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Abstract. Temporal logic can be used to describe processes: their behaviour is characterized
by a setof temporalmodelsaxiomatizedby a temporaltheory. Two types of modelsare
most often usedfor this purposelinear andbranchingtime models. In this papera third
approach, based on socalled joint closure models, is studierd modelswhich incorporate
all possible behaviour in one model. Relations betweerafipsoachandthe othertwo are
studied. In order to define constructiamsededo relatebranchingtime models,appropriate
algebraic notions ardefined(in a categorytheoreticalmanner)and exploited.In particular,
the notion of joint closure is used to construct one model subsuming a set of rusileds.
this universal algebraic construction we show that a set of linear mmatet® mergedto a
unique branching time model. Logical properties ofdbscribedalgebraicconstructionsare
studied. The proposedapproachhas been successfullyaplied to obtain an appropriate
semanticsfor nonmonotonicreasoningprocesse$asedon default logic. Referencesare
discussed that show the details of these applications.
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1 Introduction

Temporallogic providestechniqueso build formal modelsof dynamics:processesare
described by temporal models that satisfy some set of temporal axioms. This appagach
be used talescribethe dynamicsof (material)processed the externalworld, aswell as
mentalor computationalprocessesin our researchwe focus on formal modelsfor the
behaviourof compositionakknowledge-or agent-based)easoningsystemsoy meansof
temporal logic. Statesin a reasoningsystem are characterizedby the (incomplete)
information that has been obtained so far; usually they are g#thedhation states
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A characteristiof dynamicsis thatthereis often a numberof possiblealternative
behaviouralpatterns.During the processn someway or anothera choice betweenthese
alternativess made.These(intended)behaviouralpatternscan be formalized by a set of
possible (intended)linear time temporal models of the temporal theory involved. A
different way of formalizationof the variety of patternsis by branchingtime temporal
models of a temporal theory, where each branch represents one of the patterns.

Formalizationby a setof linear time modelshasthe advantageof a very simple
modelstructure.But the disadvantagés that the possiblechoicesand the time points at
which they should be made are not covered explimitifhe formalizationitself. Branching
time models represent these choices as points where the flow of time branches. However, a
given branching time model may only describea subsetof the set of all possible
behavioursDifferent papersin the literatureon temporallogic discussthe usefulnessof
linear time temporallogic versusbranchingtime temporallogic dependingon the type of
applications; for example, [EH86], [GI94].

A third formalization of temporalsemanticspobtainedas a result of the notions
defined below is shown; this approachonly looks at branchingtime models which
incorporateall possiblebehaviour(joint closuremodels). This third approachhas been
successfully applied to describe the semanticsof multiple nonmonotonic (default)
reasoningprocesses$or a given default theory in one (a kind of standard)joint closure
model, which can be associated to the default theory (cf. [ET96]).

Given that these approachesare formalizations of (more or less) the same
phenomenonit is naturalto study formal connectionsbetweenthem. We will define
universal(algebraic)constructionson modelswhich allow us to connectthe approaches
and to study logical properties of these constructions.

The world whose properties over time am interestedn, canbe describedusing
a language called the object-levellanguage.The statesof this world are formalized by
modelsof the object-levellanguagetogetherwith a satisfactionrelation which describes
which formulae arérue in a particularstate(object-levelmodel). We do not a priori pose
any restrictions on the language or the models.

In Section2, we introduce our temporalizedlogic (inspired by e.g., [FG92],
[BPM83]). In Section3, we define our notion of homomorphismbetweentemporal
models and establish properties of the notion. A dé$srmulaethat are persistenunder
homomorphismss identified. Furthermore we show how a categorycan be defined,
based on these homomorphisims Section4, we presentsomecategory-theoreticesults
that have implications for our category. In particwee, define a universalconstructionto
merge models that is used to show in Section 5 how to construct a branchingptleien
a canonicalmannerout of a set of linear time models. The logical propertiesof this
universalconstructionare further worked out in Section6. Finally, in Section7 some
conclusions are drawn.



2 Temporalized logic

In this sectionwe introduceour temporalizedogic (seealso[ET93]). Our approachs in
line with what in [FG92] is calletemporalizinga given logic. We startdefining the flows
of time we usein Subsectior?.1, nextwe definetemporalizednodelsin Subsectior?.2
and finally we define temporal formulae and their interpretation in Subsection 2.3.

2.1 Flows of time

Definition 2.1 (flow of time)
A (discrete)flow of time (T, <) is a pair consisting of a nonempty Setf time
points, and a binary relationa on T x T, called theammediatesuccessor relatiorthat
is irreflexive, antisymmetric and antitransitive. Here fotin T the expression
s <tdenotes that is animmediate successof s, and thats is animmediate
predecessoof t. We also introduce the transitive closureof this binary relation« =
<+, A flow of time is calledinear if « is a total ordering.

Definition 2.2 (sub-ft and branch)
a) A flow of time (T", <) is called asub-ft (sub-flow of time)f a flow of time
(T,<) If TOT and < =< n T xT. Itis also called the sub-ft ofT, <)
defined byr', or therestriction of (T,<) to T'.
b) A sub-flow of time T is right or successofrespectivelyeft or predecessqr
completein T with respecttat in T* ifforall u in T with t«u (respectively
u«t) we haveu IinT'.
c) Abranchin a flow of time T is a sub-ftB = (T, <') of T such that:
() «=«n T xT is a total ordering om' x T'
(i) Every t e T with a successor im also has a successor i
forall se T',te T:s<t =thereisat e T :s <t'
(i) Every t in T with a predecessor im also has a predecessorin
forall se T,te T':s<t = thereisans'e T' : s' <t.
(iv) Every element of that is in between elements of is itself in T':
forallse T',te T,ue T" !s«t«u= te T

Branches will be viewed as linear temporal models. For example, Definition 2.2(i)
guarantees linearity, whereas Definition 2.1 guarantees discreteness. In addition, we will
impose the following definitions.



Definition 2.3 (minimal element, root, path)
a) Anelement of T is called aninimal elemenif there exists ncs with s<t We
call t arootifforallu in T itholdsu=t ort«u.
b) We call T well-foundedf for there do not exist infinite descending chains of
elements s; < sj.1 .
c) A(finite) pathis a finite sequence of successosg: ..... ,snsuch that:s; < sj+1
for all 0<i <n-1. We callsy the starting point and,, the endpoint of the path.

We will makeadditionalassumption®n the flow of time: thatit describesa discretetree
structure where time branches in the direction of the future; see definitions below.

Definition 2.4 (tree and forest)
a) The following properties are defined:
(i) Successor existence
Every time point has at least one successor:
for all se Tthere exists ae T such thas <t.
(i) Rooted
A flow of time is rooted with root if r is a (unique) smallest element:
forallt itholdsr=t or r«t.
(iii) Left linear
For allt the set ofs with s «t is totally ordered b
b) A flow of time is called &ee ifitis rooted and left linear.
c) A flow of time is called #orestif it is well-founded and left linear.

Note that a forest is just a disjoint union of trees. From now on we will assume all flows of
time to be forests satisfying successor existence.

Lemma 2.5
a) Supposer is well-founded.
For every element there is a minimal element and a (finite) path frons to t.
b) If there exists a root, then T is well-founded and for every there exists a path
from r to t.
c) SupposeT is a forest.
Every non-minimal element has a unique predecessor. For every there is a
unique minimal elementn with m «t and a unique path withas end point aneh
as starting point; this path gives a finite ordered enumeratign |af « t }u {t}.



The proof of this lemmais straightforwardand omitted. The numberof elementsin the
pathfrom t to its correspondingninimal elementminusone, is calledthe depthof t.
Using this depth function the time points of a branch may be identifiedNvith

Definition 2.6 (isolated and generated sub-ft)
A sub-ft " of T is called ansolatedsub-ft of T if there do not exist in T\T' and
tin T with t<t or t <t. A minimal isolated sub-ft is calledannectivity
component
We call " a sub-flow of timegenerated by subseB of T if it is both left and right
complete with respect to all elementsgof
Thesmallest sub-ft generated I8y is the sub-ft generated [® given by

T={s|3te Bwiths«t}uBuU{u|3te Bwitht«u}

The sub-flow of time generated by one element T' is the tree consistingof the path
from the minimal element underto t and all u with t « u.

Proposition 2.7
a) T' is a sub-ft of T (self-)generated by iff it is an isolated sub-ft ofr.
b) T is aforest iff all its connectivity components are trees.

Remark: we will sometimes, if no confusion can arise, use the same chardotdenote
two different relations on different sets, for example agtinc) and (T, <).

