
 1

Modelling the Dynamics of Reasoning Processes:
Reasoning by Assumption

Catholijn M. Jonker1 and Jan Treur1,2,*
1

Vrije Universiteit Amsterdam, Department of Artificial Intelligence, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
2

Utrecht University, Department of Philosophy, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

ABSTRACT
To model the dynamics of cognitive processes, often the Dynamical Systems Theory (DST) is advocated. However,
for higher cognitive processes such as reasoning and certain forms of natural language processing the techniques
adopted within DST are not very adequate. This paper shows how an analysis of the dynamics of reasoning
processes can be made using techniques different from those of DST. The approach makes use of temporal traces
consisting of sequences of reasoning states over time to describe reasoning processes. It is shown for the example
reasoning pattern “reasoning by assumption”, how relevant dynamic properties can be identified and expressed
using a temporal trace language. Example traces have been acquired in two ways. First, empirical traces have been
generated based on think-aloud protocols of a subject solving a number of cases of a reasoning puzzle. Second, a
simulation model has been developed and executed for the same cases of the reasoning puzzle. For all these traces,
the dynamic properties can and have been analysed automatically, using a software environment that has been
developed. Thus the feasibility of the approach was shown.

* URLs: http://www.cs.vu.nl/{~jonker,~treur}
 Email addresses: {jonker, treur}@cs.vu.nl

1. Introduction

Within Cognitive Science in recent years the
dynamical perspective on cognitive phenomena has
been emphasized and received much attention. In
most literature focussing on the dynamics of
cognition, the Dynamical Systems Theory (DST) is
taken as a point of departure; e.g. (Kelso, 1995; Port
and Gelder, 1995). This theory assumes that, in
contrast to the use of symbolic representations,
modelling dynamics of cognitive phenomena can be
done more effectively by using representations based
on real numbers and mathematical techniques from
calculus; it offers mathematical simulation and
analysis techniques from the area of difference and
differential equations. The many convincing examples
that have been used to illustrate the usefulness of this
perspective often address lower level cognitive
processes such as sensory or motor processing. Indeed
one of the advantages of the Dynamical Systems
Theory is that it is able to model the temporal aspects
of events taking place on a continous time scale, such
as, for example, recognition time, response time, and
time involved in motor patterns and locomotion.

 Also some examples of higher level cognitive
processes have been addressed using DST; for
example the dynamic models for decision making
developed in, e.g., (Busemeyer and Townsend, 1993).
Especially the continuous adaptive aspects of the
decision making are covered nicely in this approach.
Areas for which the quantitative approach based on
DST is assumed to have less to offer are the dynamics
of higher level processes that are considered to have
mainly a qualitative character, such as certain
capabilities of language processing and reasoning.
This evaluation is based on three assumptions: (1) if
dynamics of cognitive processes is to be modelled,
then DST is the appropriate approach, and (2) DST is
based on the combination of two principles or
commitments, the first one of which is a
methodological or philosophical commitment, and the
other one is a commitment to a certain package of
techniques to be used: (a) modelling cognitive
phenomena requires modelling their dynamics, and
(b) modelling dynamics of cognitive phenomena
requires mathematical techniques based on difference
and differential equations, and (3) phenomena where
qualitative aspects are considered dominant cannot be

 2

adequately modelled using difference or differential
equations.
 In this paper the position is taken that, in contrast
to assumption (1) above, due to its commitment to
quantitative representations and techniques, DST is
not always the most adequate possibility to model
dynamics of cognitive phenomena. In the last two
decades, within the areas of Computer Science and
Artificial Intelligence alternative techniques have
been developed to model the dynamics of phenomena
using qualitative means. Examples are process
algebra; dynamic and temporal logic; event, situation
and fluent calculus; e.g., (Eck, et al. 2001; Holdobler
and Tielscher, 1990; Kowalski and Sergot, 1986;
McCarthy and Hayes, 1969). Just as difference or
differential equations, these alternative techniques
allow to express temporal relations, i.e., relations
between a state of a process at one point in time, and
states at other points in time. In contrast, the form in
which these temporal relations are expressed can
cover symbolic and non-quantitative aspects as well.
To illustrate the usefulness of such an approach for
higher level cognitive phenomena, the dynamics of a
practical reasoning pattern is addressed: reasoning by
assumption. For this reasoning pattern both analysis
of human reasoning protocols and agent-based
simulation of reasoning patterns have been performed.
 The language used to express dynamic properties
is formal but not based on calculus. It allows for
precise specification of these dynamic properties,
covering both qualitative and quantitative aspects of
states and temporal relations. Moreover, software
tools can and actually have been developed to (1)
support specification of dynamic properties, and (2)
automatically check specified dynamic properties
against example traces to find out whether they hold.
This provides a useful supporting software
environment to evaluate empirical data on the
dynamics of cognitive processes. In the paper it is
shown how dynamic properties of think-aloud
protocols of reasoning patterns can be checked
automatically using this software environment.
 In Section 2 the dynamic perspective on reasoning
is discussed in some more detail, and focussed on the
pattern ‘reasoning by assumption’. Section 3
addresses some more details of the language used.
Section 4 presents a number of the dynamic properties
that have been identified for patterns of reasoning by
assumption. Section 5 discusses empirical validation.
Here it is shown how existing think-aloud protocols
involving reasoning by assumption can be formalised
to reasoning traces. For these reasoning traces a
number of the dynamic properties have been
(automatically) checked. In Section 6 a similar
analysis of the reasoning traces generated by a
simulation model is presented. In Section 7 the results
are compared and discussed.

2. A Model for the Dynamics of Reasoning

In history, formalisation of the cognitive capability to
perform reasoning has been addressed from different
areas and angles: Philosophy, Logic, Cognitive
Science, Artificial Intelligence. Within Philosophy
and Logic much emphasis has been put on the results
(conclusions) of a reasoning process, abstracting from
the process by which such a result is found: when is a
statement a valid conclusion, given a certain set of
premises. Within Artificial Intelligence, much
emphasis has been put on effective inference
procedures to automate reasoning processes. The
dynamics of such inference procedures usually is
described in a procedural, algorithmic manner;
dynamics are not described and analysed in a
conceptual, declarative manner. Within Cognitive
Science, reasoning is often addressed from within one
of the two dominant streams: the syntactic approach
(based on inference rules applied to syntactic
expressions, as common in the logic-based approach,
e.g., (Braine and O’Brien, 1998; Rips, 1994)), or the
semantic approach (based on construction of mental
models); e.g., (Johnson-Laird, 1983; Johnson-Laird
and Byrne, 1991; Yang and Johnson-Laird, 2000;
Yang and Bringsjord, 2001; Schroyens, Schaeken,
and d’Ydewalle, 2001). Especially this second
approach provides a wider scope than the scope
usually taken within logic. Formalisation and formal
analysis of the dynamics within these approaches has
not been developed in depth yet.
 To understand a specific reasoning process,
especially for practical reasoning in humans, the
dynamics are important. In particular, for reasoning
processes in natural contexts, which are usually not
restricted to simple deduction, also dynamic aspects
play an important role and have to be taken into
account, such as dynamically posing goals for the
reasoning, or making (additional) assumptions during
the reasoning, thus using a dynamic set of premises
within the reasoning process. Decisions made during
the process, for example, on which reasoning goal to
pursue, or which assumptions to make, are an inherent
part of such a reasoning process. Such reasoning
processes or their outcomes cannot be understood,
justified or explained to others without taking into
account these dynamic aspects.
 The approach to the semantical formalisation of
the dynamics of reasoning presented in Section 2 is
based on the concepts reasoning state, transitions
between reasoning states, and reasoning traces: traces
of reasoning states. To specify dynamic properties of
a reasoning process, in Section 3 a language is
introduced in which it is possible to express properties
of reasoning traces.

