The Universal Model for the negation-free fragment of IPC

Apostolos Tzimoulis and Zhiguang Zhao

November 21, 2012

Apostolos Tzimoulis and Zhiguang Zhao The Universal Model for the negation-free fragment of IPC

The *n*-universal model for IPC, U(n) = (U(n), R, V) is the "least" model of IPC that witnesses the failure of every unprovable formula of IPC.

伺 ト イヨト イヨト

- The first layer $U(n)^1$ consists of 2^n nodes with the 2^n different *n*-colors under the discrete ordering.
- Under each element w in U(n)^k \U(n)^{k-1}, for each color s < col(w), we put a new node v in U(n)^{k+1} such that v ≺ w with col(v) = s, and we take the reflexive transitive closure of the ordering.
- Under any finite anti-chain X with at least one element in $\mathcal{U}(n)^k \setminus \mathcal{U}(n)^{k-1}$ and any color s with $s \leq col(w)$ for all $w \in X$, we put a new element v in $\mathcal{U}(n)^{k+1}$ such that col(v) = s and $v \prec X$ and we take the reflexive transitive closure of the ordering.

The whole model $\mathcal{U}(n)$ is the union of its layers.

Preliminaries

Example: n = 1

The Rieger-Nishimura ladder:

Lemma

For any finite rooted Kripke n-model \mathfrak{M} , there exists a unique $w \in \mathcal{U}(n)$ and a p-morphism of \mathfrak{M} onto $\mathcal{U}(n)_w$.

Theorem

For any n-formula φ , $\mathcal{U}(n) \models \varphi$ iff $\vdash_{IPC} \varphi$.

/⊒ > < ∃ >

Proposition

For every $w \in \mathcal{U}(n)$ we have that

•
$$V(\varphi_w) = R(w)$$
, where $R(w) = \{w' \in \mathcal{U}(n) | wRw'\}$;

•
$$V(\psi_w) = \mathcal{U}(n) \setminus R^{-1}(w)$$
, where
 $R^{-1}(w) = \{w' \in \mathcal{U}(n) | w' R w\}.$

For any node w in an n-model \mathfrak{M} , if $w \prec \{w_1, \ldots, w_m\}$, then we let

$$prop(w) := \{p_i | w \models p_i, 1 \le i \le n\},\$$

$$notprop(w) := \{q_i | w \nvDash q_i, 1 \le i \le n\},\$$

$$newprop(w) := \{r_j | w \nvDash r_j \text{ and } w_i \vDash r_j \text{ for each } 1 \le i \le m, \text{ for }\$$

$$1 \le j \le n\}.$$

伺 ト く ヨ ト く ヨ ト

Preliminaries

de Jongh formulas for $\mathcal{U}(n)$

If d(w) = 1, then let

 $\varphi_w := \bigwedge \operatorname{prop}(w) \land \bigwedge \{ \neg p_k | p_k \in \operatorname{notprop}(w), 1 \le k \le n \},$

and

$$\psi_{\mathbf{w}} := \neg \varphi_{\mathbf{w}}.$$

If d(w) > 1, and $\{w_1, \ldots, w_m\}$ is the set of all immediate successors of w, then define

$$arphi_{oldsymbol{w}} := \bigwedge \operatorname{prop}(oldsymbol{w}) \wedge (\bigvee \operatorname{newprop}(oldsymbol{w}) \vee \bigvee_{i=1}^{m} \psi_{oldsymbol{w}_i}
ightarrow \bigvee_{i=1}^{m} arphi_{oldsymbol{w}_i}),$$

and

$$\psi_{\mathbf{w}} := \varphi_{\mathbf{w}} \to \bigvee_{i=1}^{m} \varphi_{\mathbf{w}_i}.$$

Lemma

For any $w \in \mathcal{U}(n)$, let φ_w be the de Jongh formula of w, then we have that $\mathcal{H}(n)_{Cn(\varphi_w)} \cong \mathcal{U}(n)_w$.

Lemma

 $Upper(\mathcal{H}(n))$ is isomorphic to $\mathcal{U}(n)$.

伺 ト く ヨ ト く ヨ ト

The top model property and negation-free formulas

Definition (Top-Model Property)

 φ has the *top-model property* (TMP), if for all \mathfrak{M} , w, \mathfrak{M} , $w \models \varphi$ iff \mathfrak{M}^+ , $w \models \varphi$, where \mathfrak{M}^+ is obtained by adding a top point t such that all proposition letters are true in t.

Proposition

• If $\varphi \in [\lor, \land, \rightarrow]$ then it has the TMP, and so has \bot .

