
Formal Languages, Regular Expressions and
Finite-State Automata

 Formal Languages in brief

 Regular Expressions

 Finite-State Automata (FSA)

 Non-Deterministic FSA (NFSA or NFA)

 Regular and Non-Regular Languages

 Speech and Language Processing: An
introduction to natural language processing,
computational linguistics, and speech
recognition. Daniel Jurafsky & James H.
Martin. Draft of January 19, 2007.

 An updated draft is available here:

http://www.cs.vassar.edu/~cs395/docs/
2.pdf

http://www.cs.vassar.edu/~cs395/docs/2.pdf
http://www.cs.vassar.edu/~cs395/docs/2.pdf
http://www.cs.vassar.edu/~cs395/docs/2.pdf
http://www.cs.vassar.edu/~cs395/docs/2.pdf
http://www.cs.vassar.edu/~cs395/docs/2.pdf

 A formal language L over an alphabet Σ is a
set of words (strings) over that alphabet.
◦ L = {w1, w2, w3, ….}

◦ Σ = {s1, s2, s3, …}

 A formal language L over an alphabet Σ is a
set of words (strings) over that alphabet.
◦ L = {w1, w2, w3, ….}

◦ Σ = {s1, s2, s3, …}

 For example, consider sheep-talk:
◦ L = {“baa!”, “baaa!”, “baaaa!”, “baaaaa!”…}

◦ Σ = {‘b’,’a’,’!’}

 A formal language L over an alphabet Σ is a
set of words (strings) over that alphabet.
◦ L = {w1, w2, w3, ….}

◦ Σ = {s1, s2, s3, …}

 For example, consider sheep-talk:
◦ L = {“baa!”, “baaa!”, “baaaa!”, “baaaaa!”…}

◦ Σ = {‘b’,’a’,’!’}

 L and Σ can be infinite.

 First developed by Kleene (1956)

 A regexp is a formula in a special language
that is used for specifying classes of strings.

 First developed by Kleene (1956)

 A regexp is a formula in a special language
that is used for specifying classes of strings.

 By definition, any regexp characterizes a
language.

 First developed by Kleene (1956)

 A regexp is a formula in a special language
that is used for specifying classes of strings.

 By definition, any regexp characterizes a
language.

 Simple examples:
◦ /ab/ - {“ab”}

◦ /a[bc]/ - {“ab”,“ac”}

◦ /ab./ - {“aba”,“abb”,“abc”,“abd”,…}

 Regular Expressions are widely used for
pattern recognition in search applications.

 General idea: the user specifies a regxp – a
pattern that stands for a set of strings - and
the application finds all matches in a given
corpus.

 In a typical search application, each line that
contains a match of the regexp is returned
entirely.

 Implementation in unix-based systems: grep
 Examples will follow.

 A regexp is sequence of characters:
◦ /ab/

◦ /a[bc]/

 Slashes are not part of a regexp definition;
they are used to clarify what the boundaries
of the expression are.

 A regexp can consist of a single character
(e.g. /!/) or a sequence of characters (/urgl/)

 Regular expressions are case sensitive.

 Examples (only the first match is marked):

 Note that a blank space (character 0x20) can
be used as is in a regexp (example 3).

Regexp Example Patterns Matched

/woodchucks/ “interesting links to woodchucks and lemurs”

/a/ “Mary Ann stopped by Mona’s”

/Claire says,/ ““Dagmar, my gift please,” Claire says,”

/song/ “all our pretty songs”

/!/ ““You’ve left the burglar behind again!” said Nori”

 Disjunction of characters:
◦ A string of characters inside the braces specify a

disjunction of characters to match.

◦ Examples:

 Regexp Match

/[wW]oodchuck/ Woodchuck or woodchuck

/[abc]/ ‘a’, ‘b’, or ‘c’

/[1234567890]/ Any digit

 Ranges are useful to simplify a cumbersome
notation.

 They are defined using the dash (‘-’)
character:

Regexp Match Example Patterns Matched

/[A-Z]/ An uppercase letter “we should call it ‘Drenched
Blossoms’”

/[a-z]/ A lowercase letter “my beans were impatient
to be hoed!”