 3

2.1 Reasoning state

A reasoning state formalises an intermediate state of a
reasoning process. It may include information on
different aspects of the reasoning process, such as
content information or control information. Within a
syntactical inference approach, a reasoning state
includes the set of statements derived (or truth values
of these statements) at a certain point in time. Within
a semantical approach based on mental models, a
reasoning state may includes a particular mental
model constructed at some point in time, or a set of
mental models representing the considered
possibilities. However, also additional (meta-
)information can be included in a reasoning state,
such as control information indicating what is the
focus or goal of the reasoning, or information on
which statements have been assumed during the
reasoning. Moreover, to be able to cover interaction
between reasoning and the external world, also part of
the state of the external world is included in a
reasoning state. This can be used, for example, to
model the presentation of a reasoning puzzle to a
subject, or to model the subject’ s observations in the
world. The set of all reasoning states is denoted by
RS.

2.2 Transition of reasoning states

A transition of reasoning states, i.e., an element < S,
S’ > of RS x RS, defines a step from one reasoning
state to another reasoning state; this formalises one
reasoning step. A reasoning transition relation is a set
of these transitions, or a relation on RS x RS. Such a
relation can be used to specify the allowed transitions
within a specific type of reasoning. Within a
syntactical approach, inference rules such as modus
ponens typically define transitions between reasoning
states. For example, if two statements
 p , p → q
are included in a reasoning state, then by a modus
ponens transition, a reasoning state can be created
where, in addition, also
 q
is included. Within a semantical approach a
construction step of a mental model, after a previous
mental model, defines a transition between reasoning
states. For example, if knowledge ‘if p then q’ is
available, represented in a mental state
 [p], q
and in addition not-q is presented, then a transition
may occur to a reasoning state consisting of a set of
mental models
 p, q ; ~p, ~q; ~p, q
 which represents the set of posibilities considered; a
next transion may selection of the possibility that fits
not-q, leading to the reasoning state
 ~p, ~q

2.3 Reasoning trace

Reasoning dynamics or reasoning behaviour is the
result of successive transitions from one reasoning
state to another. By applying transitions in succession,
a time-indexed sequence of reasoning states (γt)t∈T is
constructed, where T is the time frame used (e.g., the
natural numbers). A reasoning trace, created in this
way, is a sequence of reasoning states over time, i.e.,
an element of RST. Traces are sequences of reasoning
states such that each pair of successive reasoning
states in this trace forms an allowed transition, as has
been defined under transitions. A trace formalises one
specific line of reasoning. A set of reasoning traces is
a declarative description of the semantics of the
behaviour of a reasoning process; each reasoning
trace can be seen as one of the alternatives for the
behaviour.

2.4 Reasoning by assumption

The specific reasoning pattern used in this paper to
illustrate the approach is ‘reasoning by assumption’ .
This type of reasoning often occurs in practical
reasoning; for example, in

• Diagnostic reasoning based on causal knowledge
• Everyday reasoning
• Reasoning based on natural deduction

An example of diagnostic reasoning by assumption in
the context of a car that won’ t start is:

‘Suppose the battery is empty, then the lights won’t
work. But if I try, the lights turn out to work.
Therefore the battery is not empty.’

Note that on the basis of the assumption that the
battery is empty, and causal knowledge that without a
functioning battery the lights will not burn, a
prediction is made on an observable world fact,
namely that the lights will not burn. After this an
observation is initiated which has a result (lights do
burn) that contradicts the prediction. Based on this
outcome the assumption is evaluated and, as a result,
rejected.
 An example of an everyday process of reasoning
by assumption is:

‘Suppose I do not take my umbrella with me. Then, if
it starts raining at 5 pm, I will get wet, which I don’t
want. Therefore I better take my umbrella with me’.

Again, based on the assumption some prediction is
made, this time using probabilistic knowledge that it
may rain at 5 pm. The prediction is in conflict with
the desire not to get wet. The assumption is evaluated
and rejected.
 Examples of reasoning by assumption in natural
deduction are:

 4

Reductio ad absurdum or method of indirect proof
After assuming A, I have derived a contradiction.
Therefore I can derive not A.

Implication introduction
After assuming A, I have derived B. Therefore I can
derive that A implies B.

Reasoning by cases
After assuming A, I have derived C. Also after
assuming B, I derived C. Therefore I can derive C
from A or B.

Notice that as a common pattern in all of the examples
presented, it seems that first a reasoning state is
entered in which some fact is assumed. Next (possibly
after some intermediate steps) a reasoning state is
entered where consequences of this assumption have
been predicted. Moreover, in some cases observations
can be performed obtaining additional information
about the world to be included in a next reasoning
state. Finally, a reasoning state is entered in which an
evaluation has taken place, for example, resulting in
rejection of the assumption; possibly in the next state
the assumption actually is retracted, and further
conclusions are added.
 This first analysis already shows some
peculiarities of this type of reasoning. Within a
reasoning state not (only) content information is
included, but within the reasoning a major role is
played by different types of (meta-)information on the
status of other information; this meta-information
goes beyond direct content information. For example,
the following types of meta-information can be
included in a reasoning state:

• which assumption has been made
• which predictions have been made based on an

assumption
• which information is observation information
• which evaluation has been made

The examples also show that the reasoning transitions
that take place are of different types; for example:

• from a reasoning state without an assumption to a

reasoning state with an assumption
• from a reasoning state with an assumption to a

reasoning state with a prediction
• from a reasoning state with a prediction to a

reasoning state with an observation result
• from a reasoning state with an assumption, a

prediction, and an observation result (or other
comparison information) to a reasoning state with
an evaluation of the assumption, e.g., that it is
rejected

Reasoning traces in the examples suggest a number of
such reasoning states and transitions.

 To explore the usefulness of the presented model
for reasoning dynamics, in Section 5 a simple version
of a reasoning puzzle is used: the wise persons puzzle.
This puzzle as considered here requires two wise
persons (A and B) and two hats. Each wise person is
wearing a hat, of which the colour is unknown. Both
wise persons know that:
• Hats can be white or black
• There is at least one white hat
• They can observe the colour of each other’ s hat
• If, after reasoning, a person knows the colour of

its own hat (s)he will tell the other that colour.
• If, after reasoning, a person does not know the

colour of its own hat (s)he will tell so to the other.
• Communications are limited to comments

regarding the colour of the person’ s own hat
• They both reason fully logically

If, for example, both persons have a white hat and
wise person A is asked whether he knows the colour
of his hat, then A must answer that he does not know.
On the basis of this knowledge, wise person B can
then reason that his/her own hat is white. A solution
of this reasoning puzzle is obtained if wise person B
dynamically introduces and rejects assumptions about
the colour of his/her own hat. For example, in the case
that B sees that A has a white hat, and B hears that A
says (s)he does not know the colour, B can have the
following reasoning trace:

0. observation results: A’ s hat is white; A says (s)he

does not know the colour
1. assumption that B’ s own hat is black
2. prediction that A knows (s)he has white
3. evaluation that the prediction contradicts the

observation result; the assumption is to be rejected
4. no assumption anymore that B’ s own hat is black
5. assumption that B’ s own hat is white

3. A Temporal Trace Language to Express
Dynamic Properties

To specify properties on the dynamics of a reasoning
process, the temporal trace language TTL used in
(Herlea et al., 1999; Jonker and Treur, 1998) is
adopted. This is a language in the family of languages
to which also situation calculus (McCarthy and
Hayes, 1969), event calculus (Kowalski and Sergot,
1986), and fluent calculus (Hölldobler and Tielscher,
1990) belong.
 An ontology is a specification (in order-sorted
logic) of a vocabulary, i.e., a signature. For the
example reasoning pattern ‘reasoning by assumption’
the state ontology includes binary relations such as
assumed, predicted, rejected, observation_result,
holds_in_world on sorts INFO_ELEMENT x SIGN. The sort
INFO_ELEMENT includes specific domain statements
such as hat_colour(white, self), conclusion(my_hat_is_white,
other), conclusion(don’t_know_my_colour, other). The sort
SIGN consists of the elements pos and neg. Using this

