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Preliminaries
Universal Model

The n-universal model for IPC, U(n) = (U(n),R,V ) is the “least”
model of IPC that witnesses the failure of every unprovable
formula of IPC.
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Preliminaries
Universal Model

The first layer U(n)1 consists of 2n nodes with the 2n different
n-colors under the discrete ordering.

Under each element w in U(n)k \ U(n)k−1, for each color
s < col(w), we put a new node v in U(n)k+1 such that
v ≺ w with col(v) = s, and we take the reflexive transitive
closure of the ordering.

Under any finite anti-chain X with at least one element in
U(n)k \ U(n)k−1 and any color s with s ≤ col(w) for all
w ∈ X , we put a new element v in U(n)k+1 such that
col(v) = s and v ≺ X and we take the reflexive transitive
closure of the ordering.

The whole model U(n) is the union of its layers.
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Preliminaries
Example: n = 1

The Rieger-Nishimura ladder:

•1 •0

•0 •0

•0 •0

•0 •0
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Preliminaries
Properties of U(n)

Lemma

For any finite rooted Kripke n-model M, there exists a unique
w ∈ U(n) and a p-morphism of M onto U(n)w .

Theorem

For any n-formula ϕ, U(n) |= ϕ iff `IPC ϕ.
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Preliminaries
de Jongh formulas for U(n)

Proposition

For every w ∈ U(n) we have that

V (ϕw ) = R(w), where R(w) = {w ′ ∈ U(n)|wRw ′};
V (ψw ) = U(n)\R−1(w), where
R−1(w) = {w ′ ∈ U(n)|w ′Rw}.
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Preliminaries
de Jongh formulas for U(n)

For any node w in an n-model M, if w ≺ {w1, . . . ,wm}, then we
let
prop(w) := {pi |w |= pi , 1 ≤ i ≤ n},
notprop(w) := {qi |w 2 qi , 1 ≤ i ≤ n},
newprop(w) := {rj |w 2 rj and wi � rj for each 1 ≤ i ≤ m, for
1 ≤ j ≤ n}.
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Preliminaries
de Jongh formulas for U(n)

If d(w) = 1, then let

ϕw :=
∧

prop(w) ∧
∧
{¬pk |pk ∈ notprop(w), 1 ≤ k ≤ n},

and

ψw := ¬ϕw .

If d(w) > 1, and {w1, . . . ,wm} is the set of all immediate
successors of w , then define

ϕw :=
∧
prop(w) ∧ (

∨
newprop(w) ∨

m∨
i=1

ψwi →
m∨
i=1

ϕwi ),

and

ψw := ϕw →
m∨
i=1

ϕwi .
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Preliminaries
Universal Model and Henkin Model

Lemma

For any w ∈ U(n), let ϕw be the de Jongh formula of w, then we
have that H(n)Cn(ϕw )

∼= U(n)w .

Lemma

Upper(H(n)) is isomorphic to U(n).
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Preliminaries
The top model property and negation-free formulas

Definition (Top-Model Property)

ϕ has the top-model property (TMP), if for all M, w , M,w |= ϕ
iff M+,w |= ϕ, where M+ is obtained by adding a top point t
such that all proposition letters are true in t.

Proposition

1 If ϕ ∈ [∨,∧,→] then it has the TMP, and so has ⊥.

2 For any formula ϕ, there exists a formula ϕ∗ ∈ [∨,∧,→] or
ϕ∗ =⊥ such that for any top-model (M+,w),
(M+,w) |= ϕ↔ ϕ∗.
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Definitions
Universal Model for [∨,∧,→]-fragment

The n-universal model for the negation-free fragment of IPC,
U?(n) = (U?(n),R?,V ?), is a generated submodel of the universal
model for IPC. It is (generated by):

{u ∈ U(n) : ¬uRw0}

where w0 is the maximal element of U(n) that satisfies all
propositional atoms.
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Definitions
Universal Model for [∨,∧,→]-fragment

The first layer U?(n)1 consists of 2n − 1 nodes with all the
different n-colors – excluding the color 1 . . . 1 – under the
discrete ordering.

Under each element w in U?(n)k \ U?(n)k−1, for each color
s < col(w), we put a new node v in U?(n)k+1 such that
v ≺ w with col(v) = s, and we take the reflexive transitive
closure of the ordering.

Under any finite anti-chain X with at least one element in
U?(n)k \ U?(n)k−1 and any color s with s ≤ col(w) for all
w ∈ X , we put a new element v in U?(n)k+1 such that
col(v) = s and v ≺ X and we take the reflexive transitive
closure of the ordering.