2.2 Temporalized models

As we want to be able to describe temporal changes in any domain, we will just assume
have an object-levellanguage, £, whose formulae describethe domain. The domain
states based on this language will be suppostmiioa class M, of objectmodels.An
object-level satisfaction relatiomq ¢ Mg x Lo indicateswhich formulaearetruein a
model. Thus forMm e My andee Lo, M Eg ¢ meansthat ¢ is truein M. We could
take, for example, a propositionahguagewith classicalpropositionalmodels.We could

also take the samelanguagebut with three-valuedmodels under the Strong Kleene
semantics. Or we could take a modal language with modal Kripke mdteisthe choice

of language and models can be varied at will. From now on weasglimea fixed object-
level language, model class and satisfaction relation.

Definition 2.8 (Temporal model)
Let (T,<) be a flow of time.
A temporalizednodel M basedon flow of time (T, <) isatriple (M, T, <),
whereM is a mapping



M:T —)Mo

So at any point in time we have an object-level model describing what is true in the
domain at that time. We will sometimes refemo as a temporal model based an
<). If ¢ is an object-level formula, andis a time point inT, and M ¢ @, then we
say that in this model1 at time pointt the formulae is true

Definition 2.9
The temporal modeM' is sub-modebf m if (T', <) is a sub-flow of time of
(T, <) with mt) =Mty forall t in T. We also callm' therestrictionof M to
T', denoted bym|T'. If T* is a branch ofr then M' is called &ranchof M. For a
temporal modelM, the set of its branches is denotedgim) .
Also the other notions defined in the above subsection for flows of time are inherited
by models.

2.3 Temporal formulae and their interpretation

We will now define the temporal languagg in termsof the object-levellanguageusing
temporal operatorsto describetruth of object-level and temporal formulae over time.
Because our temporal models based on forests have a more differesttiatadetowards
the future than towards the past, we will need more operators describing theHamthe
past.Also, we do not want any interactionbetweenobject-levelformulae and temporal
formulae. Therefore the object-level formulae are "shielded" by an operator

Definition 2.10 (temporal language)
The temporal languagér is defined to be the least set such that:
(ope Lo= Co e LT
(i) ¢y € LT = -0 0AY, VY, 0oy € L7
(i) o e L1 = Op € LT (wWhereOe {3F, VF, 3G, VG, 3IX,VX,P,H})

The temporallanguageis similar to a modal propositionallanguagewhere the atomic
propositionsconsist of the C operator applied to an object-level formula. In these
definitions, for a temporal mode based on(T,<), t € T,anda e L1, (M, t) F
means that is true inM at time pointt.

Definition 2.11 (Semantics)
Let a temporal modeM based on(T, <), and a time pointe T be given, then
inductively define:
() for a € Lo



M, t) £ Ca - MgkEqg O
(i) for @, v € L:

a MbHE-e - it is not the case that (M, t)k @
b) M tHeroavwy - Mthe ¢ and M, )E
(iii) for ¢ € L7:
a (M, t)F3Fe - Ose T [t«s & (M, s)E @ ]
b) M, t) E 3Ge - there exists a branch including t such
that

for all s in that branch
[t«s = (M, s)F ¢ ]
C) (M, t) E IX@ - Ose T [t<s & M, s)E ¢ ]
d M, t)F P - Ose T [s«t& (M, s)F @]
Furthermore we introduce the following abbreviations:
OV VY=def (M@ ATY),
QP VY=def 1@ VYV,
T=4efCav-Ca (foran a e L),
L =get T,
VEQ =def 73G(— 9),
VGO =def 7 IF(m9),
VX@ = def = IX(— @) and
He=def 7 P(— 9).
For a temporal mode1, by M ¢ we mean(M,t) = ¢ forallte T and byM E
K we meanM k ¢ for all ¢ e K, whereK is a set of temporal formulae.

The property of successoexistencecan be axiomatizedby the formula 3F(T). If in a
model M the formulaP(T) is true at time point thent must have a predecessor.

3 Homomorphisms and persistency

As mentionedbefore,we assumehe modelsto be forestssatisfyingsuccessoexistence.
In this chapterm and M' denote temporal models based on the flows of {fme) and
(T, <) respectively. As we are interested in linear and branchingniodels,we needa
way of relating modelsand we will do this using a specialclassof functions between
models, called homomorphisms. In the following definition, the symali@notesequality
on the class of object modeld/, (see first paragraph of Section 2.2).

Definition 3.1 (homomorphism)
A mapping f: T = T is called &nhomomorphisnof M to M if
(i) s<t = f(s) <f(t)



(i) M(s)= M'(f(s)
(i) If s is a minimal element of thenf(s) is minimal element off"

A homomorphisnpreserveghe temporalordering <, object-levelmodels(up to object-

level equivalence), and minimal elements. Intuitively, a homomorphism can embed a model
in a bigger model and it can identify points which htheesame(up to isomorphism)path

from their corresponding minimal elements. If a branching ocaagertainpoint in time

and there are equivalent object-level mo@els numberof next points, thenwe candefer

the branchingat this point by identifying thesenext points. If sucha situation doesnot

occur in a model (we shall later call such a madieded thena homomorphismwith this

model as its domain can only be injective (in the branching time logic(see[GK94]) a
structure with this property is callel@terministig.

Lemma 3.2
Let f: M —» M be a homomorphism.
a) The following conditions are satisfied:
(i) Foralltin T ands' in T' with s'<f(t) there exists an in T with s<t
and f(s) = s.
(i) For everys' in T' with s'«f(t) there exists ars in T with s'=1f(s) and
S « t.
(i) Foralls,t in T it holds:
f(s) < f(t) iff there exists au <t with f(u) = f(s)
(iv) For alls,t in T it holds:
f(s) « f(t) iff there exists au «t with f(u) = f(s)
(v) If s in T'is not in the image of, then allt' with s'«t' are not in the image
either.
b) The following are equivalent:
(i) f isinjective
(i) foralls,t in T itholdss<t if and only if f(s) < f(t).
c) Lett in T be given with pattP from a minimal element to t.
Then f(P) is the path fromf(r) to f(t) and f is a bijection betweem and f(P).
d) f is a surjective homomorphism to the submoige) = M'|f(T) of M'.
e) If B isabranchinv thenf is injective onB, and f(B) is a branch ofv'; the
restriction flB of f to B is an isomorphism fron® onto f(B).
Proof
a) (i). Supposes' < f(t), then f(t) is not minimal, therefore is not minimal inM
and thus has a (unique) predecessand thereforef(s) < f(t) and f(s) = s.



a) (v) Supposes' <t and t' = f(t). From (i) it follows thatf(s) = s' for some s.
Therefore all immediate successorssofare not in the image, and by induction none
of the t with s'«t are in the image of.

The other parts of the proof are similar.

b) For any homomorphism it holds<t = f(s) < f(t), SO suppose also

f(s) <f(t) = s<t, but f not injective. Then there exist, t InT with f(s) = f(t),
which can be taken at minimal depth (distance from the minimal elemergsanid t

are root of their components, then there ate' with s<s' andt<t', and thus

f(s) < f(s") andf(t) < f(t), but as f(s) = f(t) we also havef(s) < f(t) from which

it follows that s<t' which is impossible since they are in different components. Let
s andt now not be root. Then there arg t* with s'<s and t <t but f(s) #

f(t), sinces andt were at minimal depth. But theits’) and f(t) are both
predecessors ofs), which is impossible in a tree. Now suppdsés injective and
suppose we have, t with f(s) < f(t). Thent is not a root, so it has a predecessor
t', and thenf(t) < f(t) so it must hold thaff(s) = f(t) but thens =t and therefore

s <t

We are interested in preservation of truth of formulae under these homomorphisms:

Definition 3.3

Let f:M - M be a homomorphism.
a) Theforward persistencproperty for a formulao (underf ) is defined by

Mt Ea = (M4 () E a
for all time pointst in T.
Thebackward persistengyroperty for a formulax (under f ) is defined by

M, 1) E o « (M4 (1) F «
for all time pointst inT.
If a is both forward and backward persistent, we caNdtsided persistent
b) We say a logical connective or temporal operatov preservegorward
(backward) persistency (undgrif for any forward (backward) persistent formula(s)
a andp (underf) also the formulae X B, X a, Y(a) are forward (backward)
persistent (undef ).
We say a logical connective or temporal operatoy reversedorward (backward)
persistency (undey if for any forward (backward) persistent formulags)andp
(underf) the formulaea X B, X a, Y(a) are backward (forward) persistent (under

).

The following theoremgives an overview of all preservatiornpropertieswith respectto
persistent formulae (see also Table 1).



preserves + + + - + - +
forward
persistency

preserves + + - + - +
backward

persistency

Table 1. Preservation of persistency.

