained in iPH. In
Section 5.4 we use the completeness proof for iH to show that iPH is not conser-
vative over iH with respect to L. Thereby we disprove the conjecture that iH is
the provability logic of HA.

5.1 Modal completeness of preservativity logic

First we sketch the completeness proof for iPH.

Proof sketch

For formulas A that are not derivable in iPH we have to show that there is a model
that refutes A and which has a gathering conversely well-founded Mp Vp-frame.
To construct such a model we use the construction method (Section 3.4.5) with
respect to a certain finite adequate set X. As expected, the resulting model will
in general be infinite, since most of the frames which validate Visser’s Scheme
are not finite (Section 4.6). We use four subconstructions 3,4, ¢, €. Each of them
expands a frame by adding nodes from the canonical model to it in an adequate
way. We will explain how they select these nodes. To ensure that the new nodes
x have certain properties we require that a, has the corresponding properties in
the canonical model. For example, if we demand x < o, then we choose «a, in
such a way that a, < a, holds in the canonical model. If 2R C oR is the desired
property, we demand that (a,)n C (a,)n. Note that by Lemma 4.5.1 this is

89
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equivalent with a,R C o, R.

The construction 3 choses nodes o * (B — C') and o * (B>C') as is usual in the
construction method. In combination with J, the construction ( ensures that the
final frame has the Mp-property (Section 4.5): for nodes o RT < 7' it constructs
a node a = o % (m,7,7') such that in the final model cRa and 7 < a < 7" and
aR C 7R hold.

In combination with ¢, the construction ¢ ensures that the final frame has the

Vp-property (Section 4.6): for nodes cRT < 7,...,7, it constructs a node a =
7% (v,71,...,Ty) such that in the final model v < @ and «a is a tight predecessor
of r,...,r, for 7.

The construction d is an addition to both ¢ and &. If we want 7R C 7'R to hold in
the final model and we add a node 7 R7”, then & constructs a node a = 7’ (m, 7")
such that 7' Ra < 7. Therefore, 7’ R7" will hold. The discussion above shows that
we have to ensure that 7R C 7'R holds in the following cases: 7 = o % (m, 7, 7')
orm=o0x*(m,n')or 7 =mwx(v,T1,...,Th).

The following tricks are used in the construction in order to guarantee that no
unnecessary nodes are selected. The reader interested in the construction but not
in the complications which arise from this attempt for efficiency can skip these
details.

If we want to guarantee that 7R C 'R we do not have to add a node 7’ (m, 7")
for all the nodes 7 with 7 R7". For example, it could be that 7' R already holds.
Therefore, we will define a property *(m, 7', 7") that holds exactly when we want
TR C 7'R to hold, and 7Rx" holds but not ' Rz”. For a similar reason, we define
properties x(o, 7, 7') and o(7, 7, ..., 7,) which holds exactly when we have to add
nodes o x (m,,7') or 7 x (v, Ty,...,T,) respectively. To recognize if * or * hold
we use a function 7. If for example o R7T < 7' holds but 7 = o * (m,7'), then
we do not have to add a node o x (m,7,7') since 7 itself will have the desired
properties. The same holds for instance in the case that 7 = o x (m, 7, ') and
' = o % (m,7"). We let the function 7 cover all these cases by defining (o)
inductively as: if 0 = ¢" x (m,7,0") or 0 = ¢" x (m, '), then (o) = ~(0'), and
v(0) = o otherwise.

We use one device more to lower the number of nodes we have to construct. We let
R and <" be one-step relations: intuitively, we have o R7 if there is no o RT' R,
and similarly for <”. We let < be the transitive closure of <” and define R*
and <* as the minimal extensions of R and < for which R* is gathering and <*
is a partial order and (x*;R*) C R* holds (Lemma 5.1.3). For example, when
oRo'(x";R)T we put o R*¢' R*1 and ¢’ <* 7. The relations R* and <* will be the
modal and intuitionistic relation in our final model. The use of R and <" is best
illustrated by an example. Suppose we have to define a node o x (m, 7, 7’), and
o R*1 holds and o R does not hold. It follows from the definition of R* that there
is a node o'R7. We only construct the node ¢’ % (m, 7,7') and observe that also
oR*0’ x (m,7,7"). Hence o’ x (m,7,7') has the desired properties of o * (m, T, 7")
in the final model. Therefore, the latter node does not have to be constructed.
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Finally, in construction § we select the nodes a = 7’ * (m, 7"} in such a way that
(az) o = (o) o. This allows us to ensure that 7R = aR in the final model. And
that guarantees that for the situation 7'Ra < 7", which arises from the definition
of a, we do not again have to add a node 7’ % (m,a, "), since the node a has
the same properties. Lemma 5.1.1 shows that we can choose «, as desired. This
completes the informal discussion of the completeness proof for iPH.

5.1.1. Lemma. In any canonical model of a logic containing Mp it holds that
if wg Covg AvRu then ' (wRY K uAu'y =up).

(By Lemma 4.5.1 this is equivalent with the property that if wy Cvg and vRu,
then there exists a node v’ such that wRv' < u and 'R = uR.)

Proof Let *(-) be the property
*(x) forall A: wtF x>A implies A € u.

In Lemma 3.4.3 we have shown that # is an extendible w-successor property (in
the lemma it is denoted with *) and that x(u ) holds. Let u’ be the x-extension
of ug. Clearly, v’ has the desired properties. o

5.1.2. Remark. In any gathering model,
if w'Rw < v1Rvy < v3Rvy < ... v, then, for all 4, w < v;.

This can be easily seen, using the gatheringness and the fact that (x;R) C R.

The relations R* and <*

Let R and < respectively be a binary relation and a partial order on a finite set WW.
We define relations <* and R* which are the minimal extensions of < and R such
that R* is gathering and (*;R*) C R* holds. The idea behind these extensions
is given by Remark 5.1.2. We define <* and R* via

wRv =, Jr(w g eRo) V3. xyy (v Ly < oA
ANY'Ry ANw < x1Rxy < x3...2,Rv)

w=xv = wgoVIzyzZ(w Lz L e ANZRzAw L 2Ry K v).

We write R* for (R*;<*). The first disjunct in the definition of R* arises from
the fact that we want to have (x*;R*) C R*. The second disjunct arises from
the fact that we want R* to be gathering. Namely, by Remark 5.1.2, ¢ Ry and
Yy < r1Rry < x3...2, implies y <* x,, since we construct <* and R* in such a
way that R* is gathering. Thus we have w < y <* 2, Rv, hence w(x*;R)v. As
we want to have (£*;R*) C R*, we have to demand wR*v. Similar explanations
apply to the definition of <*.
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5.1.3. Lemma. Let R and < respectively be a binary relation and a partial order
on a finite set W. If both

wRy *u— Jx(wR*s ANvx* o " uNa(x;R) C ué*)
wRy K* uy,y .. u, = (v P e L g, un A
v(x;R) C xR* AVy »* x(u; <* y, for some 7))
then (W, R*, 5*) is a gathering Mp Vp-frame.

Proof Although one have to check many cases, it is not difficult to see that
(W, R*,%*) is indeed a frame, (x* is a partial order and (5*;R*) C R* holds), and
that it is gathering. We show that

wR* <*u— r(wR*z Av <* ¢ <* u AR C uR¥)
wRy L* uy, . u, = (v P e P ug, . un A
cR* CuR* AVy =* x(u; <* y, for some 7))

hold, that is, that (W, R*, <*) is an Mp Vp-frame. The following two Claims suffice.
Claim 1 If wR*v then there exists a node w’ such that w’'Rv and for all w'R*v’,
also wR*v'.

Proof of Claim 1 Suppose wR*v. This implies that there are x1,y1,... 2y, Yn, such
that

w =Ry K R ... L 1Ry, = v,

and either n=1,s0 v =y, or 3zz'(w < z < 1 A Z’Rz). In both cases, v’ =z,
has the desired properties. This proves Claim 1.

Claim 2 If (<;R) C uR*, then zR* C uR*.

Proof of Claim 2 Suppose xR*a. This implies there are © < a1Ras < ...Ra
such that either ay = a or 3bb'(z < b < a; A U'Rb). By assumption uR*as, say
uR*u" < as. In the first case, we clearly have uwR*a. In the second case, since
uwR*u' there is v’ Ru’, from which it follows that v’ <* a. Hence also uR*a. This
proves Claim 2. o

5.1.4. Theorem. py A iff A is valid on all gathering Mp Vp-frames for which
the modal relation is conversely well-founded.

Proof' We only treat the direction from right to left. Suppose fipy A. We
construct a gathering Mp Vp-model for which the modal relation is conversely
well-founded by the construction method (see Subsection 3.4.5). Let X be a finite
adequate set, containing A, such that B>C' € X implies OC € X. Consider the

IThe port proof.



5.1. Modal completeness of preservativity logic 93

iPH-canonical model and let R and <’ be the relations on this model. Let )
be a node at which A is not valid. With W*, R*, <* we denote respectively the
domain and the relations of the model M* we are going to construct.

Using the construction method, we construct binary relations R and <" along
with a set W*. We denote the reflexive transitive closure of <” by <. Then we
define R* and x* as explained above, and show that in (W*, 5*, R*),

oRT <* 7' = Jx(oR*'s AT <* o <* 7' Ax(x:R) C T'RY) (5.1)
oRT X" 1, T = (T T T T, T (5.2)
7(;R) C aR* AVy =" 2(7; <" y, for some i)

and apply Lemma 5.1.3 to conclude that (W*, R*, <*) is a gathering Mp Vp-frame.
Finally, we show that R* is conversely well-founded.

During the construction we guarantee that
if o RT respectively o < 7, then a,R «, respectively o, <’ a;. (5.3)

We will often use (5.3) without mentioning it.

First some notations and conventions. We write o x A for o x (A) and oy for
(ay) o. For a sequence o, we define v(o) inductively via: if o = ¢” * (m, 7,0") or
o =0"x(m,o’), then y(c) = y(0'), and (o) = o otherwise.

For B>C' € X\a,, the node o, (pwcy is a node such that o, R'0u(prcy, and
B € Qgw(B > C) while C' Q Qox(B>C)- For (B — C) S X\Ozg the node Qgs(B—C)
is a node for which o, <’ asipocy, and B € agupcy while C & apupocy
(Section 3.4.5).

For o RT <* 7/, the node «,, where a = o % (m,7,7'), is a node with the fol-
lowing properties: a,R'aq, ()o = (a)n and o, 5" ay <’ «,. Note that the
existence of «, is guaranteed by Proposition 4.5.2, using (5.3). Observe that, by
Lemma 4.5.1, (ag) g = (ar) o implies a,R' C an R (R = (R';5')).

For oRT <* 71,...,7,, the node «,, where a = 7 % (v,7,...,7,), is a node
such that o, <’ a, and a, is a tight predecessor of a,,...,a, for «a,, that
is: g X' pyy ey, ;R C o R and for all @ > «y, a,, <" 2 for some i. Note

that such a node exists by Corollary 4.6.3.

If o'(x;R)m, and o is either y(o') or o’ x (v, 71, ..., 7,), the node gy r) is a node
such that agR 0guim ) <" o and (Qpumx)) o = mg. Note that such nodes exist
by Lemma 5.1.1, using the fact that o'y, = 0.

We define properties i(-), p(+) and *(-), o(+),*(+) on respectively pairs of nodes and
formulas, and sequences of nodes:

i(0,B—C) (B—=C)eX\ocA—To'(cxd"ANBed" NC ¢&d')
p(o,B>C) B>C e X\oA—-Jo'(cR*c" N\Bed" NC &)
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*(o,1,7") oRT * 7' Avy(T) # ~(77)
o(T, Ty, Tn) Jo(oRT)AT L*T1,...,Tn
x(0,0',7) o (s R)T A = (0! (RE<7)T)A
(o' =~(o) Vo' =0ox(m,...,T,), for some 7;).

Note that these properties can change during the construction. For example, if
Y,Y" are two distinct sets of constructed nodes containing o, 0’ 7, (0,0, 7) can
hold in Y but not in Y.

The construction of (W*, R, X) uses four subconstructions, (3,6, ¢, &, which we will
apply in a certain order. Every subconstruction consists of making an extension
of the frame constructed so far by constructing some new nodes. The result,
B(Y), of the application of 5 to a frame Y = (Wy, <y, Ry) results in a frame
(Waeyy, <s(v), Rp(yy). Similarly for 6,¢ and . When we say that for some nodes
o,7,7 in Y, (o, 7,7") does (not) hold in Y, we read <y for <, and similarly for
the other relations. Similarly for the other properties. Again, <y is the transitive
closure of <Y, thus to define <y it suffices to define xy.. The definitions of 3,4, (, ¢
run as follows.

Wsyy = WyU{ox(B—=C) |i(0,B— C)holdsin Y} U
{o % (B>C) | p(o, B — C') holds in Y}

#g(y) = gV U{(o,0x(B—=C))|ox(B—C)€Y}
Rﬁ(y) = RyU{(O’,O’*<B[>C>) |0’*<B|>C> QY}
Weyy = WyU{o*(m,7,7) | (o, 7,7') holds in Y}
<y = Sy U
{(ryo % (m,7,7")), (0% (m,7,7"),7") | o x (m,7,7") € Y}
Reyy = RyU{(o,ox(m,7,7))|ox(m,7,7") €Y
Wewy = WyU{r*(v,7,...,7) | o(r,71,...,7) holds in Y}
%'g’(y) = P U{(r,mx(u, 1, ... 1), (T (v, T, oo T0), ) |
Tx (U, T1y...,Tn) € Y,i < n}
Reyy = Ry
Wiy = WyU{o' x(m,7) | *(0,0',7) holds in Y'}
<5y = =y U{(o'«(m,7),7) | o'« (m,T) €Y}

Rsyy = RyU{(d',0'x(m,1)) |0 «(m,7) €Y}
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Let k = ({B — C|(B — C) € X} +1)- |{DBLDB € Xk}| We define an
iterated version of 3(Y), 3(Y), to be the frame (J;_, Wy:, Ui, \y,UZ o Byvi),
where Yy =Y and Y; 1 = 8(Y;

can never hold in 3(Y).

Now define frames Yb’ th ... viar Yo = (WYO’ <Yo> RYov >7 where WYO = {<>}7 Sy, =
{(0), ()} and Ry, is empty, and

7). It is easy to see that i(o, B — C') or p(g, B>C')

Yv6n+1 — B(Yén) Yv6n+3 = B(%n-ﬂ) Yan-i—S = B()/Gn-i%)
Yvﬁn+2 — C(%n«kl) Y76n+4 - f(Yvﬁn+3> 1/6n+6 - 5(}/6n+5)

Let W* = |J, Wy,, and let < be the transitive closure of | J, Xy;, and let R = |J Ry;.
We show that (5.1) holds in W*: if oRT <* 7/ and (1) # ~(7') it is clear that
there will be a node © = o * (m,7,7') such that cR*x and 7 * = <* 7’ and
z(<;R) C 7' R*. We show that also in the case that o RT <* 7/ but (1) = ~(7'),
there exists such a node x, namely = = 7. Tt suffices to show that 7(<;R) C 7'R*.
Therefore, assume 7(<;R)7. Thus, by construction, y(7') = y(7)R*x. If y(7) = 7'
this gives 7'R*m. If (') # 7/, there exists o’ R7’. Because also 7'(<;R*)x, since
7 < ('), we can again conclude 7/ R*T.

