
Formal Languages, Regular Expressions and 
Finite-State Automata 



 Formal Languages in brief 

 

 Regular Expressions 

 

 Finite-State Automata (FSA) 

 

 Non-Deterministic FSA (NFSA or NFA) 

 

 Regular and Non-Regular Languages 

 

 



 Speech and Language Processing: An 
introduction to natural language processing, 
computational linguistics, and speech 
recognition. Daniel Jurafsky & James H. 
Martin. Draft of January 19, 2007. 

 

 An updated draft is available here: 

http://www.cs.vassar.edu/~cs395/docs/ 
2.pdf 
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 A formal language L over an alphabet Σ is a 
set of words (strings) over that alphabet.  
◦ L = {w1, w2, w3, ….} 

◦ Σ = {s1, s2, s3, …} 
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 A formal language L over an alphabet Σ is a 
set of words (strings) over that alphabet.  
◦ L = {w1, w2, w3, ….} 

◦ Σ = {s1, s2, s3, …} 

 For example, consider sheep-talk: 
◦ L = {“baa!”, “baaa!”, “baaaa!”, “baaaaa!”…} 

◦ Σ = {‘b’,’a’,’!’} 

 L and Σ can be infinite. 

 

 



 First developed by Kleene (1956) 

 A regexp is a formula in a special language 
that is used for specifying classes of strings.  

 

 



 First developed by Kleene (1956) 

 A regexp is a formula in a special language 
that is used for specifying classes of strings.  

 By definition, any regexp characterizes a 
language. 

 

 



 First developed by Kleene (1956) 

 A regexp is a formula in a special language 
that is used for specifying classes of strings.  

 By definition, any regexp characterizes a 
language. 

 Simple examples: 
◦ /ab/  - {“ab”} 

◦ /a[bc]/  - {“ab”,“ac”} 

◦ /ab./ - {“aba”,“abb”,“abc”,“abd”,…} 

 

 



 Regular Expressions are widely used for 
pattern recognition in search applications. 

 General idea: the user specifies a regxp – a 
pattern that stands for a set of strings - and 
the application finds all matches in a given 
corpus. 

 In a typical search application, each line that 
contains a match of the regexp is returned 
entirely. 

 Implementation in unix-based systems: grep 
 Examples will follow. 



 A regexp is sequence of characters: 
◦ /ab/ 

◦ /a[bc]/ 

 Slashes are not part of a regexp definition; 
they are used to clarify what the boundaries 
of the expression are. 

 A regexp can consist of a single character 
(e.g. /!/) or a sequence of characters (/urgl/) 

 Regular expressions are case sensitive. 
 



 Examples (only the first match is marked): 

 

 

 

 

 

 

 Note that a blank space (character 0x20) can 
be used as is in a regexp (example 3). 

 

Regexp Example Patterns Matched 

/woodchucks/ “interesting links to woodchucks and lemurs” 

/a/ “Mary Ann stopped by Mona’s” 

/Claire says,/ ““Dagmar, my gift please,” Claire says,” 

/song/ “all our pretty songs” 

/!/ ““You’ve left the burglar behind again!” said Nori” 



 Disjunction of characters: 
◦ A string of characters inside the braces specify a 

disjunction of characters to match. 

◦ Examples: 

 Regexp Match 

/[wW]oodchuck/ Woodchuck or woodchuck 

/[abc]/ ‘a’, ‘b’, or ‘c’ 

/[1234567890]/ Any digit 



 Ranges are useful to simplify a cumbersome 
notation.  

 They are defined using the dash (‘-’) 
character: 

 

 

Regexp Match Example Patterns Matched 

/[A-Z]/ An uppercase letter “we should call it ‘Drenched 
Blossoms’” 

/[a-z]/ A lowercase letter “my beans were impatient 
to be hoed!” 

/[0-9]/ A digit “Chapter 1: Down the Rabbit 
Hole” 



 Square brackets opened by the caret 
character - ‘^’ –can be used to specify 
characters that cannot be matched by a 
regexp: 

 Regexp Match (single characters) Example Patterns Matched 

/[ˆA-Z]/ not an uppercase letter “Oyfn pripetchik” 

/[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason” 

/[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now” 

/aˆb/ the pattern ‘aˆb’ “look up aˆb now” 



 The regexp syntax includes some predefined 
ranges: 

 

 

 

 

 

 

 
 Note: /\t/ stands for the tab character, /\n/ stands for new 

line, /\r/ stands for carriage return and /\f/ stands for page 
break. 

