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Abstract. Temporal logic can be used to describe processes: their behaviour is characterized

by a set of temporal models axiomatized by a temporal theory. Two types of models are

most often used for this purpose: linear and branching time models.  In this paper a third

approach, based on socalled joint closure models, is studied using models which incorporate

all possible behaviour in one model. Relations between this approach and the other two are

studied. In order to define constructions needed to relate branching time models, appropriate

algebraic notions are defined (in a category theoretical manner) and exploited. In particular,

the notion of joint closure is used to construct one model subsuming a set of models. Using

this universal algebraic construction we show that a set of linear models can be merged to a

unique branching time model. Logical properties of the described algebraic constructions are

studied. The proposed approach has been successfully aplied to obtain an appropriate

semantics for nonmonotonic reasoning processes based on default logic. References are

discussed that show the details of these applications.
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1  Introduction

Temporal logic provides techniques to build formal models of dynamics: processes are

described by temporal models that satisfy some set of temporal axioms. This approach may

be used to describe the dynamics of (material) processes in the external world, as well as

mental or computational processes. In our research we focus on formal models for the

behaviour of compositional (knowledge- or agent-based) reasoning systems by means of

temporal logic. States in a reasoning system are characterized by the (incomplete)

information that has been obtained so far; usually they are called information states.

                                                
*  This work has been carried out in the context of the ESPRIT III Basic Research project 6156

   DRUMS II.



2

A characteristic of dynamics is that there is often a number of possible alternative

behavioural patterns. During the process in some way or another a choice between these

alternatives is made. These (intended) behavioural patterns can be formalized by a set of

possible (intended) linear time temporal models of the temporal theory involved. A

different way of formalization of the variety of patterns is by branching time temporal

models of a temporal theory, where each branch represents one of the patterns.

Formalization by a set of linear time models has the advantage of a very simple

model structure. But the disadvantage is that the possible choices and the time points at

which they should be made are not covered explicitly in the formalization itself. Branching

time models represent these choices as points where the flow of time branches. However, a

given branching time model may only describe a subset of the set of all possible

behaviours. Different papers in the literature on temporal logic discuss the usefulness of

linear time temporal logic versus branching time temporal logic depending on the type of

applications; for example, [EH86], [Gl94].

A third formalization of temporal semantics, obtained as a result of the notions

defined below is shown; this approach only looks at branching time models which

incorporate all possible behaviour (joint closure models). This third approach has been

successfully applied to describe the semantics of multiple nonmonotonic (default)

reasoning processes for a given default theory in one (a kind of standard) joint closure

model, which can be associated to the default theory (cf. [ET96]).

Given that these approaches are formalizations of (more or less) the same

phenomenon, it is natural to study formal connections between them. We will define

universal (algebraic) constructions on models which allow us to connect the approaches

and to study logical properties of these constructions.

The world whose properties over time we are interested in, can be described using

a language, called the object-level language. The states of this world are formalized by

models of the object-level language together with a satisfaction relation which describes

which formulae are true in a particular state (object-level model). We do not a priori pose

any restrictions on the language or the models.

In Section 2, we introduce our temporalized logic (inspired by e.g., [FG92],

[BPM83]). In Section 3, we define our notion of homomorphism between temporal

models and establish properties of the notion. A class of formulae that are persistent under

homomorphisms is identified. Furthermore, we show how a category can be defined,

based on these homomorphisms. In Section 4, we present some category-theoretic results

that have implications for our category. In particular, we define a universal construction to

merge models that is used to show in Section 5 how to construct a branching time model in

a canonical manner out of a set of linear time models. The logical properties of this

universal construction are further worked out in Section 6. Finally, in Section 7 some

conclusions are drawn.
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2  Temporalized logic

In this section we introduce our temporalized logic (see also [ET93]). Our approach is in

line with what in [FG92] is called temporalizing a given logic. We start defining the flows

of time we use in Subsection 2.1, next we define temporalized models in Subsection 2.2

and finally we define temporal formulae and their interpretation in Subsection 2.3.

2.1  Flows of time

Definition 2.1  (flow of time)

A (discrete) flow of time  (T, < )  is a pair consisting of a nonempty set  T of time

points, and a binary relation  <  on  T xxxx T, called the immediate successor relation  that

is irreflexive, antisymmetric and antitransitive. Here for  s, t in  T  the expression

s < t denotes that  t  is an immediate successor of  s, and that  s  is an immediate

predecessor of  t. We also introduce the transitive closure  «  of this binary relation: « =

<+. A flow of time is called linear if  «  is a total ordering.

Definition 2.2  (sub-ft and branch)

a)  A flow of time  (T', <' )   is called a sub-ft  (sub-flow of time) of a flow of time

(T, < )  if  T' ⊆  T   and  <' =  < � ��� T' xxxx T'. It is also called the sub-ft of  (T, < )

defined by T' , or the restriction of  (T, < )   to  T' .

b) A sub-flow of time  T'  is right or successor (respectively left or predecessor)

complete in  T  with respect to  t  in  T'   if for all  u  in  T  with  t « u (respectively

u « t)  we have  u  in T' .

c)  A branch in a flow of time  T    is a sub-ft  B = (T', <' )  of T  such that:

(i)   «' = « � ��� T' xxxx T'   is a total ordering on T' xxxx T'

(ii)  Every  t  � ���   T'  with a successor in  T  also has a successor in  T' :

for all  s � ���  T' , t  � ���  T : s < t  � ���  there is a  t' � ���  T' : s < t '

(iii)  Every  t  in  T'   with a predecessor in  T  also has a predecessor in  T' :

for all  s � ���  T, t � ���  T'  : s < t  � ���  there is an  s' � ���  T' : s' < t .

(iv)  Every element of T  that is in between elements of  T'  is itself in  T' :

for all s � ���  T' , t � ���  T, u � ���  T' : s « t « u  � ���  t � ���  T'

Branches will be viewed as linear temporal models. For example, Definition 2.2(i)

guarantees linearity, whereas Definition 2.1 guarantees discreteness. In addition, we will

impose the following definitions.
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Definition 2.3  (minimal element, root, path)

a)  An element  t  of  T  is called a minimal element if there exists no  s  with  s < t. We

call  t  a root if for all u  in  T  it holds  u = t  or t « u.

b)  We call  T  well-founded if for there do not exist infinite descending chains of

elements  s� ��� < s � ��� -1 .

c)   A (finite) path is a finite sequence of successors:  s0,  ....., sn  such that:  s� ��� < s � ��� +1

for all  0 ≤ � ��� ≤ n-1. We call s0  the starting point and  sn the endpoint of the path.

We will make additional assumptions on the flow of time: that it describes a discrete tree

structure where time branches in the direction of the future; see definitions below.

Definition 2.4  (tree and forest)

a)  The following properties are defined:

     (i)  Successor existence

Every time point has at least one successor:

for all  s � ���  T there exists a  t � ���  T  such that s < t.

    (ii)  Rooted

A flow of time is rooted with root  r  if  r  is a (unique) smallest element:

for all t  it holds  r = t   or  r « t.

   (iii)  Left linear

For all t  the set of  s  with  s « t  is totally ordered by  «.

b)  A flow of time is called  a tree  if it is rooted and  left linear.

c)  A flow of time is called a forest if it is well-founded and left linear.

Note that a forest is just a disjoint union of trees. From now on we will assume all flows of

time to be forests satisfying successor existence.

Lemma 2.5

a)  Suppose  T  is well-founded.

For every element  t  there is a minimal element  s  and a (finite) path from  s  to  t.

b)  If there exists a root  r , then  T  is well-founded and for every  t  there exists a path

from  r  to  t.

c) Suppose  T  is a forest.

Every non-minimal element has a unique predecessor. For every  t  in  T  there is a

unique minimal element  m  with  m « t  and a unique path with t  as end point  and  m

as starting point; this path gives a finite ordered enumeration of { s | s « t } � ���  {t} .
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The proof of this lemma is straightforward and omitted. The number of elements in the

path from  t  to its corresponding minimal element, minus one,  is called the depth of  t .

Using this depth function the time points of a branch may be identified with  NN.

Definition 2.6  (isolated and generated sub-ft)

A sub-ft  T'   of  T  is called an isolated sub-ft of  T if there do not exist  t  in  T\T'   and

t'  in  T'   with  t < t'  or  t' < t . A minimal isolated sub-ft is called a connectivity

component.

We call  T'  a  sub-flow of time generated by a subset  B of  T  if it is both left and right

complete with respect to all elements of  B.

The smallest sub-ft generated by  B  is the sub-ft generated by  B  given by

T = {s | � ���  t � ���  B with s « t } � ���  B � ���  {u | � ���  t � ���  B with t  « u }

The sub-flow of time generated by one element  t  in  T'   is the tree consisting of the path

from the minimal element under  t  to  t  and all  u with t « u.

Proposition 2.7

a)  T'   is a sub-ft of  T (self-)generated  by  T'   iff it is an isolated sub-ft of  T.

b)  T  is a forest iff all its connectivity components are trees.

Remark: we will sometimes, if no confusion can arise,  use the same character  <  to denote

two different relations on different sets, for example as in  (T, <)  and  (T', <).

2.2  Temporalized models

As we want to be able to describe temporal changes in any domain, we will just assume we

have an object-level language,  Lo, whose formulae describe the domain. The domain

states based on this language will be supposed to form a class  M o  of object models. An

object-level satisfaction relation  � ��� o  � ��� M o ×  Lo  indicates which formulae are true in a

model. Thus for  M � ��� Mo  and  � ��� � ��� Lo,  M � ��� o � ���   means that  � ���   is true in  M . We could

take, for example, a propositional language with classical propositional models. We could

also take the same language but with three-valued models under the Strong Kleene

semantics. Or we could take a modal language with modal Kripke models. Thus the choice

of language and models can be varied at will. From now on we will assume a fixed object-

level language, model class and satisfaction relation.

Definition 2.8  (Temporal model)

Let  (T, < )  be a flow of time.

A  temporalized model   MM   based on flow of time  (T, < )  is a triple  ( M ,  T ,  < ) ,

where M   is a mapping 
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M : T   � ���   M o

So at any point in time we have an object-level model describing what is true in the

domain at that time.  We will sometimes refer to  M  as a temporal model based on  (T,

< ). If  � ���   is an object-level formula, and  t  is a time point in  T, and  M t � ��� o � ��� , then we

say that in this model  M  at time point  t  the formula  � ��� is true.