Theorem 3.4
Let f:M - M be a homomorphism.
a) Any temporal atonTa is two-sided persistent under
b) The temporal operatots and P preserve forward and backward persistency
underf.
c) The temporal operatod~, 3G and 3X preserve forward persistency, but not
necessarily backward persistency urfder
The temporal operatorgF, vG and vX preserve backward persistency, but not
necessarily forward persistency unéer
d) The logical connectives and v on temporal formulae preserve both forward and
backward persistency under
The logical connective- on a temporal formula reverses forward and backward
persistency under
If the temporal formulan. is backward (forward) persistent apgdforward
(backward) persistent thesn — B is forward (backward) persistent (under
Proof
a) This is trivial, sincem gy = My forall t in T.
b) For the operatop we do the following. Suppose is forward persistent and
(M, t) £ P(@). Then for somes with s «t it holds (M, s)F a. By forward
persistency ofa we have (M, f(s)) £ a. From s « t it follows f(s) « f(t). So there
exists ans' « f(t) with (M, s) £ a, Or (M, f(t)) & P(@).
Next the case obr  backward persistent: Frorm, f(t)) = P(@) it follows that there
exists ans' in T with s' «f(ty such that(m', s) E .
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From Lemma 3.2 it follows that there is anin T with s'=f(s)and s «t Now we
can apply the backward persistencyoofind conclude thatMm, s) = o and so

(M, t) £ P(a).

The proof forH is similar.

c) Supposex is forward persistent ang\v, s) = 3F(a). Then thereis somein T
with s « t such that(m, t) £ a. This implies f(s) « f(t) and (M', f(t)) = o and
therefore (M, f(s)) F IF(a).

- Supposea is forward persistent angv, s) = 3G(a). So there is a branch in M
with s on B and for allt e B with s« t it holds (M, t) £ a. Then B' := f[B]
is a branch withf(s) e B'. Now take a pointt' € B' with f(s) « t, say t' = f(t),
then s«t and therefore(M, t) £ a. The forward persistency ai ensures that
(M, f(t)) £ «, SO (M', t) E a. It follows that (M, f(s)) £ IG(a).

The operatorsvG and vF work similar (but reversed). Also the proofs for the
operators3x and vX are similar.

The following homomorphism shows the negative results:

1 a a o f a o o
° °/ _> [CI—-) 30/
0, o o O. \O o
> AR A A
M M

In this pictureM= M5, f(1) = f(2) = 3 and a is an object-level formula true in the
upper models, not true in the lower ones. Now is two-sided persistent, an,
1) E VF(Ca), VG(Ca) and vX(Ca), but (M, f(1)) ¥ VF(Ca), VG(Ca) and
vX(Ca), so these formulae are not forward persistent. AM0f(2)) = IF(Ca),
3G(Ca) and IX(Ca) but (M, 2) ¥ IF(Ca), IG(Ca) and IX(Ca), SO these
formulae are not backward persistent.

d) We show how the connective works. Suppose the temporal formwais
backward persistent, and assure t) £ —a, then (M, t) ¥ a and because is
backward persistent we haver, f(t)) ¥ a whence (M), f(t)) £ —a. S0 —~a is
forward persistent. The proof for the other case is analogous.

Theorem 3.4 can be used to build up formula #hatorward or backwardpersistentFor
instancefor an object-levelformula ¢ the formula 3IF( = P( VG( = 3F( Cg )))) Is
forward persistentwhereas 3F( P( = VG( 3F( Ce¢ )))) in generalis not. Another
exampletheformula C ¢ -» VG C ¢, expressingconservativity(thingswhich are true

11



remain true) is not forwargersisteni{for t separately)However,conservativitycanbe
defined by the set of persistent formulaeCc ¢ ) - C ¢ for all objectivep.

Theorem 3.5

Let f:M - M be a homomorphism.

If a is backward persistent then
MEa = MEFaO

If f is surjective andx is forward persistent, then
MEa =2 ME Q.

If f is surjective and is two-sided persistent then
MEa iff M EF a

So our notion of homomorphism(aswe will see, strong enoughto perform the algebraic
constructions we have in mind) is ta@ak to ensurepreservatiorof truth for all formulae.
As the examplein the proof of Theorem3.4 shows, requiring only surjectivity is not
enough. Whendentifying two points, theremay be more brancheghroughthe imagethan
through either of the two pointdestroyingtruth of someformulae.So we needa stronger
requirement:

Definition 3.6
A homomorphismf: M — M' is calledbranch-surjectivef for all te T andB' e
Br(T") : if f(t) e B' then there exists a branghe Br(M) such thatte B and
f[B] = B'.
A homomorphism which is surjective and branch-surjective is called
strongly branch-surjective

As the definition suggests, branch-surjectivity does not imply surjectivity. Ifconsistsof
only one component, then this is the case. Branch-surjective homomorphisms preserve truth

Proposition 3.7

For a branch-surjective homomorphismm — M', a temporal formulap andte T:
M, t) FE @ o (MY f(t) E o

Proof
It is easy to show that the operat@s, 3G and 3X preserve backward persistency
under branch-surjective homomorphisms and that the operakrgG and vX
preserve forward persistency under branch-surjective homomorphisms. Since then any
operator preserves two-sided persistency under branch-surjective homomorphisms, all
formulae must be two-sided persistent under branch-surjective homomorphisms.

12



In the literature there are some different notions of homomorphism.In [Be83], a

homomorphism is a surjectifanction which preserves< (definedon flows of time, not

on models). Thus a surjective homomorphism in our sense correspansrtemmorphism
which maps minimal elements to mininedémentsn Van Benthem'ssense.ln [Be83] also

the notion of a p-morphismis defined as a homomorphismwhich satisfiesthe additional
"backward clause™:

Vtie T, e T'(f(t1) <t' = Jtoe T(t1 < ta A f(t2) = t))

Viie T,t e T'(t' < f(t 1) = Jtp e T(ta<t1 A f(tp) = t))

The second part of this clause is satisfiedbyhomomorphismgseeLemma3.2 ai), and
implies that minimal elements are mapped to minimal elements. Thedits$ equivalentto
branch-surjectivity So our notion of branch-surjectivdhomomorphisnis equivalentto the
notion of p-morphism (between forests) in [Be83].

Similar notions (between structures) can also be definedfof (seefor instance
[GK94]). Loosely,a homomorphismfrom M to M' in our sensecorrespondgo a
simulation relation fromm to M' ([GK94]). They have a similar reswds Theorem3.5 for
the CTL* fragment containing only, respectively3.

We intend to use homomorphisms in a number of algebraic construationedels,
combining linear models into branching time models, and combining branchingtiohels.
As we suspect thaimilar constructiongnight be of interestin other(semanticaljdomains,
we want to set up a more general framework. In order to do this we will use category theory.
When reading the nesectionthe readercantake temporalmodelsand homomorphismsas
an example (this will turn out to form a category).

4 Using category theoretical notions for model constructions

In this section we assume given any class of objeots (we will call them models) and
notion of morphisms(we will call them homomorphismshetweenthem, satisfyingthe
basic rules of category theory (e.g., see [Pi91]).

Definition 4.1
a) A homomorphisnp is calledmonicor amonomorphisnif for any two
homomorphisms and g
pf=pg = f=g
A homomorphismp is calledepicor anepimorphismf for any two homomorphisms
f andg

fo=gp = f=g

13



b) The homomorphismb : B — C is anisomorphismif there is ac: C— B such
that bc =id and cb = id.

In this caseB andcC are calledsomorphic

c) If a,:A—- B anda,: A— C thenb:B— C isanisomorphism over

(A, a;, &) If ba, =a and thereis a:C—- B such thatbc =id and cb = id.

In this caseB andcC are called isomorphic oven, a,, a).

In many categoriesmonic morphismsare injective functions and epic morphisms are
surjective functions.

Lemma 4.2
a) p,q epic = pq epic
b) p,q monic = pg Monic
C) pq epic = p epic
d) pg monic = g monic
e) pg=id = p epic & g monic
f) pg=id & gp=id = p and g both epic and monic
g) pg=id & qr =id = p=r& gp=id

We will assume a number of constraints on our category. This is the first.

Constraint 1
For any p: A —» C there exists a moded and homomorphismsg : A —» B epic and
r : B = C monic such thatp =rq.

A p_» C

epic monic

Definition 4.3
Supposef,g: A— B are given. We calt: B— C acoequalizenf f andg if
(i) cf =cg
(i) For everyd:B— D with df =dg there exists a unique homomorphism
e : C—» D such thatec =d
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Loosely speakinga coequalizeridentifies the two copiesof A in B (by the two
homomorphisms)without doing anything else. We will require the existence of
coequalizers.

Constraint 2
For every f,g: A — B there exists a coequalizer.