 5

state ontology, for example the following state
properties can be expressed:

holds_in_world(hat_colour(white, self), pos)
assumed(hat_colour(white, self), neg)

 prediction_for(conclusion(my_hat_is_white, other), pos,
 hat_colour(white, self), pos)
 rejected(hat_colour(white, self), pos)

A (reasoning) state for ontology Ont is characterised
by the properties expressed in Ont which are true. This
is formalised by an assignment of truth values {true,
false} to the set of ground atoms At(Ont). A part of the
description of an example reasoning state S is the
following:

holds_in_world(hat_colour(white, self), pos) : true
assumed(hat_colour(white, self), neg) : true
prediction_for(conclusion(my_hat_is_white, other), pos,
 hat_colour(white, self), pos) : true
observation_result(conclusion(don’t_know_my_colour, other),
 pos) : true
rejected(hat_colour(white, self), neg) : false

An alternative, but equivalent notation for such a
reasoning state leaves out all value assignments true,
and indicates the value assignments false by a ~
symbol in front of the property (notation):

holds_in_world(hat_colour(white, self), pos)
assumed(hat_colour(white, self), neg)
prediction_for(conclusion(my_hat_is_white, other), pos,
 hat_colour(white, self), pos)
observation_result(conclusion(don’t_know_my_colour, other),
 pos)
~ rejected(hat_colour(white, self), neg)

The set of all possible states for ontology Ont is
denoted by STATES(Ont). By RS the sort of all
reasoning states of the agent is denoted. As indicated
earlier, world states are considered substates of
reasoning states, and iws is a unary predicate on RS
that defines that the world state within a reasoning
state belongs to the set of intended world states. In the
wiseperson example this specification iws(S) is defined
by

iws(S) :
not [S |== holds_in_world(hat_colour(white, self), neg) ∧
S |== holds_in_world(hat_colour(white, other), neg)]

which expresses that the situation with two black hats
is to be excluded. So, for example, the world state

 holds_in_world(hast_colour(white, self), pos)
 holds_in_world(hast_colour(white, other), neg)

is one of the intended world states, whereas

 holds_in_world(hat_colour(white, self), neg)
 holds_in_world(hat_colour(white, other), neg)

indicates a not intended world state (the forbidden
black-black situation).

 The standard satisfaction relation |== between
states and state properties is used: S |== p means that
state property p holds in state S. For example, in the
reasoning state S above it holds

S |== assumed(hat_colour(white, self), neg).

To describe dynamics, explicit reference is made to
time in a formal manner. A fixed time frame T is
assumed which is linearly ordered. Depending on the
application, it may be dense (e.g., the real numbers),
or discrete (e.g., the set of integers or natural numbers
or a finite initial segment of the natural numbers), or
any other form, as long as it has a linear ordering. A
trace γ over an ontology Ont and time frame T (e.g.,
the natural numbers) is a mapping

 γ : T → STATES(Ont),

i.e., a time-indexed sequence of reasoning states

 γt (t ∈ T)

in STATES(Ont). The set of all traces over ontology

Ont is denoted by TRACES(Ont), i.e., TRACES(Ont) =

STATES(Ont)
T. The set TRACES(Ont) is also denoted by

Γ. Note that to be able to cover observation in the
external world as well, the (current) world state is part
of each reasoning state in each trace.
 States of a trace can be related to state properties
via the formally defined satisfaction relation |==
between states and formulae. Comparable to the
approach in situation calculus, the sorted predicate
logic temporal trace language TTL is built on atoms
referring to traces, time and state properties, such as
state(γ , t) |== p. This expression denotes that state
property p is true in the state of trace γ at time point t.
Here |== is a predicate symbol in the language (in
infix notation), comparable to the Holds-predicate in
situation calculus. Temporal formulae are built using
the usual logical connectives and quantification (for
example, over traces, time and state properties). The
set TFOR(Ont) is the set of all temporal formulae that
only make use of ontology Ont. We allow additional
language elements as abbreviations of formulae of the
temporal trace language. An example of such a
dynamic property is

∀ γ : Γ ∀ t: T ∀ A : INFO_ELEMENT ∀ S: SIGN

 [state(γ, t) |== rejected(A, S)

 ⇒ [∀ t’: T ≥ t: T

 state(γ, t’) |== rejected(A, S)]

This persistence property expresses that in any
reasoning trace γ at any point in time t, if an
assumption A has been rejected, then A remains
rejected within γ for all t’ ≥t. For more examples of
dynamic properties, see Section 4.
 The fact that this language is formal allows for
precise specification of properties. Moreover, editors

 6

can and actually have been developed to support
specification of properties. Specified properties can be
checked automatically againast example traces to find
out whether they hold.
 For the domain of the wise persons puzzle some
world facts can be assumed; others cannot be
assumed. Furthermore, there are some relations
between domain predicates, like the knowledge that if
one agent wears a black hat then the other agent must
be wearing a white hat. In order to validate the
behaviour of some reasoning agent (human or
otherwise) all this information needs to be available.
Therefore, two additional predicates are introduced:
pa, and is_relevant_for. The unary predicate pa defines
the set of possible assumptions that can be made for
the specific application. The predicate is_relevant_for
can be used, for example, to express that
hat_colour(white, other) with truth value true is relevant
for hat_colour(white, self) with truth value false. To
describe the dynamics of the reasoning process this
information is used to express that a certain
(observable) prediction is relevant for a certain
assumption. In effect, the predicate defines the set of
all relevant predictions that regard the observable part
of the world state. In the case of the wise person
puzzle, the relational facts that together form these
sets are defined as follows:

pa(hat_colour(white, self), pos)
pa(hat_colour(white, self), neg)
is_relevant_for(conclusion(dont_know_my_colour, other),
 pos, hat_colour(white, self), pos)
is_relevant_for(conclusion(my_hat_is_white, other), pos,
 hat_colour(white, self), neg)
is_relevant_for(hat_colour(white, other), pos,
 hat_colour(white, self), neg)

4. Characterising Dynamic Properties

In this section a number of the most relevant of the
dynamic properties that have been identified as
relevant for patterns of reasoning by assumption are
presented in both an informal and formal way. Notice
that specifying these dynamic properties does not
automaticall includes at forehand a claim that they
hold or should hold for all reasoning traces. The only
claim made is that they are relevant or interesting to
be considered for a specific reasoning trace in the
sense whether or not they are true. Moreover, the
properties, although they have been formulated
universally quantified for all traces, are to be
considered for instances of traces separately.

4.1 Global dynamic properties

Global properties address the overall reasoning
behaviour of the agent, not the step by step reasoning
process of the agent.

GP1 Termination of the reasoning
This property ensures that the reasoning will not go
indefinitely.
Formally:

∀ γ : Γ ∃ t: T ∀ t’: T t’ ≥ t ⇒ state(γ , t) = state(γ , t’)

In the current formulation, property GP1 demands that
the whole agent shows no more reasoning activity. It
is possible formulate GP1 in a more precise manner
by limiting the inactivity to those parts of the agent
involved in the assumption reasoning process.
Based on this property the following abbreviation is
defined for use in other properties:

termination(γ, t) ≡ ∀ t’: T t’ ≥ t ⇒ state(γ, t) = state(γ, t’)

GP2 Correctness of rejection
Everything that has been rejected does not hold in the
world situation.

∀ γ : Γ ∀ t: T state(γ, t) |== rejected(A: INFO_ELEMENT, S)

 ⇒ state(γ, t) |== not holds_in_world(A, S)

GP3 Completeness of rejection
After termination, all assumptions that have not been
rejected hold in the world situation

∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT ∀ S : SIGN

 termination(γ, t)

 ∧ state(γ, t) |== assumed(A: INFO_ELEMENT, S)

 ∧ state(γ, t) |=/= rejected(A: INFO_ELEMENT, S)

 ⇒ state(γ, t) |== holds_in_world(A, S)

GP4 Garanteed outcome
This property expresses that a terminated reasoning
process with a world state in the set of intended world
states has as an outcome at least one evaluated
assumption that was not rejected.