To see that (5.2) also holds, first observe that the construction is such that if
oRT X* 71,..., Ty, there exists a node x = 7 (v, 7y, ..., 7,) such that 7 <* z * 71;
and 7(x;R) C 2R*. Let Y,, be the first Y; in which = occurs. It is clear that in
Y, we have Yy >=* z(1; <* y), for some i. We show that this remains the case
during the construction. We show this by induction on Y. The case Y}, is done.
The case (n > m). Assume x <* y holds in Y, but not in Y, ;. Without loss
of generality assume that there is no x <* y' <* y. First, observe that the
construction is such that ¢’ R7’ implies that 7/ = ¢’ x D, for some D of the form
B>C, (m,m, ') or (m, ). Therefore, there is no x’ with ’Rz. Hence z <* y
implies < y. And since there is no v <* ¢/ <* y, v <" y. If Y, = B(Y, 1),
this implies y = x * (B — (). We show that this cannot be, by showing that
i(x, B — (') can never hold. It suffices to show that i(x, B — C) does not hold
in Y,,. Note that all 7; are already elements of some Y; with 7 < m. This implies
that i(r;, B — C) does not hold in Y;,. Consider (B — C) ¢ x. Either B € «
and C' ¢ x, in which case i(z, B — C) does not hold, or B ¢ z. In the last case,
B — C,B ¢ a,. Since «, is a tight predecessor of a,,,...,a,, in the canonical
model, this implies that (B — C') € «,,, for some i. Because i(T,, B — C) does
not hold in Y;,,, this implies that there exists 7’ such that ; < 7/ and B € 7’ while
C ¢ 7'. Clearly, this implies that i(x, B — C') does not hold in Y;,. Now consider
the case in which Y,, = ((Y,,_1). The fact that x <" y holds in Y}, but not in Y,,_1,
implies that * = 7 < o' x (m, 7,7’y = y. Hence ¢'Rx. But we concluded before
that there is no o’ with 2’ Rz, a contradiction. In the case that Y, = &(Y,, 1), we
have © < = x (v,7{,...,7).) = y. But this implies that there exists 2’ with 'Rz,
contradicting our previous observation that there is no 2’ with x’Rz. We leave
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the remaining case, Y,, = 6(Y,,_1), to the reader. This completes the proof that
(5.2) holds.

Since (5.1) and (5.2) hold, we can apply Lemma 5.1.3 to conclude that the frame
(W*, R*,5*) is a gathering Mp Vp-frame. To show that R* is conversely well-
founded, it suffices to show that

oR*7 implies |{OB € X|OB ¢ 7}| < {0OB € X|OB ¢ o}/,
a proof which we leave to the reader. The valuation
olFp=.;a,1Fp, forpe X.

(see Subsection 3.4.5) makes the frame into a model on which A is not valid, which
completes our proof. o

5.2 Admissible rules of preservativity logic

In this section we treat two admissible rules of iPH. If iPH would be the preserva-
tivity logic of HA it should certainly satisfy the

Reflection Rule TOJA/A,

as (the arithmetical version of ) DA/A is an admissible rule of HA. The next lemma
shows that this is indeed the case.

5.2.1. Lemma. The Reflection Rule holds: if |_iPH OA then |_iPH A.

Proof We transform a model M = (W, <, R, V) for iPH in which A is refuted to
a model M’ for iPH in which OA is refuted. We can assume that A is not valid
in the root w of M. The first idea would be to extend the model in such a way
that w'Rw for some new node w’. However, this is not always possible. Namely,
it can be the case that wRv but not w < v, for some node v. If we add w'Rw
then we should also require w < v since we have to construct a gathering model.
Therefore, we cannot guarantee that w forces the same formulas in both models.
To overcome this problem we extend M in such a way that w'Rw” < w for some
new nodes w’, w".

We do not spell out the construction but only sketch the idea. We start with
W U {w',w"} and require w'Rw” < w. Then in every even step we add, in the
notation of Theorem 5.1.4, nodes v x (m,u,u'), v * (m,u) and v * (v, uy, ..., uy,)
if respectively x(v,u,u’), *(v',v,u) or o(v,uy,...,uy,) holds. It is not difficult to
see that we will end up with a conversely well-founded, gathering Mp Vp-frame,
and that for all nodes v which are not in M, there is no u in M such that u < v.
Therefore, we can extend the valuation of M to nodes in M’ by not forcing any
propositional variable in a new node. Nodes in M force the same formulas in both
models. Hence w' If OA. o
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Recall that for all arithmetical realization *, HA proves A*>B* for all its propo-
sitional admissible rules A/B (Sections 2.2 and 7.6). Hence for propositional
formulas A, B,

(0A — OB)/A>B

is an admissible rule of the preservativity logic of HA. This rule does no longer
hold when A, B range over arithmetical formulae. Consider for example the Rosser
sentence R. Since, in HA, (OR — O.1) is derivable, this rule would imply R> L,
and thus by the definition of preservativity and the fact that R is a ¥;-formula,
O(R — 1) is derivable, quod non. However, (0A — OB)/A>B is an admissible
rule of iPH as the next lemma shows. Note that this is not in conflict with the
possibility of iPH being the preservativity logic of HA.

5.2.2. Lemma. }_IPH A> B iff l_IPH (DA — DB).

Proof It suffices to show the following. For any model M with root w for which
there is a node wRv such that v I A and v I B, there is a submodel M’ such
that nodes in M above v force the same formulas in both models, and such that
all nodes in M’ are either equal to w of above v. Hence v’ If OB and w |- OA.
The proof is left to the reader.

[m]

It has been shown by Gargov (1984) that if a c.e. extension of HA has the Dis-
junction Property then so does its provability logic. We have the following.

5.2.3. Lemma. The logics iPH and iH have the Disjunction Property.

Proof Using the completeness results in Theorem 5.1.4 and Proposition 5.3.6, this
is easy. a]

5.3 Modal completeness of provability logic

Is this section we show that in the language L, the logic iH is complete with
respect to the class of finite brilliant LLeMa-frames. Since we know that the prin-
ciple Vp spoils the finiteness of the frames, the logic iH is probably the strongest
logic among the considered logics in L which still is complete with respect to
a class of finite frames. Its completeness proof is more complicated then the
completeness proof for iPH and it looks less natural. But it has the following
interesting feature. We saw that the finite model property for iLLe is obtained by
restricting the domain to X-saturated sets. We do not see how we can apply this
method to iMa. Therefore, when we want to guarantee that the final model has
the Ma-property, we use the construction method instead. In the completeness
proof for iH we will see how these two techniques can be combined.
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Proof sketch

In the completeness proof for iH we will construct via the construction method, a
set of sequences W = {0 | o is defined } by selecting nodes «, in the iH-canonical
model M. This is done via three procedures. Intuitively, the first procedure (I)
extends a given frame to a frame that has the Ma-property: it adds markov-nodes
(Section4.6.2) for pairs that do not already have one. The second procedure (IT)
extends it to a frame that has the Le-property: it adds leivant-nodes (Section 4.4)
for pairs that do not already have one. And the third procedure (III) extends it
to a frame with domain W' that satisfies

VB € X,Yo € W(o IF Biff a, I B).

This is done in a similar way as in the construction method. The main trick to
ensure that the resulting model is finite is that in II and III we not only take
the iH-canonical model into account but also the model N constructed in the
completeness proof for iLLe, Proposition 4.4.1.

The nodes in our model will be sequences, the elements of which will be formulas
OB, (B — (), and pairs (I,7), (m,7), where 7 is a sequence. In the resulting
model, o x (({,7)) and o * ((m, 7)) will be a leivant- and a markov-node for (o, 7)
respectively.

We will define (relevant pairs) when a pair (o,7) needs a leivant-or a markov-
node. When we have to add a leivant-node 7’ for such a pair, we guarantee that
7' is a so-called minimal leivant-node, i.e. it is a leivant node for (o, 7) but also
Vu(r'Ru — 7" < u) holds. This is done to make W finite: such a node 7’ is a
leivant-node for both (o, 7) and (o, 7"). Thus we do not have to add a leivant-node
for (o,7') as well. In order to be able to make this extra requirement on leivant-
nodes, we show (Lemma 5.3.5) that in A it holds that if a pair has a leivant-node
it has a minimal leivant-node as well.

To make W finite we also check if, when we add a leivant-node 7" for a pair (o, 7),
the node 7 is a markov-node. And if so, if it holds that 77, = 75. In that case
we do not also have to add a markov-node for (o, 7") since 7 suffices. To remind
us of this fact we use a function h and put h(7) = 7" in this case. During the
construction we then guarantee that indeed 7 will be a markov-node for (o, 7").

At every step in the construction we have a finite set of sequences W,,. We define <
and R such that we get the desired intuitionistic and modal relations on W,,. This
allows us to conclude for which pairs we still have to add markov- or leivant-nodes.

5.3.1 Notation and explication

We cannot avoid a lot of notation. Fix an Le-adequate set X. We will tacitly take
all definitions in which an adequate set occurs relative to this particular set X.
We will not give corresponding relations in distinct models different names. For
example, we say ‘w < v in K, if v is above w in the model K. Or we write ‘we
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work in K, to stress that in this context < and R refer to the intuitionistic and
modal relation of K respectively.

The models M and N

Let M be the iH-canonical model. Let N be the model constructed in the proof
for iLLe, proposition 4.4.1, with adequate set X. For any node w in the canonical
model M, that is, for any saturated set w, let [w] = w N X. Note that [w] is a
node in . We write [w]R][v] instead of ’[w]R[v] in A", and similar for <.

5.3.1. Remark. Note that if for two nodes w, v in the canonical model M we
have wRv in M and wy C vg, i.e. there is a OB € v N X such that OB ¢ w,
then [w]R[v] in N. On the other hand, if [w]R[v] in N, then wy C vg. It also
follows from the definition of A" that [w] < [v] in N iff wN X CovNX.

The relations C_, and C, on sequences

For sequences 0,7, we write ¢ C 7 when 7 = ¢ * ¢’ for some possibly empty
sequence o'. We write o C_, 7 if ¢’ consists of implications only or is empty, and
o C 4 7 otherwise.

Relevant pairs of sequences

Intuitively, the relevant leivant (markov) pairs are the only pairs which we have
to give a leivant (markov)-node, in order to guarantee that all pairs of nodes have
a leivant-(markov-)node in the resulting model. Call a pair (x,y) relevant-leivant
in W if y = &% (D), where D is not an implication and not of the form ([, z), and
x is not of the form o % ((m, 7)), and (x,y) does not have a leivant-node in .
Call a pair (z,y) relevant-markov in Wify=uaxx (D) xy', where x % (D) C_, y,
and D is not an implication and not of the form (m, z), and z is not of the form
o ((m, 7)), and (x,y) does not have a markov-node in WW.

The relations < and R of the model W

For a given set of sequences W, the model W is the model (W, %TW,R[W,V),
where V is defined via

W,olkp =,; M, a, |k p, pa propositional variable in X.

The relations %rw and R[W are the restrictions of respectively < and R to W,
where < and R are defined as follows. An Im-chain is a sequence (21, .., xp) of
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sequences, such that for all i, one of (a)-(e) is the case:

1=n

~—

a
b

(
(
(¢
(
(

x; =y* ((m,x;41)) or x; =y (([, x;41)) for some y

~ ~—

vy C x4 and x; # T4
h(z;) = x4
h(xiy1) = xipe and x;1 = y x ((m, ;)) for some y.

d

e

~— ~—

xRy =,; thereis an Im-chain (z =xy,..,2,) and 2, C, y
I%y = T Coy, or (v=2a"*((l,2)) and
(z C_, y or zRy or xRy)).

5.3.2. Remark. Note that if + C y then zRy. And if 2’ Ry and for x there is
an Im-chain (x = x1, .., ,) such that x, C 2/, then zRy.

Procedure 1

Start with a set of sequences V4. Consider in step n all the relevant markov
pairs (o, 7) of Vn, and choose markov-nodes cig.((m ) for the corresponding pairs
(g, ar) in the iH-canonical canonical model M. Let V1 be the union of V}, and
these newly defined sequences, and go to step (n + 1).

The sequences in V; have to be such that these markov-nodes exist. In the cases
in which we use this procedure, the set with which we start will have the desired
properties, see Case (i) in Proposition 5.3.6.

Procedure 11

Start with a set V5. Choose for every relevant leivant pair (o,7) of Vo, a node
Qox((l,r)) = ¥, such that o,Rr in M, and [2] is a minimal leivant-node for
([ats], [eer]) in N The definition of a minimal leivant-node can be found just before
Lemma 5.3.5. If 7 = o % ((m, 7)), and x5 = (a;) g, then put h(7) = o x (({,7)).
Let V' be the union of V; and these new sequences.

5.3.3. Remark. Procedure II will be the only procedure in which we assign an
h-image to some newly chosen sequences. Note that this implies that h(7) only
exists for some 7 which are of the form o * ((m,7')) and for which (o, 7) has been
once a relevant leivant pair. Note furthermore, that once a sequence 7 has been
part of a relevant leivant pair (o, 7), after procedure II is performed it will never
for any sequence o', be part of a relevant leivant pair (¢’, 7) anymore. This shows
that h is indeed a (partial) function.

5.3.4. Remark. We cannot guarantee that for any leivant-node x for (w,v) in
M, wg C xg. Therefore, in contrast to procedure I, in procedure II we cannot
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just choose g (,r) to be a leivant-node for (g, ar) in M. For if we would do
this, it could be that (a,) o = (Qox(1,r))) o, and we would have no guarantee that
the process stops in a finite number of steps, see Remark 3.4.4. Note that the way
in which we choose a4((,-) in procedure IT implies that (o) o C (s(1,r)) o, by
Remark 5.3.1.

Procedure 111

Start with a set V. Step n consists of the following. If 0 € V,, and there is a
OB € X, OB ¢ a,, for which there is no x € V,, such that ocRz and B ¢ a,,
then choose a node a,.p) which is a node w such that a, Rw in M, w does not
contain B, and [w] is a minimal leivant-node for ([, ], [w]) in A/. The definition of
a minimal leivant-node is just before Lemma 5.3.5. For (B — C) € (a, ), if there
is no x € V, such that o<z and B €  and C ¢ x, choose a node o * (B — C) as
is usual in the construction method. Let Vi be the union of V,, with the newly
defined sequences, and go to step (n + 1).

5.3.2 The completeness proof

As said in the proof sketch we need one additional lemma which shows that on
finite Le-frames the following stronger condition holds: for every pair wRv in a
finite Le-frame there is leivant-node x for (w,v) which also is a leivant-node for
itself, namely for (w, x). Such a node = for which

wRr K v AVu(vRu — o 5 u) AVu(zRu — = < u),

is called a minimal leivant-node for (w,v).

5.3.5. Lemma. (i) A finite Le-frame satisfies
wRv — dr(wRx X v AVu(vRu — v 5 u) AVu(zRu — o < u)).

(i) If wRv holds in M and [w]R[v] holds in N, there exists a node x such that
wRz in M, and [z] is a minimal leivant-node for ([w], [v]) in N

Proof (i) Let F be a finite Le-frame. Then F satisfies

wRy — Jr(wRr < v AVu(vRu — o < u)). (5.4)

Consider wRv. We show that the pair (w,v) has a minimal leivant-node x. Define
*(y) via

(1) Vu(yRu — y < u).

We construct a sequence x; »= x5 = ... of nodes, such that

wRx; K v AVu(vRu — x; S u) A (501 = 23 — *(x;)).
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Let us first see why we are done then. The finiteness of the frame implies that
Ziy1 = x4, for some 7. Such a node z; has the desired properties, i.e. we can take
r = ;.

We show how to construct the sequence 1 % x5 = ... by induction. By (5.4) there

is a node x; such that wRzy < v AVu(vRu — x1 < u). Assume z; is already
defined. Thus

wRx; K v AVu(vRu — z; < u).
By (5.4) there is node x;;; such that
wRxi1 < v AVu(z;Ru — z441 < u).
Observe that since ;11 < #;, we also have
wRxiv1 K v AVu(vRu — 401 < u).

Further note that since Vu(x; Ru — x;11 < u), if *(x;) does not hold, then z; #
Zir1. Thus x;1; has the desired properties. This completes the construction of
the sequence.