The word "unique" is usually meant to be up to isomorphism.

The notion of epic closuredefinedbelow is inspired by the notion of a A-closed
model asdefinedand exploitedin [Tr76]. The terminologyis inheritedfrom the literature
on model theory whiclaims at generalisinghe notion of algebraicclosurefrom algebraic
field theory, for example, [HW75], [H093], Ch. 8.

Definition 4.4
We call a modelc closedif for any b any homomorphismi : C - D is monic.
We call c: A— C anepic closureof A if
() c is epic
(i) For everyD and epicd: A — D there exists a homomorphise: D— C
with ed=c.

epic

Intuitively, a closed model is one in which nothing candaatified further; sometimessuch
a model is also called a deterministic model. Howeveguréserveour relationto the source
of literature in model theory we will use the terms ‘closed’ and ‘closure’. Thecksareof
A mapsA into a closed model.
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Proposition 4.5
a) Cis closed if and only if every epié¢: C —» D iS monic.
b) If C is closed then for any there is at most one: A— C.
c) Any epic closure is closed.

Proof
a) If d:Cc - D, then by Constraint 1 there are epicC - D' and monic
c: D' — D with cb=d Thenb is monic and by Lemma 4.2 alsb=cb is monic.
b) Supposea, b: A — C. Take a coequalizet: C— D, i.e., ca = ch BecausecC
is closedc is monic. Thereforea = b.
C) Let a: A— C be an epic closure anid C —» D epic. Thenfa is epic.
Therefore there exists a homomorphigmb — C with g fa =a This implies gf =
id; thereforef is monic.

Lemma 4.6

Suppose homomorphisms: A - B and c: A— C are given withb epic.

a) Then there exists at most oteB - C with db =c.

If c is epic, then also sucha is epic.

b) The homomorphisna in Definition 4.4 (ii) is always unique and epic.
Proof

a) Supposé,e:B— C with db =eb=c From b epic it follows d = e

If c is epic, then from Lemma 4.2c) it follows that such @f it exists) is epic too.

b) This immediately follows from a).

The ideais thatfrom a givenmodel A by epimorphismswve form homomorphiamages

until nothing new can be obtained by epimorphisms. The following proposhiowsthat
such a process of closure can lead to at most one closed model (up to isomorphism).
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Proposition 4.7
Supposec: A— C is an epic closure.
a) If d:Cc— D is epic, then there existsdi: D —» C such thatdd' =id and
dd=id, i.e.,C and D are isomorphic.
b) If c:A—> C andd:A — D are epic closures thed and D are isomorphic
over (A, c, d).

Proof
a) From Lemma 4.2a) it follows thaitt is epic. Because : A— C is an epic
closure there exists & : D —» C with d'dc = c. Since ¢ is epic it follows thatd'd =
id. Now (dd') dc = d (d'd) c = dc Since dc is epic it follows thatdd' = id.
b) From the fact thatc: A - C is an epic closure it follows that there exists a
homomorphisma: D— C such thatc = ad Similarly there exists a homomorphism
b : C - D such thatd = bc. It follows that abc = ad = ¢ and sincec is epic ab =
id. Similarly ba = id.

Closedmodelsbehavequite convenientthis is reasonenoughto claim that there should
exist enough closed models. We will see that in the interesting cases indeed these exist.

Constraint 3
Every model has an epic closure (unique up to isomorphism).

Epic closuresare uniqueif they existandthe epimorphismis also unique. Moreover,in
specificinstancesof categorieften somecanonicalconstructioncanbe given for them;
we will sometimes use the notatief(M) to denotga canonicalconstructionfor) an epic
closure of M.

Now we have th@ossibility to mapany modelonto its epic closure,a next stepis to
require that a numberof theseclosurescan be embeddedn one (closed)model, or to
requirethatwe canform a joint closureof any set of models.For this purposewe will
generalize the notion of epic closure.

Definition 4.8
Let I be any index set and I¢&) i< | be a collection of homomorphismg: A; —»
B.
We call (&) e jointly epicif for all f,g:B— C with faj = gg for everyi it
holds f = g.

As a generalisation of Lemma 4.2 we have the following lemma.
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Lemma 4.9
Suppose (bj)je | and ¢ are given anda; = c iy for all i.
a) If (8)ije | are jointly epic therc is epic.
b) If (b))ie are jointly epic andc is epic then(a)ie | are jointly epic.
Proof
a) Supposefc = gg then faj = fc bj = gc h =ga for all i; therefore f = g.
b) Similar

Definition 4.10 (joint closure)
Let I be any index set and I¢a)) i< | be a collection of models.
We call (C, (&)ie 1) With aj: Aj > Cc a homomorphism for eachin I, ajoint
(epic) closurefor (A) e if
() (a)ie are jointly epic.
(i) For every D with jointly epic homomorphisms; : Aj » D there exists a
homomorphismc: D— C such thatca =d; forall i in I.

join_tly D C
epic

The notion joint closureis not presentin the literature on categorytheory, as far as we
know. It is a natural notion following the model-theoretic literature ageneralisationsf
the notion of algebraicclosurementionedafter Definition 4.4. We will give someof the
detailsof how this notion relatesto, for example,the wellknown notion of co-product
here.

Ai

Aj

Lemma 4.11
Any joint closure is closed.

Proof
Let (C, (§)ie 1) With a : Aj— C be ajoint closure and: C - D epic. Then
(faj) are jointly epic. Therefore there exists a homomorphismd — C with g fa;
=g for alli. This implies gof = id; thereforef is monic.
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Proposition 4.12
Suppose(A)) ie | is a collection of models.
If a joint closure for(Aj)je | exists, it is unique up to isomorphism.
More precisely, if (C, (g)ie 1) and (D, (di)je ) are joint closures of (Aj) e |
then there exists an isomorphismc — D such that for alli it holds f ¢; = d;.
Proof
SupposeC and D are joint closures fo(A)) je | with homomorphisms
di : Aj=> D and ¢ : Aj » C respectively. Then there exist (unique)
homomorphismsf: D —» C and g: C— D such that for every in | it holds
fdi =g and gg = di
Therefore
fg ¢ = fdj = ¢
Since alsoid ¢; = g and there is only one unique homomorphism with this property
fg = id. Similarly g¢f =id. ThereforeCc and D are isomorphic.

Notice that for a joint closuréc, (G)i ¢ 1) the homomorphismsa; - C areunique,so
C alreadydeterminesn a uniquemannerthe joint closure.If in a certain categorythere
exists a canonical construction for a joint closure, we will denote (the naod#) one by

jcl((Ai)ie 1)

Lemma 4.13
Suppose homomorphisms; : Aj = B and ¢; : Aj » C are given with (bj); e |
jointly epic.
a) Then there exists at most oteB - C with db; =g for all i.
If the (g)ie | are jointly epic, then also suchd is epic.
b) The homomorphisne in Definition 4.10 is always unique and epic.

The following constraintwould guaranteghe existenceof closuresof setsof models:for
every set of models thereexistsa closure (unique up to isomorphism).However, the
existencewill follow from other, more generalconstraintslf we requirethe existenceof
coproducts we can follow an alternative path of construction.

Definition 4.14
Let I be any index set and IgA;) ;< | be a collection of models
We call (C, (g)je 1) acoproduct for (Aj)je if
(i) a: Aj—> C is a homomorphism for eachin I.
(i) For every D with homomorphismsi; : Aj » D there exists a unique
homomorphismc: C— D such thatca =d; forall i in I.
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A coproduct allows us to combine models into one model, without doing anything else.

Lemma 4.15
If (C, (&)ie1) IS acoproduct for Aj)ie | then the(a)je | are jointly epic.

The following is well known from the literature. The proof is in fact similar to that of
Proposition 4.13.

Proposition 4.16
If a coproduct exists, it is unique up to isomorphism.

Constraint 4
Every set of models has a coproduct (unique up to isomorphism).

Above we first introduced the notion of closed model and epic closure of a model. Now we
can use théollowing construction Given a collectionof models,first takeits coproduct,

and next take the epic closuretbé coproduct.The resultingmodelis the joint closureof

the collection.

Theorem 4.17
The epic closure of the coproduct of a collection of models < | is a joint closure
of (A)ier .

Proof
Let C be the coproduct ofA)) ;e | (with homomorphisms: : Aj = C) and D its
epic closure (with homomorphism: C —» D).
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We will show that (D, (d g)je ) IS a joint closure of(Aj) e |- SupposeE and
jointly epic homomorphismss : Aj » E are given. We will show how to map to
D. First, becausec is the coproduct ofA)); ¢ |, there exists a homomorphism
f: C —» E such that for alli in1 it holds f ¢ = e,.