∀ γ : Γ ∀ t : T ∀ A : INFO_ELEMENT ∀ S : SIGN

 [termination(γ, t) ∧ iws(state(γ, t))]

 ⇒ [∃ A: INFO_ELEMENT, ∃ S: SIGN

 state(γ, t) |== assumed(A, S)

 ∧ state(γ, t) |=/= rejected(A, S)]

GP5 Persistence
Two types of persistence properties can be defined:
unconditional or conditional. The first, unconditional
type expresses that once a state property holds in a
reasoning state, this property will hold for all future
reasoning state. In this unconditional form relevant
persistence properties can be expressed for state
properties based on
 holds_in_world (static world assumption)
 observation_result (persistent observations)
 rejected (once rejected remains rejected)
Formally, these unconditional persistence properties
are expressed as follows.

 7

Unconditional persistence properties
∀ γ : Γ ∀ t: T ∀ A : INFO_ELEMENT ∀ S: SIGN

 [state(γ, t) |== holds_in_world(A, S)

 ⇒ [∀ t’: T ≥ t: T

 state(γ, t’) |== holds_in_world(A, S)]

∀ γ : Γ ∀ t: T ∀ A : INFO_ELEMENT ∀ S: SIGN

 [state(γ, t) |== rejected(A, S)

 ⇒ [∀ t’: T ≥ t: T

 state(γ, t’) |== rejected(A, S)]
∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT ∀ S: SIGN

 state(γ, t) |== observation_result(A, S)

 ⇒ [∀ t’: T ≥ t: T

 state(γ, t’) |== observation_result(A, S)]

Conditional persistence properties can be specified for
assumptions (persistent as long as they are not
rejected), and possibly for predictions (persistent as
long as the related assumption is not rejected).
Formally, these properties are expressed as follows:

Conditional persistence properties
∀ γ : Γ ∀ t, t’, t” : T ∀ A: INFO_ELEMENT ∀ S: SIGN

 t ≤ t’’ ∧ state(γ, t) |== assumed(A, S)

 ∧ ∀t’ [t ≤ t’ ≤ t” ⇒ state(γ, t) |=/= rejected(A, S)]

 ⇒ state(γ, t’) |== observation_result(A, S)

∀ γ : Γ ∀ t, t’, t” : T

∀ A1, A2: INFO_ELEMENT ∀ S1, S2: SIGN

 t ≤ t’’ ∧ state(γ, t) |== prediction_for(A1, S1, A2, S2)

 ∧ ∀t’ [t ≤ t’ ≤ t” ⇒ state(γ, t) |=/= rejected(A, S)]

 ⇒ state(γ, t’) |== prediction_for(A1, S1, A2, S2)

GP6 Nonintended situations
If a world situation is nonintended (e.g., the situation
with the two black hats), then property GP4 will not
give any guarantee. However, it may be possible that
the reasoning trace fulfills the property that in such as
case all assumptions have been considered and
rejected, ie.,
 If the reasoning has terminated
and the world situation is not an intended world

situation,
then all possible assumptions have rejected.
Formally:

∀ γ : Γ ∀ t: T

 termination(γ, t) ∧ not iws(state(γ , t))

 ⇒ [∀ A: INFO_ELEMENT, ∀ S: SIGN

 pa(A, S) ⇒ state(γ, t) |== rejected(A, S)]

4.2 Local dynamic properties

Global properties describe the overall reasoning
behaviour of the agent, in this case applied to solve
the wise persons puzzle, but they are not detailed
enough to track the dynamics of the reasoning
process, say step by step. Local properties each
describe a part of the reasoning process.

LP1 Observation result correctness
The first property expresses that observations that are
obtained from the world, indeed hold in the world.

∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT ∀ S: SIGN

 state(γ, t) |== observation_result(A, S)

 ⇒ state(γ, t) |== holds_in_world(A, S)

LP2 Assumption effectiveness
This property expresses that the reasoning process
will go on to generate new assumptions as long as not
all of them have been rejected. This guarantees
progress in the reasoning process; if no assumption
has been found that is not rejected, keep trying new
assumptions for as long as possible.
If the world situation is an intended world situation,
then as long as there are assumptions that have not

been rejected
 and as long as all assumptions that have been

made have been rejected,
 the agent will keep generating new assumptions.
Formally:

∀ γ : Γ ∀ t: T

 iws(state(γ, t))

 ⇒ [[∃ A: INFO_ELEMENT, ∃ S: SIGN

 pa(A, S) ∧ state(γ, t) |=/= rejected(A, S)]

 ∧ [∀ A: INFO_ELEMENT ∀ S: SIGN ∀ t1: T

 [t1 ≤ t ∧ state(γ, t1) |== assumed(A, S)]

 ⇒ [∃ t2: T t1 ≤ t2 ≤ t

 ∧ state(γ, t2) |== rejected(A, S)]]

 ⇒ [∃ t’: T ≥ t: T ∃ A: INFO_ELEMENT ∃ S: SIGN

 state(γ, t’) |== assumed(A, S)

 ∧ state(γ, t’) |=/= rejected(A, S)]]

LP5 Prediction effectiveness
For each assumption the agent makes all relevant
predictions about the observable part of the world
state.

∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT ∀ S1: SIGN

 state(γ, t) |== assumed(A, S1)

 ⇒ ∀ B: INFO_ELEMENT

 [is_relevant_for(B, S2, A, S1)
 ⇒ ∃ t’: T ≥ t : T ∃ S2: SIGN

 state(γ, t’) |== prediction_for(B, S2, A, S1)]

Property LP5 represents the agents knowledgeability
to predict the consequences of its assumptions.

LP6 Observation effectiveness
For each prediction (that regards the observable part
of the world state), the agent makes the appropriate
observation.

∀ γ : Γ ∀ t: T ∀ A, B: INFO_ELEMENT ∀ S1, S2 : SIGN

 [state(γ, t) |== prediction_for(A, S1, B, S2)

 ⇒ [∃ t’: T ∃ S3: SIGN

 state(γ, t’) |== observation_result(A, S3)]

 8

Property LP6 ensures that the agent gathers enough
information to evaluate its assumptions. It is assumed
that only observable predictions are made. If this
assumption does not hold, additional conditions with
assumed and is_relevant_for are needed in LP6.

LP7 Evaluation effectiveness
Each assumption for which there is a prediction that
does not match the corresponding observation result is
rejected by the agent.

∀ γ : Γ ∀ t: T ∀ A, B : INFO_ELEMENT ∀ S1, S2, S3: SIGN

 [state(γ, t) |== assumed(A, S1)

 ∧ state(γ, t) |== prediction_for(B, S2, A, S1)]

 ∧ state(γ, t) |== observation_result(B, S3)

 ∧ S2 ≠ S3]

 ⇒ [∃ t’: T ≥ t: T

 state(γ, t’) |== rejected(A, S1)]

Properties LP5, LP6, and LP7 together ensure that the
agent puts enough effort into the reasoning process; it
has the knowledge (in the form of predictions) and
and it gathers enough information to evaluate its
assumptions.

LP8 Rejection grounding
Each assumption that is rejected has been considered;
no rejections take place without an underlying
assumption.

∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT ∀ S: SIGN

 state(γ, t) |== rejected(A, S)

 ⇒ [∃ t’: T < t: T state(γ, t’) |== assumed(A, S)]

LP9 No assumption repetition
Only assumptions are made that have not been made
earlier.