(it) The proof that there is a node x such that wRx and [x] is a leivant-node
for ([w], [v]), is almost the same as the part of the completeness proof for iLLe,
proposition 4.4.1, in which it is shown that the frame has the Le-property. Instead
of sets w, consider sets {D | OD € w} U w,. To conclude from this that = can
be chosen in such a way that [z] is in fact a minimal leivant-node for ([w],[v]), is
similar to the proof of (7). O

5.3.6. Proposition. -y A iff A is valid on all finite transitive conversely well-
founded brilliant Le Ma-frames.

Proof Assume I,y A. Let b be a node in the iH-canonical model M which does
not force A. Let X be a finite Le-adequate set which contains A. As described in
the sketch of the proof we construct a finite model of the form W (Section 5.3.1)
in a similar way as in the construction method. We construct the domain W of W
stepwise: we define W, = {0 | o is defined in a step < n} and let W =J, W,,.
Step 0. Let Wy be the result of procedure III, starting with V; = {b}.

Step 3n + 1. Let W3, be the result of procedure I, starting with set Vy = Ws,,.
Step 3n—+2. Let Ws,. 5 be the result of procedure 11, starting with set V) = Wy, 1.
Step 3n+3. The set W3, 3 is the result of procedure ITI, starting with Vy = Wy, 45.
Unless stated otherwise, < and R will be short for \%IW and Rrw- To see that
W exists, and that it is a finite transitive conversely well-founded brilliant Le Ma-
model, it suffices to show the following claims.

(i) The construction is correct, i.e. the nodes we choose in the consecutive steps
do exist.
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(17) W is a model, i.e. < is a partial order, (#,R) C R holds and for all propo-
sitional variables p € X, Vo,7 € W (if o7 and o IF p then 7 I- p). The
model W has a transitive, conversely well-founded and brilliant frame.

(#ii) W has the Ma-property.
(iv) W has the Le-property.
(v) VB € XVYo € W(W,0 I- B iff M,a, IF B).

(vi) The process stops in a finite number of steps, i.e. there is some n such that
Vm = n we have W,, = W,,. Since clearly every W, is finite, this shows that
W is finite.

We will omit the tedious but straightforward proofs of (i7) and (v) and only
prove (i), (ii7), (iv) and (vi). Unless stated otherwise, o, 7,2, vy, 2z, a,b range over
sequences, B,C, D over elements of sequences. We remind the reader that wg
denotes w? .

Claim (7). We show that the three procedures are correct. We will need the
following lemmas and remark.

5.3.7. Lemma. If 0 C_, 7 and 0 # 7, then o, < «a, in M.
If o C, 7 and o # 7, then a, C ;.
If o C, 7 and 0 # 7, then [a,] < [a,] in V.

Proof By examining procedure ITI (Section 5.3.1) it is easy to conclude the first
part. Since by definition, <x=C on canonical models, the second part follows
immediately from the first one. From the second part and remark 5.3.1 the third
part follows. O

5.3.8. Remark. For any two nodes w, v in the iH-canonical model M the follow-
ing holds,

wR=vRiff wg =vg.

Hence if ¢ is a markov-node for (w,v), then t5 = vy holds.

5.3.9. Lemma. Assume that procedures ILIT and III are well-defined till step
(n+1). Then for all pairs (o, 7) in W, that are either a relevant leivant-pair or a
relevant markov-pair, we have that

a,Ra; in M and [o,|R[a;] in N.
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Proof Let (o,7) be any relevant-leivant or relevant-markov pair, in W,. By the
definition of relevant pairs (Section 5.3.1), we have that 7 = o % (D) x o', for some
D which is no implication, and ¢’ consists of implications only. Hence D is of the
form OB , (I, 7') or (m,7"). We show that in all these cases,

o Ry py in M and [a,|R[0tw(py] in N (5.5)

Let us first see why we are done then. Since ox (D) C_, 0% (D)*0' = 7, it follows
from lemma 5.3.7 that aypy < @; in M and (o py] <X [or] in M. As both M
and N are brilliant models, this gives the desired result;

a,Ra; in M and [o,|R[a;] in N

Therefore, all we have to show is that for the three possibilities of D, (5.5) holds.
Case z = o%(0OB). By examining procedure ITI (Section 5.3.1) we see that a, Ra,
in M. Moreover, since [a,] is a minimal-leivant node for (o], [@.]), it follows that
[y ] R[cr,] in AV, and we are done.

Case z = o x((l,7')). By examining procedure IT we see that o, Ra, in M. More-
over, since [,] is a minimal-leivant node for ([a,], [a./]), it follows that [, | R[a,]
in NV.

Case z = 0% ((m,7')). By examining procedure I we see that «, is a markov-node
for (av,, ) in M. Hence by the definition of markov-nodes, Section 4.6.2, a,Rov,
in M. Thus we only have to show [a,]|R[c.,]. Since a,Ra,, by Remark 5.3.1 it
suffices to show that

(as)a C(az)a- (5.6)

Note that the existence of qyy((m,)) implies that (o,7") must have been a rele-
vant markov-pair in some W,,. Thus, by the definition of a relevant markov-pair
(Section 5.3.1), 7/ = o % (D) x 0", where D’ is no implication and not of the form
(m,7"), and 0" consists of implications only. Hence D’ is of the form OB or (I, 7").
But for these two cases we just proved that [ay]R[ag.pry]. Now it follows from
remark 5.3.1 that

(o) C (aa*<D’>) o

By lemma 5.3.7, it follows that ag.pry € Qgu(prysor = i in M. Thus

(aa) o C (a'r’) o- (57)

Since «, is a markov-node for (o, a,/) in M, we certainly have a,R = aR in
M. By Remark 5.3.8 this implies that (a,) 5 = (o) 5. From this and (5.7), (5.6)
follows. o

Now we are ready to show that procedure I is correct. With induction to n we show
that for any relevant markov-pair (o, 7) in W, there is a node ¢ in the canonical
model M which is a markov-node for (a,, ;) in M. From Lemma 5.3.9 we know
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that for any relevant markov-pair «,Ra, holds in M. Therefore, it suffices to
show that M has the Ma-property, i.e.

in M: if wRv then 3t € Top(wRt ANtR = vR).

The proof that M has the Ma-property is completely analogous to the proof that
the iMa-canonical model has the Ma- property, Proposition 4.6.7.

To see that procedure II is correct, we show with induction to n that for any
relevant leivant-pair (o, 7) in W, there is a node x € M such that a,Rz in M
and such that [#] is a minimal leivant-node for ([a,], [o;]) in M. From Lemma 5.3.9
we know that a,Ra, holds in M, and [a,] R[] holds in V. Apply Lemma 5.3.5.

To see that procedure III is correct, consider any W,. Let o € W, for which
OB ¢ a,. We show that there is node w in the canonical model M such that
OB € w, B ¢ w and a,Rw in M, and moreover such that [w] is a minimal
leivant-node for ([a,], [w]). This will prove that procedure III is correct. In the
canonical model there is a node v such that a,Rv, OB € v, and B ¢ v. Hence
[ay]R[v] by Remark 5.3.1. If [v] is a minimal leivant-node for ([a,], [v]), let w
be this node v. If not, by Lemma 5.3.5 there is a node u such that o, Ru and
[u] is a minimal leivant-node for ([a,], [v]). Since [u] < [v] in A, it follows that
uNX CvNX by Remark 5.3.1. Since B € X and B € v, B € u. So in this case
we can choose u for w.

Claim (iii). We show that W has the Ma- property, i.e.
vRy — 3z € Top(sz AyR = zR)
First we need some lemmas and a remark.

5.3.10. Remark. By examining the steps in which W is constructed it is easy to
see that if @ x ((m,y)) € W, then (z,y) must have been a relevant markov-pair in
some W,,. By the definition of a relevant markov-pair, section 5.3.1, this implies
that x and y are not of the form o % ((m,7)). In a similar way one can see that
if x*((l,y)) € W, then x is not of the form o * ((m, 7)) and y is not of the form

ox{((l,7)).

5.3.11. Lemma. For all n, the node xx{(m,y)) € W, is a markov-node for (z,y)
in W. If z=uax%((m,2)) and h(z) =y, then z is a markov-node for (z,y) in W.

Proof It is convenient to treat the last part first. Therefore, consider z € W,
such that h(z) = y and z = x x ((m, 7)) for some 7. We have to show that

~ is a top node in W and xRz and yR = zR.

First note that the fact that h(z) =y, gives y = xx((l, 2)) € W, see Remark 5.3.3.

To see that z is a top node in Wn, observe that since «, is a markov-node in M,
it is a top node in M. Therefore, it follows from procedure III that sequences
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of the form z x (B — C) will never be defined. Now from the definition of <,
Section 5.3.1, it follows that z is a top node in W. From the definition of R it
follows 1mmed1ately that 2Rz.

Thus it remains to show that yR = zR. Observe that (ﬁ,R,ﬁ) = R. By the
definition of 4, we have y%z it follows that zR C yR by the observation. To see
that yR C zR, assume yRa Hence there is an lm-chain (y = yy, .., y,) such that
Ym 4 a. As clearly (2,1, .., ym) is an Im-chain too, zRa.

We prove the first part of the lemma. Consider z = x x ((m,y)) € W,. Again, we
have to show that

~is a top node in W and xRz and yR = zR.

To see that z is a top node in W and that xRz is analogous to the case above.
Therefore, it remains to show that yR = zR.

yR C zR: Assume yRa. Hence there is an lm-chain (y = y1, .-, Ym) such that
Ym 4 a. As clearly (2,1, .., ym) is an Im-chain too, zRa.

2R C yR: Assume zRa. Let (z = z1,.., 2m) be an Im-chain such that z, C, a.
We have to show that yRa. By the definition of an Im-chain, Section 5.3.1, we
have for z = z; either

(@) z=zpy hence 2 C 4 a

(b) z=2z2"%((m,z2)) or z=2z"x((l, 22)) for some 2’
(¢) zC 2z and z # 2

(d) h(z) = 2

() h(z) =z3 and z = 2" x ((m, 2)).

We show that the only cases that can occur are (b) or (d). Now observe that in
case (b) zp = y, thus (y = 2y, .., 2,) is an Im-chain too. And in case (d) (y, 21, -, 2m)
is an Im-chain. Hence in both cases (b) and (d), yRa follows. Therefore, we are
done if we can show that only the cases (b) or (d) can occur.

Case (e) cannot occur by remark 5.3.10. So, case (a) and (c) remain. In both

these case there is a D such that z x (D) € W. But this contradicts the following
lemma. This completes the proof. u]

5.3.12. Lemma. For any z = x % ((m,y)) € W, for any D, there is no element
x (D) e W.

Proof Consider a sequence z = z * ((m,y)) € W. Arguing by contradiction,
assume z x (D) € W is the first such element defined. Clearly, there are four
possibilities for D: (a) D = (B — C), (b) D =0B, (¢) D = (I,7), (d) D = (m, 7).
We show that none of these cases can occur. First note, by examining procedure
I, Section 5.3.1, that a, is a markov-node for (o, o) in M. Thus

a,R = oy R and o, is a top node in M.
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Hence by Remark 5.3.8
(a:)o = (ay) o and a, is a top node in M. (5.8)

For (a), observe that in this case, 2 C_, z*(D). Hence by Lemma 5.3.7, a; < a..(p)
in M, which contradicts the fact that «, is a top node in M.

Case (c) and (d) cannot occur because z * (D) is the first such element defined.

Thus case (b) remains. By examining procedure III we see that OB ¢ (a,)O.
Hence by (5.8) also OB ¢ (ay,)r. We show that this implies that 2+ (OB) cannot
be defined. Assume y is defined in step m and z in step n. We show that

Jy' € Wn_1(zRy' AB & y/'). (5.9)

By examining procedure III one easily conclude that this implies that a sequence
z % (OB) will never be defined. Hence we have established that case (b) cannot
occur either.

First, observe that by Lemma 5.3.11, yR C zR (note that for the part of the proof
of Lemma 5.3.11 where yR C zR is established, we do not need this lemma, so
there is no circle argument here). Therefore, to prove (5.9) it suffices to show that

Jy' € Wo_1(yRy' NB & /). (5.10)

Clearly m < n, because z = x * ((m,y)). Note furthermore that n = 3k + 1, for
some k. Observe that by remark 5.3.10, y is not of the form o % ((m,7)). Thus
m =0 or m = 3k + 2 or m = 3k + 3, for some k. Hence if m =0 or m = 3k + 3,
m < n. And if m = 3k+2, m+1 < n. Therefore, we can prove (5.10), by showing

(m=0vVm=3k+3)— 3 € Wn(yRy' AB &), (5.11)
m=3k+2— 3y € Wm+1(yRy' ANB &1y'). (5.12)

We only show (5.12). One can prove (5.11) in a similar way. Assume m = 3k + 2
for some k. Note that since y € W,,, = Wsp1o, W41 is the result of procedure
I1I starting with set Vo = W,,. By the definition of procedure III, Section 5.3.1,
(5.12) follows immediately. O

Now we are ready to show that every pair xRy in W has a markov-node. Consider
such a pair xRy. Let (z1,..,2,) be an lm-chain, z = z,, C4 y. There are 2’,y’, D
such that

t, Ca' Cpa'x(D)y=y" C.y.

The pair (2/,y) cannot be a relevant markov pair in W, otherwise W would not be
the union of all W,,. By the definition of a relevant markov-pair this implies that
either (a) D is an implication, (b) D = (m,7), for some 7, (¢) 2’ = o * ((m, 7)),
for some o, 7, (d) the pair (2',y) has a markov-node in W. Since 2’ C ' * (D),
D cannot be an implication. Thus case (a) cannot occur. Since 2’ x (D) € W, by
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Lemma 5.3.12, case (c) cannot occur either. Therefore, case (b) and (d) remain.
First, we show that in both these cases the pair (2’,y) has a markov-node, i.e.
that

3z € W(2'Rz and 2R = yR and z is a top node in W). (5.13)
And then we show that
Vz € W(if z is a markov-node for (z',y) it is one for (z,y) too). (5.14)

This will complete the proof.

In showing (5.13), we may restrict attention to case (b), as it follows trivially for
case (d). It suffices to show that y is a markov-node for (2',y), i.e. that

2'Ry and yR = yR and y is a top node in . (5.15)

Since ' C 4 y, we have 2’ Ry by Remark 5.3.2. By Lemma 5.3.11, ¢/ is a markov-
node for (z',7) in W, and thus, by the definition of a markov-node, a top node
in W. Since, by Lemma 5.3.12,we have y = ', we have shown (5.15) and hence
(5.13).

To show (5.14), consider a markov-node z for (z/,y), i.e.
z is a top node in W, 'Rz and 2R = yR.

We have to show that z is a markov-node for (z,y), i.e.
z is a top node in W, 2Rz and zR = yR.

Thus we only have to infer #Rz. But this follows immediately from Remark 5.3.2
and the fact that (r = 21,..,2,) is an lm-chain and that x, C 2.

Claim (iv). One can show that any pair xRy in W has a leivant-node in a com-
pletely similar way. Instead of (2',y), consider the pair (z',y’). And instead of
lemma 5.3.11 for markov-nodes, use the following corresponding lemma for leivant-
nodes.

5.3.13. Lemma. For all n, x % ((I,y)) € W, is a leivant-node for (x,y) in W,.

Proof Immediate from the definition of W. O

Claim (vi). We show that InVm > n(W,, = W,,,). First, we prove some lemmas.
Let [(x) be the length of the sequence z.

5.3.14. Lemma. Vo € W3anV(x « (D)) € W (if x % (D) ¢ W, then D is either of
the form {((I,7)) or ((m,7))).

Proof By examining procedure III one can conclude that if x is defined in step
n, no sequence of the form = % (B — C) or x x (OB) will be defined after step
n + 3 anymore. O
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5.3.15. Lemma. Vo € WanVa xy € W (if [(y) < 1, then x xy € W,,).