From Lemma 4.9 it follows that is epic. Becaus® with d:C — D is the epic
closure of C there exists a homomorphisgr E— D with gf = d. Therefore we
have found ag with g g =gf g =dg for all i.

Proposition 4.18
Let (A)ie | and C be given with jointly epic homomorphisms: Aj - C. Then
jcl((A))ie 1) IS isomorphic tacl(C).

Proof
Let J be the joint closure ofAj) e | with canonical homomorphisms
aj : Aj = J. There is a (unique) homomorphisen C - J such thatc g = g for all
i. By lemma 4.9 this is epic. We will prove thatis the epic closure of. Suppose
an epicd: C — D is given. Then by lemma 4.9 the homomorphisfgsare jointly
epic. Therefore (joint closure property) there is a homomorphism
e : D— J with ed =c This proves that is the epic closure ot.

Definition 4.19 (final model)
Let MOD' be a sub-class afloD and F any model inMmoOD'.
The modelF is calledfinal in moD' if for each modelM in MOD' there is a unique
homomorphismf: M —» F.

Theorem 4.20
Let MOD' be a sub-set oMoOD and F any model inMOD'.
Then the following are equivalent .
(i) Fis ajoint closure of all models ofioD
(i) Fis a final model inMmoD!
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Proof
(i) => (ii) Let (F, (fa)a e mop') be a joint closure of all models imoD', then any
A in MOD' is mapped toF by fa. By Lemma 4.11 the modet is closed, and by
Lemma 4.5 there exists at most one homomorphsm F ; thereforefs is unique.
This proves thaf is a final model inMOD'.
(i) => (i) SupposeF is a final model inmoD'. Then for every A in MOD' there
is a unique homomorphisrty : A = F. We will show that (F, (fa)a e mop') IS @
joint closure formMoD'.
First, the (fa)a e Mop' are jointly epic, since ifg fa =h fa for all A in MOD', then
in particular g fr = h f=. Now fg=id, SO g = h.
Next, let anyG be given with jointly epic homomorphismg : A —» G for all A in
MOD'. Then fg : G—> F mapsG to F. For anyA in MOD', because both
fa, fc ga) : A = Fand there is only one such homomorphism, we have
(fc 9a) = fa.

So a final model is a model intehich every othermodel canuniquely be mapped.t is the
model constructed by closing the coproduct (or, taking the joint closure).

Definition 4.21 (amalgamation property)
A category has themalgamation propertyf for every two homomorphisms
b:A—> B andc:A— C there exists & and homomorphisms :B— D and
e : C —» D such thatdb = ec

It is not difficult to verify that the amalgamatiorproperty follows from the existenceof
joint closures. To establish a next result, we need an additional constraint:

Constraint 5
If four homomorphismsb:A— B, c:A— C, d:B—> D ande:C— D are

given such thatb = eg b is epic ana is monic, then there is a homomorphism
f: B — C such thatb =c and ef = d.

\/
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Proposition 4.22
Suppose the amalgamation property and Constraint 5 are fulfilled.
Let c:A— Cbe given withC closed.
a) If ¢ is monic thenA is closed.
b) If c is epic, thenc: A— C is an epic closure oA. In particular,C is its own
epic closure.
c) If epic a: A— B and monicb:B — C are given such thaba = ¢ then a: A
— B is an epic closure oA.

Proof
a) Suppose is monic and a homomorphisian: A — D is given. Apply the
amalgamation property to find aa and homomorphisms:c— E and
f: D -» E with ec =fd BecauseC is closede is monic. By Lemma 4.2 we obtain
ec is monic, and applying it again we haweis monic. Thereforea is closed.
b) Supposec is epic and an epimorphismh: A — D is given. Again apply the
amalgamation property to find aa and homomorphisms:Cc— E and
f: D -» E with ec=fd By Constraint 5 we find a homomorphisgr D— C such
that gd =c and eg = Thereforec: A— C is an epic closure oA.
c) This follows from a) and b).

In this section we have described the possibilfesncorporatinga numberof objectsinto
one object (the co-product)and compactingthe result (closure) to obtain one ‘efficient
representation’ of these objects (the joint closurg.will apply theseideasto the category
of temporal models in the next section.

5 Joint closure constructions for temporal models

In this section we will show that the category-theoretic machinery describedgretheus
sectionis applicableto temporalmodels.We will describethe categoryof our models,
BTM, and verify that the constraints of Section 4 are satisfigainn(Note that the object-
level language and models are fixed). In Section 6 we will present sameiwiplications
of our framework to the model theory of temporal logic.

Definition 5.1
The objects of oucategory of temporal modelsT™ are temporal models
(M, T, <) such that (see Section 3):
(i) (T,<) is a forest (set of disjoint trees) with infinite branches;
(i) M is a function fromT to the set of object-level models,.
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The arrows are homomorphisms between the models as defined in Section 3.
If no confusion is expected we often denote a modevbpnly.

It caneasily be verified that this indeeddefinesa category,i.e. the compositionof two
homomorphisms is a homomorphisoempositionis associativeand the identity function
on any model is a homomorphism.

Proposition 5.2
The following hold for homomorphisms iBTM.
a) A homomorphism is epic iff it is surjective.
b) A homomorphism is monic iff it is injective.
c) If we have objectsrj and homomorphisms; : A; = C then:
the h; are jointly epic iff for everyc in C thereis ani and ana in A; with
hi(a) = c.

Proof
a) Letp: (M, T,<) = (N, S, <)be an epimorphism, but supposein Sis not in
the image ofp. Let Ts be the subtree of rooted ats, by Lemma 3.2(v)Ts is not
in the image ofp either. LetTg be an isomorphic tree, say with root Now
construct a modelN', S, <) which is the same a8, S, <) but also incorporates
Tg, With if t <s, then it has an extra link <s'. Define two homomorphisms, g
: (N, S, )= (N, S, <) wheref is the embedding of into s', and g is the
same except thatg in S is mapped toTg in S'. Now it holds fp = gp but f# g.
Contradiction, sop must be surjective. On the other hand, supposs surjective, let
f,g be given withfp = gp and supposez g. Then there exists in S with
f(s) # g(s), but s = pt) for somet in T, and thenfp(t) = f(s) # g(s) =gp(t).
Thereforef=g so p is epimorphic.
b) Supposep is injective, but not monic, then there existg with pf=pg but
f 2 g. Then there iss with f(s)z g(s) but then pf(s) # pg(s). Therefore p is
monomorphic. On the other hand, suppgseM, T,<) = (N, S, <)iS not
injective, so there are, t in T with p(s) = p(t). But thenp maps the pattpg
from the root tos and the pattp; from the root tot onto the same path from the
root to p(s). Now construct a mode{m', T', <) induced byPs and P;, and let f
be the embedding of this model int®, T, <), and letg map Ps into P; and vice
versa. Now it holds thapf = pg but f # g, and thereforep is not monic.
C) Supposeh; are jointly epic, but there is @ which is in the image of ng. Then
the subtreeT rooted atc is in no image either. Now construct a modelhich is a
copy of C except that the treg. has a copyr¢ in which bothc and ¢’ have the
same immediate predecessor. kdbe the embedding of into D, and g mapg.
onto T¢. Then for alli fhj=gh but f# g. So as this was not to be the case,

24



every c is in the image of some;. Conversely, suppose evetyin C is in the
image of someh;. Take f and g with fhj =gh for all i, but supposef # g, SO
there is ac in C with f(c) # g(c), then c is in the image ofh;j for some h;,
suppose c = h(s), but then fhj(s) = f(c) # g(c) = ghi(c), which was not to be the
case. Thereford = g, so theh; are jointly epic.

In the category BTM we cangive a characterizatiorof closedmodelswhich rendersthe
intuition of what closed is better:

Proposition 5.3
Let M be a model, then the following are equivalent:
(i) M is closed.
(i) For all s, t andt with s<t s<t and M{= My it holds that

t=t', and for minimal elements, r with M, = My it holds thatr=1r".
Proof

SupposeM is closed but there arg t# t with s <t s <t and Mt =M¢. Define
a homomorphisn¥ on T which is identity except thaftt) = f(t) . Let the successor
relation on T' =1f[T] be defined byu < v iff there areu' andv' in T with

u=f(u) andv="f(v) andu <v'. Let M" be defined bym'¢s)= Ms. Since f

is surjective and identity except on andt where Mt = My this is well-defined. It
is easy to check that the model based on(T', <) is a forest and therefore iBTM.
Now f is not injective, so not monic and then is not closed, which it was
supposed to be. If there are roets' with My = My then this same construction can
be applied. Therefore condition (i) must be satisfied.