Definition 2.9

The temporal model  M'  is sub-model of  M  if  (T', <')  is a sub-flow of time of

(T, <)  with  M(t) = M'(t)   for all  t  in  T.  We also call  M'   the restriction of  M   to

T' , denoted by  M|T' . If  T'   is a branch of  T  then  M'   is called a branch of  M . For a

temporal model  M , the set of its branches is denoted by  Br(M) .

Also the other notions defined in the above subsection for flows of time are inherited

by models.

2.3  Temporal formulae and their interpretation

We will now define the temporal language  LT  in terms of the object-level language using

temporal operators to describe truth of object-level and temporal formulae over time.

Because our temporal models based on forests have a more differentiated structure towards

the future than towards the past, we will need more operators describing the future than the

past. Also, we do not want any interaction between object-level formulae and temporal

formulae. Therefore the object-level formulae are "shielded" by an operator  C:

Definition 2.10 (temporal language)

The temporal language  LT  is defined to be the least set such that:

  (i)  � ��� � ��� Lo  � ��� C� ���   � ��� LT

 (ii)  � ��� , � ��� � ��� LT  � ��� � ��� � ��� ,  � �������� � ��� ,  � �������� � ��� ,  � ��� � ��� � ��� � ��� LT

(iii)  � ��� � ��� LT  � ��� O� ���   � ��� LT   (where  O � ��� { � ��� F, � ��� F, � ��� G, � ��� G, � ��� X , � ��� X , P, H  }  )

The temporal language is similar to a modal propositional language where the atomic

propositions consist of the  C operator applied to an object-level formula. In these

definitions, for a temporal model  M   based on  (T, <),  t  � ��� T, and  � ��� � ��� LT, (M, t) � ��� � ���  

means that  � ���   is true in  M   at time point  t.

Definition 2.11  (Semantics)

Let a temporal model  M  based on  (T, <), and a time point  t � ���  T  be given, then

inductively define:

  (i)  for  � ��� � ��� Lo:
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(M, t) � ��� C � ��� ⇔ M s � ��� o � ���

 (ii)  for  � ��� , � ��� � ��� LT:

a) (M, t) � ��� � ��� � ��� ⇔  it is not the case that  (M, t) � ��� � ���

b) (M, t) � ��� � ��� � ��� � ��� ⇔ (M, t) � ��� � ���    and  (M, t) � ��� � ���

(iii)  for  � ��� � ��� LT:

a) (M, t) � ���  � ��� F � ��� ⇔  ∃ s � ���  T  [ t « s  &  (M, s) � ��� � ��� ]

b) (M, t) � ��� � ��� G � ��� ⇔  there exists a branch including  t  such

that

for all  s  in that branch

[ t « s  � ���   (M, s) � ��� � ��� ]

c) (M, t) � ��� � ��� X � ��� ⇔ ∃ s � ���  T  [ t < s  &  (M, s) � ��� � ��� ]

d) (M, t) � ��� P � ��� ⇔ ∃ s � ���  T  [ s « t  &  (M, s) � ��� � ��� ]

Furthermore we introduce the following abbreviations:

� ��� � ��� � �������� def � ��� ( � ��� � ��� � ��� � ��� � ��� ),

� ��� � ��� � �������� def � ���  � �������� � ��� ,
�
� ��� def C � ��� � ��� � ��� C � ��� (for an � ��� � ��� Lo),
� ���
� ��� def � ���

�
,

� ��� F � �������� def � ��� � ��� G( � ��� � ��� ),

� ��� G � ���  � ��� d e f � ���  � ��� F( � ��� � ��� ),

� ��� X � ���  � ��� def � ��� � ��� X( � ��� � ��� )  and

H � �������� def � ��� P( � ��� � ��� ).

For a temporal model  M , by  M � ���  � ���   we mean  (M, t) � ���  � ���   for all t � ��� T  and by  M � ���

K   we mean  M � ���  � ���   for all  � ��� � ��� K , where  K  is a set of temporal formulae.

The property of successor existence can be axiomatized by the formula  � ��� F(
�

). If in a

model  M   the formula  P(
�
)  is true at time point  t  then  t  must have a predecessor.

3  Homomorphisms and persistency

As mentioned before, we assume the models to be forests satisfying successor existence.

In this chapter  M   and  M'   denote temporal models based on the flows of time  (T, <)  and

(T',  <')  respectively. As we are interested in linear and branching time models, we need a

way of relating models and we will do this using a special class of functions between

models, called homomorphisms. In the following definition, the symbol � ��� denotes equality

on the class of object models   Mo  (see first paragraph of Section 2.2).

Definition 3.1  (homomorphism)

A mapping  f : T � ���  T'  is called a homomorphism of  M   to  M'   if

  (i)  s < t  � ���  f(s) < f(t)
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 (ii)  M(s) � ���  M'(f(s))

(iii)  If  s  is a minimal element of  T  then  f(s)  is minimal element of  T'

A homomorphism preserves the temporal ordering  <, object-level models (up to object-

level equivalence), and minimal elements. Intuitively, a homomorphism can embed a model

in a bigger model and it can identify points which have the same (up to isomorphism) path

from their corresponding minimal elements. If a branching occurs at a certain point in time

and there are equivalent object-level models at a number of next points, then we can defer

the branching at this point by identifying these next points. If such a situation does not

occur in a model (we shall later call such a model closed)  then a homomorphism with this

model as its domain can only be injective (in the branching time logic  CTL  (see [GK94]) a

structure with this property is called deterministic).

Lemma 3.2

Let  f : M � ���  M'  be a homomorphism.

a)  The following conditions are satisfied:

  (i)   For all  t  in  T  and  s'  in  T'   with  s' < f(t)  there exists an s  in  T  with  s < t

and  f(s) = s'.

 (ii)  For every  s'  in  T'  with  s' « f(t)  there exists an  s  in  T  with  s' = f(s)  and

s «  t .

(iii)  For all s, t  in  T  it holds:

f(s) < f(t)  iff  there exists a  u < t  with  f(u) = f(s)

(iv)  For all s, t  in  T  it holds:

f(s) « f(t)  iff  there exists a  u « t  with  f(u) = f(s)

(v) If  s'  in  T'  is not in the image of  f, then all  t'   with  s' « t'  are not in the image

either.

b)  The following are equivalent:

 (i)  f  is injective

(ii)  for all s, t  in  T  it holds  s < t  if and only if  f(s) < f(t).

c)  Let  t  in  T  be given with path  P  from a minimal element  r   to  t.

Then  f(P)  is the path from  f(r)  to  f(t)  and  f  is a bijection between  P  and  f(P).

d)  f  is a surjective homomorphism to the submodel  f(M) � ���  M'|f(T)  of  M' .

e)  If  B  is a branch in  M   then  f  is injective on  B, and  f(B)  is a branch of  M' ; the

restriction  f|B  of  f  to  B  is an isomorphism from  B  onto  f(B).

Proof

a) (i). Suppose  s' < f(t), then  f(t)  is not minimal, therefore  t  is not minimal in  M

and thus has a (unique) predecessor s and therefore  f(s) < f(t)  and  f(s) = s'.
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a) (v)  Suppose  s' < t' and  t' = f(t) . From (i) it follows that  f(s) = s'  for some  s.

Therefore all immediate successors of  s'  are not in the image, and by induction none

of the  t'   with  s' « t'  are in the image of  f.

The other parts of the proof are similar.

b)  For any homomorphism it holds  s < t � ��� f(s) < f(t), so suppose also

f(s) < f(t) � ���  s < t, but  f  not injective. Then there exist  s, t  in T   with  f(s) = f(t),

which can be taken at minimal depth (distance from the minimal elements). If  s  and  t

are root of their components, then there are  s', t'  with  s < s'  and t < t' , and thus

f(s) < f(s')  and f(t) < f(t') , but as  f(s) = f(t)  we also have  f(s) < f(t')  from which

it follows that  s < t'  which is impossible since they are in different components. Let

s  and  t  now not be root. Then there are  s', t'   with  s' < s  and  t' < t  but  f(s') ≠

f(t') ,  since  s  and  t  were at minimal depth. But then  f(s')  and  f(t')   are both

predecessors of  f(s), which is impossible in a tree. Now suppose  f  is injective and

suppose we have  s, t  with  f(s) < f(t). Then  t  is not a root, so it has a predecessor

t' , and then  f(t') < f(t)  so it must hold that  f(s) = f(t')  but then  s = t'  and therefore

s < t.

We are interested in preservation of truth of formulae under these homomorphisms:

Definition 3.3

Let  f : M � ���  M'   be a homomorphism.

a) The forward persistency property for a formula  � ���  (under  f )  is defined by

     (M, t) � ���  � ���    � ���      (M', f(t))  � ���   � ���

for all time points  t  in T.

The backward persistency property for a formula  � ���  (under  f ) is defined by

     (M, t) � ���    � ���   � ���      (M', f(t))  � ���   � ���

for all time points  t  in T.

If  � ���   is both forward and backward persistent, we call it two-sided persistent.

b) We say a logical connective  X  or temporal operator  Y  preserves forward

(backward) persistency (under f)  if for any forward (backward) persistent formula(s)

� ���   and 
� ���

   (under  f )  also the formulae � ���  X 
� ���

, X � ��� , Y( � ��� ) are forward (backward)

persistent (under  f ).

We say a logical connective  X  or temporal operator  Y  reverses forward (backward)

persistency (under f)  if for any forward (backward) persistent formula(s)  � ���   and 
� ���

(under  f )  the formulae  � ���  X 
� ���

, X � ��� ,  Y( � ��� ) are backward (forward) persistent (under

f ).

The following theorem gives an overview of all preservation properties with respect to

persistent formulae (see also Table 1).
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g H P � ��� F � ��� F � ��� G � ��� G � ��� X � ��� X

preserves

forward

persistency

+ + + - + - +
-

preserves

backward

persistency

+ + - + - + -
+

Table 1.  Preservation of persistency.

Theorem 3.4

Let  f : M � ���  M'   be a homomorphism.

a)  Any temporal atom  C� ���   is two-sided persistent under f.

b)  The temporal operators  H  and  P preserve forward and backward persistency

under f.

c)  The temporal operators  � ��� F, � ��� G  and  � ��� X  preserve forward persistency, but not

necessarily backward persistency under f.