Proof Arguing by contradiction, assume there is a sequence x € W such that
VnIy(zxy e WALILy) <1Axxy & W,).

This implies that
Vnadm > nJy(l(y) <1 Axzxy €Wy Axxy € Wy,). (5.16)

Let us start with three observations.

First, by (5.16) and Lemma 5.3.14 there is an infinite sequence yq,ys,.. in W,
where y; is defined in a step before the one in which y;y; is defined, and y; is
either of the form o x ((I, 7)) or o * ((m, 7)).

Second, by examing the way in which W is constructed in consecutive steps, it is
not difficult to see that if @ * ((I, z)) or x * ((m, 2z)) is defined in step k, z must be
defined in step &', for some k — 2 < K < k.

Third, if 2% ((l, 2)) € W, (x, ) must have been relevant-leivant in some W;. Hence
by the definition of relevant pairs (Section 5.3.1), z is not of the form o * (({,7)).
Similar for z x ((m, z)).

These observations imply that w.l.o.g. we can assume ;.1 = @ * (([,49;)) and
Yoitz = T * (M, y2i41)). Hence, by procedure I, the node a,,,, is a markov-node,
in M, for the pair (o, ay,,,,). Hence ay,, ,R = oy, ., R. Remark 5.3.8 implies
that we have

(&y2i+2) o — (&y2i+1) a- (517>

From procedure II we conclude that [, . ] is a leivant-node for ([ag], [ay,,]) in
N. Hence [ay,,,,] < [ay,,] in M. Thus by Remark 5.3.1,

(ay2i+1) O g (aym) o- (518)

Combining the equations (5.17) and (5.18) we arrive at the following chain of C
and =:

.- (ay2i+2> o = (ay2i+1> O g (ayQi)D = -
The finiteness of the sets (ay,) o implies that
(ay2i+1) o = (ay2i> m) for some 1.

Then we should have h(ys;) = y2i+1. Lemma 5.3.11 shows that s, is a markov-node
for (x, y2i+1). Therefore, the pair (z,y9;+1) will never be a relevant-markov pair in
any Wy, and that contradicts the existence of the node yy; 5. This completes the
proof. o
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5.3.16. Lemma. Vo € WVYmanVe xy € W (if [(y) < m, then zxy € W,,).

Proof By lemma 5.3.15 and the fact that every W is clearly finite, for every n
there is a number, denoted with f(n), such that

Vo e WpVe xy € W (if [(y) < 1, then o xy € Wy,).
In other words,
Vo e WpVe xy € W (if x xy & W), then I(y) > 2).
We will show that
Vo € W,YmVaxy € W (if o %y & Wym(n, then [(y) > m+1).

This will prove the lemma.

Therefore, consider some v € W,, and x xy € W such that vy &€ Wym,). Let
y = (D, .., D) and assume k < m. We derive a contradiction. Observe that for
any z x (D) € W, if zx (D) ¢ W]’Z(’;r)l, then z ¢ Wi, Hence x % (Dy, .., Dy_1) ¢
W;f(’n_)l And again, xx (D1, .., Dy_o) & WJ’J(’n_)Z, etcetera. Whence x ¢ Wj’c’(’n_)k D W,
which contradicts the fact that € W,,. Thus £ > m, and therefore I(y) > m + 1.
This proves the lemma. 0

Finally, we are ready to show that
InvVm > n(W,, = W,).

First, observe by examining procedure III that if  C_, y and @ # y, then (ay), C
(az)s. And that if @ C, y, then (%)m C (Ozx)m. Let ng be the number

of implications in X, and let n; be the number of formulas in bm. From the

observation above it follows that no sequence x € W can contain more than
ng consecutive implications, or more that n; elements which are no implication.
Hence [(x) < (ng + 1).ny + ng, for all x € W. Now apply Lemma 5.3.16 to
x = () € Wy and m = (ng + 1).n; + ny; thus there exists a number n such that for
all y € W, if l(y) < m then y € W,,. Hence W = W,,. Thus the finiteness of W is
established. o

5.3.17. Corollary. iH is complete with respect to the class of finite LLeMa-frames
in which every node is either a top node or above a minimal leivant-node.

Proof By examining the way in which the finite model in the completeness proof
for iH above, is constructed. u]

We now show that also for iH we have a completeness proof with respect to gath-
ering frames; it is complete with respect to the class of finite gathering LLeMa-
frames. We know already that we lose the brilliancy of the frames in this case, see
Section 3.4.6.
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5.3.18. Proposition. t;y A iff A is valid on all finite gathering conversely well-
founded Ma-frames.

Proof Similar to the proof of the completeness of iLLe with respect to gathering
frames, proposition 4.4.2. In the notation of this proof; the property

wRv — w(R;K)v

is sufficient to preserve the Ma-property of the frame. The model M has the
property

wRv — 3t € Top(wRt ANtR = vR),
And the model M’ has the property

wRv — 3t € Top(w(R;1)t AVu(t(R;=5)u > v(R;5)u)),
thus certainly

wR'v — 3t € Top(w(R;=x)t AVu(t(R;x)u < v(R;=x)u)).

[m]
Proposition 5.3.18 is not a strengthening of proposition 5.3.6, since we loose the
brilliancy when we restrict ourselves to gathering frames. This was already pointed
out in Section 4.4.

But we do have a real strengthening of the completeness result in Proposition 5.3.6.
This is an immediate corollary of Lemma 5.3.5.

5.3.19. Corollary. iH is complete with respect to the class of finite brilliant L-
frames which have the Ma-property and satisfy

wRv — dr(wRx K v AVu(vRu — v 5 u) AVu(zRu — o < u)).

5.4 Nonconservativity

In Chapter 3 we showed that the logic iH is contained in iPH. There we also
promised to show that iPH contains strictly more, which is the content of the
following lemma.

5.4.1. Proposition. The logic iH is contained in iPH, and iPH is not conservative
(with respect to formulas in L) over iH.

Proof The first part of the proposition is proved in Section 3.3. For the second
part, consider the formula

O(pVv-—-0Ll)—Od(pVvOol). (5.19)
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It is not difficult to see that this formula is derivable in iPH, see Section 3.3. We
show that this formula is not derivable in iH. Consider the following model.

/

w v u (p)
N7
v" (p)

(The arrows denote the modal relation, the lines the intuitionistic relation. If
there is a line between x and y and x is below y, then this means that < y, e.g.
u” 50" and v" is a top node.)

We leave it to the reader to verify that the transitive brilliant closure of this model
is conversely well-founded and has the Le- and the Ma-property. Observe that
v I pVvOL, whence w |f O(p Vv OL), and that w |- O(p vV =—=0OL). This shows
that w does not force (5.19). By Proposition 5.3.6 this implies that iH does not
derive (5.19). o
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Chapter 6

Concepts

In this chapter we introduce the notions studied in part IT of the thesis. Sec-
tions 6.1 and 6.2 discuss admissible rules and intermediate logics, the main sub-
jects of the next chapters. Intermediate logics only occur in Chapter 8. Section 6.3
contains preliminaries.

6.1 Admissible rules

The admissible rules of a theory are the rules under which the theory is closed.
It is well-known that, in contrast to classical propositional logic, intuitionistic
propositional logic IPC, has admissible rules which are not derivable. Probably
the first such rule known for this logic is the rule

-A—= (BVC)/(wA— B)V (—~A = (),

stated by Harrop (1960). Extensions of this rule which are also admissible but
not derivable followed (Mints 1976) (Citkin 1977) but the question whether there
were other admissible rules for IPC than the ones known remained open.

In 1975 Friedman posed the problem whether it is decidable if a rule is an admis-
sible rule for IPC or not. In (Rybakov 1997) this question was answered in the
affirmative. Moreover, Rybakov showed that the admissible rules of IPC do not
have a finite basis. Informally speaking this means that there is no finite set of
admissible rules which in some sense ‘generates’ all the admissible rules of IPC.
However, this does not exclude the possibility that there is a representation of the
admissible rules via a simple infinite basis or in some other clarifying way.

Some ten years ago both de Jongh and Visser isolated the same simple c.e. set
of rules V which they conjectured to be a basis for the admissible rules of IPC.
In Chapter 7 we prove their conjecture. This is the main result of Part II of the
thesis. In that chapter we also present a proof system for the admissible rules.
Furthermore, we give semantic criteria for admissibility which are similar to the
ones found by Rybakov (1997). Since Visser (1999) proved that the admissible
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rules of IPC are the same as the propositional admissible rules of Heyting Arith-
metic HA this provides us with a proof system and a basis for the propositional
admissible rules of HA as well.

There also is another connection with Heyting Arithmetic. Namely, we will see
that our results plus certain results by Visser (1999), imply that HA proves the ad-
missibility of its admissible rules. This means that for every propositional admissi-
ble rule A/B and for every substitution o, HA proves the statement ‘if HA - o (A),
then HA F o(B)’. In part I of the thesis (Chapter 2) it is explained what this
means for the provability logic of HA.

One of the results (Proposition 7.3.1) we use in our characterization of the admissi-
ble rules is almost a reformulation of results by Ghilardi. Therefore, we devote one
section (Section 7.3) to the recapitulation of the theorems from (Ghilardi 1998)
that we use in this paper.

6.2 Intermediate logics

In contrast to classical propositional logic CPC, intermediate logics' can have
nonderivable admissible rules. For instance, in (Rybakov 1997) it is shown that
intuitionistic propositional logic IPC has countably many nonderivable admissible
rules. There are several very natural questions concerning intermediate logics and
their admissible rules which become trivial once all the admissible rules of the
logic are derivable, but which appear to be rather complicated otherwise. An
example of such a question is which intermediate logics are maximal. This means
the following.

Let us call a logic T with the Disjunction Property mazimal with respect to a set
of admissible rules R if all the rules in R are admissible for T and there is no
intermediate logic with the Disjunction Property which is a proper extension of
T for which all rules in R are admissible. If R is the set of all admissible rules of
T we just say that 17" is maximal. Clearly, if T is maximal with respect to some
set of admissible rules, it is maximal. A maximal logic T is characterized by its
admissible rules plus the Disjunction Property: the only logic with the Disjunction
Property that contains 7" and for which all admissible rules of 7" are admissible
is T itself. The requirement that the logic contains 7" is redundant, because if all
the admissible rules of T are admissible then so are the rules T /A for all theorems
A of T, and whence the logic contains T'. Note that if all rules in R are derivable
in T then T is maximal with respect to R once it has no proper extensions with
the Disjunction Property. For in this case any extension of 7" derives all rules in
R. We use the terms ‘characterized by its admissible rules plus the Disjunction
Property’ and ‘maximal’ interchangeably.

LThe logics between IPC and CPC are also called superintuitionistic logics, e.g. in (Chagrov
and Zakharyaschev 1997)
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It may appear to the reader that a better definition of maximality (in this sense)
would be one without a restriction to logics with the Disjunction Property. How-
ever, this restriction is more an empirical than a natural one (or is empirically
natural ...): the only interesting results we encountered on maximality with re-
spect to admissible rules, were in the sense of maximality as defined above and
not in the broader sense.

In Chapter 8 we will show that some well-known intermediate logics are maximal.
In particular, we will see IPC is maximal. To show this, we use a result from
Chapter 7, namely that there exists a certain countable basis V for the admissible
rules of IPC. The logic IPC is not characterized by its admissible rules; for example
all admissible rules of IPC are admissible for CPC. Kreisel and Putnam (1957)
showed that neither is IPC characterized by the Disjunction Property. However,
the fact that IPC is maximal shows that IPC is characterized by the combination
of the two properties.

We will see that the characterization of IPC is optimal. By optimal we mean that
there is no proper subset R of V such that IPC is already maximal with respect to
R. We show that for any finite subset X of V there is a proper intermediate logic
for which X is admissible. The logic in question is even maximal with respect to
X. For this we use the countably many proper intermediate logics Dg, D1, Do, ...
with the Disjunction Property which were constructed in (Gabbay and de Jongh
1974). We show that there is a correspondence between finite subsets of V and
these logics. Any such D, is maximal with respect to a finite subset X of ¥V and
for any finite subset X of V there is a number n such that D, is maximal with
respect to X. Furthermore, it will turn out to be a trivial observation that any
cofinal subset of the basis is equivalent, in terms of the admissible rules which are
derivable from it, to the basis itself. Therefore, there is no proper subset of ¥V with
respect to which IPC is maximal. Moreover, it shows that the Gabbay-de Jongh
logics are all maximal.

With the characterization of IPC we do not claim a completely new result since a
similar result, a characterization of IPC in terms of the Kleene slash, was already
obtained by de Jongh (1970) (Section 8.3). However, not only is the reduction
of the one characterization to the other not trivial, but the connection with the
admissible rules is new and interesting. We show that these characterizations are
effectively reducible to each other. Hence the effectiveness of the characteriza-
tion in terms of the Kleene slash (de Jongh 1970) implies the effectiveness of the
characterization in terms of the admissible rules.

There are many interesting open questions concerning maximality of logics. To
name a few: Are there any logics which are not maximal with respect to their
admissible rules? If so, can any such logic be extended to an intermediate logic
which is maximal with respect to its admissible rules? Given a set of rules R
which are derivable in CPC there is, by definition, an intermediate logic for which
all rules in 'R are admissible. But is there an intermediate logic which is maximal
with respect to R?
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6.3 Preliminaries

In this section we will define what an admissible rule is and what a basis for
admissible rules is, and we will fix some notation concerning Kripke models. In
Section 6.3 we define two specials models needed in Chapter 8. Since we will mostly
work in the context of intuitionistic propositional logic IPC we will not define these
notions in full generality. For example, what we will call an admissible rule is in
fact a propositional admissible rule. For a general setting and for interesting
results about admissible rules in the context of other logics see (Rybakov 1997)
and (Visser 1999).

Unless stated otherwise, formulas are meant to be formulas in a (fixed) language
for intuitionistic propositional logic. The letters A, B, C, D, E, F will always range
over formulas and p,q,r, s,t over propositional variables. We write - for deriv-
ability in IPC.

An L-substitution o is a map which assigns to every propositional variable a for-
mula in the language L. For a propositional formula A, we write o(A) for the result
of applying o to A, i.e. for the result of substituting o(p;) for p; in A. When L
is our fixed language of propositional logic mentioned above, we say ‘substitution’
instead of ‘L-substitution’.

An intermediate logic is a consistent theory in the language of propositional logic,
containing IPC, which is closed under substitution. For intermediate logics T" we
will write ¢ for derivations in T. If we only know that 7 is a theory we write
T + instead.

A rule is an expression of the form

A LA,
— 5

We sometimes write A;,..., A,/B for this expression. We say that an expression

is a substitution instance of such a rule when there is a substitution ¢ such that
o(A;) = Al and o(B) = B'. Let T be some theory in a language L . We say that
arule A/B is an admissible rule of T, and write A~ B, if

for all L-substitutions o: if T+ o(A) then T+ o(B).

In this case we also say that A admissibly derives B in T. We write ~ for b pc.

Bases

For a set of rules R and a set of formulas A, we say that B is derwable in T
by the set of rules R from assumptions A when there is a sequence of formulas
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(By,...,By), where B, = B, such that for every i < n either B; € A or there are
B, ..., B;, with i; < such that either

For (B“/\/\Blm)—)B,

or

is a substitution instance of some rule in R.

We call a set of rules R a basis (in T') for some other set of rules R" O R if
for every rule A;...A,/B in R, B is derivable in T by the rules R from the
assumptions Ay, ..., A,. Given T, we say that a set R of admissible rules of T is
a basis for the admissible rules of T when R is a basis for the set of admissible
rules of 7.