Conversely, suppose condition (i) is satisfied, butis not closed. Then there must

be a homomorphism: M — M' which is not monic, so not injective. Therefore there
must bet # t' with f(t) = f(t) . One can take these points at a minimal distance from
their roots. If they are roots, them;= M'f(t) = M'f(t) = My and then condition (ii)

is violated. If they are not roots, then still = My . Furthermore they have immediate

predecessorss<t and s'<t' . Then f(s) < f(t) and f(s") < f(t') = f(t). Then it
must hold thatf(s) = f(s"), and as above then also

Ms= Mg. Butast and t were chosen at minimal depth it must hold thats,
and then condition (ii) is violated again. Therefaremust be closed.

Soin a closedmodelthereareno two different minimal elementswith equivalentobject-
level model and any two differesticcessorsf a point havea non-equivalenbbject-level
model(again,in CTL* a structurewith this propertyis called deterministi§. We will
verify which constraints are satisfied BTM:
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Constraint 1
For any p: M — L there existsN and homomorphismsg : M —» N epic and
r: N = L monic such thap =rq.
Proof
Let M,L be based ors, <), (P, <) respectively. LetT consist of alls in P
which are in the image of. Let the successor relation an be defined bys <t,
where s=p(s') andt=p(t) iff p(s’)<p(t) in P, and let N be defined by, ifs
= p(s'): N(s) = M(s). Letq be equal top on all s in S, then g is surjective and
therefore epic. Let be the embedding of in P. Thenr is injective and therefore
monic. Now it needs to be checked th#t T, <) is indeed an element BffM:
every component of T has to be a tree:
(1): rooted
Takes in C, thens=p(s) let r' be the root of the component ef then
p(r) =r is the root ofCc. Taket in C and suppose #r. Then t=p(t'), so there
is a pathr' «t', which is mapped into a path«t
(i1): Left Linear:
Takes in C then the set ot with t«s is the pathr « s, which is
isomorphically mapped frons, where that path is totally ordered.

The idea in the proof is thaf maps M ontoits image(in L) and r embedghis image
into L.

Constraint 2
For every f, g : L - M there exists a coequalizér: M - N

Proof
Let L and M be based onp, <) and (T, <) respectively.
Define a relation=~ on T as follows:s =~t iff there is au in P with s =f(u)
and t = g(u) or vice versa, and let be the reflexive and transitive closure of.
Let s consist of the equivalence classes. For ki, ko in' S, define kq <kp iff
there iss in k; andt in ky with s <t Set N([s]) = M(s), and let h(s) = [s]
(the class ofs). First we will check if we have constructed a correct mades, <).
1. It can be easily checked that on s is irreflexive, antisymmetric and
antitransitive.
2. N is well-defined: if s =~t then s =f(u), t = g(u), SOM(s) = L(u) = M(t).
Since this is transitive M is the same on all members of a class.
3. S is aforest:
It can be easily seen thatsf~t thens andt are at the same depth n Therefore
we can associate a depth to every class, apgl<fit] then the associated depth of
[s] is one lower then the depth associated withif the depth of a class is zero then it
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can have no predecessor because all of its elements are at depth zero and therefore have
no predecessors. Thus, no infinite descending chains can exsstisseell-founded.
The proof of left linearity is straightforward.

Now we will see thath is a homomorphism: ifs <t then by definitions] < [t].

Also by definition N([s]) = M(s). Supposes is minimal, then ift~s t must be at
the same depth as so it is minimal too, thereforg] can have no predecessor, so is
minimal too.

Let's check thathf = hg: take s in P then f(s) ~ g(s) so that

hf(s) = hg(s) Suppose we have a homomorphismMAT, <) » (K, R, <) with

kf = kg. Then definee: (N, S, <)= (K, R, <) by e([s]) = k(s) This is well-

defined since if s~t then s =1fu) and t=g(u) and thenk(s) = k(f(u)) = k(g(u))

= k(t). If [s] <[t] then there areu in [s] and v in [tf] with u<v so then k(u) <
k(v) soe([s]) < e([t]). Also, N([s]) = M(s) = K(k(s)) = K(e[s]). If [s] is a minimal
element, thers is minimal, and thereforg(s) is minimal, se maps minimal
elements to minimal elements.

By definition it holds thateh = k

Uniqueness:

If for all s it must hold thate([s]) = k(s) then by definition thise is unique.

The coequalizer identifies points which are the imagemdint of L under f, respectively

Constraint 3

For everyD in BTM there exists an epic closuremf

Proof

The idea in the construction of this closure is to identify common initial subbranches
(up to object-level equivalence) with each other as much as possible.

Let D be M, T, <).
Define an equivalence relation anas follows:
s~tiff s<s andt<t ands ~t and M(s) = M(t), or
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s andt are root andvi(s) = M(t).
Now let S be the set of equivalence classes, define N on S by N(s])= M(s)
(this is well-defined), whergs] is the equivalence class ©fFor two equivalence
classesk1l and k2, define k1 < k2 iff there iss ink1 andt in k2 with s<t
Notice that two elements can only be equivalent if they are at the same distance from the
root. It is easy to check that the orderinagon s is irreflexive and antitransitive.
The proof of well-foundedness ai, S, <) is similar to the proof of constraint 3.
Left-linearity is also straightforward.
Now we will check that the mapping which takes an elementof T to its class in
S is a homomorphism:
1.if s<tin T then[s]<[t] by definition.
2. N([s]) = M(s) by definition
3. Take ans in T which is a root, and suppogs is not a root, then
there is at ~s which is not a root, but then it can not hold thatt By definition h
is surjective and therefore epic. Now suppose we hay®, T, <) » (L, P, <)
epic. Define e : (L,P, <)= (N, S, <) as follows:
if we havet in P, thent=g(s) for somes. Let e(t) = [s] We have to show that
this is well-defined: supposeg(s) = g(t) then we have to show that~t If g(s) =
g(t) then M(s) = N(g(s)) = N(g(t)) = M(). If s andt are root then we are ready. If
not then they are both not root (becagsés a homomorphism). So let<s and t
<t then it must hold thafy(s) = g(t) and thereforem(s') = M(t"), SO now we have
to check if s' ~ t'. This process can be iterated until bathand t are root, then we
are ready. S@ is well-defined. Ifs<t in P then becausg is epic we haves =
g(s), t=g(t) and thens' <t so [s]< [t]. Take s in P, then s =f(t), SO
L(s) = M(t) = N([t]) = N(e(s))
Let s in P be a root, thers = f(t) with t arootinT and thene(s) = [t]
is a root. Thusg is a homomorphism.

Using Proposition5.3 the closuremustidentity minimal elementswith equivalentobject-
level modelsand points with a common predecessowhich have equivalentobject-level

models.

Constraint 4
Every set of models has a coproduct.

This coproduct is just the disjoint union of the set of models.
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Proof
Let (A)ie | be a collection of models, where thews of time canbe takendisjoint.
Then the coproduct is the model which is thdisjoint union of modelsin A;. This
is then always a forest, and thereforeagain in our category. For every i the
associated homomorphismy : Aj - C is justthe embeddingof A into the part of
c taken fromA;. Now suppose we have a modeland homomorphisms
gi: Aj » B for everyi. Set hj(Aj) to be the part ofc coming from A;. Now define
a homomorphism: C - B by f(s) = g(t) if hjt) =s. As hj(A;) is disjointfrom
hj(Aj) if j is unequal toi, and everys in C isin hi(Aj) for somei, this mapping
is well-defined. Becauset is a homomorphismon every componentof C, it is a
homomorphism,and moreover g; = fh;. Now suppose we have another
homomorphism f : ¢ — B. If we look at f|hj(Aj) then it must hold that
gi = f'lhi(Aj) h;, andas h; is anembedding, f'|hj(Aj) = gj, andthuson Aj,
f =f. As i is arbitrary, it must hold that=f. So f is unique.

Constraint 5
If four homomorphismsb:A—- B, c:A—> C, d:B—> D ande:C— D are
given such thatb = eg b is epic ana is monic, then there is a homomorphism
f: B — C such thatb =c and ef = d.
Proof
Constructf: B - C as follows. Takes e B, which hasl{ is surjective) &-
inverses' e A (b(s) =9 and d(b(s") = e(c(s)) Define f(s) = c(s')
1. This is well-defined:
Suppose s, t € A with b(s) = b(t) =s. Then
e(c(s) = d(b(s)) = d(b(t)) = e(c(t))
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but as e is injective we havec(s') = c(t).
2.f is a homomorphism:

I) Supposes <t in B then there exist', t' in A with s'<t andb(s')=s and
b(t) = t. Therefore c(s') < c(t') and f(s) = c(s'), f(t) = c(t'), SOf(s) < f(t).

ii) Takes e B with b(s) = 5 then Bs= Ag'= C¢(s') = C(s)-
i) If se B is minimal andb(s) =s then s' is minimal and therefore(s') = f(s)
is minimal;
3. By constructionfb = c. Now take s in B, s = b(s") then

d(s) = d(b(s")) = e(c(s) = e(f(s))

SO d = ef.