/[0-9]/ A digit “Chapter 1: Down the Rabbit
Hole”

 Square brackets opened by the caret
character - ‘^’ –can be used to specify
characters that cannot be matched by a
regexp:

 Regexp Match (single characters) Example Patterns Matched

/[ˆA-Z]/ not an uppercase letter “Oyfn pripetchik”

/[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason”

/[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now”

/aˆb/ the pattern ‘aˆb’ “look up aˆb now”

 The regexp syntax includes some predefined
ranges:

 Note: /\t/ stands for the tab character, /\n/ stands for new

line, /\r/ stands for carriage return and /\f/ stands for page
break.

Regexp Expansion Match

/\d/ /[0-9]/ Any digit

/\D/ /[ˆ0-9]/ Any non-digit

/\w/ /[a-zA-Z0-9_]/ Any alphanumeric or underscore

/\W/ /[ˆ\w]/ A non-alphanumeric

/\s/ /[\r\t\n\f]/ Whitespace (space, tab)

/\S/ /[ˆ\s]/ Non-whitespace

 The regexp syntax supports various kinds of
repetitions:
◦ To specify that a character (or a sequence of

characters) may appear zero or one time, use the
question mark (‘?’):

Regexp Match Example Patterns Matched

/woodchucks
?/

woodchuck or
woodchucks

“woodchuck is”

/colou?r/ color or colour any colour you like

 The regexp syntax supports various kinds of
repetitions:
◦ To specify that a character (or a sequence of

characters) may appear zero or more times, use the
asterisk mark (‘*’) – called also Kleene* –
pronounced as “cleany star”:

 Regexp Match Example Patterns Matched

/Wood*chuck
s/

woochuck or
woodchucks or
wooddchucks or
…

“woochucks are bad, but
woodchucks are nice”

/baaa*!/ baa! or baaa! or
baaaa!...

“And then we heard
another baaaa!...”

 The regexp syntax supports various kinds of
repetitions:
◦ To specify that a character (or a sequence of

characters) may appear one or more times, use the
plus mark (‘+’) - called also Kleene+:

Regexp Match Example Patterns Matched

/Wood+chuc
ks/

woodchucks or
wooddchucks or
woodddchucks or
…

“woochucks are bad, but
woodchucks are nice”

/baa+!/ baa! or baaa! or
baaaa!...

“And then we heard
another baaaa!...”

 Summary:

 * zero or more occurrences of the
previous char or expression

+ one or more occurrences of the
previous char or expression

? exactly zero or one occurrence of
the previous char or expression

{n} n occurrences of the previous char
or expression

{n,m} from n to m occurrences of the
previous char or expression

{n,} at least n occurrences of the
previous char or expression

 The regexp syntax supports various kinds of
repetitions:
◦ To specify specific amounts of repetitions, use the

curly brackets:

 Regexp Match

/a{3}b{2}ca/ aaabbca

/a{3,}b{2}ca/ aaabbca or aaaabbca or aaaaabbca or …

/a{3,4}b{2}ca/ aaabbca or aaaabbca

/ba{3,}!/ baaa! or baaaa! or baaaaa!...

 The period character – ‘.’ – serves as a
wildcard expression that matches any single
character (except a carriage return):

 Regexp Match Example Patterns

/beg.n/ Any string comprised of a
single character between
‘beg’ and ‘n’.

began
begin
beg’n

/beg.*n/ Any string begins with
‘beg’ followed by one or
more characters and ends
with ‘n’.

begn
begabcden
begun
beguun

/beg\.n/ The string ‘beg.n’ beg.n

 Grouping of a sequence of characters allows
us to define patterns with repeated and/or
alternating sequences.

 Grouping is done by parenthesis.

 Patterns with repeated sequences:

Regexp Match

/a(ba)+c/ abac or ababac or abababac
or …

/(a(bc)+)*c/ c or abcc or abcbcc or …

 Patterns with alternating sequences:

 Notice the use of pipe ‘|’ to separate the
alternating sequences.

 Note that if the regexp is simple a list of
alternating sequences then grouping is not
required: /dog|cat/ matches ‘dog’ or ‘cat’.