Regexp Expansion Match 

/\d/ /[0-9]/ Any digit 

/\D/ /[ˆ0-9]/ Any non-digit 

/\w/ /[a-zA-Z0-9_]/ Any alphanumeric or underscore 

/\W/ /[ˆ\w]/ A non-alphanumeric 

/\s/ /[ \r\t\n\f]/ Whitespace (space, tab) 

/\S/ /[ˆ\s]/ Non-whitespace 



 The regexp syntax supports various kinds of 
repetitions: 
◦ To specify that a character (or a sequence of 

characters) may appear zero or one time, use the 
question mark (‘?’): 

 
Regexp Match Example Patterns Matched 

/woodchucks
?/ 

woodchuck or 
woodchucks 

“woodchuck is” 

/colou?r/ color or colour any colour you like 



 The regexp syntax supports various kinds of 
repetitions: 
◦ To specify that a character (or a sequence of 

characters) may appear zero or more times, use the 
asterisk mark (‘*’) – called also Kleene* – 
pronounced as “cleany star”: 

 Regexp Match Example Patterns Matched 

/Wood*chuck
s/ 

woochuck or 
woodchucks or  
wooddchucks or  
… 

“woochucks are bad, but 
woodchucks are nice” 

/baaa*!/ baa! or baaa! or 
baaaa!... 

“And then we heard 
another baaaa!...” 



 The regexp syntax supports various kinds of 
repetitions: 
◦ To specify that a character (or a sequence of 

characters) may appear one or more times, use the 
plus mark (‘+’) - called also Kleene+: 

 
Regexp Match Example Patterns Matched 

/Wood+chuc
ks/ 

woodchucks or  
wooddchucks or  
woodddchucks or 
… 

“woochucks are bad, but 
woodchucks are nice” 

/baa+!/ baa! or baaa! or 
baaaa!... 

“And then we heard 
another baaaa!...” 



 Summary: 

 * zero or more occurrences of the 
previous char or expression 

+ one or more occurrences of the 
previous char or expression 

? exactly zero or one occurrence of 
the previous char or expression 

{n} n occurrences of the previous char 
or expression 

{n,m} from n to m occurrences of the 
previous char or expression 

{n,} at least n occurrences of the 
previous char or expression 



 The regexp syntax supports various kinds of 
repetitions: 
◦ To specify specific amounts of repetitions, use the 

curly brackets: 

 Regexp Match 

/a{3}b{2}ca/ aaabbca 

/a{3,}b{2}ca/ aaabbca or aaaabbca or aaaaabbca or … 

/a{3,4}b{2}ca/ aaabbca or aaaabbca 

/ba{3,}!/ baaa! or baaaa! or baaaaa!... 



 The period character – ‘.’ – serves as a 
wildcard expression that matches any single 
character (except a carriage return): 

 Regexp Match Example Patterns 

/beg.n/ Any string comprised of a 
single character between 
‘beg’ and ‘n’. 

began 
begin  
beg’n 

/beg.*n/ Any string begins with 
‘beg’ followed by one or 
more characters and ends 
with ‘n’. 

begn 
begabcden 
begun 
beguun 

/beg\.n/ The string ‘beg.n’ beg.n 



 Grouping of a sequence of characters allows 
us to define patterns with repeated and/or 
alternating sequences. 

 Grouping is done by parenthesis. 

 Patterns with repeated sequences: 

 

 

Regexp Match 

/a(ba)+c/ abac or ababac or abababac 
or … 

/(a(bc)+)*c/ c or abcc or abcbcc or … 



 Patterns with alternating sequences: 

 

 

 

 Notice the use of pipe ‘|’ to separate the 
alternating sequences. 

 Note that if the regexp is simple a list of 
alternating sequences then grouping is not 
required: /dog|cat/ matches ‘dog’ or ‘cat’. 

 

 

Regexp Match 

/gupp(y|ies)/ guppy or guppies 

/b(i|ou)nd/ bind or bound 



 Special characters that anchor regexps to 
particular places in a string. 