Subbases
If a theory T has the Disjunction Property,

DP iftTHAVBthenTHAorTHB,

then it follows that if A ~7B and C' 7D, then also AV C' 1BV D. However
the rule (A Vv C)/(BV D) does not have to be derivable from the rules A/B and
C/D in T. Therefore, in the context of theories which possess the Disjunction
Property, the notion of a basis for the admissible rules seems too restrictive. This
accounts for the notion of a subbasis for the admissible rules, introduced below.
That is, for theories with the Disjunction Property, we think that the right notion
of a basis (for the admissible rules), is in fact that what we will call a subbasis
here: a set R of admissible rules of 1" is a subbasis for the admissible rules of T" if
the following is a basis for the admissible rules of 7": the collection of rules of the
form

AVp
BVp

where the rule A/B is in R and p does not occur in A or B.

6.3.1 Models

In this section we fix some notation and terminology concerning Kripke models.
Most of the notions we introduce are standard, the only exception is the notion of
a tight predecessor. In the last section we define what basic models and Jaskowski
models are.

A frame is a pair (W, <), where W is a set and < is a partial order on W. A
(Kripke) model K is a triple (W, %, IF), where (W, <) is a frame and I- is the
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so-called forcing relation defined as usual (Section 3.4.2). A formula A is valid
in a model K, K | A, if it is valid in all nodes. If no confusion is possible we use
the same notation < and I for the partial order and forcing relation of different
models.

For two nodes w, v we say that w is below v when w < v. In this case we also
say that v is above w. We write w < v or w = v if w # v, and w < v or
w »= v respectively. In contrast to intuitionistic modal logic we now call a node
v a successor of w if w < v, in which case we also call w a predecessor of v. A
node y is called an immediate successor of x if x < y and there is no z for which
x < z <y. A marimal node is a node which has no nodes above it except itself.
We call a model rooted when it contains a node which is below all other nodes in
the model.

We say that K' = (W', x',IF) is a submodel of K = (W, %, IF) if W' is a subset of
W, and </, =" are the restrictions of the corresponding relations of K to W'. We
say that K' is a finite submodel when W' is finite. We write K, for K’ if W' =
{z € W |w < «}. A submodel of the form K, is called the submodel generated by
w. Note that submodels are completely characterized by their domain. Therefore,
we will from now on notationally confuse a submodel with its domain.

For Kripke models K7,..., K,, we let () . K;)" denote the Kripke model which
is the result of attaching one new node at which no propositional variables are
forced, below all nodes in K7, ..., K, (Smoryriski 1973).

The extension property

We repeat from (Ghilardi 1998) the following definitions. We say that two rooted
Kripke models are variants of each other when they have the same domain and
partial order, and their forcing relations only possibly differ at the roots. A class
of Kripke models is called stable if for every model K in the class and every node w
of K, K, is in the class as well. A class of rooted Kripke models has the extension
property when for every finite set of Kripke models K,..., K, in this class there
is a variant of (), K;)" which is in this class as well. A theory 7" has the eztension
property up to n if for every family of at most n rooted models K, ..., K, of T,
there is a variant of (>, K;)" which is a model of T as well. A theory T has the
extension property if it has the extension property up to n, for all n.

When K is a class of Kripke models we say that A is valid in K, notation K = A,
when A is valid in every model of K.
Tight predecessors (in propositional logic)

Consider a Kripke model K = (W, %, 1), some node u in K and a set U of nodes
in K. We say that u is a tight predecessor of U, if

VeeU(ugz)AVe=uldy e Uy X o).
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In the sequel we will actually only consider tight predecessors of finite sets of nodes.
We often write ‘a tight predecessor of uq,...,u, instead of ‘a tight predecessor of

{ur, ..., un}.

Observe that a set does not necessarily have a tight predecessor but that every
node in a Kripke model is a tight predecessor of some set, namely, of the set of all
its successors. Note the similarity with the notion of a tight predecessor in modal
logic (Section 4.6).

Jaskowski models

A modified Jaskowski frame (Smorynski 1973) is one of the frames .Ji, .Js, ... de-
fined via:

Jy consists of one node

Jyi1 18 the result of attaching one node below (n + 1) copies of J,.

(In (Smorynski 1973), J; is denoted with J*.) A Jaskowski model is a model based
on a modified Jaskowski frame.

Basic models

A basic model is a model for which the following holds:

e the only nodes that force propositional variables are maximal nodes,

e every maximal node forces exactly one propositional variable and no two
maximal nodes force the same propositional variable.

For example, if 1,..., n are the maximal nodes of a frame F', then the model given
by the valuation (x IF p; iff © = i) is a basic model on F'. A basic Jaskowski model
is a basic model based on a modified Jaskowski frame. It is easy to see that the
following fact about basic models holds.

6.3.1. Fact. Let F' be a frame in which no two nodes have exactly the same
maximal nodes above them. Consider the basic model on F'. There are formulas
A, such that y IF A, iff x < y. Namely, if 1,...,n are the maximal nodes above
x and i |k p;, then the formula A, = =—=(p; V...V p,) has the desired properties.






Chapter 7

The admissible rules of IPC

In this chapter we give a basis for the admissible rules of intuitionistic propositional
logic. We proceed as follows. In the first section we define a proof system, called
AR, which derives expressions of the form A>B, where A and B are propositional
formulas. In Section 7.4 we then show that AR is a proof system for the admissible
rules: AR derives A>B iff A B. The proof of this fact has two main ingredients:
In Section 7.2 we characterize AR in terms of Kripke models. We define what
an AR-model is and show that AR derives A>B if and only if B is valid in all
AR-models on which A is valid. Note that in the light of Section 7.4 this is a
semantical characterization of the admissible rules. In Section 7.3 we derive a
semantical characterization (in terms of classes of finite Kripke models) of the
admissible rules from results by Ghilardi (1998). In Section 7.4 we show that
these two characterizations are ‘the same’, which leads to the result mentioned
above. Finally, in the last section we show how this provides us with a basis for
the admissible rules.

7.1 A proof system
As explained above, we define a system AR that is a proof system which derives

expressions of the form A>B where A and B are propositional formulas. To keep
the definition of this system readable, we will use the following abbreviation,

(A)(Bi,....By) =0y (A — B) V...V (A — By).

Furthermore, we adhere to the same reading conventions as in the case of preser-
vativity logic (Section 3.4).

123
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Axioms:

V (A—=BVvC)VD)>((A)(E,...,E, B,C)V D),
for A=A\, (E; — F))
I A>B, where IPCF (A — B)

Rules:

Coni CZA C>B oup APB B>C
" TCOSANB “ ASC

Note that V' is not an axiom in the strict sense. It consists in fact of the infinitely
many principles V,, which are

Vi ((/n\(El- — F;) > BVC)V D)D((/H\(Ei — F))(Ey,...,E,,B,C)V D).

i=1 =1

De Jongh and Visser observed that the rules corresponding to V;, (Section 7.5) are
admissible and conjectured them to be a basis.

As noted before, if A~ C and Bk C then also (AV B) ~C. This property of the
admissible rules is not reflected in the rules of AR. That is, there is no rule

A>C B>C

bisi —avmse

However, it turns out that AR satisfies this rule. This is the next lemma, which
we will need in the completeness proof for AR to come.

7.1.1. Lemma. If AR+ A>C and AR B>C then ARF (A vV B)>C.

Proof. It is easy to prove (with an induction to the length of derivation) that
AR F Ap>B implies AR - (A Vv C)>(B VvV C). Hence AR F A>B also implies
ARF (CV A)>(CV B).

Now assume AR F A>C and AR + Br>C. From the previous observation it
follows that AR F (A Vv B)>(C' VvV B) and AR = (C' v B)>(C v C). Clearly, also
AR (C'v C)>C. Applying Cut (twice) gives the desired result. O

7.2 Completeness of the proof system

In this section we characterize AR in terms of Kripke models. The Kripke models
we use have special properties, they are the so-called AR-models defined as follows.
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AR-models

We call a Kripke model K an AR-model when it is a rooted model in which every

finite set of nodes {uy,...,u,} has a tight predecessor u, i.e. a node u such that
UKL U, .Uy AVU = (u; K W, for some i € {1,...,n}).

(We write ‘x < y1,...,y for ‘e S pmn Ax Ly Ao AT < yn)

We will prove that AR derives A>B if and only if B is valid in every AR-model in

which A is valid. The proof uses a lemma which we present separately in advance.

Before stating it, let us remind the reader that a set of formulas x is called IPC-

saturated if it is a consistent set such that for all A and B, if + F AV B, then
A € x or B € x. In particular, z is closed under deduction in IPC.

7.2.1. Lemma. Let © be some set of formulae. Every IPC-saturated set + C ©
can be extended to an IPC-saturated set y C © such that for no IPC-saturated set
y' it holds that y C iy’ C ©.

Proof. Let x and © be as in the lemma. We construct a sequence 39 C y; C ...,
such that for all 7, %(y;) holds, where the property *(-) is defined as

*(2) for all n, for all Ay,..., A,:if zFA; V...V A,
then A; € © for some i =1,...,n.

We construct the sequence of sets as follows. Let Cy, C4,... be an enumeration
of all formulae in which every formula occurs infinitely often. We put y, = x.
Clearly *(yo) holds. Suppose y; is already defined. Then we put

y; U{C;} if x(y; U{C;}) does hold
Yi if *(y; U {C;}) does not hold.

Ui+l =aer

Now we take y = |, v;. First, we have to see that this is indeed an IPC-saturated
set. And second we have to show that there are no proper supersets of y which
are |IPC-saturated and are contained in ©.

To see that y is IPC-saturated, suppose y = AV B. Hence y; - AV B, for
some i. There are i < j < k such that C; = A and C, = B. If x(y; U {C}})
or *(yr U {Ck}) holds, then clearly A or B is in y. We show that indeed one of
#(y;U{C;}) and *(y,U{C}}) has to hold. Arguing by contradiction, assume this is
not the case. Thus there are A;,..., A,, By,..., B, such that y;, C; - \/I_, A; and
Uk, C, F /2, B; but none of Ay,..., A,,By,..., B, is in ©. Since y; C y; C yy
and y; = C; V Cy, this implies that y;, =\, 4; V Vi~ B;, which contradicts the
fact that *(y;) holds.

To see that there are no IPC-saturated proper supersets of y which are contained
in O, consider an IPC-saturated set y C ¢y’ C ©. We show that y = . Consider a
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formula A € ¢/, and suppose C; = A. It is easy to see that since y; C 3/ C © and
the fact that y is saturated, *(y; U{C;}) holds. Hence A € y. Therefore y = ¢'. o

Now we are ready to prove the following lemma.

7.2.2. Proposition. AR - A>B iff B is valid on all AR-models on which A is
valid.

Proof. The direction from left to right. We have to see that if AR+ A>B and A
is valid on an AR-model, then B is valid on this model as well. This can be shown
by induction to the length of the derivation of A>B in AR.

The case that A> B is an instance of the axiom scheme [ is easy. In the induction
step we have to consider the two rules. All of them are straightforward.

Therefore, we only consider V. We have to show that for any conjunct of im-
plications A = A, (E; — F;), if (A — BV C)V D is valid on all AR-models,
then so is (A)(B,C, Ey,...,E,) V D. Therefore, assume that indeed for such a
formula A, (A — BV C)V D is valid on an AR-model K. Let v be the root
of K. We show that (A)(B,C, Ey,...,E,) VvV D is valid in K at v, whence that
(A)(B,C,Ey,...,E,) VD is valid in K.

Arguing by contradiction, assume (A)(B,C,Ey,...,E,) V D is not valid at v.
Hence (A — BV () is valid at v. Moreover, = A is not valid at v. Therefore, there
is a nonempty set U of nodes, such that

Va(z IF A iff for some u € U, u X z).

Since (A)(B,C, Fy, ..., E,) is not valid at v, there are, for some m < n+ 2, nodes
WUy, - .., u;, € U such that

VD € {B,C,El,...,En}Elu S {uil,...,uim} u W D.

Since we consider an AR-model the set {u;,, ..., u;, } has a tight predecessor. That
means that there is a node u such that

U Uy oy Uiy, AVU = uug; < !, for some j < m).

If A is valid at u then B or C' has to be valid at u, which contradicts the fact
that for both B and C' there is a node in w;,, ..., u;, which does not validate the
formula. On the other hand, if A is not valid at u, then since A is valid at all
nodes v > u, F; has to be valid at u, for some j. But this is a contradiction as
well, since for every j € {1,...,n} there is a node in w;,, ..., u;, which does not
validate E;.

The direction from right to left. Assume ARt/ A>B. We construct an AR-model
K in which A is valid while B is not.

First we construct an IPC-saturated set of formulas v in such a way that

A€wv, B&w,forall C>D: if ARF C>D and C € v, then D € v. (7.1)
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This v will be the root of the model K we are going to construct. The existence
of v is proved in the following Claim.

Claim If AR t/ A>B, then there is an IPC-saturated set v such that A € v and
B ¢ v, which has the property that if for some C, D, AR+ C>D and C' € v, then
D € v as well.

Proof of Claim. Assume AR I/ A>B. We construct a sequence of finite sets
{A} = 29 C 2y C ... such that for all i, ARV (A z;)>B, and if AR = (A z;)>C,
then C' € x; for some j. The set v we look for will be the set |Jz;.

Let Cy, 1, ... be an enumeration of all formulas in which every formula occurs
infinitely often. Given the set x;, we show how to construct ;.

;

T if AR (N z;)>C;

z; U{C;} it AR (A z;)>C;, C; is not a disjunction

z; U{D;,C;} if ARF (Az;)>C;, C; =Dy V Dy, j=1,2
is the least such that ARt/ (A z; A D;)>B.

Tit1 =aef

\

It is easy to see that each of these sets x; has the desired properties, assuming it is
well-defined. Thus it remains to show that they are indeed well-defined, i.e. that
given x;, x4 exists. Therefore, suppose AR F (A x;)>C; and C; = (DyV Dy). We
have to see that either ARt/ (A z; A D1)>B or AR/ (A z; A D2)>B. Arguing by
contradiction, assume this is not the case. But then we can derive the contradiction
that AR = (/\ x;)>B in the following way (we do not state all the rules used, but
only the crucial ones).

AR F NziNDy)>B

(

(

(ANz; AN(D1V Ds))>B (Lemma 7.1.1)
(Axi)>(Az; A(DyV Dy)) (assumption on x;)
(

Now we take v = |J; z;. It is easy to see that v has the desired properties. This
proves the Claim.

Thus we know that there exists an IPC-saturated set v which satisfies (7.1). Next
we construct our model K as follows. Its domain consists of all IPC-saturated sets
which extend v. Its partial order < is the subset relation C. And the forcing
relation is defined via

w lF p iff p € w, for propositional variables p.
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It is easy to see that this indeed defines a Kripke model, that the model is rooted,
and that A is valid in this model but B is not. Thus it only remains to show that
K is an AR-model.

Therefore, consider nodes uy,...,u, € K. We have to show that there is a node
u such that
U ULy Uy AVU = u(uy < 0, for some i < n).

First note that wy N ... N u, is not saturated in general. Therefore, although
uy N ...Nwu, contains v, it does not have to be a node in K. Let now

A={EF—-F|(E=-F)eun...Nu, AEZuN...Nu,}.

Then we have

Claim The set {C'| vU A C} is IPC-saturated.

Proof of Claim. Suppose that v UA F C; V Cs holds. This implies that there
is a conjunct D = A", (E; — F;) of implications in A, such that it holds that
v (D — Cy V(). Thus (D — C) Vv Cy) € v, because v is saturated. Since the
expression (D — Cy VvV C2)>(D)(Cy,Cy, Ey, ..., E,,) is derivable in AR, the way v
is constructed implies that then also (D)(Cy,Cy, Ey, ..., Ey) € v. And thus one
of (D — Cy),(D — Cy),(D — Ey),...,(D — Ey,) is in v. Since no E; is in
uy N ... N uy,, this implies that v does not contain any of (D — E;). Therefore
v contains either (D — Cy) or (D — Cy). Hence v U A derives either C or Cs.
This proves the Claim.