As BTM satisfies the constraints tife previoussection,we havethat thereexist general
constructions for the joint closure and final model of a set of models.

6 Logical connections

In this section we present some of the results that can be obtained by afiy@ylugbraic
techniques developed abovetie modeltheory of branchingtime temporalmodels.First
we will summarizesome persistencyresults of formulae under coproductsand joint
closures.Next we will discussfour specific classesof modelsand introduceassociated
semanticconsequenceelations,and their mutual connectionsOne of theseclassess the
class of linear time model8Ve will discussthe connectionswith that classin somemore
detail.

Proposition 6.1
SupposeT is a disjoint union of isolatet] .
Then fort in T;
M, ) F o o (M|Tj, ) E o
ME® o { M|Tjlie I} F ¢
Proof
Straightforward.

As an immediate consequence we have persistency under the coproduct construction.

Corollary 6.2
Let (Mj)ie | be a set of temporal models ardtheir coproduct.
a) For any formulap it holds
P, YE @ o (Mj,t) E o
PEo o for all iinl itholds Mj E ¢
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b) Let Th be a temporal theory, thenis a model ofth if and only if for everyi in
I the modelm; is a model ofTh.

Because we have shown that the joint closurebeguilt from a coproductfollowed by a
surjective homomorphism, and the coproduct construction behavesndelipersistency,
we have persistency under joint closure in the following sense.

Corollary 6.3
Let C be the joint closure of the indexed set of mod#®l§g ; ¢ |, where M; is based
on Ti. Fort e T;, t denotes the corresponding time point in the joint closure.
Every formulae that is forward persistent under surjective homomorphisms satisfies

(Mi, ) F ¢ = C1t) Fo
MiE ¢ for all iin | = CEoQ
Every formulae that is backward persistent under surjective homomorphisms satisfies
C1t) Fo = (Mi,t) F ¢
CEoQ = MiE ¢ for all iin |

Every formulae that is two-sided persistent under surjective homomorphisms
satisfies

Ct) Feo 4 (Mi, ) F o

CEoQ o MiE ¢ for all iin |

In the classBT of all branching time modelse distinguishtwo subclassespamely LT,
the classof lineartime modelsand cL, the classof closedmodels.Sinceit is easyto
establish that linear time models are closed we have

LT « CL =« BT

There are other connectionsas well. Every branchingtime model can be mappedby a
surjectivehomomorphisnonto a closedone. Moreover,all branchesn a branchingtime
modelarelinear models,andtogetherthey coverthe whole flow of time. For any set of
models s its joint closure, denoted Iu(S), can be constructed. Under certain conditions
this joint closure is a final model ferclassof models.In principle, from theseclassesof
models we can define corresponding satisfaction relations.

Definition 6.4
Let s be a class of branching time temporal models. For any temporal fognula
define:
SEBT @ o (VM eBT: MeS = MF Q)
SFcLe o (VMeCL: MeS = MF @)
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SELT® o (VM elLT: MeS = ME©Q)

SEJCL® o jic(S)F o

Obviously, we have that, fonstances k.1 ¢ & S n LT kgt ¢. Thesedefinitionsmay
seem rather unusual. An interesting case is whes the set ofll branchingtime models
of atemporaltheory Th. Then s kgt ¢ meansthat ¢ is a branchingtime semantical
consequence ofh. Furthermores £ 1 ¢ meansthat ¢ is alineartime consequencef
Th.

There are some apparent logical relations between these notions:

Proposition 6.5

SEBT @ = SECL® = SELT®
= SEJCL®

A main question is how different they are, andg@meral what the relationsare. Thereis
a real difference betweenlinear time models and the others becausethey satisfy the
following axioms expressing indistinguishable future:

IXe & VX o
IJFe & VF o
G & VG o

The final modelof a setof (linear) time modelswill notin generalsatisfy theseaxioms.
Any branchingtime modelsatisfying theseaxioms can in fact be mappeduniquely to a
linear one.

First we needthe following connectionbetweena model M and its collection of linear
time submodels (its branches8)(M) . This notionis extendedo a classof modelss: the
setof all branchef modelsin s is denotedby Br(S). By cl(M) we denotethe (epic)
closure of M.

Theorem 6.6
Let M be any model. ThefcI(Br(M)) = cl(M).
In particular,m is closed if and only ifici(Br(M)) = M.

Proof
We will apply Proposition 4.18. To this end it is required that the canonical
embeddingsa, : L - M for Lin Br(M) are jointly surjective. Since/ is covered
by its maximal branches and each maximal branch is an elemBrif this is
indeed the case.
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In this theorem isomorphisme) is meant in the category-theoretic way. Here it méaats
the flows of time areisomorphicwith correspondingequivalent)object-level.Moreover,
we havethe following resulton the existenceof final modelsof a theory. For a classof

modelss the class of modek is defined by

S* = {jcl(S) | S' a set of models with Sg S }.

In particular,s* containsthe joint closure jcI(S) of all modelsin s, butit alsocontains
the closure of each individual model: for € S, we have thatcl({M}) = cl(M) .

Theorem 6.7
Let Th be a temporal theory that is forward persistent under surjections anset of
models ofTh. Thens* is a set of models afh and the joint closurgcl(S) of all
models ofs is a final model ofh in S*.

Proof
BecauseTh is forward persistent under surjections, we hagys) = Th. Now from
Theorem 4.20 it follows thajcl(S) is a final model irs*.

A classof modelss is closedundersubmodelsf for eachmodel in the class,all of its
submodels are also in the class. In particular, in that case wat@me S. A class Sis
closedunder surjectionsif whenever M isin S and f : M — N is a surjective
homomorphismN is alsoin S. After thesepreparationsve are able to establishthe
following theoremthat gives more preciseconnectionsbetweenthe different satisfaction
relations.

Theorem 6.8
Let s be a class of models, amrd any formula.
a) If s is closed under submodels, aqdis forward persistent under surjections,
then

SEBT @ Lad SELT ¢
b) If s is closed under surjections agdis backward persistent under surjections,

then

SEBT @ o SEcL @

c) If s is a set, then
S*EBT @ = SEicL ¢

If, moreover, ¢ is backward persistent, then
S*EBT @ L SEicL ¢

d) If ¢ is forward persistent, then
Br(S) kLT = SEBT @
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If, moreover,Br(S) ¢ S, then

SELT @ e Br(S) FLT® & SEBT @
If, in addition, Br(S*) = Br(S), then
SkELT O e SEBT @ e S*EBT @

e) If s is a setandBr(S) = Br(S*) ¢ Sande¢ is both forward and backward
persistent, then
SELT @ 4 SEJcL @

Proof

a) Assume S £ 1 @. Supposean M in S is given.Becauses is closedunder
submodelsBr(M) E ¢. By forward persistency op we alsohave M = ¢. We have
proven

SEBT @ 4 SELT ¢
b) Assume S Ec ¢. Let M in BT begivenwith M in S. Thenthereis a
surjective homomorphism afi onto its closureci(M) in CL. Becauses is closed
under surjective homomorphisms Wwave ci(M) in S, andtherefore ci(M) E ¢. By
persistency ofp we haveM E ¢. We have proven

SEBT @ 4 SEcL @
c) The first implication is trivial. Assume is backwardpersistenands ;¢ ¢. Let
M be any model iis*. Then wecanmap M in jcl(S). Sincejcl(S) E ¢, and ¢ is
backward persistent we hawe - ¢. Therefore

SEBT @ 4 SEFI @
d) Suppose is forward persistent, argk(S) =1t ¢ then every model ishas a
branch and this branch satisfggsThereforeby persistenc8kgr ¢.
Assume, moreoveBr(S) c S, then it is trivial thas kgt ¢ impliesBr(S) L1 ¢, and
that this is equivalent 8= 7 ¢
Assume, in additiorBr(S*) = Br(S), then the previous result can be applieg*dt
follows that

S*ELT @ 4 Br(S*) kBT ¢ < S*EBT @
e) This follows from c) and d).