 Line boundaries: 
◦ Beginning of line: ^  

◦ End of line: $ 

 Word boundaries: \b 
Regexp Match 

/^The/ the word The only at the 
start of a line 

The bus was late 

/ˆThe dog\.$/ The exact line ‘The dog.’ The dog. 

/\bthe\b/ the word the Others than the...  



 Why does /the*/ match ‘theeee’ and not 
‘thethe’? 

 Why does /the|any/ match ‘the’ or ‘any’ and 
not ‘theny’? 

 The answers are in the operator precedence 
hierarchy defined for regular expressions: 

 

 
Operator Precedence  Hierarchy 

Parenthesis ( ) 

Counters * + ? {} 

Sequences and Anchors  the ^my end$ 

Disjunction | 



 Consider the regexp /[a-z]*/ matched against 
the string ‘hello’.  

 The regexp can match zero or more letters 
and hence it’s interpretation is apparently 
ambiguous. 

 The ambiguity is resolved by favoring the 
largest string that can be matched, i.e. ‘hello’.  

 We say that patterns are greedy in the sense 
of expanding to cover as much of a string as 
they can. 

 



 Escaping is needed when meta-characters 
like ‘*’ or ‘.’ need to be matched as they are 
without being interpreted according to their 
special role in the regexp syntax 

 Regexps escaping is done by the backslash 
character – ‘\’. 

 

 
Escaped character Character to be matched 

\. . 

\* * 

\+ + 



 A regexp is a formula in a special language 
that is used for specifying classes of strings.  

 Any regexp characterizes some language. 

 A typical search application takes a document 
and a regexp as an input and returns the list 
of lines from the document in which the 
regexp can be matched. 



 Regexp: /woodchucks?/ 

 Text: 

Imagine that you have become a passionate fan 
of woodchucks.  

Desiring more information on this celebrated 
woodland creature, you turn to your favorite 
Web browser and type in woodchuck.  

Your browser returns a few sites.  

You have a flash of inspiration and type in 
woodchucks. 



 Regexp: /woodchucks?/ ( - {woodchuck,   ) 

 Text:         woodchucks} 

Imagine that you have become a passionate fan 
of woodchucks.  

Desiring more information on this celebrated 
woodland creature, you turn to your favorite 
Web browser and type in woodchuck.  

Your browser returns a few sites.  

You have a flash of inspiration and type in 
woodchucks. 



 Resources: 
◦ http://www.regular-expressions.info/ 

◦ http://en.wikipedia.org/wiki/Regular_expression 

◦ http://www.zytrax.com/tech/web/regex.htm 
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 Finite State Automata are a specific type of state 
machines: A set of states and transitions that may 
reach an Accept or Reject state according to a given 
input. 

 

 Finite State Automata are commonly used to 
recognize formal languages and are computationally 
equivalent to regular expressions. 

 

 Any language that a regexp can characterize, an FSA 
can characterize as well (and vice versa) 

 

 Singular: Automaton; Plural: Automata 



 Visually, finite state automata are drawn as 
graphs with nodes that stand for the states 
and links that stand for the transitions per 
input. For example: 

 

 

 

 

 Q: What language does this automaton 
recognize? 

An ‘Accept’ 
state 

The ‘start’ 
state 



 Formally, an FSA is defined as follows: 
◦ Q = q0q1q2 . . .qN−1 a finite set of N states 

◦  - a finite input alphabet of symbols 

◦ q0 - the start state 

◦ F - the set of accepting (final) states, F  Q 

◦ (q, i) the transition function or transition matrix 
between states.  

 



 For example, the FSA below is defined as 
follows: 
◦ Q = {q0,q1,q2,q3,q4} 
◦  = {‘a’,’b’,’!’} 

◦ q0 - the start state 

◦ F – q4 

◦ (q, i) = 

 



 How an FSA recognizes a language: 

 

 On the surface, an FSA is only a set of states 
and transitions. It describes relations between 
states according to user input. 

 

 A function is needed to feed it input and use 
the transition function to change states. 

 

 The D-RECOGNIZE function. 