Regexp Match

/gupp(y|ies)/ guppy or guppies

/b(i|ou)nd/ bind or bound

 Special characters that anchor regexps to
particular places in a string.

 Line boundaries:
◦ Beginning of line: ^

◦ End of line: $

 Word boundaries: \b
Regexp Match

/^The/ the word The only at the
start of a line

The bus was late

/ˆThe dog\.$/ The exact line ‘The dog.’ The dog.

/\bthe\b/ the word the Others than the...

 Why does /the*/ match ‘theeee’ and not
‘thethe’?

 Why does /the|any/ match ‘the’ or ‘any’ and
not ‘theny’?

 The answers are in the operator precedence
hierarchy defined for regular expressions:

Operator Precedence Hierarchy

Parenthesis ()

Counters * + ? {}

Sequences and Anchors the ^my end$

Disjunction |

 Consider the regexp /[a-z]*/ matched against
the string ‘hello’.

 The regexp can match zero or more letters
and hence it’s interpretation is apparently
ambiguous.

 The ambiguity is resolved by favoring the
largest string that can be matched, i.e. ‘hello’.

 We say that patterns are greedy in the sense
of expanding to cover as much of a string as
they can.

 Escaping is needed when meta-characters
like ‘*’ or ‘.’ need to be matched as they are
without being interpreted according to their
special role in the regexp syntax

 Regexps escaping is done by the backslash
character – ‘\’.

Escaped character Character to be matched

\. .

* *

\+ +

 A regexp is a formula in a special language
that is used for specifying classes of strings.

 Any regexp characterizes some language.

 A typical search application takes a document
and a regexp as an input and returns the list
of lines from the document in which the
regexp can be matched.

 Regexp: /woodchucks?/

 Text:

Imagine that you have become a passionate fan
of woodchucks.

Desiring more information on this celebrated
woodland creature, you turn to your favorite
Web browser and type in woodchuck.

Your browser returns a few sites.

You have a flash of inspiration and type in
woodchucks.

 Regexp: /woodchucks?/ (- {woodchuck,)

 Text: woodchucks}

Imagine that you have become a passionate fan
of woodchucks.

Desiring more information on this celebrated
woodland creature, you turn to your favorite
Web browser and type in woodchuck.

Your browser returns a few sites.

You have a flash of inspiration and type in
woodchucks.

 Resources:
◦ http://www.regular-expressions.info/

◦ http://en.wikipedia.org/wiki/Regular_expression

◦ http://www.zytrax.com/tech/web/regex.htm

http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://www.zytrax.com/tech/web/regex.htm
http://www.zytrax.com/tech/web/regex.htm

 Finite State Automata are a specific type of state
machines: A set of states and transitions that may
reach an Accept or Reject state according to a given
input.

 Finite State Automata are commonly used to
recognize formal languages and are computationally
equivalent to regular expressions.

 Any language that a regexp can characterize, an FSA
can characterize as well (and vice versa)

 Singular: Automaton; Plural: Automata

 Visually, finite state automata are drawn as
graphs with nodes that stand for the states
and links that stand for the transitions per
input. For example:

 Q: What language does this automaton
recognize?

An ‘Accept’
state

The ‘start’
state

 Formally, an FSA is defined as follows:
◦ Q = q0q1q2 . . .qN−1 a finite set of N states

◦  - a finite input alphabet of symbols

◦ q0 - the start state

◦ F - the set of accepting (final) states, F  Q

◦ (q, i) the transition function or transition matrix
between states.

 For example, the FSA below is defined as
follows:
◦ Q = {q0,q1,q2,q3,q4}
◦  = {‘a’,’b’,’!’}

◦ q0 - the start state

◦ F – q4

◦ (q, i) =

 How an FSA recognizes a language:

 On the surface, an FSA is only a set of states
and transitions. It describes relations between
states according to user input.

 A function is needed to feed it input and use
the transition function to change states.

 The D-RECOGNIZE function.