The temporal operators  � ��� F, � ��� G and  � ��� X  preserve backward persistency, but not

necessarily forward persistency under f.

d)  The logical connectives  � ���   and  � ���   on temporal formulae preserve both forward and

backward persistency under f.

The logical connective  � ���  on a temporal formula reverses forward and backward

persistency under f.

If the temporal formula  � ���   is backward (forward) persistent and  
� ���
  forward

(backward) persistent then  � ���  � ���  
� ���

  is forward (backward) persistent  (under f).

Proof

a) This is trivial, since  M' f(t)  � ���   Mt  for all  t  in  T .

b)  For the operator  P we do the following. Suppose  � ���   is forward persistent and

(M,  t)  � ���  P(� ��� ). Then for some  s  with  s « t  it holds  (M, s) � ���  � ��� . By forward

persistency of  � ���   we have  (M', f(s)) � ���  � ��� . From  s « t  it follows  f(s) « f(t). So there

exists an  s' « f(t)  with  (M', s') � ���  � ��� , or  (M', f(t)) � ���  P(� ��� ).

Next the case of  � ���   backward persistent: From  (M', f(t)) � ���  P(� ��� )  it follows that there

exists an  s'  in  T'   with  s' « f(t)  such that  (M', s') � ���  � ��� .
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From Lemma 3.2 it follows that there is an  s  in  T  with  s' = f(s) and  s « t. Now we

can apply the backward persistency of  � ���  and conclude that  (M, s) � ���  � ���   and so

(M,  t)  � ���  P( � ��� ).

The proof for  H  is similar.

c)  Suppose  � ���   is forward persistent and  (M, s) � ���  � ��� F( � ��� ).  Then there is some  t  in  T

with  s « t  such that  (M, t) � ���  � ��� . This implies  f(s) « f(t)  and  (M', f(t)) � ���  � ���   and

therefore  (M', f(s)) � ���  � ��� F( � ��� ).

- Suppose  � ���   is forward persistent and  (M, s) � ���  � ��� G( � ��� ). So there is a branch  B  in  M

with  s  on  B  and  for all  t  � ��� B  with  s «  t  it holds  (M, t) � ��� � ��� . Then  B' := f[B]

is a branch with  f(s)  � ��� B' . Now take a point  t'  � ��� B'  with  f(s) « t', say  t' = f(t) ,

then  s « t  and therefore  (M,  t) � ���  � ��� . The forward persistency of  � ���   ensures that

(M',  f(t))  � ��� � ��� , so  (M',  t') � ��� � ��� . It follows that  (M', f(s)) � ���  � ��� G( � ��� ).

The operators  � ��� G  and  � ��� F  work similar (but reversed). Also the proofs for the

operators  � ��� X  and  � ��� X  are similar.

The following homomorphism shows the negative results:

1 � ��� � ���� ���

2

� ���� ���� ���

� ��� � ���� ���� ���� ���� ���

f
3

˚˚
˚

˚

˚
˚

˚ ˚
˚˚

˚

˚
˚

˚

˚

˚

˚

˚

˚

M M'

In this picture  M1 � ��� M 2, f(1) = f(2) = 3  and  � ���   is an object-level formula true in the

upper models, not true in the lower ones. Now  C � ���   is two-sided persistent, and  (M,

1) � ��� � ��� F(C � ��� ), � ��� G(C � ��� )  and  � ��� X(C � ��� ), but  (M', f(1)) � ��� � ��� F(C � ��� ), � ��� G(C � ��� )  and

� ��� X(C � ��� ), so these formulae are not forward persistent. Also, (M', f(2)) � ��� � ��� F(C � ��� ),

� ��� G(C � ��� )  and  � ��� X(C � ��� )  but  (M, 2) � ��� � ��� F(C � ��� ), � ��� G(C � ��� )  and  � ��� X(C � ��� ), so these

formulae are not backward persistent.

d) We show how the connective  � ���  works. Suppose the temporal formula  � ���   is

backward persistent, and assume  (M, t) � ���  � ���  � ��� , then  (M, t) � ���  � ���   and because  � ���   is

backward persistent we have  (M', f(t)) � ���  � ���   whence  (M', f(t)) � ���  � ���  � ��� . So  � ���  � ���   is

forward persistent. The proof for the other case is analogous.

Theorem 3.4 can be used to build up formula that are forward or backward persistent. For

instance for an object-level formula  � ���   the formula  � ��� F( � ���  P( � ��� G( � ���  � ��� F( C � ��� ))))  is

forward persistent, whereas  � ��� F( P(  � ���  � ��� G( � ��� F( C� ���  ))))  in general is not. Another

example: the formula  C  � ���  � ���  � ��� G  C  � ��� , expressing conservativity (things which are true
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remain true) is not forward persistent (for  t  separately). However, conservativity can be

defined by the set of persistent formulae  P( C � ���  ) � ���  C  � ���   for all objective � ��� .

Theorem 3.5

Let  f : M � ���  M'   be a homomorphism.

If  � ���   is  backward persistent then

M' � ���  � ���   � ���   M � ���  � ���

If  f  is surjective and  � ���   is forward persistent, then

M � ���  � ���   � ���   M' � ���  � ��� .

If  f  is surjective and � ���   is two-sided persistent then

M � ���  � ���   iff  M' � ���  � ���

So our notion of homomorphism (as we will see, strong enough to perform the algebraic

constructions we have in mind) is too weak to ensure preservation of truth for all formulae.

As the example in the proof of Theorem 3.4 shows, requiring only surjectivity is not

enough. When identifying two points, there may be more branches through the image than

through either of the two points, destroying truth of some formulae. So we need a stronger

requirement:

Definition 3.6

A homomorphism  f : M � ���  M'  is called branch-surjective if for all  t � ��� T  and  B' � ���

Br(T') : if  f(t) � ��� B'  then there exists a branch  B � ��� Br(M)   such that  t � ��� B  and

f[B] = B' .

A homomorphism which is surjective and branch-surjective is called

strongly branch-surjective .

As the definition suggests, branch-surjectivity does not imply surjectivity. If  M'   consists of

only one component, then this is the case. Branch-surjective homomorphisms preserve truth:

Proposition 3.7

For a branch-surjective homomorphism  f : M � ���  M' , a temporal formula  � ���   and  t � ��� T:

(M, t) � ��� � ��� � ��� (M', f(t)) � ��� � ���

Proof

It is easy to show that the operators  � ��� F, � ��� G  and  � ��� X  preserve backward persistency

under branch-surjective homomorphisms and that the operators  � ��� F, � ��� G and  � ��� X

preserve forward persistency under branch-surjective homomorphisms. Since then any

operator preserves two-sided persistency under branch-surjective homomorphisms, all

formulae must be two-sided persistent under branch-surjective homomorphisms.
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In the literature there are some different notions of homomorphism. In [Be83], a

homomorphism is a surjective function which preserves  <  (defined on flows of time, not

on models). Thus a surjective homomorphism in our sense corresponds to a homomorphism

which maps minimal elements to minimal elements in Van Benthem's sense. In [Be83] also

the notion of a p-morphism is defined as a homomorphism which satisfies the additional

"backward clause":

� ��� t1 � ��� T , t' � ��� T'(f(t 1) < t' � ��� � ��� t2 � ��� T(t 1 < t2 � ��� f(t 2) = t'))

� ��� t1 � ��� T , t' � ��� T'(t' < f(t 1) � ��� � ��� t2 � ��� T(t 2 < t1 � ��� f(t 2) = t'))

The second part of this clause is satisfied by our homomorphisms (see Lemma 3.2 a i), and

implies that minimal elements are mapped to minimal elements. The first part is equivalent to

branch-surjectivity. So our notion of branch-surjective homomorphism is equivalent to the

notion of p-morphism (between forests) in [Be83].

Similar notions (between structures) can also be defined for  CTL *   (see for instance

[GK94]). Loosely, a homomorphism from  M   to  M'   in our sense corresponds to a

simulation relation from  M   to  M' ([GK94]). They have a similar result as Theorem 3.5 for

the  CTL *  fragment containing only  � ��� , respectively  � ��� .

We intend to use homomorphisms in a number of algebraic constructions on models,

combining linear models into branching time models, and combining branching time models.

As we suspect that similar constructions might be of interest in other (semantical) domains,

we want to set up a more general framework. In order to do this we will use category theory.

When reading the next section the reader can take temporal models and homomorphisms as

an example (this will turn out to form a category).

4  Using category theoretical notions for model constructions

In this section we assume given any class of objects MOD (we will call them models) and a

notion of morphisms (we will call them homomorphisms) between them, satisfying the

basic rules of category theory (e.g., see [Pi91]).

Definition 4.1

a)  A homomorphism  p  is called monic or a monomorphism if for any two

homomorphisms  f  and  g

pf = pg   � ���   f = g

A homomorphism  p  is called epic or an epimorphism if for any two homomorphisms

f  and  g

fp = gp  � ���  f = g
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b)  The homomorphism  b : B � ���  C  is an isomorphism if there is a  c : C � ���  B  such

that  bc = id  and  cb = id.

In this case  B and C  are called isomorphic.

c)  If  a1 : A � ���  B  and  a2 : A � ���  C  then  b : B � ���  C  is an isomorphism over

(A, a1, a2)  if  ba1 = a2  and there is a  c : C � ���  B  such that  bc = id  and  cb = id.

In this case  B and C  are called isomorphic over  (A, a1, a2).

In many categories monic morphisms are injective functions and epic morphisms are

surjective functions.

Lemma 4.2

a) p, q  epic �   pq  epic

b) p, q  monic �   pq  monic

c) pq  epic �   p  epic

d) pq  monic �   q monic

e) pq = id   �   p  epic  &  q  monic

f) pq = id  &  qp = id �   p and  q both epic and monic

g) pq = id & qr  = id � p = r  &  qp = id

We will assume a number of constraints on our category. This is the first.

Constraint 1

For any  p : A � ���  C  there exists a model  B  and homomorphisms  q : A � ���  B epic and

r  : B � ���  C monic such that  p = rq.

A C

B

p

rq

epic monic

Definition 4.3

Suppose  f, g : A � ���  B  are given. We call  c : B � ���  C  a coequalizer of  f  and  g  if

 (i)  cf = cg

(ii)  For every  d : B � ���  D  with  df = dg  there exists a unique homomorphism

      e : C � ���  D  such that  ec = d.
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A B

f

C
c

g

D

d ! e

Loosely speaking a coequalizer identifies the two copies of  A   in  B  (by the two

homomorphisms) without doing anything else. We will require the existence of

coequalizers.