∀ γ : Γ ∀ t1, t2, t3: T ∀ A: INFO_ELEMENT ∀ S: SIGN

 state(γ , t1) |== assumed(A, S) ∧

 state(γ , t2) |=/= assumed(A, S) ∧ t1 ≤ t2 ≤ t3

 ⇒ state(γ , t3) |=/= assumed(A, S)

LP10 Rejection effectiveness
If an assumption has been made and it does not hold
in the world state then that assumption will be
rejected.

∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT

 [state(γ, t) |== assumed(A, S)

 ∧ state(γ, t) |== not holds_in_world(A, S)

 ⇒ [∃ t’: T > t: T

 state(γ, t’) |== rejected(A: INFO_ELEMENT, S)]

Note that the assumptions themselves usually are not
observable in the world.

LP11 Rejection correctness
If an assumption has been made and it does hold in
the world state then that assumption will not be
rejected.

∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT

 [state(γ, t) |== assumed(A, S)

 ∧ state(γ, t) |== holds_in_world(A, S)

⇒ [∀ t’: T ≥ t: T

 state(γ, t’) |=/= rejected(A: INFO_ELEMENT, S)]

LP12 Assumption uniqueness
At all times, the agent only makes one assumption at a
time.

∀ γ : Γ ∀ t: T ∀ A, B: INFO_ELEMENT ∀ S1, S2: SIGN

 [state(γ, t) |== assumed(A, S1)

 ∧ state(γ, t) |== assumed(B, S2)]

 ⇒ A = B ∧ S1 = S2

5. Human Reasoning Traces for Reasoning
by Assumption

It seems plausible, but it is not clear at forehand
whether the dynamic properties identified above are
satisfied by traces of reasoning patterns exhibited by
human reasoners. To verify the psychological validity
of our dynamics approach and the dynamic properties
identified, protocols have been analysed of a subject
(a Ph.D. student) that was asked to solve the wise
persons puzzle (see Section 2) and to think aloud
while doing so. The human reasoning protocols for
this analysis of empirical work were taken from
(Langevelde and Treur, 1992). The think-aloud
protocol acquired from this experiment has been
coded in terms of our language and analysed to see to
what extent the subject’s reasoning pattern satisfies
the specified dynamic properties. The subject was
given the following description:

This puzzle is about two wise men, A and B, each of
which is wearing a hat. Each hat is either black or
white but at least one of the hats is white. Each wise
man can only observe the colour of the other wise
man’s hat. Both wise men are able to reason logically
and they know this from each other.

The subject was asked to solve four variants of the
puzzle. For each variant he was given the colour of
A’s hat and whether A knows this colour. The cases of
world situations were presented as indicated in Table
1, in which the left column indicates observability.
For each variant of the puzzle the subject was asked to
reason as if he was B and to determine the colour of
B’s hat given the colour of A’s hat and A’s knowledge
about his own hat. The subject was given instructions
to think aloud and the protocol was recorded on a
recording device.

 9

 BW WB

Obs. not hat_colour(white, other);

conclusion(don’t_know_my_colour, other);

hat_colour(white, other);

conclusion(my_hat_is_white, other);

Not obs. hat_colour(white, self); not hat_colour(white, self);

 WW BB

Obs. hat_colour(white, other);

not conclusion(my_hat_is_white,

conclusion(dont_know_my_colour, other);

not hat_colour(white, other);

not conclusion(dont_know_ my_colour, other);

conclusion(my_hat_is_white, other);

Not obs. hat_colour(white, self); not hat_colour(white, self);

Table 1 The four cases for the reasoning puzzle

The transcripts are presented in the traces in the
numbered lines. For the analysis of the protocols each
fragment is encoded in terms of our language. This
results in the encodings of the protocol fragments as is
presented in the traces below in the special font.
 The traces are labelled “HTxy” where HT denotes
Human Trace and xy denotes the hat colours of the
other and the agent (the human in this case) itself. The
numbers in the right column refer to lines in the
protocol. In the traces A is presented by "other" and B
is "self". A statement of the form observation_result(X,
pos) expresses that it has been observed that X holds.
Similarly, observation_result(X, neg) expresses that it has
been observed that X does not hold. Only true
statements are presented in the traces. In each table in
the top cell of the right column, the world
observations are shown. For the obervation results no
lines in the protocol were available, the human
reasoning started after that.

HTbw: Trace of protocol fragment BW

nr Atom / Protocol with protocol lines

1 observation_result(hat_colour(white, other), neg)
/ A is wearing a black hat.

observation_result(conclusion(dont_know_my_colour, other), pos)
/ A does not know that he is wearing a black hat.

2 assumed(hat_colour(white, self), pos)
/ 19. If A is wearing a black hat
 20. and B sees this
 21. then B knows that his hat has to be white
 22. because there must be at least one white
 23. and then that is the answer

In HTbw the human directly makes the right
assumption and then checks it against the puzzle
information and the claims of the other agent. No
rejections are needed, so the assumption can be kept.

HTww: Trace of protocol fragment WW

nr Atom / Protocol with protocol lines

1 observation_result(hat_colour(white, other), pos)
/ A is wearing a white hat.

observation_result(conclusion(dont_know_my_colour, other), pos)
/ A does not know that he is wearing a white hat.

2 assumed(hat_colour(white, self), neg)
/ 1. A sees either a white hat or a black hat of B.
 2. If he sees a black hat of B

3 prediction_for(conclusion(my_hat_is_white, other), pos,
 hat_colour(white, self), neg)
/ 3. then he knows that he wears a white one
 4. and then he also knows what colour he wears
 5. that is the white one,

4 rejected(hat_colour(white, self), neg)
/ 6. so in that case he doesn’t answer "I don’t know"

5 assumed(hat_colour(white, self), pos)
/ 7. so A must see a white hat

6 prediction_for(conclusion(dont_know_my_colour, other), pos,
 hat_colour(white, self), pos)
/ 8. then he doesn’t know
 9. since there can be two white hats involved
10. it can be also the case that A wears a black hat
11. and B a white hat
12. so A doesn’t know what hat he is wearing

7 assumed(hat_colour(white, self), pos)

 / 13. and that means that A, as I mentioned before,
 must have seen a white hat,
 14. so B can conclude, after A’s answer that he is
 wearing a white hat.

The human in HTww first makes the wrong
assumption. When he realises that the assumption
cannot hold, he makes a new assumption. The
prediction that he makes in row 6 enables him to
evaluate his assumption in row 7.

 10

HTwb: Trace of protocol fragment WB

nr Atom

1 observation_result(hat_colour(white, other), pos)
/ A is wearing a white hat.

observation_result(conclusion(my_hat_is_white, other), pos)
/ A knows that he is wearing a white hat.

2 assumed(hat_colour(white, self), pos)
/ 2. If A knows the colour of the hat he is wearing
 3. then he must have seen a black one,
 4. because if B wears a white one

3 prediction_for(conclusion(dont_know_my_colour, other), pos,
 hat_colour(white, self), pos)
/ 5. then there can be another white one involved
 6. or there can be a black one involved

4 rejected(hat_colour(white, self), pos)
/ 7. so you can exclude this possibility

5 assumed(hat_colour(white, self), neg)
/ 8. we may assume that B is wearing a black hat

6 prediction_for(conclusion(my_hat_is_white, other), pos,
 hat_colour(white, self), neg)
/ 9. and that A concludes from this "I am wearing a
white hat".

In HTwb the human needs to revise his assumptions
again, and carefully checks his assumptions.