For any formula φ, there exists a formula φ* ∈ [∨, ∧, →] or φ* =⊥ such that for any top-model (M⁺, w), (M⁺, w) ⊨ φ ↔ φ*.

The *n*-universal model for the negation-free fragment of IPC, $U^{\star}(n) = (U^{\star}(n), R^{\star}, V^{\star})$, is a generated submodel of the universal model for IPC. It is (generated by):

$$\{u \in U(n) : \neg uRw_0\}$$

where w_0 is the maximal element of $\mathcal{U}(n)$ that satisfies all propositional atoms.

- The first layer U^{*}(n)¹ consists of 2ⁿ − 1 nodes with all the different *n*-colors − *excluding the color* 1...1 − under the discrete ordering.
- Under each element w in U^{*}(n)^k \ U^{*}(n)^{k-1}, for each color s < col(w), we put a new node v in U^{*}(n)^{k+1} such that v ≺ w with col(v) = s, and we take the reflexive transitive closure of the ordering.
- Under any finite anti-chain X with at least one element in $\mathcal{U}^{\star}(n)^k \setminus \mathcal{U}^{\star}(n)^{k-1}$ and any color s with $s \leq col(w)$ for all $w \in X$, we put a new element v in $\mathcal{U}^{\star}(n)^{k+1}$ such that col(v) = s and $v \prec X$ and we take the reflexive transitive closure of the ordering.

The whole model $\mathcal{U}^{\star}(n)$ is the union of its layers.

伺 ト イ ヨ ト イ ヨ ト

The 1-universal model is a singular point:

For $n \ge 2$ it is infinite.

伺 ト イヨト イヨト

•0

Positive morphisms

Definition

A positive morphism is a partial function

- f:(W,R,V)
 ightarrow (W',R',V') such that:
 - $dom(f) \supseteq \{ w \in W : \exists p \in \operatorname{Prop}(w \notin V(p)) \}.$
 - 2 If $w, v \in dom(f)$ and wRv then f(w)R'f(v).
 - 3 If $w \in \text{dom}(f)$ and f(w)R'v then there exists some $u \in \text{dom}(f)$ such that f(u) = v and wRu (back).
 - If $w \in dom(f)$ and vRw, then $v \in dom(f)$ (downwards closed).
 - So For every $p \in \operatorname{Prop} we$ have $w \in V(p) \iff f(w) \in V'(p)$.

If the models are descriptive we furthermore require for every $Q \in \mathcal{Q}$ that $W \setminus R^{-1}(f^{-1}[W' \setminus Q]) \in \mathcal{P}$.

These maps restrict strong partial Esakia morphisms.

Lemma

Let $f : (W, R, V) \rightarrow (W', R', V')$ be a positive morphism. Then for every $\varphi \in [\lor, \land, \rightarrow]$ and $w \in \text{dom}(f)$ we have that

 $(W, R, V), w \models \varphi$ if and only if $(W', R', V'), f(w) \models \varphi$.

Proof.

If $(W', R', V'), f(w) \models \varphi \rightarrow \psi$ then if $(W, R, V), v \models \varphi$ with wRv, then either $v \in \text{dom}(f)$ and we use the induction hypothesis, or $v \notin \text{dom}(f)$, i.e. it satisfies all propositional atoms and hence $(W, R, V), v \models \psi$.

- 4 同 6 4 日 6 4 日 6 - 日

Lemma

There exists a positive morphism $F : U(n) \to U^*(n)$, that is onto and for every $w \in \text{dom}(F)$ we have that $F \upharpoonright U(n)_w$ is onto $U^*(n)_{F(w)}$.

Proof.

We construct *F* by induction on the levels of $\mathcal{U}(n)$. If $w \prec \{w_1, \ldots, w_k\}$, take $A \subseteq F[\{w_1, \ldots, w_k\}]$ the set that contains the R^* -minimal elements of $F[\{w_1, \ldots, w_k\}]$. If *A* is empty then let F(w) to be the element of $\mathcal{U}^*(n)$ with depth 1, with the same color as *w*. If $A = \{u\}$ and *u* has the same color as *w* then let F(w) = u. Otherwise by the construction of $\mathcal{U}^*(n)$ there a unique $v \prec A$ (by the induction hypothesis about *F*) with the same color as *w* and we let F(w) = v.

Theorem

For any finite rooted intuitionistic n-model $\mathfrak{M} = (M, R, V)$ such that for some $x \in M$ and $p \in \operatorname{Prop}$ with $x \notin V(p)$, there exists unique $w \in U^*(n)$ and positive morphism of \mathfrak{M} onto $\mathcal{U}^*(n)_w$.