Constraint  2

For every   f, g : A � ���  B  there exists a coequalizer.

The word "unique" is usually meant to be up to isomorphism.

The notion of epic closure defined below is inspired by the notion of a 
�

-closed

model as defined and exploited in [Tr76]. The terminology is inherited from the literature

on model theory which aims at generalising the notion of algebraic closure from algebraic

field theory, for example, [HW75], [Ho93], Ch. 8.

Definition 4.4

We call a model  C  closed if for any  D  any homomorphism  d : C � ���  D  is monic.

We call  c : A � ���  C  an epic closure of  A  if

  (i)  c  is epic

 (ii)  For every  D  and epic  d : A � ���  D  there exists a homomorphism  e : D � ���  C

with  ed = c.

A C

D

c

ed

epic

Intuitively, a closed model is one in which nothing can be identified further; sometimes such

a model is also called a deterministic model. However, to preserve our relation to the source

of literature in model theory we will use the terms ‘closed’ and ‘closure’. The epic closure of

A  maps  A  into a closed model.
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Proposition 4.5

a)  C is closed if and only if every epic  d : C � ���  D  is monic.

b)  If  C  is closed then for any  A  there is at most one  a : A � ���  C.

c)  Any epic closure is closed.

Proof

a)  If  d : C � ���  D, then by Constraint 1 there are epic  b : C � ���  D'  and monic

c : D' � ���  D  with  cb = d. Then  b  is monic and by Lemma 4.2  also  d = cb  is monic.

b)  Suppose  a, b : A � ���  C. Take a coequalizer  c : C � ���  D, i.e.,  ca = cb. Because  C

is closed  c  is monic. Therefore  a = b.

c) Let   a : A � ���  C  be an epic closure and  f : C � ���  D  epic. Then  fa  is epic.

Therefore there exists a homomorphism  g : D � ���  C  with  g fa = a. This implies  gf =

id; therefore  f  is monic.

Lemma 4.6

Suppose homomorphisms  b : A � ���  B and  c : A � ���  C  are given with  b  epic.

a)  Then there exists at most one  d : B � ���  C  with  db = c.

If  c  is epic, then also such a  d  is epic.

b)  The homomorphism  d  in Definition 4.4 (ii)  is always unique and epic.

Proof

a)  Suppose d, e : B � ���  C  with  db = eb = c. From  b  epic it follows  d = e.

If  c  is epic, then from Lemma 4.2c) it follows that such a  d (if it exists) is epic too.

b)  This immediately follows from a).

The idea is that from a given model  A   by epimorphisms we form homomorphic images

until nothing new can be obtained by epimorphisms. The following proposition shows that

such a process of closure can lead to at most one closed model (up to isomorphism).
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Proposition 4.7

Suppose  c : A � ���  C  is an epic closure.

a)  If  d : C � ���  D  is epic, then there exists a  d' : D � ���  C  such that  dd' = id  and

d'd = id, i.e., C  and  D  are isomorphic.

b)  If  c : A � ���  C  and  d : A � ���  D  are epic closures then  C  and  D  are isomorphic

over  (A, c, d).

Proof

a)  From Lemma 4.2a) it follows that  dc  is epic. Because  c : A � ���  C  is an epic

closure there exists a  d' : D � ���  C  with  d'dc = c. Since  c  is epic it follows that  d'd =

id. Now  (dd') dc = d (d'd) c = dc. Since  dc  is epic it follows that  dd' = id.

b)  From the fact that   c : A � ���  C  is an epic closure  it follows that there exists a

homomorphism  a : D � ���  C  such that  c = ad. Similarly there exists a homomorphism

b  :  C � ���  D  such that  d = bc. It follows that  abc = ad = c, and since  c  is epic  ab =

id. Similarly  ba = id.

Closed models behave quite convenient; this is reason enough to claim that there should

exist enough closed models. We will see that in the interesting cases indeed these exist.

Constraint 3

Every model has an epic closure (unique up to isomorphism).

Epic closures are unique if they exist and the epimorphism is also unique. Moreover, in

specific instances of categories often some canonical construction can be given for them;

we will sometimes use the notation  cl(M)  to denote (a canonical construction for) an epic

closure of  M .

Now we have the possibility to map any model onto its epic closure, a next step is to

require that a number of these closures can be embedded in one (closed) model, or to

require that we can form a joint closure of any set of models. For this purpose we will

generalize the notion of epic closure.

Definition 4.8

Let  I   be any index set and let  (ai) i � ���  I  be a collection of homomorphisms  ai : Ai � ���

B.

We call  (ai) i � ���  I  jointly epic if for all  f, g : B � ���  C  with  fai = gai  for every  i  it

holds  f  = g.

As a generalisation of Lemma 4.2 we have the following lemma.
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Lemma 4.9

Suppose  (bi) i � ���  I  and  c  are given and  ai = c bi  for all i.

a)  If  (ai) i � ���  I  are jointly epic then  c  is epic.

b)  If  (bi) i � ���  I  are jointly epic and  c  is epic then  (ai) i � ���  I  are jointly epic.

Proof

a)  Suppose  fc = gc, then  fai = fc bi = gc bi = gai  for all  i; therefore  f = g.

b)  Similar

Definition 4.10  (joint closure)

Let  I   be any index set and let  (Ai) i � ���  I  be a collection of models.

We call  (C, (ai)i � ���  I)  with  ai : A i � ���  C  a homomorphism for each  i  in  I ,  a joint

(epic) closure for  (A i) i � ���  I  if

 (i)   (ai)i � ���  I  are jointly epic.

(ii)  For every   D  with jointly epic homomorphisms  di : Ai � ���  D  there exists a

homomorphism  c : D � ���  C  such that  cai = di  for all  i  in  I .

Aj

Ai

Djointly
epic

C

aj

ai
di

dj

The notion joint closure is not present in the literature on category theory, as far as we

know. It is a natural notion following the model-theoretic literature about generalisations of

the notion of algebraic closure mentioned after Definition 4.4. We will give some of the

details of how this notion relates to, for example, the wellknown notion of co-product

here.

Lemma 4.11

Any joint closure is closed.

Proof

Let  (C, (ai)i � ���  I)  with  ai : A i � ���  C  be a joint closure and  f : C � ���  D  epic. Then

(fai)  are jointly epic. Therefore there exists a homomorphism  g : D � ���  C  with  g fai

= ai  for all i. This implies  gf = id; therefore  f  is monic.
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Proposition 4.12

Suppose  (A i) i � ���  I  is a collection of models.

If a joint closure for  (Ai) i � ���  I   exists, it is unique up to isomorphism.

More precisely, if   (C, (ci)i � ���  I)  and  (D, (di)i � ���  I)  are joint closures of   (A i) i � ���  I

then there exists an isomorphism  f : C � ���  D such that for all  i  it holds  f ci = di.

Proof

Suppose  C  and  D  are joint closures for  (A i) i � ���  I   with homomorphisms

d i  : A i  � ���  D  and  ci  : A i  � ���  C  respectively. Then there exist (unique)

homomorphisms  f : D � ���  C  and  g : C � ���  D  such that for every  i  in  I   it holds

fd i  = ci  and   gci  = di

Therefore

fg ci  = fdi = ci

Since also  id ci = ci and there is only one unique homomorphism with this property

fg = id. Similarly  gf = id. Therefore  C  and  D  are isomorphic.

Notice that for a joint closure  (C, (ci)i � ���  I)  the homomorphisms  A i  � ���  C  are unique, so

C  already determines in a unique manner the joint closure. If in a certain category there

exists a canonical construction for a joint closure, we will denote (the model  C  of) one by

j c l ( (A i )  i  � ���  I ) .

Lemma 4.13

Suppose homomorphisms  bi : Ai � ���  B and  ci  : A i  � ���  C  are given with  (bi)i � ���  I

jointly epic.

a)  Then there exists at most one  d : B � ���  C  with  dbi = ci  for all  i.

If the  (ci)i � ���  I  are jointly epic, then also such a  d  is epic.

b)  The homomorphism  c  in Definition 4.10 is always unique and epic.

The following constraint would guarantee the existence of closures of sets of models: for

every set of models  there exists a closure (unique up to isomorphism). However, the

existence will follow from other, more general constraints. If we require the existence of

coproducts we can follow an alternative path of construction.

Definition 4.14

Let  I   be any index set and let  (Ai) i � ���  I  be a collection of models

We call  (C, (ai)i � ���  I)  a coproduct  for  (A i) i � ���  I  if

 (i)   ai : A i � ���  C  is a homomorphism for each  i  in  I .

(ii)  For every  D  with homomorphisms  di : Ai � ���  D  there exists a unique

homomorphism  c : C � ���  D  such that  cai = di  for all  i  in  I .
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A coproduct allows us to combine models into one model, without doing anything else.

Lemma 4.15

If  (C, (ai)i � ���  I)  is a coproduct  for  (A i) i � ���  I  then the  (ai)i � ���  I  are jointly epic.

The following is well known from the literature. The proof is in fact similar to that of

Proposition 4.13.

Proposition 4.16

If a coproduct exists, it is unique up to isomorphism.

Constraint 4

Every set of models has a coproduct (unique up to isomorphism).

Above we first introduced the notion of closed model and epic closure of a model. Now we

can use the following construction. Given a collection of models, first take its coproduct,

and next take the epic closure of the coproduct. The resulting model is the joint closure of

the collection.

Theorem 4.17

The epic closure of the coproduct of a collection of models  (Ai) i � ���  I  is a joint closure

of  (A i) i � ���  I .

Proof

Let  C  be the coproduct of  (A i) i � ���  I  (with homomorphisms  ci : Ai � ���  C) and  D  its

epic closure (with homomorphism  d : C � ���  D) .



21

We will show that  (D, (d ci) i � ���  I  )  is a joint closure of  (A i) i � ���  I. Suppose  E  and

jointly epic homomorphisms  ei : Ai � ���  E  are given. We will show how to map  E  to

D. First, because  C  is the coproduct of  (A i)i � ���  I , there exists a  homomorphism

f : C � ���  E  such that for all  i  in I   it holds  f ci = ei.

From Lemma 4.9 it follows that  f  is epic. Because  D  with  d : C � ���  D  is the epic

closure of  C  there exists a homomorphism  g : E � ���  D  with  gf = d. Therefore we

have found a  g  with  g ei = gf ci = dci  for all  i.