 The D-RECOGNIZE function: 
function D-RECOGNIZE(tape,machine) returns accept or reject 

index  Beginning of tape 

current-state  Initial state of machine 

Loop 

 if End of input has been reached then 

  if current-state is an accept state then 

   return accept 

  else 

   return reject 

 elsif transition-table[current-state,tape[index]] is empty then 

  return reject 

 else 

  current-state  transition-table[current-state,tape[index]] 

  index = index + 1 

end Loop 

end 



 Two ways to handle rejected strings: 
◦ By empty slots in the transition table that stand for 

‘unsupported input’ and treated accordingly by D-
recognize (as we seen above) 

◦ By a dedicated ‘fail’ state in the automaton: 

 

A ‘fail’ state 



 So far we have seen regular expressions and 
finite state automata. 

 Both are used to characterize formal languages: 
◦ A Regexp describes a pattern for which the matched 

strings constitute the language.  

 A regexp characterizes a language by generating it 
from a pattern. 

◦ An FSA describes a set of states and transitions that 
determine the set of strings (i.e. a language) that are 
accepted. 

 An FSA characterizes a language by recognizing it.  

 



 Automata with decision points like in q2 in the 
automaton below are called non-deterministic FSAs 
(or NFSAs or NFAs). 

 

 

 

 Non-determinism may appear also by the use of 
epsilon transitions (q3q2) that allow the 
recognizer to switch states without any input: 



 Accepting strings is more complex in the non-
deterministic case 

 Since there is more than one choice at some point, 
we might take the wrong choice. 

 Several solutions: 
◦ Backup strategy: a marker is placed in each choice 

point.Then if it turns out that we took the wrong choice, we 
could back up and try another path. 

◦ Look-ahead strategy: We could look ahead in the input to 
help us decide which path to take. 

◦ Parallelism strategy: Whenever we come to a choice point, 
we could look at every alternative path in parallel. 

◦ Alternative: convert the NFSA to an FSA and then accept the 
strings. But Is this possible? 

 

 



 NFSAs may seem to have more computational 
power in the sense of allowing more complex 
languages to be defined. 

 However, it turns out that in terms of 
computational power they are equivalent. 

 Formally, any non-deterministic FSA is 
translatable to a deterministic FSA. 

 The translated FSA may require more memory 
space but nonetheless it would accept the 
same language as the NFSA. 



 Slides by Harry H. Porter, 2005 
 http://web.cecs.pdx.edu/~harry/compilers/sl

ides/LexicalPart3.pdf 
 

 General idea: 
◦ Construct an FSA by simulating a parallel transition 

on the original NFSA 
◦ Each state in the FSA will correspond to a set of 

NFSA states.  
 

 Full example in the original slides. 
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 Consider the following NFSA: 

 

 

 

 

 

 It accepts strings such as ‘aabb’, ‘abb’, ‘bbb’, 
etc. 



 Consider the following NFSA: 

 

 

 

 

 A translation to an FSA: 
     A={0,1,2,4,7} 

     B={1,2,3,4,6,7,8} 

     C={1,2,4,5,6,7} 

     D={1,2,4,5,6,7,9} 

     E={1,2,4,5,6,7,10} 



 The general idea is to create an NFSA for each 
basic sequence in a regexp and then to 
connect all NFSAs by epsilon links. 

 For basic sequences: 

 



 For Kleene*: We create a new final and initial 
state, connect the original final states of the 
FSA back to the initial states by e-transitions 
and then put direct links between the new 
initial and final states by e-transitions. 



 For example, concatenation: We just string 
two FSAs next to each other by connecting all 
the final states of FSA2 by epsilon links 



 The class of languages that can be defined by 
regular expressions is exactly the same as the 
class of languages that can be characterized 
by finite-state automata (whether 
deterministic or non-deterministic).  

 Because of this, we call these languages the 
regular languages. 

  



 It turns out that not all languages are regular. 

 For example:  

 The automaton/regexp needs to ‘remember’ 
the exact number of ‘a’s in order to match it 
with the number of ‘b’s. 

 This cannot be achieved without some sort of 
on-the-fly memory resource  

 Theory of computation: 

Diagram Source: Wikipedia  
http://en.wikipedia.org/wiki/Regular_language 

http://en.wikipedia.org/wiki/Regular_language


 Michael Sipser (1997). Introduction to the 
Theory of Computation. PWS 
Publishing. ISBN 0-534-94728-X.  

 

 Hopcroft, John E.; Motwani, Rajeev; Ullman, 
Jeffrey D. (2000). Introduction to Automata 
Theory, Languages, and Computation (2nd 
ed.). Addison-Wesley. 