Proof.

We know there is a unique such p-morphism to the universal model. We take the composition with F. It is still unique since otherwise if g_1, g_2 were different positive morphism, since $dom(g_1) = dom(g_2) = \{x \in M : \exists p \in Prop(x \notin V(p))\}$, we would have two different p-morphisms from $dom(g_1)$ to $\mathcal{U}(n)$, a contradiction.

(人間) ト く ヨ ト く ヨ ト

Theorem

For every n-formula $\varphi \in [\lor, \land, \rightarrow]$, $\mathcal{U}^*(n) \models \varphi$ if and only if $\vdash_{IPC} \varphi$.

Proof.

Follows from previous Lemma.

We have that $(\mathcal{U}^*(n))^+$ is (isomorphic to) a generated submodel of $\mathcal{U}(n)$, whose domain consist of the elements of U(n) whose only successor of depth 1 satisfies all propositional atoms. Let's call this generated submodel \mathcal{M} .

Definition

If d(w) = 1 then define

$$\varphi_w^{\star} = \bigwedge \operatorname{prop}(w) \land (\bigvee \operatorname{notprop}(w) \rightarrow \bigwedge \operatorname{notprop}(w))$$

and

$$\psi_w^{\star} = \varphi_w^{\star} \to \bigwedge_{i \in n} p_i.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$\mathcal{U}^{\star}(n)$ is universal de Jongh formulas for $\mathcal{U} \star (n)$

Definition

If d(w) > 1 then let $w \prec \{w_1, \ldots, w_r\}$ and define

$$arphi^{\star}_{w} = \bigwedge \operatorname{prop}(w) \wedge (\bigvee \operatorname{newprop}(w) \lor \bigvee_{i \leq r} \psi^{\star}_{w_{i}}
ightarrow \bigvee_{i \leq r} arphi^{\star}_{w_{i}})$$

and

$$\psi_w^{\star} = \varphi_w^{\star} \to \bigvee_{i \le r} \varphi_{w_i}^{\star}.$$

э

Proposition

For every $w \in \mathcal{U}^{\star}(n)$ we have that

•
$$V^{\star}(\varphi_w) = R^{\star}(w)$$

•
$$V^{\star}(\psi_w) = \mathcal{U}^{\star}(n) \setminus (R^{\star})^{-1}(w)$$

Proof.

We can show that for every world w in \mathcal{M} , φ_w is top-model equivalent to φ_w^* . And since φ_w^* is negation free it is satisfied in a world of $(\mathcal{U}^*(n))^+$ if and only if it is satisfied in the same world in $\mathcal{U}^*(n)$.

$\mathcal{U}^{\star}(n)$ and $\mathcal{H}^{\star}(n)$ Basic Relation

We denote the *n*-Henkin model for the $[\lor, \land, \rightarrow]$ fragment of IPC with $\mathcal{H}^*(n)$. We write

 $\operatorname{Cn}_{n}^{\star}(\varphi) = \{ \psi \in [\lor, \land \to] : \psi \text{ is an } n \text{-formula and } \vdash_{IPC} \varphi \to \psi \}$

and we write

 $\mathrm{Th}_n^{\star}(\mathfrak{M},w) = \{\varphi \in [\vee, \wedge \rightarrow] : \varphi \text{ is an } n\text{-formula and } \mathfrak{M}, w \models \varphi\}.$

Proposition

For any point $w \in \mathcal{U}^{\star}(n)$, $\operatorname{Th}_{n}^{\star}(\mathcal{U}^{\star}(n), w) = \operatorname{Cn}_{n}^{\star}(\varphi_{w}^{\star})$.

Proof.

If $\nvDash_{IPC} \varphi_w^* \to \sigma$, then this is witnessed in some world v of $\mathcal{U}^*(n)$. We have that $v \in R^*(w)$, hence $\sigma \notin \operatorname{Th}_n^*(\mathcal{U}^*(n), w)$.

Proposition

For any $w \in \mathcal{U}^{\star}(n)$ we have $\mathcal{H}^{\star}(n)_{\operatorname{Cn}^{\star}(\varphi_{w}^{\star})} \cong (\mathcal{U}^{\star}(n)_{w})^{+}$.

Proof.