Proposition 4.18

Let   (A i) i � ���  I  and  C  be given with jointly epic homomorphisms  ci : Ai � ���  C. Then

jcl((A i) i � ���  I )  is isomorphic to cl(C).

Proof

Let  J  be the joint closure of  (Ai) i � ���  I  with canonical homomorphisms

ai  : A i  � ���  J. There is a (unique) homomorphism  c : C � ���  J  such that  c ci = ai for all

i. By lemma 4.9 this is epic. We will prove that  J  is the epic closure of  C. Suppose

an epic  d : C � ���  D  is given. Then by lemma 4.9  the homomorphisms  dci  are jointly

epic. Therefore (joint closure property) there is a homomorphism

e : D � ���  J  with  ed = c. This proves that  J  is the epic closure of  C.

Definition 4.19  (final model)

Let  MOD'   be a sub-class of  MOD  and  F  any model in  MOD' .

The model  F  is called final in  MOD'  if for each model  M   in  MOD'  there is a unique

homomorphism  f : M � ���  F.

! a

! b
B

A

F

Theorem 4.20

Let  MOD'   be a sub-set of  MOD   and  F  any model in  MOD' .

Then the following are equivalent .

 (i)  F is a joint closure of all models of  MOD'

(ii)  F is a final model in  MOD'
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Proof

(i) => (ii)  Let  (F, (fA)A � ���  MOD' )  be a joint closure of all models in  MOD' , then any

A   in  MOD'   is mapped to  F  by  fA. By Lemma 4.11 the model  F  is closed, and by

Lemma 4.5 there exists at most one homomorphism  A � ���  F ; therefore  fA  is unique.

This proves that  F  is a final model in  MOD' .

(ii) => (i)  Suppose  F  is a final model in  MOD' . Then for every   A   in  MOD'   there

is a unique homomorphism  fA : A � ���  F. We will show that  (F, (fA)A � ���  MOD' )  is a

joint closure for  MOD' .

First, the  (fA)A � ���  MOD'   are jointly epic, since if  g fA = h fA for all  A  in  MOD' , then

in particular  g fF = h fF. Now  fF = id, so  g = h.

Next, let any  G  be given with jointly epic homomorphisms  gA : A � ���  G  for all  A  in

MOD' . Then  fG : G � ���  F  maps  G  to  F. For any  A  in  MOD' , because both

f A , (f G  gA ) :  A � ���  F and there is only one such homomorphism, we have

(fG  gA ) = fA .

So a final model is a model into which every other model can uniquely be mapped. It is the

model constructed by closing the coproduct (or, taking the joint closure).

Definition 4.21  (amalgamation property)

A category has the amalgamation property if for every two homomorphisms

b : A � ���  B  and  c : A � ���  C  there exists a  D  and homomorphisms  d : B � ���  D  and

e :  C  � ���  D  such that  db = ec.

It is not difficult to verify that the amalgamation property follows from the existence of

joint closures. To establish a next result, we need an additional constraint:

Constraint 5

If four homomorphisms  b : A � ���  B,  c : A � ���  C,  d : B � ���  D  and  e : C � ���  D  are

given such that  db = ec, b is epic and e  is monic, then there is a homomorphism

f : B � ���  C  such that fb = c  and  ef = d.

A

B

C

D

b

c

d

e

epic

monic

f
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Proposition 4.22

Suppose the amalgamation property and Constraint 5 are fulfilled.

Let   c : A � ���  C be given with  C  closed.

a)  If  c  is monic then  A  is closed.

b)  If  c  is epic, then  c : A � ���  C  is an epic closure of  A. In particular,  C  is its own

epic closure.

c)  If epic  a : A � ���  B  and monic  b : B � ���  C  are given such that  ba = c, then  a : A

� ���  B  is an epic closure of  A.

Proof

a)  Suppose  c  is monic and a homomorphism  d : A � ���  D  is given. Apply the

amalgamation property to find an  E  and homomorphisms  e : C � ���  E  and  

f : D � ���  E  with  ec = fd. Because  C  is closed  e  is monic. By Lemma 4.2 we obtain

ec  is monic, and applying it again we have  d  is monic. Therefore  A  is closed.

b)  Suppose  c  is epic and an epimorphism  d : A � ���  D  is given. Again apply the

amalgamation property to find an  E  and homomorphisms  e : C � ���  E  and

f : D � ���  E  with  ec = fd. By Constraint 5 we find a homomorphism  g : D � ���  C  such

that  gd = c  and  eg = f. Therefore  c : A � ���  C  is an epic closure of  A.

c)  This follows from a) and b).

In this section we have described the possibilities for incorporating a number of objects into

one object (the co-product) and compacting the result (closure) to obtain one ‘efficient

representation’ of these objects (the joint closure). We will apply these ideas to the category

of temporal models in the next section.

5  Joint closure constructions for temporal models

In this section we will show that the category-theoretic machinery described in the previous

section is applicable to temporal models. We will describe the category of our models,

BTM , and verify that the constraints of Section 4 are satisfied in BTM (Note that the object-

level language and models are fixed). In Section 6 we will present some of the implications

of our framework to the model theory of temporal logic.

Definition 5.1

The objects of our category of temporal models,  BTM   are temporal models

(M, T, <)  such that (see Section 3):

(i)  (T, <)  is a forest (set of disjoint trees) with infinite branches;

(ii)  M   is a function from  T  to the set of object-level models  Mo.
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The arrows are homomorphisms between the models as defined in Section 3.

If no confusion is expected we often denote a model by  M  only.

It can easily be verified that this indeed defines a category, i.e. the composition of two

homomorphisms is a homomorphism, composition is associative and the identity function

on any model is a homomorphism.

Proposition 5.2

The following hold for homomorphisms in  BTM .

a)  A homomorphism is epic iff it is surjective.

b)  A homomorphism is monic iff it is injective.

c)  If we have objects  Ai  and homomorphisms  hi : Ai � ���  C then:

the  hi  are jointly epic iff for every  c  in  C  there is an  i  and an  a  in  Ai  with

h i (a )  =  c.

Proof

a)  Let p : (M, T, <) � ���  (N, S, <) be an epimorphism, but suppose  s  in  S is not in

the image of  p. Let  Ts  be the subtree of  S  rooted at  s; by Lemma 3.2(v), Ts  is not

in the image of  p  either. Let  Ts'  be an isomorphic tree, say with root  s'. Now

construct a model  (N', S', <)  which is the same as (N, S, <), but also incorporates

Ts', with if  t < s, then it has an extra link  t  < s'. Define two homomorphisms  f, g

: (N, S, <) � ���  (N', S', <)  where  f  is the embedding of  S  into  S', and  g  is the

same except that  Ts  in  S  is mapped to  Ts'  in  S'. Now it holds  fp = gp  but  f ≠ g.

Contradiction, so  p must be surjective. On the other hand, suppose  p  is surjective, let

f, g  be given with  fp = gp  and suppose f ≠ g. Then there exists  s  in  S  with

f(s) ≠ g(s), but  s = p(t)  for some  t  in  T , and then  fp(t) = f(s) ≠ g(s) = gp(t).

Therefore  f = g  so  p  is epimorphic.

b)  Suppose  p  is injective, but not monic, then there exists  f, g  with  pf = pg  but

f ≠ g. Then there is  s  with  f(s) ≠  g(s), but then  pf(s) ≠ pg(s). Therefore  p  is

monomorphic. On the other hand, suppose  p : (M, T, <)  � ���  (N, S, <) is not

injective, so there are  s, t  in  T  with  p(s) = p(t). But then  p  maps the path  Ps

from the root to  s  and the path  Pt  from the root to  t  onto the same path from the

root to  p(s). Now construct a model  (M',  T', < )  induced by  Ps  and  Pt, and let  f

be the embedding of this model into  (M, T, < ), and let  g  map  Ps  into  Pt  and vice

versa. Now it holds that  pf = pg  but  f ≠ g, and therefore  p  is not monic.

c)  Suppose  hi  are jointly epic, but there is a  c  which is in the image of no hi. Then

the subtree  Tc  rooted at  c  is in no image either. Now construct a model  D  which is a

copy of  C  except that the tree  Tc  has a copy  Tc'  in which both  c  and  c'  have the

same immediate predecessor. Let  f  be the embedding of  C  into  D , and  g  maps  Tc

onto  Tc' . Then for all  i   fh i = ghi  but  f ≠  g. So as this was not to be the case,
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every  c  is in the image of some  hi. Conversely, suppose every  c  in  C  is in the

image of some  hi. Take  f  and  g  with  fh i = ghi  for all  i, but suppose  f ≠ g, so

there is a  c  in  C  with  f(c) ≠ g(c), then  c  is in the image of  hi  for some  hi,

suppose  c = hi(s), but then  fh i(s) = f(c) ≠ g(c) = ghi(c), which was not to be the

case. Therefore  f = g, so the  hi  are jointly epic.

In the category  BTM   we can give a characterization of closed models which renders the

intuition of what closed is better:

Proposition 5.3

Let  M  be a model, then the following are equivalent:

(i)  M   is closed.

(ii) For all  s, t and t'   with  s < t, s < t'  and  M t � ���  Mt'   it holds that

    t = t' , and for minimal elements  r , r'   with   Mr � ���  Mr'   it holds that  r = r' .
Proof

Suppose  M   is closed but there are  s, t � ���
 t'   with  s < t, s < t' and  M t  � ��� Mt' . Define

a homomorphism  f  on  T  which is identity except that  f(t) = f(t') . Let the successor

relation on  T' = f[T]   be defined by  u < v  iff there are  u'  and  v'  in  T  with

u = f(u')  and  v = f(v')   and  u' < v' .  Let  M'   be defined by  M' f(s) � ���  Ms. Since  f

is surjective and identity except on   t  and  t'   where  Mt = Mt'  this is well-defined. It

is easy to check that the model  M'   based on  (T', <)  is a forest and therefore in  BTM .

Now  f  is not injective, so not monic and then  M   is not closed, which it was

supposed to be. If there are roots  r , r'   with  Mr � ���  Mr'   then this same construction can

be applied. Therefore condition (ii) must be satisfied.