HTbb: Trace of protocol fragment BB

nr Atom

1 observation_result(hat_colour(white, other), neg)
/ A is wearing a black hat.

observation_result(conclusion(my_hat_is_black, other), pos)
/ A knows that he is wearing a black hat.
 If A, A says, "I know the colour of my hat
 4. and it is black "

2 assumed(hat_colour(white, self), neg)
/ 5. if A sees a black hat

3 prediction_for(conclusion(don’t_know_my_colour, other), pos,
 hat_colour(white, self), neg)
/ 6. then he doesn’t know which hat he is wearing

4 prediction_for(conclusion(my_hat_is_white, other), pos,
 hat_colour(white, self), neg)
/ 7. yes, he does know
 8. then he is wearing the white one

5 assumed(hat_colour(white, self), pos)
/ 9. if B is wearing a white hat

6 prediction_for(conclusion(dont_know_my_colour, other), pos,
 hat_colour(white, self), pos)
/10. then A can wear either a white hat or a black hat

7 rejected(hat_colour(white, self), pos)
/ 11. so, in my opinion, A can’t claim he is wearing a
 black hat.

In HTbb after making the first assumption the human
is slightly confused because the other concludes
having a black hat. After error in prediction, the
human makes the correct prediction for first his
assumption and then rejects this first assumption. He
then makes his second assumption, and makes a
prediction based on that assumption. Again this

prediction is refuted which leads the subject to state
that A can’ t claim he has a black hat; he has
discovered that this world state is not consistent with
the rules of the puzzle; it is not an intended world
state.

6. Simulated Reasoning Traces

In this section a software model for the reasoning
method used in this paper is described briefly, before
the traces created with that software agent are
presented.

6.1 Simulation Model

Reasoning by assumption entails reasoning with and
about assumptions. Reasoning about assumptions can
be considered as a form of meta-reasoning. The agent
reasons about a set of assumptions when deciding for
them to be assumed for a while (reasoning about
assumptions). After making assumptions, the agent
derives which facts are logically implied by this set of
assumptions (reasoning with assumptions). The
derived facts may be evaluated; based on this
evaluation some of the assumptions may be rejected
and/or a new set of assumptions may be chosen
(reasoning about assumptions). As an example, if an
assumption has been chosen, and the facts derived
from this assumption contradict information obtained
from a different source (e.g., by observation), then the
assumption is rejected and the converse assumed.
 A generic reasoning model1 behind this pattern of
reasoning has been designed in the component-based
design mthod DESIRE for agent systems; cf. (Brazier,
Jonker, and Treur, 1998). This formally specified
design has been automatically translated into a
software program capable of simulating the reasoning
process. The reasoning model consists of four basic
(primitive) components: External World, Observation
Result Prediction, Assumption Determination, and
Assumption Evaluation (see Figure 1). The
component External World contains the world state
and is used to execute observations. The component
Observation Result Prediction reasons with
assumptions; e.g., given the assumption
assumed(hat_colour(white, self), neg), within this
component the rule "if not hat_colour(white, self) then
conclusion(my_hat_is_white, other)" can be used to
predict that conclusion(my_hat_is_white, other). The two
components Assumption Determination and
Assumption Evaluation reason about assumptions
(they perform the meta-reasoning). Information is
exchanged between the components where necessary.
Within DESIRE, the functionality of the different
components has been specified by knowledge bases in
the following manner.

1A complete specification of the model (with
clickable components) can be found at
www.cs.vu.nl/~wai/GTM/assumption/assumption_fixed_tc_2
WP_07

 11

system task control

assumption

determination

assumption

evaluation

observation

result

prediction

external

world

assessments

required observations

predictions

hypotheses

assumptions

observation results

epistemic info

Figure 1. Architecture of the simulation model

Assumption Determination
The component Assumption Determination performs
metareasoning to derive which assumption to make. It
uses observation results of the colour of the other
agent’ s hat, but not of what the other agent knows
about his own colour. This knowledge base expresses
a form of heuristic knowledge able to generate
assumptions for the different situations. It is taken
into account whether or not an assumption already has
been considere before (i.e., was an assumption
earlier), to avoid repetition.

if observation_result(hat_colour(white, other), pos)
 and not has_been_considered(hat_colour(white, self), neg)
then possible_assumption(hat_colour(white, self), neg);

if observation_result(hat_colour(white, other), neg)
 and not has_been_considered(hat_colour(white, self), pos)
then possible_assumption(hat_colour(white, self), pos);

if observation_result(hat_colour(white, other), pos)
 and not has_been_considered(hat_colour(white, self), pos)
 and rejected(hat_colour(white, self), neg)
then possible_assumption(hat_colour(white, self), pos);

if not has_been_considered(hat_colour(white, self), neg)
 and rejected(hat_colour(white, self), pos)
then possible_assumption(hat_colour(white, self), neg);

Observation Result Prediction
The component Observation Result Prediction takes
as assumption and derives from this assumption what
should be expected as observations in the world.
Notice that the other agent is plainly considered as
part of the world. No epistemic considerations are
made about the other agent; for a different, more
complex model where this actually has been done, see
(Brazier and Treur, 1999). Notice that the first rule
(assuming own hat colour black) specifies that both a
prediction is made about the (visible) hat colour of the
other agent and about what the other agent will tell. In
the other case (assuming own hat colour white) only
the latter prediction is possible.

if assumed(hat_colour(white, self), neg)
then predicted_for(hat_colour(white, other), pos,
 hat_colour(white, self), neg)
 and predicted_for(conclusion(white, other), pos,
 hat_colour(white, self), neg);

if assumed(hat_colour(white, self), pos)
then predicted_for(conclusion(dont_know, other), pos,
 hat_colour(white, self), pos);

Assumption Evaluation
The component Assumption Evaluation compares
predictions and observations, and, where these are
conflicting, rejects the underlying assumption (see
second rule below). A second functionality is to
determine which observations have to be made,
namely, those for which predictions exist; this is
specified in the first rule.

if predicted_for(OBS : INFO_ELEMENT, S1: SIGN,
 HYP: INFO_ELEMENT, S2: SIGN)
then to_be_observed(OBS : INFO_ELEMENT);

if assumed(HYP: INFO_ELEMENT, S: SIGN)
 and predicted_for(OBS: INFO_ELEMENT, S1:SIGN,

 HYP: INFO_ELEMENT, S: SIGN)
 and observation_result(OBS: INFO_ELEMENT, S2:SIGN)
 and S1 ≠ S2
then rejected(HYP: INFO_ELEMENT, S: SIGN)
 and has_been_considered(HYP: INFO_ELEMENT, S: SIGN);

6.2 Simulated Traces

For the software agent described in the previous
section all world states have been tested and traces of
the agent logged. The software agent reasons
according to a preset strategy. It tries to opposite
assumptions first. If the other wears black, the
software agent will first assume that it itself wears
white. If the other wears white, it will assume black
for its own hat first.

STbw: Trace of Seq in BW

nr Atom

1 observation_result(hat_colour(white, other), neg)

2 assumed(hat_colour(white, self), pos)

3 prediction_for(conclusion(dont_know_my_colour, other), pos,
 hat_colour(white, self), pos)

4 to_be_observed(conclusion(dont_know_my_colour, other))

5 observation_result(conclusion(dont_know_my_colour, other), pos)

In STbw, the first assumption works just fine, its
evaluation is positive: no rejection is generated.
Therefore no new assumption needs to be made.
However, the simulation model could have been made
in a manner that justification is deepened by trying the
opposite assumption as well, and evaluating that this
opposite assumption has to be rejected.

STwb: Trace of Seq in WB

nr Atom

1 observation_result(hat_colour(white, other), pos)

2 assumed(hat_colour(white, self), neg)

3 prediction_for(hat_colour(white, other), pos,
 hat_colour(white, self), neg))

prediction_for(conclusion(my_hat_is_white, other), pos,
 hat_colour(white, self), neg))

4 to_be_observed(hat_colour(white, other))

to_be_observed(conclusion(my_hat_is_white, other))

5 observation_result(conclusion(my_hat_is_white, other), pos)

 12

In STwb, again the first assumption works just fine, it
is evaliuated positively: no rejection generated.
Therefore no new assumption needs to be made; as in
the caese above, the simulation model does not look
for further justification.