In Corollary 6.3 and Theorems5.7 and 6.8, propertiesare establishedor formulae which
are forward/backwardpersistentunder surjective/injectivehomomorphisms.The question
ariseswhetherthere are formulae persistentunder thesespecialhomomorphismsout not
under any homomorphism. This turns out to be not the case:

Proposition 6.9
A formula is forward (backward) persistent under surjective/injective homomorphisms if
and only if it is forward (backward) persistent under any homomorphism.
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Proof
- First we will prove the case for forward persistency under surjections. Suppse
forward persistent under surjective homomorphisms, but not under any homomorphism.
Then there is a (non-surjective) homomorphisnv — M' with te T such that
(M, t) £ @ but (M, f(t)) ¥ ¢. Now construct the model which consists of a copy
of M and for every poings of M' not in the image of a branchs of M' with
se B (disjoint from the copy ofv and disjoint from every other such branch). Then it
is easy to see thal, t) = ¢. Let g: N— M' be the function which maps the copy of
M to fM] in M', and which maps every added branch to the same bran¢h iFhen
g is a homomorphism ang is surjective andMm', g(t)) ¥ ¢. This is in contradiction to
the assumption thag was forward persistent under surjective homomorphisms.
Thereforee is forward persistent under any homomorphism. The proof fro backward
persistency under surjective homomorphisms uses the same construction.
- Now for the case of backward persistency under injective homomorphisms. Sygppose
is backward persistent under injective homomorphisms, but not under any
homomorphism. Then there is a (non-injective) homomorptfiskn —» M with
te T such that(m', f(t)) £ @ but (M, t) ¥ @. Now construct a model by taking a
copy of M and adding the following: for every poistof M, and for every brancis'
of M' with f(s) e B', if there is no equivalent branah in M with se B, then we
add such a branch iN. Now let h: M — N be the injective homomorphism which
maps M to its copy inN. Let g: N—» M' be the homomorphism (!) which mapss)
to f(s) and the branches from' in N to their counterparts im'. Of course the
model N and the homomorphism are constructed in such a way thats branch-
surjective, and we can use Proposition 3.7: sipee f(t)) £ ¢ and f(t) = g(h(t))
and g is branch-surjective, we have\, h(t)) £ @, but ash is injective ande is
backward persistent under injections we havet) £ ¢, contradicting the assumption.
Thus ¢ must be backward persistent under any homomorphism. The proof for forward
persistency under injective homomorphisms uses the same construction.

Theorem 6.8 describes some cases in which the different satisfaction relatieqgsaréhe
guestion still remains whether they are not in general always equal. This is not the case:

Proposition 6.10
In generalegt # =cL, EcL # ELT, FCL # FJcL - Moreover, for each of these
inequalities we can find a natural object-level logic (propositional logic) and a temporal
theory Th such that for som@ we haveMod(Th) £, @ but notMod(Th) E, @.
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Proof

We have already remarked that= 1 3X ¢ & VX ¢ for any classs; it is easy to see
that this does not hold for the other consequence relations. Let’s legl¢adnd =c| .
Take any modehm e a5 and leta e £o be such that there exigt | e ag with
keoa andlk,a (thus the object-level logic should not be trivial). Define the
following two formulae:

atgp := H(Ca A = Ca)

aty:= P(Ca v = Cd) A HH(Ca A = Ca)
It is easy to see thaitg is true in a point if and only if it is a minimal element ang
is true in a point if and only if it is a successor of a minimal element. Now define

Th = {ati=>Co|mEge,pe Lo,i=0,1}uU

{ati»> = Co|mMKE;9,9€ Lo,i=0,1}uU
{ atg » AF(AF(Ca)) } and

¢ = at1 —» IF(Ca)
If M is a closed model ofh then all initial points and their successors must be
equivalent tom, but asM is closed, it must have a unique roeotvith one successor
s. Then (M, r) £ IF(3F(Ca)), SO there exists a point with r«t and
(M, t) £ JF(Ca), but then (M, s)k JFF(Ca) sinces is the only successor of
Thus M k @, and we have provetod(Th) =cL @. Now consider the following
branching time model:

m k k k

In this model, the minimal element and its successors are equivalenatal ak state
is reachable from the root in at least two steps (remembek that), so this model is
a model of Th. But the lower successor of the root is a successor of a minimal element
but has onlyl states reachable (in whictw is not true), so it is not a model ¢f We
have proven thaMod(Th) ¥gT ¢.
Now we will look at=c. and e jcL. Let me a1y and leta e £5 be such that there
exist k, le ¢ with kega and | ¥qa (thus the object-level logic should not be
trivial). Define:  Th := {atg—> Co|mkg@,9e Lo}uU

{atg—> - Co|mEye,0e Lo}
Let the object-level logic be such that, is a set (for instance propositional logic). Then
we can takejcl(Mod(Th)) which has a unique roat (with object-level equivalent to
m), in which for each point the set of its successors consists of one state for each object-
level model (up to equivalence). This model contains a branch startinghatvhich
each point hak as its object-level model. So

jcl(Mod(Th)) E atg— IF(Ca)
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which gives Mod(Th) k3¢ atg = 3 F(Ca). Now consider the linear model
consisting of a root with object-level model equivalentrtcand all the other points have
object-level models equivalent toThen this is a closed model of but

N ¥ atg— IF(Ca) SO Mod(Th) EcL atg » I F(Ca).

7 Conclusions

Temporal models can be used to describe the behaviour of dynamic processes. The linear
models usually describe a possible behavioural pattern, and a set of such models can be us¢
to describe multiple possible patterns. These models may be described by a temporal theory
Another way of describing possible behaviour is by a branching time process which
branches at any time a pattern can continue in more than one way. These models can also b
axiomatized by a temporal theory. In this article we identified a uniform algebraic manner in
which to relate these different kinds of models. It was shown that the branching time models
form a category with homomorphisms as arrows between objects. A number of operations
like the coproduct, joint closure and epic closure which perform a kind of merging of models
into a final model were defined in general for categories and it turned out that these
operations can be used in the category of branching time models. Therefore, out of a set of
linear models we can construct a branching time model which incorporates all the linear
models. This can then be transformed by homomorphisms into a model which is final. In
that model all decisions that have to be made during a process (which branch to take) are
moved as far backward in time as possible.lt is then interesting to identify the formulae
whose truth value remains the same through these constructions, so that if models of such a
formula are merged, it remains a model of such a formula. Then one can define satisfaction
relations based on linear, branching time, closed or final models and investigate the
connections between these relations.

In [Sp90], a reduction from linear time logic to branching time logic is given, by
translating formulae from linear time logic into formulae from branching time logic. The
translation replaces threoperator (“sometimes in the future”) by, and forces ‘linear
behavior’ on subformulae (meaning thata and 3Fa should be equivalent). The idea of
viewing a linear time model as a (simple) branching time model, and the construction of the
set of linear time model8r(M) of branches of the modeM, occur in [Sp90].

Different papers in the literature on temporal logic discuss the usefulness of linear
time temporal logic versus branching time temporal logic; for example, in [EH86], [GI94].

In general it is argued that for applications where expressivity demands are not high, the
linear time approach has (conceptual and computational) advantages, whereas in cases whe
certain types of path quantification are required, branching time approaches have advantage:
In the application areas of reasoning processes of knowledge- and agent-based systems
addressed by us, the results of this paper were successfully applied to develop the model
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theory of the dynamics of (hnonmonotonic) reasoning processes based on default logic
[Re80]. An important characteristic of default reasoning is that usually different lines of
reasoning are possible, each leading to a set of conclusions. In default logic these conclusiol
sets are descibed by (Reiter) extensions [Re80]. In common examples this leads to a variety
of extensions. In logic one is used to express semantics in terms of models that represent
consistent descriptions of the world and semantic entailment relations based on a specific
class of this type of models. These notions are not really adequate to describe alternative
conclusion sets for default reasoning. Sometimes one introduces sceptical entailment (what i
true in all conclusion sets) or credulous entailment (what is true in some conclusion set).
From a semantic point of view both notions only give a limited description: they only

indicate global upper and lower bounds for the conclusion set of particular lines of
reasoning.

In [ET96] we integrate process aspects of the reasoning in the semantics in an explicit
manner. The approach extends the one introduced in [ET93], where it was shown how one
line of default reasoning corresponds to one linear time model. Each extension of a default
theory is generated by a reasoning process, and therefore corresponds to a temporal model
describing this process. These temporal models can be described by a temporal theory whic|
depends on the default theory. Using the machinery of the current paper, this linear time
semantics has been used to define a branching time semantics and a joint closure temporal
semantics for default logic in [ET96]. Each line of reasoning corresponds to a branch in the
joint closure model. It is shown how (under a particular topological condition, called
extension completeness) an appropriate joint closure model can be constructed in which
precisely all possible lines of reasoning (and the resulting conclusion sets) can be represente
(even though they might be mutually contradictory). The semantics of the default theory can
be defined on the basis of this single joint closure model. In particular, sceptical and
credulous entailment relations can be defined as well on the basis of this model. For more
detailks, see [ET96].
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