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Abstract 
In this paper non-classical logical techniques are introduced to formalize the analysis of multi-
interpretable observation information, in particular in approximate classification processes where 
information on attributes of an object is to be inferred on the basis of observable properties of the 
object. One frequently occurring reason for imperfect classification is when the available 
observations are insufficient to determine unique values for each of the attributes: a range of 
values may still be possible. Another often occurring reason for imperfect classification occurs 
when the observation information is contradictory: for some of the attributes not any value is 
possible. The combination of both types of imperfection is non-trivial from a standard logical 
perspective. To address this problem multi-interpretation operators and selection operators are 
introduced; these techniques generalize non-monotonic reasoning formalisms such as default 
logic. A specific multi-interpretation operator for approximate classification is introduced and 
formally analysed. On the basis of this approach, in co-operation with industry a system has been 
designed and implemented for the analysis of ecological monitoring information. 

  Keywords: approximate classification, belief sets, nonmonotonic, interpretation 

1  Introduction 
In most real-life situations humans receive information that can be interpreted in many 
different ways. On the one hand this involves interpretation: the information from the outside 
world has to be given a meaning. In logic the notion of interpretation mapping has been 
introduced to describe the interpretation of one logical theory in another logical theory, for 
example geometry in algebra (cf. Chapter 5 in [7]). This notion assumes a choice for one 
interpretation, and does not cover cases in which multiple interpretations at the same time are 
relevant. But on the other hand, given the information received, there is often more than one 
possibility for forming a set of beliefs about the world. This can be due to incompleteness, 
vagueness or uncertainty of the input, and may require non-monotonic reasoning techniques 
of the reasoning agent. The context often determines the view with which this information is 
interpreted. In this paper multi-interpretation operators are introduced and applied to 
formalize multiple interpretations of observation information. The notion of a multi-
interpretation operator is rather general: it subsumes on the one hand the notion of 
interpretation in logic, and on the other hand the notion of (non-monotonic) belief set operator 
as introduced in [5].  
 A specific type of multi-interpretation operator is defined to interpret observation 
information in approximate classification tasks. The generic task formalized by such an 



2 

operator is as follows. Suppose there is an object in the world, and one is interested in the 
values of attributes of this object. It is possible to observe the object leading to input 
information consisting of observable properties. On the basis of these properties information 
on the values of attributes of the object is derived. This task involves interpretation: 
interpreting observable properties in terms of values of attributes (which may be difficult or 
impossible to observe directly).  
 Two problems occurring often in such classification tasks in real-world domains are 
underspecification and overspecification. Underspecification occurs when the observations are 
sufficient to exclude some of the values of attributes, but insufficient to determine unique 
values for each of the attributes: a range of values may still be possible. Overspecification 
occurs when the observation information is contradictory: for some of the attributes not any 
value is possible. Underspecification can lead to an approximation (an upper bound) of the 
solution of the classification: a set of possibilities, one of which is the right solution. If the 
number of observations increases, the approximation may come closer to a unique solution: 
the resulting sets of possible classifications will decrease with the increase of observation 
information. Overspecification leads to a trivial approximation from the other direction: the 
empty set as a lower bound (no classification at all). The combination of underspecification 
and overspecification as occurs often in practical domains is problematic. The occurrence of 
contradictory observation information interferes with the approximations that can be used as 
upper bound of the solution.  
 Multi-interpretation operators can be used to clarify this interference: such an operator 
formalizes that  there is more than one possibility of interpreting the observed findings. A 
generic multi-interpretation operator is introduced to formalize such tasks. The input language 
of the operator is restricted to observation information only; interpretations of this observation 
information are expressed in terms of the output language of the operator. This formalization 
identifies and separates the overspecification and underspecification and entails an 
approximate solution of a classification problem in the form of multiple approximations. 
 One domain in which multi-interpretable observations can be analysed using a technique 
based on the distinction of different views, is the domain of ecology. Here the possible values 
of abiotic factors such as moisture and acidity of a terrain, are determined on the basis of the 
plant species found on the terrain. 
 The structure of this paper is as follows. Section 2 introduces multi-interpretation operators 
and selection operators and some properties they may have. The generic multi-interpretation 
operator for interpreting observation information is also given and studied in this section. The 
application of these techniques in the domain of ecology is briefly sketched in Section 3. In 
Section 4, it is shown that such a generic operator is representable in default logic. The last 
section contains the conclusions. 

2  Multi-interpretation Operators and Approximate Classification 
In this section the notion of multi-interpretation operator is introduced (Section 2.1), a specific 
type of multi-interpretation operator is defined that formalizes approximate classification 
(Section 2.2), and some properties of this multi-interpretation operator are proven (Section 
2.3).  
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2.1  Multi-interpretation operators 

A multi-interpretation operator is an operator that assigns to each set of input information, a 
set of interpretations. The input information is described by propositional formulae in a 

propositional language L1. An interpretation is a set of propositional formulae, which is 
closed under the standard propositional consequence operator  Cn. Such a closed set will be 
called a belief set, and we assume that they are based on a (possibly different) propositional 
language  L2. A belief set can be seen as a possible set of beliefs of an agent with perfect 
(propositional) reasoning capabilities. 