STww: Trace of Seq in WW

nr Atom

1 observation_result(hat_colour(white, other), pos)

2 assumed(hat_colour(white, self), neg)

3 predicted(hat_colour(white, other), pos)

predicted(conclusion(my_hat_is_white, other), pos)

4 to_be_observed(conclusion(my_hat_is_white, other))

to_be_observed(hat_colour(white, other))

5 observation_result(conclusion(my_hat_is_white, other), neg)

6 rejected(hat_colour(white, self), neg)

7 assumed(hat_colour(white, self), pos)

8 predicted(conclusion(dont_know_my_colour, other), pos)

9 to_be_observed(conclusion(dont_know_my_colour, other))

10 observation_result(conclusion(dont_know_my_colour, other), pos)

In this case a bit more work is done. In STww, after
evaluation the first assumption has to be rejected.
Therefore a new assumption is made and evaluated
positively: no rejection.

STbb: Trace of Seq in BB

nr Atom

1 observation_result(hat_colour(white, other), neg)

2 assumed(hat_colour(white, self), pos)

3 predicted(conclusion(dont_know_my_colour, other), pos)

4 to_be_observed(conclusion(dont_know_my_colour, other))

5 observation_result(conclusion(dont_know_my_colour, other), neg)

6 rejected(hat_colour(white, self), pos)

7 assumed(hat_colour(white, self), neg)

8 predicted(hat_colour(white, other), pos)

predicted(conclusion(my_hat_is_white, other), pos)

9 to_be_observed(conclusion(my_hat_is_white, other))

to_be_observed(hat_colour(white, other))

10 observation_result(conclusion(my_hat_is_white, other), pos)

11 rejected(hat_colour(white, self), neg)

In STbb, the agent diligently tries both assumptions
and rejects both of them. The simulation model has
not been modelled to detect the impossibility of this
situation and just stops reasoning when there were no
more assumption that it could make.

7. Validation of Dynamic Properties

All properties introduced in Section 4 were validated
against the human and software traces of Sections 5
and 6. First, in Section 7.1 the checking prohramme is

briefly described. Next, in Section 7.2 some of the
results of the validation process are discussed.

7.1 The checking program

A Prolog program of about 500 lines has been
developed that takes a dynamic property and a set of
(empirical or simulated) traces as input, and checks
whether the dynamic property holds for the traces. As
an example, the specified observation result
correctness is represented in this Prolog programme
as a nested term structure:

forall(T, A, S,
implies(holds(state(C, T), observation_result(A,S), true),
holds(state(C, T), holds_in_world(A, S), true))

Traces are represented by sets of Prolog facts of the
form

holds(state(m1, t(2)), a, true).

where m1 is the trace name, t(2) time point 2, and a is
a state formula in the ontology of the component’s
input. It is indicated that state formula a is true in the
component’ s input state at time point t2. The Prolog
programme for temporal formula checking uses
Prolog rules such as

sat(and(F,G)) :- sat(F), sat(G).
sat(not(and(F,G))) :- sat(or(not(F), not(G))).
sat(or(F,G)) :- sat(F).
sat(or(F,G)) :- sat(G).
sat(not(or(F,G))) :- sat(and(not(F), not(G))).

that reduce the satisfaction of the temporal formula
finally to the satisfaction of atomic state formulae at
certain time points, which can be read from the trace
representation.

7.2 Outcomes of Validation

The outcome of part of this validation process is
presented in the Table 2 below.

Prop HT
wb

HT
ww

HT
bb

ST
bw

ST
wb

ST
ww

ST
bb

GP1 Y Y Y Y Y Y Y
GP4 Y Y - Y Y Y -
LP2 Y Y - Y Y Y -
LP5 N N N Y Y Y Y
LP6 Y Y Y Y Y Y Y
LP7 Y Y ? Y Y Y Y

Table 2 Outcome of part of the validation

Studying the results of the validation process gives
more insight in the reasoning process of the human
subject and the software simulation. Before discussing
the results it might be important to know that the
human was presented with all possible observations
before he started his reasoning. In contrast, the
software agent had to initiate all observations
explicitly somewhere during its reasoning.

 13

In general, all reasoning traces, human and
simulated traces, satisfied almost all of the properties
presented in Section 4. An example of an exception is
in the human trace HTbb where the subject makes an
error. The line of reasoning that could have followed
this error according to property LP7 is not realised.
Instead this line of reasoning is blocked: immediately
the incorrect prediction is retracted (breaking its
persistence) and replaced by the correct one. Due to
this error, and its immediate correction, property GP5
and LP7 are not satisfied in this trace.

There are a few interesting differences between
the human traces and the simulated traces.
• LP5: in the protocols the human reasoner only

predicts the conclusions of the other party, not the
hat colour of the other party. It might be that the
prediction about hat colours is so obvious to the
human reasoner that predicting that seems
superfluous. This argument has not been checked.
The software agent, if possible, also predicted a
hat colour for the other agent.

• LP7: in HTbb the human does not explicitly
reject the first assumption. His last conclusion
suggests that he actually did reject both the first
and second assumption. The software agent
explicitly rejects both assumptions.

Another difference in their reaction to the impossible
world situation (both A and B wear black) can be
found. The human agent seems already a bit confused
half way its reasoning and makes an error. At the end
he flatly concludes that A could not have said what A
has said. The software agent does not get confused,
but, on the other hand, was not equipped to reflect on
the impossibility of the situation. It only rejected all
the assumptions it could make, and then stopped
reasoning.

8. Discussion

The dynamics of practical reasoning processes within
an agent often depends on decisions about which
conclusions to try to derive (the goals of the
reasoning), or which premises to use (the assumptions
made). An agent usually makes these types of
decisions during the reasoning process. The
Dynamical Systems Theory (DST), put forward in
(Kelso, 1995; Port and Gelder, 1995) is based on
difference and differential equations the use of which
depends on the possibility to find quantitative
relations over time.
 For a qualitative reasoning process, this constraint
makes it impossible to use these techniques.
Nevertheless, it is relevant to analyse the dynamics of
qualitative reasoning processes as well. This paper
shows how an analysis of these dynamics can be
made using techniques different from those of DST.
The approach put forward makes use of traces
consisting of sequences of reasoning states over time
to describe reasoning processes. It is shown for the
example reasoning pattern ‘reasoning by assumption’ ,

how relevant dynamic properties can be identified and
expressed using a temporal trace language. Example
traces have been acquired in two ways. First,
empirical traces have been generated based on think-
aloud protocols of a subject solving a reasoning
puzzle.
 Second, a simulation model has been developed
and executed for a number of cases. For all these
traces, the dynamic properties can and have been
checked automatically, using a software environment.
Thus the feasibility of the approach was shown.
 Earlier work addresses the dynamics of defeasible
reasoning processes based on formalisms from
nonmonotonic logic; e.g., Reiter, (1980); Marek and
Truszczynski (1993). In (Engelfriet and Treur, 1995,
1998; Engelfriet et al., 2001) formalisations of the
dynamics of default reasoning were contributed; for
more papers in this direction see also (Meyer and
Treur, 2001). This work fully concentrates on the
internal interaction and dynamics of states during a
nonmonotonic reasoning process; in contrast to the
current paper, interaction with the external world is
not addressed.
 A pattern of reasoning similar to the pattern of
reasoning by assumption occurs in the Modus Tollens
case of conditional reasoning, i.e., concluding not-p
from ‘if p then q’ and not-q. Also in that case,
different alternatives are explored for p, and a
falsification takes place. For a more extensive
description from the viewpoint of conditional
reasoning, see (Schroyens, Schaeken, and
d’ Ydewalle, 2001; Rips, 1994). In these approaches
the meta-level aspects are left more implicit than in
our approach. It would be an interesting further step
to investigate in more depth the relationships.
 Future research will further address the analysis of
the dynamics of other types of practical reasoning,
both from the syntactical and semantical stream, or
their combination; e.g., (Johnson-Laird, 1983;
Johnson-Laird and Byrne, 1991; Yang and Johnson-
Laird, 2000; Yang and Bringsjord, 2001; Braine and
O’ Brien, 1998; Rips, 1994).
 Within the Artificial Intelligence literature a
number of belief revision techniques have been
contributed; e.g., Doyle (1979), De Kleer (1986),
Dechter and Dechter (1996), which have not been
exploited to model human belief revision. Within
Cognitive Science, recently an increased interest is
shown in human belief revision; e.g., Byrne and
Walsh (2002), Dieussaert, Schaeken and d’ Ydewalle
(2002). An extension of the work reported in the
current paper could address formal modelling and
analysis of human belief revision in the context of
reasoning by assumption in more detail.
 Another area in which the formal modelling and
analysis approach can be applied is human reasoning
processes based on multiple representations (e.g.,
arithmetic, geometric). In Jonker and Treur (2002)
some first steps have been made.