The whole model U?(n) is the union of its layers.
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Definitions
Examples

The 1-universal model is a singular point:

•0

For n ≥ 2 it is infinite.
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Definitions
Positive morphisms

Definition

A positive morphism is a partial function
f : (W ,R,V )→ (W ′,R ′,V ′) such that:

1 dom(f ) ⊇ {w ∈W : ∃p ∈ Prop(w /∈ V (p))}.
2 If w , v ∈ dom(f ) and wRv then f (w)R ′f (v).

3 If w ∈ dom(f ) and f (w)R ′v then there exists some
u ∈ dom(f ) such that f (u) = v and wRu (back).

4 If w ∈ dom(f ) and vRw , then v ∈ dom(f ) (downwards
closed).

5 For every p ∈ Prop we have w ∈ V (p) ⇐⇒ f (w) ∈ V ′(p).

If the models are descriptive we furthermore require for every
Q ∈ Q that W \ R−1(f −1[W ′ \ Q]) ∈ P.

These maps restrict strong partial Esakia morphisms.
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Definitions
Strong positive partial Esakia morphisms

Lemma

Let f : (W ,R,V )→ (W ′,R ′,V ′) be a positive morphism. Then
for every ϕ ∈ [∨,∧,→] and w ∈ dom(f ) we have that

(W ,R,V ),w |= ϕ if and only if (W ′,R ′,V ′), f (w) |= ϕ.

Proof.

If (W ′,R ′,V ′), f (w) |= ϕ→ ψ then if (W ,R,V ), v |= ϕ with
wRv , then either v ∈ dom(f ) and we use the induction hypothesis,
or v /∈ dom(f ), i.e. it satisfies all propositional atoms and hence
(W ,R,V ), v |= ψ.
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U?(n) is universal
Relation between U(n) and U?(n)

Lemma

There exists a positive morphism F : U(n)→ U?(n), that is onto
and for every w ∈ dom(F ) we have that F � U(n)w is onto
U?(n)F (w).

Proof.

We construct F by induction on the levels of U(n). If
w ≺ {w1, . . . ,wk}, take A ⊆ F [{w1, . . . ,wk}] the set that contains
the R?-minimal elements of F [{w1, . . . ,wk}]. If A is empty then
let F (w) to be the element of U?(n) with depth 1, with the same
color as w . If A = {u} and u has the same color as w then let
F (w) = u. Otherwise by the construction of U?(n) there a unique
v ≺ A (by the induction hypothesis about F ) with the same color
as w and we let F (w) = v .
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U?(n) is universal
U?(n) witnesses every counterexample

Theorem

For any finite rooted intuitionistic n-model M = (M,R,V ) such
that for some x ∈ M and p ∈ Prop with x /∈ V (p), there exists
unique w ∈ U?(n) and positive morphism of M onto U?(n)w .

Proof.

We know there is a unique such p-morphism to the universal
model. We take the composition with F . It is still unique since
otherwise if g1, g2 were different positive morphism, since
dom(g1) = dom(g2) = {x ∈ M : ∃p ∈ Prop(x /∈ V (p))}, we would
have two different p-morphisms from dom(g1) to U(n), a
contradiction.
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U?(n) is universal
U?(n) witnesses every counterexample

Theorem

For every n-formula ϕ ∈ [∨,∧,→], U?(n) |= ϕ if and only if
`IPC ϕ.

Proof.

Follows from previous Lemma.
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U?(n) is universal
de Jongh formulas for U ? (n)

We have that (U?(n))+ is (isomorphic to) a generated submodel of
U(n), whose domain consist of the elements of U(n) whose only
successor of depth 1 satisfies all propositional atoms. Let’s call this
generated submodel M.

Definition

If d(w) = 1 then define

ϕ?
w =

∧
prop(w) ∧ (

∨
notprop(w)→

∧
notprop(w))

and
ψ?
w = ϕ?

w →
∧
i∈n

pi .
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U?(n) is universal
de Jongh formulas for U ? (n)

Definition

If d(w) > 1 then let w ≺ {w1, . . . ,wr} and define

ϕ?
w =

∧
prop(w) ∧ (

∨
newprop(w) ∨

∨
i≤r

ψ?
wi
→

∨
i≤r

ϕ?
wi

)

and
ψ?
w = ϕ?

w →
∨
i≤r

ϕ?
wi
.
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U?(n) is universal
de Jongh formulas

Proposition

For every w ∈ U?(n) we have that

V ?(ϕw ) = R?(w)

V ?(ψw ) = U?(n) \ (R?)−1(w)

Proof.