By the previous claim and the fact that v UA C u; N ... N wu,, it follows from
Lemma 7.2.1 that {C' | v UA F C} can be extended to an IPC-saturated set
u C uyN...Nu, such that there are no saturated sets v’ with v C v C uyN...Nu,.
We show that this is the set we look for, i.e. if v’ = u for some saturated set u’,
then w; < o/, for some i € {1,...,n}.

Suppose not, that is, let u C ' for some saturated set v’ and assume that no u;
is contained in u'. We derive a contradiction. For all i < n, we (can) choose a
formula A; € u; outside /. Then the formula A; V...V A, isin u; N...Nw, but
not in «’. From the construction of u, and the fact that «' is a superset of u, it
follows that u’ is not contained in u; N ... N w,. Thus there is a formula £ € u’
which is not in this intersection. Now (E — A; V...V A,) is an element of A,
thus also of u. Hence A; V...V A, should be in %/, a contradiction. This finally
proves the proposition. o

7.3 Results by Ghilardi

In the proof of the characterization of the admissible rules in terms of > we will
use, besides the semantical completeness of AR (Section 7.2), the following fact
which follows from results proved by Ghilardi (1998).
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7.3.1. Proposition. If A B, then B is valid in every stable class of finite rooted
Kripke models which has the extension property (see Section 6.3.1) and in which
A is valid.

This section is devoted to the recapitulation of the results by Ghilardi which lead
to the proposition above. First we have to introduce some terminology.

Terminology

Let p be a sequence of propositional variables. We say that a formula A is a
formula in p, when all the propositional variables in A are among the variables in
the sequence p. We say that a Kripke model is a Kripke model over p, when the
forcing relation of the model is only defined for formulas in p. If p is the sequence
of all the propositional variables that occur in A, then Mod(A) denotes all finite
models of A over p.

Following Fine (Fine 1974) (Fine 1985), Ghilardi defines equivalence relations ~,,
and preorders <,, between rooted Kripke models. Let K, K’ be two rooted Kripke
models with roots b and b respectively.

K ~) K =,; bIFpiff b IFp, for all atoms p in p.
K~ K =, Vke K3k € K'(K)y ~y, (K')) and vice versa.
K <P K’ =,; U IFpimplies bl p, for all atoms p in p.

K<l K =, Vke KK e K'(K)g ~n (K')i).
When it is clear from the context to which sequence of variables we refer we omit
this in the notation.

Moreover Ghilardi uses a measure of complexity, ¢(-), on propositional formulas
defined as follows. Put ¢(A) = 0 if A is a propositional variable, ¢(A4 o B) =
max{c(A),c(B)}, for o = A,V, and ¢(A — B) =1+ max{c(A), c¢(B)}.

The proof of Proposition 7.3.1

In the proof of Proposition 7.3.1 we will use four results by Ghilardi which we will
state below. The first three have to do with the relation <,,.

7.3.2. Proposition. (Ghilardi 1998) For two finite rooted Kripke models K and
K' over p it holds that K <,, K" iff for all formulas A in p with ¢(A) <n, K' = A
implies K = A.

7.3.3. Proposition. (Ghilardi 1998) Let K be a class of finite rooted Kripke
models over p for which there exists a number n such that for all Kripke models
K over p it holds that

if there is a K' € K with K <,, K’, then K € K.
Then K=Mod(A) for some formula A in p.
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7.3.4. Proposition. (Ghilardi 1998) If a stable class K of finite rooted Kripke
models over p has the extension property then so does the class of models

{K | K is a finite rooted model over p and K’ € K(K <, K')}.
The heart of Proposition 7.3.1 is the following theorem.

7.3.5. Theorem. (Ghilardi 1998) Let A be a formula in p. If Mod(A) has the
extension property then there is a substitution o such that - o(A) and for all
formulas D in p, A+ D < o(D).

Now the proof of Proposition 7.3.1 runs as follows. Suppose A~ B and let K be
a stable class of finite rooted Kripke models with the extension property in which
A is valid. Assume that all the propositional variables in A and B are among p.
Then let ' be the class of all Kripke models of K, but then considered as Kripke
models over p. Note that K is again a stable class of finite rooted Kripke models
with the extension property in which A is valid. Let n be some number such that
c(A) < n, and let

K" ={K | K is a finite rooted model over p and K" € K'(K <,, K')}.

By Proposition 7.3.2, A is valid in the class K" because it is valid in K'. And by
Proposition 7.3.3 we know that K" =Mod(C') for some formula C' in p. Since, by
Proposition 7.3.4, we also know that K" has the extension property, we can apply
Theorem 7.3.5 to conclude that there is a substitution ¢ such that

IPC + o(C') and C'+ B > o(B).

Clearly, the fact that A is valid in Mod(C') implies that C'+ A. Hence IPC - o(A).
But this implies that o(B) is derivable, because A ~ B. Thus certainly C' F o(B),
and whence C'+ B. Therefore, B is valid in Mod(C'). It is easy to see that this
implies that B is valid in K as well. 0

7.4 Characterizations of admissibility

We are now ready to give the promised characterizations of the admissible rules of
IPC. One is in terms of >, a proof system for the admissible rules. The other two
are in terms of Kripke models. Let us state them before we consider their proofs.

7.4.1. Theorem. A~ B iff AR+ A>B.
7.4.2. Corollary. A ~ B iff B is valid in every AR-model in which A is valid.

7.4.3. Corollary. A~ B iff B is valid in every stable class of finite rooted Kripke
models with the extension property in which A is valid.
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The last corollary is Proposition 7.3.1. The second characterization is a corollary of
the first one in combination with Proposition 7.2.2 and Lemma 7.4.4. The latter is
also needed in the proof of the first characterization. Lemma 7.4.4 shows that there
is a natural correspondence between AR-models and stable classes of finite rooted
Kripke models with the extension property. Therefore, the two corollaries are in
some sense the same. We first treat this lemma and then we prove Theorem 7.4.1.

7.4.4. Lemma. For all n and all finite sequences of propositional variables p we
have the following correspondence:

(a) For every AR-model K there is a stable class K of finite rooted Kripke models
with the extension property such that

for all Ain p with ¢(A) <n: K EF Aiff £ E A.

(b) For every stable class K of finite rooted Kripke models with the extension
property there is an AR-model K such that

forall A: K = Aiff K E A.

Proof. Let n be some number and let p be some finite sequence of propositional
variables. First of all, let A be the set of all formulas A in p with ¢(A) < n. This
set is, modulo provable equivalence, finite.

To show part (a) of the lemma, suppose K is an AR-model. Let K be the class
of all Kripke models K’ such that K’ is a finite rooted submodel of K, and such
that

VAe AVe € K'(K',z IF A iff K 21 A). (7.2)
It is easy to see that K is stable. We show that K has the extension property.
Consider models Ky,..., K, in K, with roots uq,...,u, respectively. Let u be a
tight predecessor of uq,...,u, in K. That means that

UK UL, Uy AVU = u(u; < U, for some i € {1,...,n}).

Let K’ be the submodel the domain of which is the union of {u} and the domains
of Ki,...,K,. It is easy to see K' satisfies (7.2). Hence K’ is in K. This shows
that K has the extension property.

It remains to show that

forall Ac A: K E Aiff K E A.

The direction from left to right follows from the definition of K. The direction
from right to left is shown by contraposition, i.e. by showing that for all A € A it
holds that whenever K = A there is a K’ € K such that K’ £ A (it suffices to
show that K is not empty, but the proof is the same). This again follows from the
following standard result. We include the proof for the sake of completeness.
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Claim For every Kripke model K, for every node w in K, there is a finite rooted
submodel K’ of K with root w, such that

VA€ AVz € K'(K', 2 |- A iff K,z I A). (7.3)

Proof of Claim. Let A, K = (W, %,IF) and w be as in the claim. Now we choose
step by step, starting with w, a finite subset of W a copy of which will be the
domain W, of our new model K" = (Wy, <w,lFy). Put ay = w. Suppose a, is
defined. We choose elements og,p_.cy in W, for all elements (B — C) € {(D —
E)e A | K,a, I D — E}. The node agy(p—c) is an element v € W such that
a, < v, K,vlF B and K,vIf C. Note that such elements can always be found.
Now define W,, = {0 | o is defined }, and define the partial order and the forcing
relation on K as

0w T =i Qo X O
olFwp =.; a,lFp, forpep.

Clearly, K" is finite, as A is finite too. It is also easy to infer that (7.3) is satisfied.
This proves the claim, and thereby part (a) of the correspondence.

To show part (b) of the lemma, let K be a stable class of finite rooted Kripke
models with the extension property. The model K we are going to construct will
consist of equivalence classes of nodes of models in .

Replace every model in K by an isomorphic copy, in such a way that the domains
of distinct models are disjoint. Let us define for nodes k € K and k' € K’

k=t =, (K) and (K') are isomorphic.

(Remember that K, is the submodel of K generated by k, see Section 6.3.1.) We
write k IF A when A is valid at £ in the unique model in K to which & belongs.

Now we define the domain of K as the set of all Z-equivalence classes [k] of nodes
k of models in KC. The partial order and the forcing relation on K are defined via

k] < K] = A e€[k] T e[k] (I,I' are nodes in the same model
and [ < [' holds in this model.)
EllFp =, kIFp.

Since every two =-equivalent nodes force the same propositional variables the
notion of forcing is well-defined. We have to see that K is in fact an AR-model
and that

for all A: K = Aiff £ = A. (7.4)

We show that K is an AR-model and leave the proof of (7.4) to the reader.

Consider nodes [ki],...,[k,] in K. Assume k; is a node in the model K; € K.
Since K has the extension property there is (an isomorphic copy of) a variant of
(O O(Ky)k,) in K. Let b be the root of this variant. It is easy to see that [b] is a
tight predecessor of [k1],...,[k,] in K. This proves part (b) of the lemma. O
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7.4.5. Corollary. The following are equivalent
(a) B is valid in every AR-model in which A is valid.
(b) B is valid in every stable class of finite rooted Kripke models

with the extension property in which A is valid.

Now we are ready to give the

Proof of Theorem 7.4.1. First the direction from right to left. (De Jongh and
Visser) We have to show that for all instances A/B of V and I, A admissibly
derives B, and we have to see that the three rules of AR preserve admissibility.
That is, when reading r~ for >, if the assumptions of a rule are valid then so is
the conclusion. For the two rules this is trivial. Therefore, it remains to treat the
axioms. For instances A/B of I it clearly is the case that A B. Thus all we
have to show is that for every instance A/B of the scheme V' it holds that if A is
derivable in IPC then so is B.

Therefore, consider such instance A/B of V. Let X = A (E; — F;) and let
A=X - CVvDand B=(X)C,D,E,...,E,). Arguing by contradiction,
suppose A is derivable but B is not. This implies that none of the formulas
(X —-C),(X = D), (X = Ey),...,(X = E,) is derivable. Thus there are Kripke
models K7, ..., K, o at which X is valid but at which respectively C, D, Ey, ..., E,
are not valid. Consider the model (> K;)" and call its root b. Since A is derivable
A is valid at b. Note furthermore that none of the formulas C, D, E1, ..., E, can
be valid at b. Therefore, the conjunction X cannot be valid at b. But it cannot
be not valid either. For if so, there is some 7 < n for which there is a node above
b at which Ej; is valid while F; is not valid. As X is valid at all nodes except b the
only possibility for this is the node b itself. Thus one of the formulas Ey, ..., E,
would be valid at b, which cannot be.

The direction from left to right follows immediately from Proposition 7.3.1, Corol-
lary 7.4.5 and Proposition 7.2.2. 0

7.5 A basis for the admissible rules

Let Ry, denote the rule corresponding to V; (see Section 7.1), i.e. let

n n

Ry, (/\(Ei— F,)—BvC)VvD/(\(E — F))(E,...,E, B,C)VD.

i=1 =1
Further, let

(/n\(Ei — F;)) = BV C)/(/n\(E,- — F))(Ey,...,E,,B,C).

i=1 =1

Ry

7
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Let V be the set {Ry,, Ry,,...} and let V™ be the set {Ry,, Ry,,...}. We need
one more lemma to establish that the sets of rules V and V™ are respectively a
basis and a subbasis for the admissible rules of IPC.

7.5.1. Lemma. If AR+ A>B then the rule A/B is derivable in IPC from the set
of rules V.

Proof. We prove the proposition by induction on the length n of the derivation
of A>B in AR. For n = 0 there is nothing to prove.

For n > 0, suppose the last rule applied in the derivation of A>B is the Conjunc-
tion rule. This implies that there are By, By such that B = B; A By, and such that
A>B; and AD> B, are derivable, and moreover have derivations of length smaller
than n. By the induction hypothesis, A/B; and A/B, are derivable in IPC from
{Ry,, Ry,,...}. And thus A/B; A By is derivable in IPC from {Ry,, Ry,,...} as
well. The case that the last rule applied in the derivation of A>B is the Cut Rule
is completely similar. u]

7.5.2. Theorem. V is a basis for the admissible rules of IPC.
Proof. Immediate from Lemma 7.5.1 and Theorem 7.4.1. O

7.5.3. Corollary. V™ is a subbasis for the admissible rules of IPC.

7.6 The connection with Heyting Arithmetic

In this section we explain what the results of this chapter mean for the provability
and preservativity logic of HA.

Visser (1999) showed that the admissible rules of IPC are the same as the propo-
sitional admissible rules of HA. Therefore, Corollaries 7.5.2 and 7.5.3 give us

7.6.1. Corollary. V and V™~ are respectively a basis and a subbasis for the propo-
sitional admissible rules of HA.

In Theorem 7.4.1 we saw that
A/B is a propositional admissible rule of IPC iff AR - A>B.

In combination with the result in (Visser 1999) that states that the propositional
admissible rules of HA and IPC are the same, this gives

A/B is a propositional admissible rule of HA iff AR - A>B.

It is easy to see that the logic AR is equivalent to the logic axiomatized by the
preservativity principles (Section 2.2) P1, P2, Dp and all the instances A>B of
Vp, where A and B are propositional formulas, characterizes the admissible rules
of IPC (use Lemma 7.1.1).
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From the definition of preservativity it follows that if A>B is in the provability
logic of HA, then A/B is an admissible rule of HA (Chapter 2). Finally, in com-
bination with the fact that AR is part of the preservativity logic of HA (Visser
1994), this leads to

for propositional formulas A, B:
A/B is a propositional admissible rule of HA iff
AD>B is in the preservativity logic of HA.

This shows that HA recognizes its propositional admissible rules.






Chapter 8

A characterization of IPC

In this chapter we show that IPC is characterized by its admissible rules: In
Chapter 7 we gave a countable basis V for the admissible rules of IPC. Here we
show (Section 8.1) that the only intermediate logic with the Disjunction Property
for which all rules in this basis are admissible, is IPC. In Section 8.2 we prove that
the characterization is optimal. We show that for any finite subset X of V' there
is a proper intermediate logic for which X is admissible. In Section 8.3 we show
that the characterization is effective.

8.1 The characterization

In Chapter 7 we gave a simple c.e. description of the admissible rules (Theo-
rem 7.5.2) which implied (Corollary 7.5.3) that the set V is a subbasis for the
admissible rules of IPC. Let us recall the definition of this subbasis (Section 7.5):
V is the collection of rules

(N E: = B) > BVC) [ (NE— F))(B.C. B Ey).

=1 =1

Ry,

n

where we use the abbreviation,
(A)(B1,...,Bn) =0 (A— By)V...V(A— B,).