 14

References

Braine, M.D.S., and O’ Brien, D.P. (eds.) (1998). Mental
Logic. Lawrence Erlbaum, London.

Brazier, F.M.T., Jonker, C.M., and Treur, J. (1998).
Principles of Component-Based Design of Intelligent
Agents. In: J. Cuena (ed.), Proceedings of the 15th IFIP
World Computer Congress, WCC'98, Conference on
Information Technology and Knowledge Systems,
IT&KNOWS'98, 1998, pp. 347-360. Extended version:
Data and Knowledge Engineering. vol. 41, 2002, pp. 1-
28.

Brazier, F.M.T., and Treur J. (1999). Compositional
Modelling of Reflective Agents. International Journal of
Human-Computer Studies, vol. 50, 1999, pp. 407-431.

Busemeyer, J., and Townsend, J.T. (1993). Decision field
theory: a dynamic-cognitive approach to decision making
in an uncertain environment. Psychological Review, vol.
100, pp. 432-459.

Byrne, R.M.J. and Walsh, C.R. (2002). Contradictions and
counterfactuals: generating belief revision in conditional
inference. In: W.D. Gray and C.D. Schunn (eds.),
Proceedings of the 24th Annual Conference of the
Cognitive Science Society, CogSci 2002. Mahwah, NJ:
Lawrence Erlbaum Associates, Inc., pp. 160-165

Dechter R., Dechter A., (1996). Structure-driven algorithms
for truth maintenance, Articial Intelligence, 82, 1-20.

Dieussaert, Schaeken and d’ Ydewalle (2002). The qual;ity
of test context and contra evidence as a moderating factor
in the belief revision process. In: W.D. Gray and C.D.
Schunn (eds.), Proceedings of the 24th Annual
Conference of the Cognitive Science Society, CogSci
2002. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.,
pp. 280-285.

Doyle, J., (1979). A Truth Maintenance System, Artificial
Intelligence, 12, 231-272.

De Kleer, J. (1986). An assumption-based TMS. Artificial
Intelligence, 28, 127-162.

Eck, P.A.T. van, Engelfriet, J., Fensel, D., Harmelen, F.
van, Venema, Y. and Willems, M. (2001). A Survey of
Languages for Specifying Dynamics: A Knowledge
Engineering Perspective. IEEE Transactions on
Knowledge and Data Engineering, vol. 13, 2001, 462-496.

Engelfriet, J., Marek, V.W., Treur, J., and Truszczinski, M.
(2001). Default Logic and Specification of
Nonmonotonic Reasoning. Journal of Experimental and
Theoretical AI, vol. 13, 2001, pp. 99-112.

Engelfriet, J., and Treur, J. (1995). Temporal Theories of
Reasoning. Journal of Applied Non-Classical Logics, 5,
1995, pp. 239-261.

Engelfriet J. and Treur, J. (1998). An Interpretation of
Default Logic in Minimal Temporal Epistemic Logic.
Journal of Logic, Language and Information, vol. 7,
1998, pp. 369-388.

Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards,
N.J.E. (1999). Specification of Behavioural Requirements
within Compositional Multi-Agent System Design. In:
F.J. Garijo, M. Boman (eds.), Multi-Agent System
Engineering, Proc. of the 9th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World,
MAAMAW’99. Lecture Notes in AI, vol. 1647, Springer
Verlag, 1999, pp. 8-27.

Hölldobler, S., and Thielscher, M. (1990). A new deductive
approach to planning. New Generation Computing, 8:225-
244, 1990.

Johnson-Laird, P.N. (1983). Mental Models. Cambridge:
Cambridge University Press.

Johnson-Laird, P.N., and Byrne, R.M.J. (1991). Deduction.
Hillsdale, NJ:Erlbaum.

Jonker, C.M., and Treur, J. (1998). Compositional
Verification of Multi-Agent Systems: a Formal Analysis
of Pro-activeness and Reactiveness. In: W.P. de Roever,
H. Langmaack, A. Pnueli (eds.), Proceedings of the
International Workshop on Compositionality,
COMPOS'97. Lecture Notes in Computer Science, vol.
1536, Springer Verlag, 1998, pp. 350-380. Extended
version in: International Journal of Cooperative
Information Systems, vol. 11, 2002, pp. 51-92.

Jonker, C.M., and Treur, J., (2002). Analysis of the
Dynamics of Reasoning Using Multiple Representations.
In: W.D. Gray and C.D. Schunn (eds.), Proceedings of the
24th Annual Conference of the Cognitive Science Society,
CogSci 2002. Mahwah, NJ: Lawrence Erlbaum
Associates, Inc., pp. 512-517.

Kelso, J.A.S. (1995). Dynamic Patterns: the Self-
Organisation of Brain and Behaviour. MIT Press,
Cambridge, Mass.

Kowalski, R., and Sergot, M. (1986). A logic-based
calculus of events. New Generation Computing, 4:67-95,
1986.

Langevelde I.A. van, Treur J. (1992). Logical Methods in
Protocol Analysis. In: M. Linster, B. Gaines (eds.), Proc.
of the European Knowledge Acquisition Workshop,
EKAW '91, GMD-Studien 211, pp. 162-183.

Marek, V.W. and Truszczynski, M. (1993). Nonmonotonic
Logics; Context-dependent Reasoning, Berlin: Springer-
Verlag.

McCarthy, J. and Hayes, P. (1969). Some philosophical
problems from the standpoint of artificial intelligence.
Machine Intelligence, 4:463--502, 1969.

Meyer, J.-J., Ch., and Treur, J. (eds.) (2001). Dynamics and
Management of Reasoning Processes. Series in Defeasible
Reasoning and Uncertainty Management Systems (D.
Gabbay, Ph. Smets, series eds.), Kluwer Academic
Publishers.

Port, R.F., Gelder, T. van (eds.) (1995). Mind as Motion:
Explorations in the Dynamics of Cognition. MIT Press,
Cambridge, Mass.

Reiter, R., 1980, A Logic for Default Reasoning, Artificial
Intelligence 13, 81-132.

Rips, L.J. (1994). The Psychology of Proof: Deductive
reasoning in human thinking. MIT Pres, Cambridge,
Mass.

Schroyens, W. J., Schaeken, W., & d’ Ydewalle, G. (2001).
A meta-analytic review of conditional reasoning by model
and/or rule: Mental models theory revised. Psychological
report No. 278. University of Leuven. Laboratory of
Experimental Psychology.

Yang, Y., and Johnson-Laird, P.N. (1999). A study of
complex reasoning: The case GRE 'logical' problems. In
M. A. Gernsbacher & S. J. Derry (Eds.) Proceedings of
the Twenty First Annual Conference of the Cognitive
Science Society, pp. 767-771.

 15

Yang, Y., and Bringsjord, S. (2001). Mental MetaLogic: a
New Paradigm in Psychology of Reasoning. Extended
abstract in: L. Chen, Y. Zhuo (eds.), Proc. of the Third
International Conference on Cognitive Science, ICCS
2001. Beijing, pp. 199-204.

 16