Conversely, suppose condition (ii) is satisfied, but  M   is not closed. Then there must

be a homomorphism  f : M � ���  M'   which is not monic, so not injective. Therefore there

must be  t � ���  t'   with f(t) = f(t') . One can take these points at a minimal distance from

their roots. If they are roots, then  Mt � ���  M' f(t)  � ���  M' f(t')  � ���  Mt'   and then condition (ii)

is violated. If they are not roots, then still  Mt � ���  Mt' . Furthermore they have immediate

predecessors  s < t  and  s' < t'  . Then  f(s) < f(t)  and  f(s') < f(t') = f(t) . Then it

must hold that  f(s) = f(s'), and as above then also

M s � ���  Ms'. But as  t  and   t'   were chosen at minimal depth it must hold that  s = s',

and then condition (ii) is violated again. Therefore  M  must be closed.

So in a closed model there are no two different minimal elements with equivalent object-

level model and any two different successors of a point have a non-equivalent object-level

model (again, in  CTL *   a structure with this property is called deterministic). We will

verify which constraints are satisfied in  BTM :



26

Constraint 1

For any  p : M � ���  L  there exists  N  and homomorphisms  q : M � ���  N  epic and

r  :  N  � ���  L  monic such that p = rq.

Proof

Let  M , L   be based on  (S, <), (P, <)  respectively.  Let  T  consist of all  s  in  P

which are in the image of  p. Let the successor relation on  T  be defined by  s < t ,

where  s = p(s')  and  t = p(t')  iff  p(s') < p(t')  in  P, and let  N  be defined by, if  s

= p(s'):  N(s) � ���  M(s'). Let q be equal to  p  on all  s  in  S, then  q  is surjective and

therefore epic. Let  r  be the embedding of  T  in  P. Then  r  is injective and therefore

monic. Now it needs to be checked that  (N, T, <)  is indeed an element of BTM:

every component  C  of  T  has to be a tree:

(i): rooted

         Take  s  in  C, then  s = p(s'), let  r'   be the root of the component of  s', then

p(r')  = r   is the root of  C. Take  t  in  C  and suppose  t ≠ r. Then  t = p(t') , so there

is a path  r'  « t' , which is mapped into a path  r « t

(ii): Left Linear:

        Take  s  in  C  then the set of  t  with  t « s  is the path  r « s, which is

isomorphically mapped from  S, where that path is totally ordered.

The idea in the proof is that  q  maps  M   onto its image (in  L )  and  r  embeds this image

into  L .

Constraint 2

For every  f, g : L � ���  M there exists a coequalizer  h : M � ���  N

Proof

Let  L  and  M   be based on  (P, <)  and  (T, <)  respectively.

Define a relation  =~  on  T  as follows:  s =~ t  iff there is a  u  in  P  with  s = f(u)

and  t = g(u)  or vice versa, and let  ~  be the reflexive and transitive closure of  =~.

Let  S  consist of the equivalence classes  T/~. For  k1, k2  in  S, define  k1 < k2  iff

there is  s  in  k1  and  t  in  k2  with  s < t. Set  N([s]) � ���  M(s), and let  h(s) = [s]

(the class of  s). First we will check if we have constructed a correct model  (N, S, <) .

1. It can be easily checked that   <   on  S  is irreflexive, antisymmetric and

antitransitive.

2. N  is well-defined: if  s =~ t,  then  s = f(u), t = g(u), so M(s) � ���  L (u )  � ���  M( t ) .

Since this is transitive,   M  is the same on all members of a class.

3. S  is a forest:

It can be easily seen that if  s ~ t  then  s  and  t  are at the same depth in  T. Therefore

we can associate a depth to every class, and if  [s] < [t]  then the associated depth of

[s]  is one lower then the depth associated with  [t] . If the depth of a class is zero then it
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can have no predecessor because all of its elements are at depth zero and therefore have

no predecessors. Thus, no infinite descending chains can exist, so  S  is well-founded.

The proof of left linearity is straightforward.

Now we will see that  h  is a homomorphism: if  s < t  then by definition [s] < [t] .

Also by definition  N([s]) � ���  M(s). Suppose  s  is minimal, then if  t ~ s, t  must be at

the same depth as  s  so it is minimal too, therefore  [s]  can have no predecessor, so is

minimal too.

Let's check that  hf = hg: take  s  in  P  then  f(s) ~ g(s)  so that

hf(s) = hg(s). Suppose we have a homomorphism k : (MAT, < ) � ���  (K, R, <) w i t h

kf  = kg. Then define e: (N, S, < ) � ���  (K, R, <) by e([s]) = k(s). This is well-

defined since if  s ~ t  then  s = f(u)  and  t = g(u)  and then  k(s) = k(f(u)) = k(g(u))

= k(t). If  [s] < [t] then there are  u  in  [s]  and  v  in  [t]  with  u < v  so then  k(u) <

k(v)  so e([s]) < e([t]). Also,  N([s]) � ���  M(s) � ���  K(k(s)) � ���  K(e[s]).  If  [s]  is a minimal

element, then  s  is minimal, and therefore  k(s)  is minimal, so e  maps minimal

elements to minimal elements.

By definition it holds that  eh = k.

Uniqueness:

If for all  s  it must hold that  e([s]) = k(s)  then by definition this  e  is unique.

The coequalizer identifies points which are the image of a point of  L   under  f , respectively

g.

Constraint 3

For every  D  in  BTM  there exists an epic closure of D.

Proof

The idea in the construction of this closure is to identify common initial subbranches

(up to object-level equivalence) with each other as much as possible.

M1 M2

M3

M 4

M 5

M4

M5

M2

M3

M1

M2

M3

Let  D  be  (M, T, <).

Define an equivalence relation on  T  as follows:

s ~ t  iff  s' < s  and  t' < t    and  s' ~ t'  and  M(s) � ���  M(t) , or
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           s  and  t  are root and  M(s) � ���  M(t) .

Now let  S  be the set of equivalence classes  T/~, define  N  on  S  by  N([s]) � ���  M ( s )

(this is well-defined), where  [s]  is the equivalence class of s. For two equivalence

classes  k1  and  k2, define  k1 < k2  iff there is  s  in k1  and  t  in  k2 with  s < t.

Notice that two elements can only be equivalent if they are at the same distance from the

root. It is easy to check that the ordering  <  on  S  is irreflexive and antitransitive.

 The proof of well-foundedness of  (N, S, <)  is similar to the proof of constraint 3.

Left-linearity is also straightforward.

Now we will check that the mapping  h  which takes an element  s  of  T  to its class in

S  is a homomorphism:

1. if  s < t  in  T   then  [s] < [t]   by definition.

2. N([s]) � ���  M(s)  by definition

3. Take an  s  in  T  which is a root, and suppose  [s]  is not a root, then

there is a  t ~ s  which is not a root, but then it can not hold that  s ~ t. By definition  h

is surjective and therefore epic. Now suppose we have g : (M, T, <) � ���  (L, P, <)

epic. Define  e : (L, P, <) � ���  (N, S, <) as follows:

if we have  t  in  P, then  t = g(s)  for some  s. Let  e(t) =  [s]. We have to show that

this is well-defined: suppose  g(s) = g(t), then we have to show that  s ~ t. If  g(s) =

g(t)  then  M(s) � ���  N(g(s)) � ���  N(g(t)) � ���  M(t) . If  s  and  t are root then we are ready. If

not then they are both not root (because  g  is a homomorphism). So let  s' < s  and  t'

< t  then it must hold that  g(s') = g(t') and therefore  M(s') � ���  M(t') , so now we have

to check if  s' ~ t'. This process can be iterated until both  s'  and  t'   are root, then we

are  ready. So  e  is well-defined. If  s < t  in  P  then because  g  is epic we have  s =

g(s'), t = g(t')   and then  s' < t'   so  [s'] < [t'] . Take  s  in  P, then  s = f(t), so

L(s) � ���  M(t) � ���  N([t]) � ���  N(e(s)).

Let  s  in  P  be a root, then  s = f(t) with  t  a root in  T  and then  e(s) = [t]

is a root. Thus, e  is a homomorphism.

Using Proposition 5.3 the closure must identity minimal elements with equivalent object-

level models and points with a common predecessor which have equivalent object-level

models.

Constraint 4

Every set of models has a coproduct.

This coproduct is just the disjoint union of the set of models.
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Proof

Let  (A i)i � ���  I  be a collection of models, where the flows of time can be taken disjoint.

Then the coproduct  C  is the model which is the disjoint union of models in  A i . This

is then always a forest, and therefore again in our category.  For every  i  the

associated homomorphism  hi : Ai � ���  C  is just the embedding of  A i  into the part of

C  taken from  Ai. Now suppose we have a model  B  and homomorphisms 

gi : A i  � ���  B  for every  i. Set  hi(A i) to be the part of  C coming from  A i. Now define

a homomorphism f : C � ���  B  by  f(s) = gi(t)   if  hi(t) = s . As  h i(A i)  is disjoint from

hj (A j )  if  j  is unequal to  i, and every  s  in  C  is in  hi(A i)  for some  i, this mapping

is well-defined. Because it is a homomorphism on every component of  C, it is a

homomorphism, and moreover  g i  = fh i . Now suppose we have another

homomorphism  f' : C � ���  B. If we look at  f'|h i (A i)  then it must hold that

g i  =  f ' |h i ( A i ) h i , and as  h i  is an embedding,  f ' |h i (A i ) = g i , and thus on  A i ,

f' = f . As  i  is arbitrary, it must hold that  f = f' . So  f  is unique.

Constraint 5

If four homomorphisms  b : A � ���  B,  c : A � ���  C,  d : B � ���  D  and  e : C � ���  D  are

given such that  db = ec, b is epic and e  is monic, then there is a homomorphism

f : B � ���  C  such that fb = c  and  ef = d.

Proof

Construct  f : B � ���  C  as follows. Take   s � ���   B, which has (b  is surjective) a b-

inverse  s'  � ���   A  (b(s') = s) and  d(b(s')) = e(c(s')). Define  f(s) = c(s').

1. This is well-defined:

Suppose  s', t'  � ��� A   with  b(s') = b(t') = s. Then

e(c(s')) = d(b(s')) = d(b(t')) = e(c(t')),
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but as  e  is injective we have  c(s') = c(t').