The rest of this section is devoted to the proof that these admissible rules together
with the Disjunction Property characterize IPC, i.e. we will show that for any
intermediate logic which is not equal to IPC either the Disjunction Property does
not hold or one of the rules Ry, Ry,, ... is not admissible. It is convenient to have
the Disjunction Property built-in into the admissible rules. Therefore, we need
the following definition.

137
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Definition of the rules P,

A theory T has the property P, if for all substitutions o,

if Fro(A,(pi — ¢) — 17V s) then
Fr oAy (pi = @) = 1) or Fro(A_,(pi = @) — s) or
Fr oA (pi = @) = p1) or ... or Fro(A_,(pi = @) — pn)-

We will show that an intermediate logic is equal to IPC iff it has the property P,,
for all n > 0. The characterization mentioned above is an immediate corollary of
this.

Note that a logic has P, if and only if it has the Disjunction Property. A logic has
P, for all n > 0 if and only if it has the Disjunction Property and for all n > 1
the rule V,, is admissible.

We need the following fact by Smorynski.
8.1.1. Fact. (Smorynski 1973) IPC is complete with respect to Jaskowski models.

8.1.2. Lemma. If an intermediate logic has the extension property it is the logic
IPC.

Proof The lemma follows from the following two claims.

Claim 1f T is an intermediate logic with the extension property, then every basic
Jaskowski model is a model of T'.

Proof of the Claim Let T be an intermediate logic with the extension property
(Subsection 6.3). Let K be a basic Jaskowski model (Section 6.3.1). We show
that K, is a model of T" by induction to the depth of the node x. The maximal
nodes of K clearly are models of T" since every classical model is a model of T'.
Suppose x is another node in K and let x4, ..., x, be the immediate successors of
x, i.e. the nodes y such that x < y and such that there is no node x < z < y. By
the induction hypothesis the models K,,,..., K, are models of 7. Observe that
K, is the model (>  K,,)" (Section 6.3.1). Because every propositional variable
is valid at at most one node in K there is no other variant of (> K.)" then the
model itself. Since T has the extension property this implies that K, is a model
of T. This proves the Claim.

Claim If T is an intermediate logic such that every basic Jaskowski model is a
model of T', then T"= IPC.

Proof of the Claim We show that T" C IPC by proving that if I/pc A holds, then
Hr A holds as well. If t/jpc A then there is a Jaskowski model K in which A is
not valid (Fact 8.1.1). Let K’ be a basic model based on the frame of K. By
assumption K’ is a model of T'.

Now we define a substitution o via o(p) = V., Az, Where the formulas A,
are given by Fact 6.3.1. To see that o(A) is not valid at K’, observe that for
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every node x and for every formula B we have that K,z IF B iff K',z I o(B).
Therefore, /7 o(A). Hence t/r A. O

In the following lemma we need the notion of a saturated set. A T-saturated set x
is a set of formulas such that A € x or B € x whenever x -y AV B. In particular,
a T-saturated set is closed under deduction in 7.

8.1.3. Lemma. If an intermediate logic has the property P, for every n > 0,
then it has the extension property.

Proof Let T be an intermediate logic with the Disjunction Property, for which,
for all n, Ry, is admissible. Consider models K, ..., K, of T with roots x1, ..., 2,
respectively. From now on we confuse a node with the set of formulas it forces.

Claim There exists a T-saturated set * C x1N...Nx, such that for all T-saturated
sets x C y there is some ¢ < n such that x; C y.
Proof of the Claim Consider

A={(E—-F)|E¢€dxin...Naand F€x;N...Nay}.

Clearly, A C z1N...Nx,. Observe that the set xyp = {A | Ay A} is T-saturated
because for all m, the property P,, holds. Now we construct a sequence of sets
r9p = 29 C z1,... as follows. Let Cy, C,... enumerate all formulas, with infinite
repetition. Define the property x(-) on sets via

*(y) for all m, for all Ay,..., Ay if yFr Ay V...V A,,

then A; € xyN...Nx,, forsome i =1,...,m.

Note that #(zp) holds. If x(z; U {C;}) does not hold then put z; 1y = z. If
x(z; U{C;}) holds do the following: if C; is no disjunction, put z;,1 = z; U {C;}; if
C; =DV E,let zj;1 be z;U{D} if %(z; U{D}) holds and z; U {E} otherwise. It is
easy to see that at least one of x(z;U{D}) and *(z; U{F'}) has to hold. Therefore,
%(z;) holds for all i. Let v =, ;. Clearly, x is T-saturated and = C z;N...Nwy,.

Finally, we have to see that for all T-saturated sets x C y there is some 7 < n for
which x; C y. Arguing by contradiction assume y D x and x; € y for all i < n.
From the construction of x it is easy to see that y € x; N ... N x,. Thus there
are formulas £ € y, E € x1N...Nx, and A; € z;, A; € y, for all « < n. Hence
(E— A;v...VA,) € A. Thus A; V...V A, € y, quod non. This proves the
Claim.

Now we define a variant of (Y K;)" by requiring (b |- p iff p € x) at the root b of
(>0 K;)', for propositional variables p.

Claim For all formulas B: bIF B iff B € x.

Proof of the Claim We prove this by formula-induction. The case of the propo-
sitional variables and the connectives A and V is trivial. Consider a formula
B = (C — D). If (C — D) € x then it is easy to see that indeed b I- (C' — D).
We prove that x |- B implies B € x by contraposition. Therefore, assume



140 Chapter 8. A characterization of IPC

(C — D) ¢ x. It is not difficult to see that this implies the existence of a T-
saturated set y O x such that C' € y and D ¢ y. From the construction of x it
follows that = y or x; C y for some 7 = 1,...,n. In the first case the induction
hypothesis gives b IF C' and b I D, thus b Iff (C'— D). In the other case it follows
that for some i, x; If (C'— D). Thus again we can conclude that b I (C' — D).
This proves the claim.

By the last claim the defined extension is a model of T'. This proves that 7" has
the extension property. o

These two lemmas lead to the following characterization of IPC:

8.1.4. Theorem. For any intermediate logic T" it holds that T = IPC iff T has
the property P, for every n >0 .

8.1.5. Corollary. For any intermediate logic T" it holds that 7" = IPC iff T" has the
Disjunction Property and all the rules Ry, are admissible. Thus IPC is maximal
with respect to VV and hence maximal.

8.2 Optimality of the characterization

In the previous section we saw that the properties P;, P,, ... characterize IPC. In
this section we show that no finite subset of P, P,,... characterizes IPC. This
proves that our characterization is optimal. Note that it is not interesting to
consider infinite subsets of Py, P, Py, ..., since having the property P,,; implies
having the property P,,.

We use logics D, (n > 1) given by Gabbay and de Jongh (1974). The logic D, is
axiomatized by

n+l n+1
i=0 j#i j#i i=0

We need the following theorem.

8.2.1. Theorem. (Gabbay and de Jongh 1974) The intermediate logic D, is a
proper extension of IPC with the Disjunction Property. D, is complete with respect
to the class of finite trees in which every point has at most (n + 1) immediate
SUCCEeSSOTs.

Knowing this, it is easy to prove the following lemma.

8.2.2. Lemma. The logic D, has the property P,,; and it does not have the
property P, 0.
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Proof To see that D, has the property P,.;, suppose D, derives the formula
(A — DV E), where A = \'\'(B; — C;). Suppose also that D, does not derive
(A)(Byi,...,Bni1, D, E). By the Disjunction Property and the completeness of
D, this implies that there are models K;, such that K; = A and, for i < n + 1,
K; ¥ B; and K2 £ D and K, 3 £ E. Furthermore, the frame of every K;
is a finite tree in which every node does not have more than (n + 1) immediate
successors. Consider (31! Ki)' 4 Kyya)' + K,y3)'. Clearly, the frame of this
model is again a finite tree in which every node does not have more than (n + 1)
immediate successors. In this model A is valid while (D V E) is not, contradicting
the assumption that D, derives (A — DV E).

To see that D, does not have the property P, o, consider the axiomatization of
D,. It is easy to see, using the completeness of D,, that D, does not derive

n+1
(A =V A) =\ A (A= A4, (Apr =\ A4)).
=0 J#i J#i J#0 J#n+1
This completes the proof of the lemma. o

8.2.3. Corollary. No finite subset of Py, P, ... characterizes IPC.

In fact, D, is characterized by P,,; in the same way as IPC is characterized by
all the Py, Py, ..., see Corollary 8.2.7. The proof of this proposition is analogous
to the one of Theorem 8.1.4: the next lemma is the analogue of Lemma 8.1.2 and
the following one is the analogue of Lemma 8.1.3.

8.2.4. Lemma. If an intermediate logic has the extension property up to (n+1),
then it is contained in D,.

Proof Let T be an intermediate logic that has the extension property up to (n+1).
Suppose D, I/ A. It easily follows from Theorem 8.2.1 that D, is complete with
respect to the class of the finite trees in which every point has at most (n + 1)
immediate successors, and in which no two nodes have exactly the same maximal
nodes above them. To be precise, the last property reads:

VaVydz(x £y — - <2)A (e 2Ay & 2) V(g2 A 4 2))).

Let M be a model based on such a frame F'in which A is not valid. Let M’ be a
basic model on F' (see Section 6.3.1). By the same reasoning as before it follows
that M' is a model of T'. Define the substitution o via o(p) =V iy, Az, Where
the formulas A, are given by Fact 6.3.1. Clearly,

M,z Biff M,z I+ o(B).

Thus t/7 o(A). Hence t/ A. This shows that the logic T is contained in the logic
D,. o
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8.2.5. Lemma. If an intermediate logic has the property P, it has the extension
property up to n.

Proof Let T be an intermediate logic that has the property P,. The proof
that T" has the extension property up to n is completely similar to the proof
of Lemma 8.1.3, except for one point, which we will explain. The rest of the proof
we leave to the reader.

In the first Claim of Lemma 8.1.3 we define a set A and observe that, in the
notation of this lemma, the set xy = {A | A Fr A} is T-saturated because
for all m, P,, holds. In this case, having only P,, this is the only place in the
proof where we have to be careful. Assume xq Fr AV B. Hence there are
E,...,E,&xN...Nx, and Fy,.... F, €x;N...Nx, such that

Fr /\(Ei = F}) = AV B.
i=1
For i < n,let G; = \{E; | j <m,E; ¢ x;} and let F = A", F;. Observe that
G & x; and that (G; — F) € A. Clearly,

i=1
And thus, since T has P,, we can conclude

- (/n\(@ — F))(G1, ..., G, A, B).

i=1
Since A\/_,(G; — F) € x;N...Nx, while G; € x1 N...Nx,, we have either

i=1 i=1
And because g Fr A, (G; — F') either xy Fr A or xy F7 B. And this proves
that zy is T-saturated. o

8.2.6. Proposition. Any intermediate logic T" which has P, is contained in D,,.

8.2.7. Corollary. For any intermediate logic T' O D, it holds that T'= D, iff T
has P,;. Thus D, is maximal with respect to Ry, , and hence maximal.

Since the union of the D, is equivalent to IPC, Theorem 8.1.4 follows from the pre-
vious proposition. However, we preferred to give a separate proof of the theorem
in advance.
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8.3 Effectiveness

In (de Jongh 1970) the following characterization of IPC in terms of the Kleene
slash | (Kleene 1962) is given: IPC is the only intermediate logic T satisfying

if A|lr Aand 7 (A — BV (), then ¢ (A — B) or Fr (A—C).

We remind the reader that the Kleene slash is defined as follows. (We use the
abbreviation I' IFr A =,,, (T'|7A and T ¢ A).)

Clrp =,; | Fp pfor p a propositional variable or L
L'l ANB =,; T'|rAand T | B

'lrAvB =,, T'lkpr Aor Ty B

'lrA—=B =,, T'lkr Aimplies ' |7 B.

De Jongh (1970) also proved that the characterization in terms of the Kleene slash
is an effective one: given any intermediate logic T # IPC we can obtain formulae
A,B,C such that A |T A, Fr (A — B \/C) but |7/T (A — B), )7[T (A — C) in
an effective way. We show that the characterization in terms of the admissibles
rules treated in this chapter, is effective as well, by giving an effective reduction
from the characterization in terms of the Kleene slash to the one in terms of the
admissible rules.

Let us call a triple of formulas A, B, C' a J-example or an I-example of T' # IPC if
respectively

A|TA, l_T (A—}B\/C), |7ZT (A—>B>, |7(T (A-)C),
or for A = A\(D; — E;),

The following proposition shows that there exist effective reductions from one
characterization to the other.

8.3.1. Proposition. For any intermediate logic 7" # IPC there is an effective way
of creating an I-example from a J-example, and vice versa.

Proof During the proof -, | stand for 7, |1 respectively. The second part of
the proposition is easy: any I-example A = A(D; — E;),B,C of T # IPC is a
J-example because t/ (A — D;) for all i, implies A | A.

For the other part, suppose A, F, G is an I-example of T' £ IPC. We are going
to construct, in an inductive way, formulas A;, Ao, ... which are all equivalent to
Ain T. Every A; is a conjunction of propositional variables, disjunctions and
implications such that for the implications (B — C) either A; | (B — C) or
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A; I/ B, and for the disjunctions B, A; | B. Note that A is such a formula. Let
A; = A. During the construction we will often use, without mentioning, the fact
that if E | F and - E <> E' then E' | F.

If A; is a conjunction in which one the conjuncts is a disjunction (note that this
captures the case that A; is a disjunction), let (B V C') be the first such reading
from left to right. Thus A; = D A (BV C) A E for some D, E. By assumption
A; | (BVC). Hence A; IF B or A; IF C. In the first case put A,;,y = DABAE, in
the second case A;;1 = DACAE. Now consider the case that A; is a conjunction of
implications and propositional variables. If every conjunct either is a propositional
variable or an implication (B — () such that A; t/ B, put 4;.; = A;. If not, let
(B — C) be the first implication, reading from left to right, such that A; - B.
Thus A; = DA (B — C) A E for some D, E. By assumption A; | (B — C'). We
inductively define A; ;.

* If B=p, put A;;; = DAC A E. Note that A;;; | C since A; | C' which
again follows from A; | (B — C) and A, IF B.

* If B = By A By observe that A; - B implies - A; <& DA (B = C)ANE «
DANCANE. Hence DA (B; — C)ANE = Bj. If for some j = 1,2, DA (B; —
CYNE | (Bj — C), let Ajyy = DA (B; - C) A E. It cannot be that for no j,
DA(Bj = C)ANE | (Bj — C). For if so, then DA (B; — C) A E I+ B;. Hence
DAN(B —C)ANEIFB,andso DA (B — C)ANE | C. Whence DACAE | C and
thus DA (B; = C) A E | (B; — (), a contradiction.

*x If B = B,V By observe that - A; <+ DA (B; — C) A (B, — C) A E and

* Finally B = (B; — Bs). If A; If By or A; | By then A; IF B and therefore

A; | C. Put Ay = DACANE. If A; IF By and not A; | By then F A; «
DAByAN(By - C)AFE and clearly A; | By and A; | (By — C). Put A, =
D A By A (By — C) A E. This ends the construction of the A;.
It is easy to check that the A; have the desired properties. Moreover, the con-
struction shows that eventually A; = A;,;. Hence A; is a conjunction of proposi-
tional variables and implications A\, p; A Ai~,(B; — C;) such that A; I/ B;. Let
A" = N, (B; — C;) and let o be the substitution which is the identity on all
variables except pi, ..., pn, on which it is T. Hence o(A4;) is equivalent to o(A’).
Since A; is equivalent with A in T,

Clearly, we have
F(o(A") = o(F)Vo(G)),

In general, nonderivability is not preserved under substitution but this particular
choice of ¢ leads to

7 (0(A") = o(F)), ¥ (0(A) = o(@)), I/ (0(A") = o(By)).
Hence 0(A’),0(F),0(G) is an I-example of T' # IPC. O
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Samenvatting

Dit proefschrift bestaat uit twee delen. In het eerste deel wordt de intuitionistische
bewijsbaarheids logica bestudeerd en in het tweede deel de intuitionistische proposi-
tie logica. Hieronder schetsen we heel kort, in een notendop, waarover deze
gebieden gaan, waarbij we technische termen zullen vermijden. Dit is bedoeld
voor niet-wiskundigen die een indruk willen krijgen van de betekenis van bovenge-
noemde termen. In de twee daarop volgende secties bespreken we, ook in het kort
maar op meer technische wijze, de inhoud van dit proefschrift.