We have that $g: (\mathcal{U}^*(n)_w)^+ \to \mathcal{H}^*(n)_{\operatorname{Cn}^*(\varphi_w^*)}$, such that $g(v) = \operatorname{Cn}_n^*(\varphi_v^*)$ and the topmost element is mapped to the set of all negation-free formulas, is the isomorphism. If $\Gamma \supseteq \operatorname{Cn}^*(\varphi_w^*)$, then $\Gamma = \operatorname{Cn}^*(\varphi_v^*)$ for wR^*v , or it contains all propositional atoms: If there is some v such that $\varphi_v \in \Gamma$ but for all immediate successors of v, $v_i \ \varphi_{v_i}^* \notin \Gamma$ ($i \in n+1$) for $\sigma \in \Gamma$ we have $\sigma \land \varphi_v^* \nvDash_{IPC} \ \varphi_{v_0}^* \lor \cdots \lor \varphi_{v_n}^*$. Then this is witnessed in $\mathcal{U}^*(n)$, exactly at v, hence $\sigma \in \operatorname{Cn}^*(\varphi_v^*)$.

Corollary

It is the case that $Upper(\mathcal{H}^{\star}(n)) \cong (\mathcal{U}^{\star}(n))^+$.

Corollary

Let $\mathfrak{M} = (M, R, V)$ be any n-model and let $x \in M$ be such that $\mathfrak{M}, x \models \varphi_w^*$, for some $w \in U^*(n)$. Then either there are a unique $v \in U^*(n)$ such that wR^*v , and a positive morphism f from \mathfrak{M}_x onto $\mathcal{U}^*(n)_v$ or \mathfrak{M}_x satisfies all negation-free formulas.

Proof.

Define
$$f(y) = v$$
, where $\operatorname{Th}_n^{\star}(\mathfrak{M}, y) = \operatorname{Cn}_n^{\star}(\varphi_v^{\star})$.

Theorem

For every descriptive frame \mathfrak{G} and $w \in U^*(n)$ we have that $\mathfrak{G} \nvDash \psi_w^*$ if and only if there is an n-valuation V on \mathfrak{G} such that $\mathcal{U}^*(n)_w$ is the image, through a positive morphism, of a generated submodel of (\mathfrak{G}, V) .

Proof.

If $w \prec \{w_1, \ldots, w_n\}$, then take the submodel generated by the elements that satisfy φ_w^* but none of the $\varphi_{w_i}^*$. The previous corollary gives the positive morphism.

Lemma

If \mathfrak{F} is a descritpive frame with a topmost element, and $f : (\mathfrak{G}, V) \to (\mathfrak{F}, V')$ is a descriptive positive morphism between models, then f can be extended to a descriptive frame p-morphism.

Proof.

If f is a total then it is a frame p-morphism. If f is not total then, extend f to f' such that every $y \in \operatorname{dom}(\mathfrak{G}) \setminus \operatorname{dom}(f)$, $f'(y) = x_0$, where x_0 is the topmost element of \mathfrak{F} . To show that it is descriptive we need that $f'^{-1}[Q]$ is admissible, where Q is admissible in \mathfrak{F} . But, by the construction of f we have that $f'^{-1}[Q] = f^{-1}[Q] \cup (\operatorname{dom}(\mathfrak{G}) \setminus \operatorname{dom}(f))$, which is admissible by assumption.

- 4 同 6 4 日 6 4 日 6

Theorem (Jankov)

For every logic $\mathcal{L} \nsubseteq KC$ which is complete with respect to a class of Kripke frames there exists some negation-free formula σ such that $\mathcal{L} \vdash \sigma$ while IPC $\nvDash \sigma$.

Proof.

Let χ be the formula that \mathcal{L} proves. Let \mathfrak{F} a finite KC frame, a counterexample to χ . We give a valuation V to \mathfrak{F} such that at every world a propositional atom is not true. Given a \mathcal{L} -frame, \mathfrak{G} , if for any valuation it satisfies the same negation free formulas as (\mathfrak{F}, V) then by the previous theorem there is a descriptive positive morphism onto \mathfrak{F} . This can be extended to a descriptive p-morphism by the above lemma, a contradiction.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- De Jongh, Dick and Yang, Fan Jankov's theorems for intermediate logics in the setting of universal models, Proceedings of the 8th international tbilisi conference on Logic, language, and computation, 2011.
- Bezhanishvili, G. and Bezhanishvili, N., An algebraic approach to canonical formulas: intuitionistic case, Rev. Symb. Log, 2009, Cambridge Univ Press
- Bezhanishvili, N. Lattices of Intermediate and Cylindric Modal Logics, PhD Thesis, University of Amsterdam, The Netherlands, 2006.