2. f  is a homomorphism:

  i)  Suppose  s < t  in  B  then there exist  s', t'  in  A   with  s' < t'  and  b(s') = s  and

b(t') = t . Therefore  c(s') < c(t')  and  f(s) = c(s'), f(t)  = c(t') , so f(s) < f(t).

 ii) Take s  � ��� B  with  b(s') = s, then  Bs � ���  A s' � ��� Cc(s') � ��� C f (s).

iii) If  s  � ��� B  is minimal  and  b(s') = s  then  s'  is minimal and therefore c(s') = f(s)

is minimal;

3. By construction  fb = c. Now take  s  in  B, s = b(s')  then

d(s) = d(b(s')) = e(c(s')) = e(f(s)),

so   d = ef.

As  BTM   satisfies the constraints of the previous section, we have that there exist general

constructions for the joint closure and final model of a set of models.

6  Logical connections

In this section we present some of the results that can be obtained by applying the algebraic

techniques developed above to the model theory of branching time temporal models. First

we will summarize some persistency results of formulae under coproducts and joint

closures. Next we will discuss four specific classes of models and introduce associated

semantic consequence relations, and their mutual connections. One of these classes is the

class of linear time models. We will discuss the connections with that class in some more

detail.

Proposition 6.1

Suppose  T  is a disjoint union of isolated Ti .

Then for  t  in  T i

   (M, t) � ���  � ��� � ��� (M|T i , t)  � ���   � ���

   M � ���  � ���  � ��� { M|T i  | i � ���  I } � ���   � ���

Proof

Straightforward.

As an immediate consequence we have persistency under the coproduct construction.

Corollary 6.2

Let   (M i)i � ���  I  be a set of temporal models and  P  their coproduct.

a) For any formula  � ���   it holds

(P, t) � ���  � ���     � ��� ( M i , t)  � ���   � ���

P � ���  � ���     � ��� for all  i in I  it holds  M i  � ���   � ���
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b) Let  Th  be a temporal theory, then P  is a model of  Th  if and only if for every  i  in

I   the model  M i  is a model of  Th.

Because we have shown that the joint closure can be built from a coproduct followed by a

surjective homomorphism, and the coproduct construction behaves well under persistency,

we have persistency under joint closure in the following sense.

Corollary 6.3

Let  C  be the joint closure of the indexed set of models  (M i) i � ���  I, where  M i  is based

on  T i.  For  t  � ���   Ti,  t'   denotes the corresponding time point in the joint closure.

Every formula  � ���   that is forward persistent under surjective homomorphisms satisfies

( M i , t)  � ���   � ���     � ��� (C, t')  � ���  � ���

M i   � ���   � ���     for all  i in I � ��� C � ���  � ���

Every formula  � ���   that is backward persistent under surjective homomorphisms satisfies

(C, t')  � ���  � ��� � ��� ( M i , t)  � ���   � ���

C � ���  � ���  � ��� M i   � ���   � ���     for all  i in I

Every formula  � ���   that is two-sided persistent under surjective homomorphisms

satisfies

(C, t')  � ���  � ���     � ��� ( M i , t)  � ���   � ���

C � ���  � ���     � ��� M i   � ���   � ���     for all  i in I

In the class  BT  of all branching time models we distinguish two subclasses, namely  LT ,

the class of linear time models and  CL , the class of closed models. Since it is easy to

establish that linear time models are closed we have

LT  � ���   CL  � ���   BT

There are other connections as well. Every branching time model can be mapped by a

surjective homomorphism onto a closed one. Moreover, all branches in a branching time

model are linear models, and together they cover the whole flow of time. For any set of

models  S  its joint closure, denoted by jcl(S), can be constructed. Under certain conditions

this joint closure is a final model for a class of models. In principle, from these classes of

models we can define corresponding satisfaction relations.

Definition 6.4

Let  S  be a class of branching time temporal models. For any temporal formula  � ��� ,

define:

S � ��� BT � ��� � ��� ( � ��� M � ��� BT:  M � ��� S   � ��� M � ���  � ��������

S � ��� CL � ��� � ���  ( � ��� M � ���  CL:  M � ��� S    � ��� M � ���  � ��������
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S � ��� LT  � ��� � ��� ( � ��� M � ���  LT:  M � ��� S    � ��� M � ���  � ��������

S � ��� JCL  � ��� � ��� jcl(S)  � ���  � ���

Obviously, we have that, for instance, S � ��� LT  � ���   � ��� S � ��� LT � ��� BT  � ��� . These definitions may

seem rather unusual. An interesting case is when  S  is the set of all branching time models

of a temporal theory  Th . Then  S � ��� BT  � ���   means that  � ���   is a branching time semantical

consequence of  Th . Furthermore, S � ��� LT  � ���  means that  � ���   is a linear time consequence of

Th .

There are some apparent logical relations between these notions:

Proposition 6.5

S � ��� BT � ���  � ��� S � ��� CL � ��� � ��� S � ��� LT  � ���
� ��� S � ��� JCL  � ���

A main question is how different they are, and, in general, what the relations are. There is

a real difference between linear time models and the others because they satisfy the

following axioms expressing indistinguishable future:

� ��� X � ���   � ���   � ��� X � ���

� ��� F � ���   � ���   � ��� F � ���

� ��� G � ���   � ���   � ��� G � ���

The final model of a set of (linear) time models will not in general satisfy these axioms.

Any branching time model satisfying these axioms can in fact be mapped uniquely to a

linear one.

First we need the following connection between a model  M   and its collection of linear

time submodels (its branches)  Br(M) . This notion is extended to a class of models S: the

set of all branches of models in S is denoted by Br(S). By  cl(M)  we denote the (epic)

closure of  M .

Theorem 6.6

Let  M   be any model. Then  jcl(Br(M)) � ���  cl(M) .

In particular, M   is closed if and only if  jcl(Br(M)) � ���  M .

Proof

We will apply Proposition 4.18. To this end it is required that the canonical

embeddings  aL  : L � ���  M  for  L in  Br(M)  are jointly surjective. Since  M   is covered

by its maximal branches and each maximal branch is an element of  Br(M)   this is

indeed the case.
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In this theorem isomorphism (� ��� )  is meant in the category-theoretic way. Here it means that

the flows of time are isomorphic with corresponding (equivalent) object-level. Moreover,

we have the following result on the existence of final models of a theory. For a class of

models S  the class of models S* is defined by

S*  =  {jcl(S')  | S' a set of models with  S' � ��� S }.

In particular, S*  contains the joint closure  jcl(S)  of all models in  S, but it also contains

the closure of each individual model: for  M � ��� S, we have that  jcl({M}) = cl(M) .

Theorem 6.7

Let  Th  be a temporal theory that is forward persistent under surjections and  S  a set of

models of Th. Then S*  is a set of models of Th and the joint closure  jcl(S)  of all

models of S  is a final model of Th in S*.

Proof

Because  Th  is forward persistent under surjections, we have  jcl(S) � ���  Th . Now from

Theorem 4.20 it follows that  jcl(S) is a final model in S*.

A class of models S is closed under submodels if for each model in the class, all of its

submodels are also in the class. In particular, in that case we have Br(S) � ���  S. A class  S  is

closed under surjections if whenever  M   is in  S  and  f : M � ��� N  is a surjective

homomorphism, N  is also in  S. After these preparations we are able to establish the

following theorem that gives more precise connections between the different satisfaction

relations.

Theorem 6.8

Let  S  be a class of models,  and  � ���   any formula.

a)  If  S  is closed under submodels, and  � ���   is forward persistent under surjections,

then

S � ��� BT  � ��� � ��� S � ��� LT  � ���

b)  If  S  is closed under surjections and  � ���   is backward persistent under surjections,

then

S � ��� BT  � ��� � ��� S � ��� CL  � ���

c)  If S  is a set, then

S* � ��� BT  � ��� � ���  S � ��� JCL  � ���

If, moreover,  � ���   is backward persistent, then

S* � ��� BT  � ��� � ���  S � ��� JCL  � ���

d)  If � ���   is forward persistent, then

Br(S) � ��� LT  � ��� � ���  S � ��� BT  � ���
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If, moreover, Br(S) � ���  S, then

S � ��� LT  � ��� � ���  Br(S) � ��� LT  � ��� � ���  S � ��� BT  � ���

If, in addition, Br(S*) = Br(S), then

S � ��� LT  � ��� � ���  S � ��� BT  � ��� � ���  S* � ��� BT  � ���

e) If S  is a set  and Br(S) = Br(S*) � ���  S and � ���   is both forward and backward

persistent, then

S � ��� LT  � ��� � ���  S � ��� JCL  � ���

Proof

a)  Assume  S � ��� LT  � ��� . Suppose an  M  in  S  is given. Because  S  is closed under

submodels, Br(M) � ���  � ��� . By forward persistency of  � ���   we also have  M � ��� � ��� . We have

proven

S � ��� BT  � ��� � ��� S � ��� LT  � ���

b)  Assume  S � ��� CL  � ��� . Let  M   in  BT  be given with  M  in  S. Then there is a

surjective homomorphism of  M   onto its closure  cl(M)   in  CL . Because  S  is closed

under surjective homomorphisms we have  cl(M) in S, and therefore  cl(M) � ���  � ��� . By

persistency of  � ���   we have  M � ���  � ��� . We have proven

S � ��� BT  � ��� � ��� S � ��� CL  � ���

c)  The first implication is trivial. Assume � ���   is backward persistent and S � ��� JCL � ��� . Let

M   be any model in S*. Then we can map  M   in  jcl(S). Since jcl(S) � ���  � ��� , and  � ���   is

backward persistent we have  M  � ���  � ��� . Therefore

S � ��� BT  � ��� � ��� S � ��� FI  � ���

d) Suppose � ���   is forward persistent, and Br(S) � ��� LT  � ���  then every model in S has a

branch and this branch satisfies � ��� . Therefore by persistence S � ��� BT � ��� .

Assume, moreover, Br(S) � ���  S, then it is trivial that S � ��� BT � ���  implies Br(S) � ��� LT  � ��� , and

that this is equivalent to S � ��� LT  � ���

Assume, in addition, Br(S*) = Br(S), then the previous result can be applied to S*. It

follows that

S* � ��� LT  � ��� � ���  Br(S*) � ��� BT  � ��� � ���  S* � ��� BT  � ���

e) This follows from c) and d).

In Corollary 6.3 and Theorems 6.7 and 6.8, properties are established for formulae which

are forward/backward persistent under surjective/injective homomorphisms. The question

arises whether there are formulae persistent under these special homomorphisms but not

under any homomorphism. This turns out to be not the case:

Proposition 6.9

A formula is forward (backward) persistent under surjective/injective homomorphisms if

and only if it is forward (backward) persistent under any homomorphism.
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Proof

- First we will prove the case for forward persistency under surjections. Suppose  � ���   is

forward persistent under surjective homomorphisms, but not under any homomorphism.