Definition 2.1  (Multi-interpretation operator) 
a)  A multi-interpretation operator  MI  with input language L1 and output language L2 is 
a function MI : 7(L1) µ 7(7(L2))  that assigns a set of belief sets to each set of input 
facts. 

b)  A multi-interpretation operator  MI  satisfies non-inclusiveness  if for all X � L1 and 
all  S, T � MI(X), if S � T  then  S = T.  
c)  The kernel  KMI : 7(L1) µ 7(L2)  of  MI  is defined by: for all X � L1 

    KMI(X) =  �MI(X). 
d)  If L1���L2, then a multi-interpretation operator  MI  satisfies inclusion if for all X � L1 
and all T � MI(X) it holds  X � T.  

 
The condition of non-inclusiveness guarantees a relative maximality of the possible 
interpretations. The kernel of a multi-interpretation operator yields the most certain 
conclusions given a set of initial facts, namely those which are in every possible interpretation 
of the input information. The last condition expresses conservativity: it means that a possible 
interpretation of the world at least satisfies the given facts; in this case the multi-interpretation 
operator defines a method of extending partial information. Note that when MI(X) has exactly 
one element this means that the set X � L1 has a unique interpretation under MI. 
 To give an example of a multi-interpretation operator, consider a set of default rules (the 
reader is referred to the next section for a definition of default logic). A set of initial facts, 
together with the default rules, gives rise to a number of extensions (which can be considered 
belief sets). An operator that assigns the corresponding set of extensions to each set of initial 
facts is a multi-interpretation operator. The kernel of this operator yields the sceptical (see 
e.g., [10]) conclusions. 
 Often, after a number of belief sets have been generated, the reasoning agent will focus on 
(or make a commitment to) one (or possibly more) of the belief sets, because it seems the 
most promising, or interesting, possible view on the world. This selection process can be 
formalized by selection operators (see [5]). 

Definition 2.2  (Selection operator and selective interpretation operator) 
a)  A selection  operator  s  is a function s : 7(7(L)) µ 7(7(L))  that assigns to each set 
of belief sets a subset (for all A � 7(L) it holds s(A) � A) such that whenever A � 7(L) is 
non-empty, s(A) is non-empty. A selection operator s is single-valued if for all non-empty  
A  the set  s(A) contains exactly one element. 
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b)  A selective interpretation operator for the multi-interpretation operator  MI  is a 
function C : 7(L1) µ 7(L2)  that assigns a belief set to each set of facts, such that for all 
X � L1 it holds  C(X) � MI(X)  
 

It is straightforward to check that if s : 7(7(L2)) µ 7(7(L2))  is a single-valued selection 
operator, then a selective interpretation operator  C  for a multi-interpretation operator  MI  
can be defined by setting 
  C(X) = s(MI(X))  for all  X ��L1. 
 The type of operator described above is very general, and many forms of reasoning can be 
captured with it (see [5] for a number of examples described in terms of belief set operators). 
Below, we will describe a generic type of operator applicable for a specific classification task. 

2.2  A Multi-interpretation Operator for Approximate Classification 

Suppose we have an object in the real world (a car, for example), and we are interested in the 
values of certain attributes of this object (such as the amount of horsepower of the engine; we 
assume attributes are functions). All we can do is observe a number of properties of the object 
(such as the colour, or maybe that it is a Ford). Knowledge relating observable properties to 
the possible values of attributes is needed to perform this classification task. Using this 
knowledge, for each attribute certain values can be excluded. In a situation of 
underspecification for each of the attributes this results in a remaining range of possible 
values. However, if also overspecification occurs, then in a classical manner it can be derived 
that for a certain attribute no value at all is possible, which contradicts the functional nature of 
attributes. 
 A formalization of this approximate classification  task can be made using the notions 
defined above. The language L1 is the propositional language of which the atoms are the 
ground atoms defined by the following signature: 
 
 a finite set Props of property names:  p1, ...., pk 
 a unary predicate:       observed 
 
The meaning of observed(pi) is (not surprisingly) that the property  pi  has been observed of 
the object. A variable over the set Props will be denoted by P. 
 The language L2 is the propositional language extending L1, of which the additional atoms 
are the ground atoms defined by the following signature:  
 
 a finite set of attribute names:    a1, ...  , am 
 a finite set of values for each of the attributes:      v1,1, ..., v1,k1, v2,1, ...., vm,km 
A variable over attributes will be denoted by A, a variable over values will be denoted by V. 
     