8.4 Een notendop

Intuitionistische bewijsbaarheidslogica en intuitionistische propositielogica zijn bei-
de gebaseerd op intuitionistische logica. Intuitionistische logica is een tegenhanger
van klassieke logica. Klassieke logica gaat over logische waarheden. Een uit-
drukking JzA(x) betekent: er is een = zodat A(x) geldt (hierbij is A(x) een
bewering over x, bijvoorbeeld ‘x is een even getal dat niet de som is van twee
priemgetallen’).!’ Nu is er, in de wiskunde, een nauw verband tussen waarheden
en constructies; de waarheid van een bewering wordt aangetoond via een bewijs
van die bewering, en een bewijs is een constructie. Het intuitionisme sluit aan bij
deze verwantschap. Hier betekent JzA(x): we kunnen een object x construeren
zodat A(x) geldt. Dus in intuitionistische logica zeg je dat JxA(x) geldt als
je daadwerkelijk een even getal hebt geconstrueerd dat niet de som is van twee
priemgetallen?, terwijl je om in klassieke logica te weten dat Iz A(x) geldt alleen
maar hoeft uit te sluiten dat alle even getallen de som van twee priemgetallen zijn.
Het is een subtiel verschil, maar het is een verschil.

De overeenkomsten en verschillen tussen klassieke en intuitionistische waarheden
vertellen je veel over de manier waarop de geldigheid van een bewering wordt in-
gezien. Sommige wiskundigen beschouwen alleen die uitspraken als waar die waar

'Een getal is even als het deelbaar is door 2; een priemgetal is alleen deelbaar door 1 en
zichzelf, bijvoorbeeld 3, 5, 7 en 11 zijn priem.

2Het is een bekend open probleem in de wiskunde of zulke getallen bestaan of niet. Men
vermoedt van niet, dit vermoeden heet de Goldbach Conjecture.
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zijn volgens de intuitionistische wijze van redeneren. Zo iemand was bijvoorbeeld
de nederlandse wiskundige L.E.J. Brouwer, de grondlegger van het zogenaamde
intuitionisme. Voor anderen is het werken met deze vorm van redeneren een
manier om het idee erachter, namelijk het constructieve karakter van waarheden
beter te begrijpen.

De twee genoemde gebieden, intuitionistische propositielogica en intuitionistische
bewijsbaarheidslogica, zijn respectievelijk propositielogica en bewijsbaarheids log-
ica gebaseerd op de intuitionistische wijze van redeneren. Nu we een idee hebben
van die intuitionistische basis bespreken we in het kort de gebieden zelf. Proposi-
tielogica bestudeert de meest simpele manier van redeneren. Het beperkt zich
tot eenvoudige uitdrukkingen, zoals (p — ¢) (uit p volgt ¢), of (p A ¢q) (p en q),
waarbij p en ¢ voor beweringen staan. In intuitionistische propositielogica wor-
den de eigenschappen van dit soort beweringen bestudeerd. Hoewel dit systeem
heel simpel is zijn er toch allerlei interessante vragen over te stellen. Het beant-
woorden van die vragen is een van de manieren om inzicht te verkrijgen in de
intuitionistische, constructieve wijze van redeneren.

Bewijsbaarheidslogica gaat over ingewikkelder uitdrukkingen en complexere syste-
men. In de wiskunde heb je formele systemen die bepaalde wiskundige structuren
beschrijven. Zo'n formeel systeem kan bijvoorbeeld over de natuurlijke getallen
0,1,2,3,... gaan. De bekende wiskundige Godel liet echter in 1931 zien dat die
systemen ook over zichzelf kunnen praten (zoals een schilderij zichzelf tot on-
derwerp kan hebben). Het kan beweringen als ‘dit systeem bewijst dit-en-dat’
bewijzen, en daarmee bewijst het iets over zichzelf. Het interessante is echter
dat ze sommige eigenschappen van zichzelf wel kunnen zien (kunnen bewijzen) en
andere niet. In de bewijsbaarheidslogica wordt bestudeerd wat zo'n systeem wel
en niet van zichzelf kan begrijpen. In intuitionistische bewijsbaarheidslogica zijn
de systemen waarvoor deze vraag wordt bekeken gebaseerd op intuitionistische
logica.

Sommige begrippen uit de wiskunde zijn pas goed te begrijpen wanneer zij precies
zijn gedefiniéerd. Dit komt doordat een informele uitleg de subtiliteit van een
notie vaak verdoezelt. Dit geldt zeker voor bewijsbaarheidslogica, en eigenlijk ook
voor logica in het algemeen. Desalniettemin geeft het bovenstaande wellicht een
indruk van de gebieden waarover dit proefschrift gaat.

8.5 Eerste deel

Het eerste deel van het proefschrift is gewijd aan de bewijsbaarheidslogica van
Heyting Rekenkunde, HA. Er is nog geen axiomatisering bekend van deze logica.
De belangrijkste bijdragen van het proefschrift aan dit gebied zijn de volgende.

Zoals gezegd, bestaat de bewijsbaarheidslogica van een theorie uit de schema’s die
de theorie over zijn bewijsbaarheidspredicaat kan bewijzen. Wanneer een principe
in de logica zit is het dus zeker waar voor de theorie (mits de theorie gezond is).
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Dus geven zulke principes eigenschappen van de theorie weer die uitdrukbaar zijn
in de bewijsbaarheidslogica. Nu hebben constructieve theorieén vaak twee speciale
eigenschappen die uitdrukbaar zijn in bewijsbaarheidslogica, namelijk de Disjunc-
tie Eigenschap en toelaatbare regels. Heyting Rekenkunde heeft die eigenschappen
ook. Wil men de bewijsbaarheidslogica van deze theorie bepalen dan is het dus
zeker nodig om vast te stellen of ze die eigenschappen van zichzelf bewijst of niet,
met andere woorden of de principes die met deze eigenschappen corresponderen
tot de logica behoren of niet.

Voor de Disjunctie Eigenschap is het antwoord op deze vraag sinds de zeventiger
jaren bekend; Friedman (1975) bewees dat HA zijn eigen Disjunctie Eigenschap
niet kan bewijzen. Bovendien bewees Leivant (1975) dat een zwakkere versie van
die eigenschap, Leivant’s Principe, wel een principe van de bewijsbaarheidslogica
is. Het antwoord met betrekking tot de toelaatbare regels wordt door resultaten
in Visser (1999) en Hoofdstuk 7 van het proefschrift gegeven. In Hoofdstuk 2 van
het proefschrift wordt uitgelegd dat genoemde resultaten impliceren dat HA van
al zijn toelaatbare regels bewijst dat ze toelaatbaar zijn. Dit in tegenstelling tot
de hierboven beschreven situatie voor de Disjunctie Eigenschap, waarbij dit niet
het geval is.

Hiermee corresponderen de principes van de bewijsbaarheidslogica van HA die nu
bekend zijn met drie soorten eigenschappen van HA, namelijk

1. de karakteristieke eigenschappen van het bewijsbaarheidspredicaat van
Peano Rekenkunde,

2. een verzwakte vorm van de Disjunctie Eigenschap,

3. de (propositionele) toelaatbare regels.

Zoals gezegd zijn de Disjunctie Eigenschap en het bestaan van niet afleidbare toe-
laatbare regels precies twee van de karakteristieke eigenschappen van constructieve
theorieén die uitdrukbaar zijn in de taal van de bewijsbaarheidslogica. Het feit
dat van de principes die corresponderen met deze eigenschappen nu duidelijk is
of ze wel of niet tot de logica behoren geeft aan dat, zo niet alles, dan toch een
welomschreven deel van die logica in kaart is gebracht. Bovendien heeft de logica,
voorzover die nu bekend is, een transparante vorm. Punt 1. en 2. bestaan samen uit
een paar eenvoudige principes, maar voor punt 3. is dat niet op voorhand duidelijk.
In de afwezigheid van een beschrijving/axiomatisering van de toelaatbare regels
geeft 3. wel inzicht in de logica, maar het leidt niet tot bruikbare axioma’s voor
de bewijsbaarheidslogica. Het zegt alleen dat alle principes die corresponderen
met een toelaatbare regel van HA tot de bewijsbaarheidslogica behoren, maar die
collectie zou heel wild kunnen zijn. In het tweede deel van het proefschrift wordt
echter een karakterisering van de toelaatbare regels gegeven, waaruit volgt dat er
een mooie axiomatisering van genoemde collectie is. Dit toont aan dat (het deel
van) de bewijsbaarheidslogica die we nu hebben een elegante vorm heeft.
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Omdat de logica die we nu hebben misschien de hele bewijsbaarheidslogica van
HA is leek het zinvol om de principes modaal te karakteriseren. Dit beslaat de
rest van het eerste deel van het proefschrift. Hier werken we voor het merendeel
in een extentie van bewijsbaarheidslogica van de hand van Visser (1994), preser-
vatielogica. Een van de redenen hiervoor is dat de meeste principes een elegantere
formulering hebben in deze logica. In plaats van de notie van bewijsbaarheid
staat daar het begrip preservatie centraal. Een formule A preserveert een for-
mule B, notatie A>B, als B volgt uit alle ¥;-zinnen waaruit A volgt. In het
bijzonder is B bewijsbaar precies dan als T (waar) de formule B preserveert. Dit
laat zien dat preservatielogica inderdaad een extentie van bewijsbaarheidslogica
is. Voor uitbreidingen van Peano Rekenkunde is de preservatielogica gelijk aan
de interpreteerbaarheidslogica. Daarom kun je preservatielogica beschouwen als
een constructieve variant van interpreteerbaarheidslogica. In Hoofdstuk 5 van het
proefschrift wordt bewezen dat de logica bestaande uit alle nu bekende principes
volledig is met betrekking tot een zekere klasse van frames. We tonen aan dat
die frames noodzakelijkerwijs oneindig zijn. Verder worden de principes ook apart
gekarakteriseerd (Hoofdstuk 4), en wordt daaruit afgeleidt dat ze onafhankelijk
zijn. Doordat sommige van deze principes frame-eigenschappen hebben die onge-
bruikelijk zijn in modale logica, kunnen deze hoofdstukken ook gezien worden als
een studie in intuitionistische modale logica. Hoofdstuk 3 van het eerst deel is een
introductie in de preservatielogica.

8.6 Tweede deel

Het tweede deel van het proefschrift gaat over intuitionistische propositielogica
IPC, met name over haar toelaatbare regels. In Hoofdstuk 7 wordt een hypothese
van Dick de Jongh en Albert Visser uit de tachtiger jaren bewezen, namelijk dat

een bepaalde verzameling ) van regels een basis vormt voor de toelaatbare regels
van IPC.

In Hoofdstuk 8 wordt een verband gelegd tussen toelaatbare regels en intermedi-
aire logica’s. Intuitionistische propositielogica heeft twee echt constructieve eigen-
schappen, namelijk de Disjunctie Eigenschap en een bepaalde collectie toelaatbare
regels. Men kan zich afvragen in hoeverre deze eigenschappen de logica karakteris-
eren, dat wil zeggen of er echte intermediaire logica’s met dezelfde eigenschappen
bestaan. Het is reeds lang bekend dat IPC niet gekarakteriseerd wordt door alleen
de Disjunctie Eigenschap. Evenmin wordt IPC gekarakteriseerd door haar toelaat-
bare regels. In Hoofdstuk 8 wordt echter bewezen dat ze wel door de combinatie
van die twee eigenschappen gekarakteriseerd wordt: IPC is de enige intermedi-
aire logica met de Disjunctie Eigenschap waarvoor alle regels in V toelaatbaar
zijn. Verder wordt in genoemd hoofdstuk bewezen dat elke deelcollectie van V op
dezelfde wijze met een zekere intermediaire logica correspondeert als V met IPC; de
intermediaire logica’s uit (Gabbay and de Jongh 1974) worden elk gekarakteriseerd
door een deel van de verzameling V' plus de Disjunctie Eigenschap.



Titles in the ILLC Dissertation Series:

ILLC DS-1996-01: Lex Hendriks
Computations in Propositional Logic

ILLC DS-1996-02: Angelo Montanari
Metric and Layered Temporal Logic for Time Granularity

ILLC DS-1996-03: Martin H. van den Berg
Some Aspects of the Internal Structure of Discourse: the Dynamics of Nominal
Anaphora

ILLC DS-1996-04: Jeroen Bruggeman
Formalizing Organizational Ecology

ILLC DS-1997-01: Ronald Cramer
Modular Design of Secure yet Practical Cryptographic Protocols

ILLC DS-1997-02: Natasa Rakié
Common Sense Time and Special Relativity

ILLC DS-1997-03: Arthur Nieuwendijk
On Logic. Inquiries into the Justification of Deduction

ILLC DS-1997-04: Atocha Aliseda-LLera
Seeking Fxplanations: Abduction in Logic, Philosophy of Science and Artificial
Intelligence

ILLC DS-1997-05: Harry Stein
The Fiber and the Fabric: An Inquiry into Wittgenstein’s Views on Rule-
Following and Linguistic Normativity

ILLC DS-1997-06: Leonie Bosveld - de Smet
On Mass and Plural Quantification. The Case of French ‘des’/‘du’-NP’s.

ILLC DS-1998-01: Sebastiaan A. Terwijn
Computability and Measure

ILLC DS-1998-02: Sjoerd D. Zwart
Approach to the Truth: Verisimilitude and Truthlikeness

ILLC DS-1998-03: Peter Grunwald
The Minimum Description Length Principle and Reasoning under Uncertainty

ILLC DS-1998-04: Giovanna d’Agostino
Modal Logic and Non-Well-Founded Set Theory: Translation, Bisimulation,
Interpolation



ILLC DS-1998-05: Mehdi Dastani
Languages of Perception

ILLC DS-1999-01: Jelle Gerbrandy
Bisimulations on Planet Kripke

ILLC DS-1999-02: Khalil Sima’an
Learning efficient disambiguation

ILLC DS-1999-03: Jaap Maat
Philosophical Languages in the Seventeenth Century: Dalgarno, Wilkins, Leib-
niz

ILLC DS-1999-04: Barbara Terhal
Quantum Algorithms and Quantum Entanglement

ILLC DS-2000-01: Renata Wasserman
Resource Bounded Belief Revision

ILLC DS-2000-02: Jaap Kamps
A Logical Approach to Computational Theory Building (with applications to
sociology)

ILLC DS-2000-03: Marco Vervoort
Games, Walks and Grammars: Problems ['ve Worked On

ILLC DS-2000-04: Paul van Ulsen
E.W. Beth als logicus

ILLC DS-2000-05: Carlos Areces
Logic Engineering. The Case of Description and Hybrid Logics

ILLC DS-2000-06: Hans van Ditmarsch
Knowledge Games

ILLC DS-2000-07: Egbert L.J. Fortuin
Polysemy or monosemy: Interpretation of the imperative and the dative-infinitive
construction in Russian

ILLC DS-2001-01: Maria Aloni
Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch
Rationality in Discovery - a study of Logic, Cognition, Computation and Neu-
ropharmacology.

ILLC DS-2001-03: Erik de Haas
Logics For OO Information Systems: a Semantic Study of Object Orientation
from a Categorial Substructural Perspective



ILLC DS-2001-04: Rosalie Iemhoff
Provability Logic and Admissible Rules