Then there is a (non-surjective) homomorphism  f : M � ��� M'   with  t � ��� T  such that

(M,  t)  � ��� � ���   but  (M', f(t)) � ��� � ��� . Now construct the model  N  which consists of a copy

of  M   and for every point  s  of  M'   not in the image of  f  a branch  B  of  M'   with

s � ��� B (disjoint from the copy of  M   and disjoint from every other such branch). Then it

is easy to see that  (N, t) � ��� � ��� . Let  g : N � ��� M'   be the function which maps the copy of

M   to  f[M]   in  M' , and which maps every added branch to the same branch in  M' . Then

g  is a homomorphism and  g  is surjective and  (M', g(t)) � ��� � ��� . This is in contradiction to

the assumption that  � ���   was forward persistent under surjective homomorphisms.

Therefore  � ���   is forward persistent under any homomorphism. The proof fro backward

persistency under surjective homomorphisms uses the same construction.

- Now for the case of backward persistency under injective homomorphisms. Suppose  � ���

is backward persistent under injective homomorphisms, but not under any

homomorphism. Then there is a (non-injective) homomorphism  f : M � ��� M'   with

t � ��� T   such that  (M',  f(t))  � ���  � ���   but  (M, t) � ��� � ��� . Now construct a model  N  by taking a

copy of  M   and adding the following: for every point  s  of  M , and for every branch  B'

of  M'   with  f(s) � ���  B', if there is no equivalent branch  B  in  M   with  s � ��� B, then we

add such a branch in  N. Now let  h : M � ��� N  be the injective homomorphism which

maps  M   to its copy in  N. Let  g : N � ��� M'   be the homomorphism (!) which maps  h(s)

to  f(s)  and the branches from  M'   in  N  to their counterparts in  M' . Of course the

model  N  and the homomorphism  g  are constructed in such a way that  g  is branch-

surjective, and we can use Proposition 3.7: since  (M',  f(t))  � ���  � ���   and  f(t) = g(h(t))

and  g  is  branch-surjective, we have  (N, h(t)) � ��� � ��� , but as  h  is injective and  � ���   is

backward persistent under injections we have  (M, t) � ��� � ��� , contradicting the assumption.

Thus  � ���   must be backward persistent under any homomorphism. The proof for forward

persistency under injective homomorphisms uses the same construction.

Theorem 6.8 describes some cases in which the different satisfaction relations are equal. The

question still remains whether they are not in general always equal. This is not the case:

Proposition 6.10

In general  � ��� BT 
� ��� � ��� CL , � ��� CL 

� ��� � ��� LT , � ��� CL 
� ���

 � ��� JCL . Moreover, for each of these

inequalities we can find a natural object-level logic (propositional logic) and a temporal

theory  Th  such that for some  � ���   we have  Mod(Th) � ��� X  � ���   but not Mod(Th) � ��� Y  � ��� .
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Proof

We have already remarked that  S � ��� LT � ��� X � ���   � ���   � ��� X � ���   for any class  S; it is easy to see

that this does not hold for the other consequence relations. Let’s look at  � ��� BT  and � ��� CL .

Take any model  m � ��� Mo  and let  � ��� � ��� Lo  be such that there exist  k, l � ��� Mo  with

k � ��� o � ���   and  l � ��� o � ���  (thus the object-level logic should not be trivial). Define the

following two formulae:

at0 := H(C � ��� � ��� � ��� C � ��� )

at1 := P(C� �������� � ��� C � ��� ) � ��� HH(C � ��� � ��� � ��� C � ��� )

It is easy to see that  at0  is true in a point if and only if it is a minimal element and  at1

is true in a point if and only if it is a successor of a minimal element. Now define

Th := { ati � ��� C � ��� | m � ��� o � ��� , � ��� � ��� Lo, i = 0, 1 } � ���

{ ati � ��� � ��� C � ��� | m � ��� o � ��� , � ��� � ��� Lo, i = 0, 1 } � ���

{ at0 � ��� � ��� F( � ��� F(C � ��� )) }  and

� ��� := at1 � ��� � ��� F(C � ��� )

If  M  is a closed model of  Th  then all initial points and their successors must be

equivalent to  m, but as  M   is closed, it must have a unique root  r   with one successor

s. Then  (M,  r)  � ��� � ��� F( � ��� F(C � ��� )), so there exists a point  t  with  r « t  and

(M,  t)  � ��� � ��� F(C � ��� ), but then  (M,  s) � ��� � ��� F(C � ��� )  since  s  is the only successor of  r .

Thus  M � ��� � ��� , and we have proved  Mod(Th) � ��� CL � ��� . Now consider the following

branching time model:

°
°

°

°°

°

°

° °
m

m l l l

m kkk

In this model, the minimal element and its successors are equivalent to  m  and a  k  state

is reachable from the root in at least two steps (remember that  k � ��� o � ��� ), so this model is

a model of  Th. But the lower successor of the root is a successor of a minimal element

but has only  l  states reachable (in which  C� ���   is not true), so it is not a model of  � ��� . We

have proven that  Mod(Th) � ��� BT � ��� .

Now we will look at  � ��� CL  and � ��� JCL. Let  m � ��� Mo  and let  � ��� � ��� Lo  be such that there

exist  k, l � ��� Mo  with  k � ��� o � ���   and  l � ��� o � ���  (thus the object-level logic should not be

trivial). Define: Th := { at0 � ��� C � ��� | m � ��� o � ��� , � ��� � ��� Lo } � ���

{ at0 � ��� � ��� C � ��� | m � ��� o � ��� , � ��� � ��� Lo }

Let the object-level logic be such that  Mo  is a set (for instance propositional logic). Then

we can take  jcl(Mod(Th))   which has a unique root  r  (with object-level equivalent to

m), in which for each point the set of its successors consists of one state for each object-

level model (up to equivalence). This model contains a branch starting at  r   in which

each point has  k  as its object-level model. So

jcl(Mod(Th))  � ��� at0 � ��� � ��� F(C � ��� )



37

which gives  Mod(Th)  � ��� JCL  at0 � ���  � ��� F(C � ��� ). Now consider the linear model  N

consisting of a root with object-level model equivalent to  m  and all the other points have

object-level models equivalent to  l. Then this is a closed model of  Th  but

N � ��� at0 � ��� � ��� F(C � ��� )  so  Mod(Th)  � ��� CL  at0 � ���  � ��� F(C � ��� ).

7 Conclusions

Temporal models can be used to describe the behaviour of dynamic processes. The linear

models usually describe a possible behavioural pattern, and a set of such models can be used

to describe multiple possible patterns. These models may be described by a temporal theory.

Another way of describing possible behaviour is by a branching time process which

branches at any time a pattern can continue in more than one way. These models can also be

axiomatized by a temporal theory. In this article we identified a uniform algebraic manner in

which to relate these different kinds of models. It was shown that the branching time models

form a category with homomorphisms as arrows between objects. A number of operations

like the coproduct, joint closure and epic closure which perform a kind of merging of models

into a final model were defined in general for categories and it turned out that these

operations can be used in the category of branching time models. Therefore, out of a set of

linear models we can construct a branching time model which incorporates all the linear

models. This can then be transformed by homomorphisms into a model which is final. In

that model all decisions that have to be made during a process (which branch to take) are

moved as far backward in time as possible.It is then interesting to identify the formulae

whose truth value remains the same through these constructions, so that if models of such a

formula are merged, it remains a model of such a formula. Then one can define satisfaction

relations based on linear, branching time, closed or final models and investigate the

connections between these relations.

In [Sp90], a reduction from linear time logic to branching time logic is given, by

translating formulae from linear time logic into formulae from branching time logic. The

translation replaces the F-operator (“sometimes in the future”) by � ��� F, and forces ‘linear

behavior’ on subformulae (meaning that  � ��� F� ���  and  � ��� F � ���   should be equivalent). The idea of

viewing a linear time model as a (simple) branching time model, and the construction of the

set of linear time models  Br(M)  of branches of the model  M , occur in [Sp90].

Different papers in the literature on temporal logic discuss the usefulness of linear

time temporal logic versus branching time temporal logic; for example, in [EH86], [Gl94].

In general it is argued that for applications where expressivity demands are not high, the

linear time approach has (conceptual and computational) advantages, whereas in cases where

certain types of path quantification are required, branching time approaches have advantages.

In the application areas of reasoning processes of knowledge- and agent-based systems

addressed by us, the results of this paper were successfully applied to develop the model
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theory of the dynamics of (nonmonotonic) reasoning processes based on default logic

[Re80]. An important characteristic of default reasoning is that usually different lines of

reasoning are possible, each leading to a set of conclusions. In default logic these conclusion

sets are descibed by (Reiter) extensions [Re80]. In common examples this leads to a variety

of extensions. In logic one is used to express semantics in terms of models that represent

consistent descriptions of the world and semantic entailment relations based on a specific

class of this type of models. These notions are not really adequate to describe alternative

conclusion sets for default reasoning. Sometimes one introduces sceptical entailment (what is

true in all conclusion sets) or credulous entailment (what is true in some conclusion set).

From a semantic point of view both notions only give a limited description: they only

indicate global upper and lower bounds for the conclusion set of particular lines of

reasoning.

In [ET96] we integrate process aspects of the reasoning in the semantics in an explicit

manner. The approach extends the one introduced in [ET93], where it was shown how one

line of default reasoning corresponds to one linear time model. Each extension of a default

theory is generated by a reasoning process, and therefore corresponds to a temporal model

describing this process. These temporal models can be described by a temporal theory which

depends on the default theory. Using the machinery of the current paper, this linear time

semantics has been used to define a branching time semantics and a joint closure temporal

semantics for default logic in [ET96]. Each line of reasoning corresponds to a branch in the

joint closure model. It is shown how (under a particular topological condition, called

extension completeness) an appropriate joint closure model can be constructed in which

precisely all possible lines of reasoning (and the resulting conclusion sets) can be represented

(even though they might be mutually contradictory). The semantics of the default theory can

be defined on the basis of this single joint closure model. In particular, sceptical and

credulous entailment relations can be defined as well on the basis of this model. For more

detailks, see [ET96].
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