We can show that for every world w in M, ϕw is top-model
equivalent to ϕ?

w . And since ϕ?
w is negation free it is satisfied in a

world of (U?(n))+ if and only if it is satisfied in the same world in
U?(n).
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U?(n) and H?(n)
Basic Relation

We denote the n-Henkin model for the [∨,∧,→] fragment of IPC
with H?(n). We write

Cn?n(ϕ) = {ψ ∈ [∨,∧ →] : ψ is an n-formula and `IPC ϕ→ ψ}

and we write

Th?n(M,w) = {ϕ ∈ [∨,∧ →] : ϕ is an n-formula and M,w |= ϕ}.

Proposition

For any point w ∈ U?(n), Th?n(U?(n),w) = Cn?n(ϕ?
w ).

Proof.

If 0IPC ϕ?
w → σ, then this is witnessed in some world v of U?(n).

We have that v ∈ R?(w), hence σ /∈ Th?n(U?(n),w).

Apostolos Tzimoulis and Zhiguang Zhao The Universal Model for the negation-free fragment of IPC



U?(n) and H?(n)
Basic Relation

Proposition

For any w ∈ U?(n) we have H?(n)Cn?(ϕ?
w )
∼= (U?(n)w )+.

Proof.

We have that g : (U?(n)w )+ → H?(n)Cn?(ϕ?
w )

, such that
g(v) = Cn?n(ϕ?

v ) and the topmost element is mapped to the set of
all negation-free formulas, is the isomorphism. If Γ ⊇ Cn?(ϕ?

w ),
then Γ = Cn?(ϕ?

v ) for wR?v , or it contains all propositional atoms:
If there is some v such that ϕv ∈ Γ but for all immediate
successors of v , vi ϕ

?
vi
/∈ Γ (i ∈ n + 1) for σ ∈ Γ we have

σ ∧ ϕ?
v 0IPC ϕ?

v0 ∨ · · · ∨ ϕ
?
vn . Then this is witnessed in U?(n),

exactly at v , hence σ ∈ Cn?(ϕ?
v ).
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U?(n) and H?(n)
Corollaries

Corollary

It is the case that Upper(H?(n)) ∼= (U?(n))+.

Corollary

Let M = (M,R,V ) be any n-model and let x ∈ M be such that
M, x |= ϕ?

w , for some w ∈ U?(n). Then either there are a unique
v ∈ U?(n) such that wR?v, and a positive morphism f from Mx

onto U?(n)v or Mx satisfies all negation-free formulas.

Proof.

Define f (y) = v , where Th?n(M, y) = Cn?n(ϕ?
v ).
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U?(n) and H?(n)
Analogue of Jankov’s theorem

Theorem

For every descriptive frame G and w ∈ U?(n) we have that
G 2 ψ?

w if and only if there is an n-valuation V on G such that
U?(n)w is the image, through a positive morphism, of a generated
submodel of (G,V ).

Proof.

If w ≺ {w1, . . . ,wn}, then take the submodel generated by the
elements that satisfy ϕ?

w but none of the ϕ?
wi

. The previous
corollary gives the positive morphism.
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Application
Jankov’s theorem for KC

Lemma

If F is a descritpive frame with a topmost element, and
f : (G,V )→ (F,V ′) is a descriptive positive morphism between
models, then f can be extended to a descriptive frame p-morphism.

Proof.

If f is a total then it is a frame p-morphism. If f is not total then,
extend f to f ′ such that every y ∈ dom(G) \ dom(f ), f ′(y) = x0,
where x0 is the topmost element of F. To show that it is
descriptive we need that f ′−1[Q] is admissible, where Q is
admissible in F. But, by the construction of f we have that
f ′−1[Q] = f −1[Q] ∪ (dom(G) \ dom(f )), which is admissible by
assumption.
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Application
Jankov’s theorem for KC

Theorem (Jankov)

For every logic L * KC which is complete with respect to a class
of Kripke frames there exists some negation-free formula σ such
that L ` σ while IPC 0 σ.

Proof.

Let χ be the formula that L proves. Let F a finite KC frame, a
counterexample to χ. We give a valuation V to F such that at
every world a propositional atom is not true. Given a L-frame, G,
if for any valuation it satisfies the same negation free formulas as
(F,V ) then by the previous theorem there is a descriptive positive
morphism onto F. This can be extended to a descriptive
p-morphism by the above lemma, a contradiction.
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