 The D-RECOGNIZE function:
function D-RECOGNIZE(tape,machine) returns accept or reject

index  Beginning of tape

current-state  Initial state of machine

Loop

 if End of input has been reached then

 if current-state is an accept state then

 return accept

 else

 return reject

 elsif transition-table[current-state,tape[index]] is empty then

 return reject

 else

 current-state  transition-table[current-state,tape[index]]

 index = index + 1

end Loop

end

 Two ways to handle rejected strings:
◦ By empty slots in the transition table that stand for

‘unsupported input’ and treated accordingly by D-
recognize (as we seen above)

◦ By a dedicated ‘fail’ state in the automaton:

A ‘fail’ state

 So far we have seen regular expressions and
finite state automata.

 Both are used to characterize formal languages:
◦ A Regexp describes a pattern for which the matched

strings constitute the language.

 A regexp characterizes a language by generating it
from a pattern.

◦ An FSA describes a set of states and transitions that
determine the set of strings (i.e. a language) that are
accepted.

 An FSA characterizes a language by recognizing it.

 Automata with decision points like in q2 in the
automaton below are called non-deterministic FSAs
(or NFSAs or NFAs).

 Non-determinism may appear also by the use of
epsilon transitions (q3q2) that allow the
recognizer to switch states without any input:

 Accepting strings is more complex in the non-
deterministic case

 Since there is more than one choice at some point,
we might take the wrong choice.

 Several solutions:
◦ Backup strategy: a marker is placed in each choice

point.Then if it turns out that we took the wrong choice, we
could back up and try another path.

◦ Look-ahead strategy: We could look ahead in the input to
help us decide which path to take.

◦ Parallelism strategy: Whenever we come to a choice point,
we could look at every alternative path in parallel.

◦ Alternative: convert the NFSA to an FSA and then accept the
strings. But Is this possible?

 NFSAs may seem to have more computational
power in the sense of allowing more complex
languages to be defined.

 However, it turns out that in terms of
computational power they are equivalent.

 Formally, any non-deterministic FSA is
translatable to a deterministic FSA.

 The translated FSA may require more memory
space but nonetheless it would accept the
same language as the NFSA.

 Slides by Harry H. Porter, 2005
 http://web.cecs.pdx.edu/~harry/compilers/sl

ides/LexicalPart3.pdf

 General idea:
◦ Construct an FSA by simulating a parallel transition

on the original NFSA
◦ Each state in the FSA will correspond to a set of

NFSA states.

 Full example in the original slides.

http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf
http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf
http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf

 Consider the following NFSA:

 It accepts strings such as ‘aabb’, ‘abb’, ‘bbb’,
etc.

 Consider the following NFSA:

 A translation to an FSA:
 A={0,1,2,4,7}

 B={1,2,3,4,6,7,8}

 C={1,2,4,5,6,7}

 D={1,2,4,5,6,7,9}

 E={1,2,4,5,6,7,10}

 The general idea is to create an NFSA for each
basic sequence in a regexp and then to
connect all NFSAs by epsilon links.

 For basic sequences:

 For Kleene*: We create a new final and initial
state, connect the original final states of the
FSA back to the initial states by e-transitions
and then put direct links between the new
initial and final states by e-transitions.

 For example, concatenation: We just string
two FSAs next to each other by connecting all
the final states of FSA2 by epsilon links

 The class of languages that can be defined by
regular expressions is exactly the same as the
class of languages that can be characterized
by finite-state automata (whether
deterministic or non-deterministic).

 Because of this, we call these languages the
regular languages.

 It turns out that not all languages are regular.

 For example:

 The automaton/regexp needs to ‘remember’
the exact number of ‘a’s in order to match it
with the number of ‘b’s.

 This cannot be achieved without some sort of
on-the-fly memory resource

 Theory of computation:

Diagram Source: Wikipedia
http://en.wikipedia.org/wiki/Regular_language

http://en.wikipedia.org/wiki/Regular_language

 Michael Sipser (1997). Introduction to the
Theory of Computation. PWS
Publishing. ISBN 0-534-94728-X.

 Hopcroft, John E.; Motwani, Rajeev; Ullman,
Jeffrey D. (2000). Introduction to Automata
Theory, Languages, and Computation (2nd
ed.). Addison-Wesley.