Predicates: 
 
  is_incompatible_with(P, A, V) 
  has_value(A, V) 
  is_indicative(P) 
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The basic idea is that certain (observed) properties may rule out certain values for certain 
attributes. A fact is_incompatible_with(P, A, V)  means that if the observed object has property  
P, then the attribute  A  of the object can not have the value  V. The predicate  has_value(A, V)  
means that attribute  A  of the object has value  V. The last predicate requires a bit more 
explanation. The basic assumption on the domain is that we may have (potentially) many 
observations, which can be contradictory. That is, two observed properties may both rule out 
values for one attribute, such that together they rule out all possible values of that attribute. 
This may happen for a number of reasons. It may be that our observations are fallible: 
sometimes we observe a property the object does not have. It is also possible that our 
knowledge about which properties are incompatible with which values of attributes is 
uncertain or even not completely correct. Another possibility is that the object is not strictly 
delineated or strictly homogeneous with respect to its attributes, and some properties are 
observed from different parts of the object. To deal with this situation, we may label some 
observed properties as being indicative. If the observations are uncertain, ’indicative’ may 
simply mean ’assumed true’. If the object is not homogeneous, then an indicative property is a 
property related to the view on the object we are interested in. The idea is that some properties 
are used to infer the values of attributes (in this sense they are ’indicative’ of these values), 
whereas the others are for example wrong, not of interest or coincidental for this view. 
 There is a knowledge base, KB, in language L2, that consists of propositional formulae 
expressing knowledge which is of the following form: 
 
•  a (large) number of ground instances of: 
 
  is_incompatible_with(P, A, V) 
 
These instances represent the experts’ knowledge of which properties rule out which values of 
certain attribute values. 
 
•  all ground instances of the generic rule 
 
  is_indicative(P) ª is_incompatible_with(P, A, V) µ��Å�has_value(A, V)  
 
This rule makes it possible to conclude that certain attributes of the object do not have a 
certain value. This derivation can be made if an indicative property has been found that does 
not (generally) occur in objects for which the attribute  A  has value  V. 
 
•  statements expressing that for each attribute at least one value should apply 
 
  has_value(a1, v1,1) Ó  ... Ó has_value(a1, v1,k1) 
 
   .... 
 
  has_value(am, vm,1) Ó  ... Ó has_value(am, vm,km) 
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For a given set of observed properties OBS ��Props, i.e., input of the form 
  { observed(p) | p � OBS } 
the set 
  X = KB  �  { is_indicative(p) | p � OBS } 
may be inconsistent. That is, it may be inconsistent to assume that all observed properties are 
indicative for the object. This may occur if there is an attribute  A  such that for all of its 
possible values Vjk, a property P  is observed that negatively indicates this value (which 
means we have both  is_indicative(P)  and  is_incompatible_with(P, A, Vjk)). With the generic 
rule, the conclusion  Å has_value(A, Vj,k)  is drawn for all possible values  Vj,k  of  A.  But this 
is inconsistent with the statement   
  has_value(A, Vj,,1) Ó  ... Ó has_value(A, Vj,,kj) 
which is in  KB. However, the set of maximal indicative subsets consistent with  KB  may be 
considered. This is defined as follows: 
 
Definition 2.3  (Maximal indicative subset)�

a)  A set of properties 5 � Props is an indicative set of properties if the theory 
 KB � {is_indicative(p) | p � S}  
is consistent. 
b)  Let �OBS�� Props �be a given set of observed properties. A set S � OBS  is a maximal 
indicative subset of  OBS if it is an indicative set of properties and for each indicative set 
of properties T with S � T � OBS it holds S = T. 
The set of maximal indicative subsets of OBS is denoted by  maxind(OBS). 

 
Note that, since Props is finite, for each indicative subset S of a set OBS, there exists at least 
one maximal indicate subset S’ of OBS such that S � S’. Moreover, if OBS is an indicative set 
of properties itself, there is only one maximal indicative subset of OBS, namely OBS itself. 
 Based on these notions the following multi-interpretation operator can be defined. 
 
Definition 2.4  (Generic multi-interpretation operator for approximate classification) 

For a set X � L1, define the set of observations implied by X by   
 OBS(X) = {p | observed(p) � Cn(X)}. 
The operator MImaxind  is defined by  
 MImaxind (X) = { Cn(X � KB � {is_indicative(p) | p � S}) | S � maxind(OBS(X)) } 
for each X � L1. 

 
Note that X ��Y � L1 implies OBS(X) ��OBS(Y) Actually, the sets X will often be sets of the 
form {observed(p) | p � OBS} for some set of properties OBS�� Props. 
 

2.3  Properties of the generic multi-interpretation operator for approximate 
classification 

The operator MImaxind satisfies a number of properties of well-behavedness. The proofs are 
rather straightforward. 
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Proposition 2.5 

The multi-interpretation operator MImaxind  satisfies inclusion and non-inclusiveness. 
 
In [5], some further conditions of well-behavedness for belief set operators are introduced 
(generalizing corresponding properties of inference operations). These properties can be 
defined for multi-interpretation operators as well; a number of them are formulated below. 
 
Definition 2.6  (Properties of multi-interpretation operators) 

a) Let  (, )  be sets of belief sets. The set ) contains more information than (, denoted 
( � )���if for all�6���) there exists S ��( such that  S ��T. 
b) Let  MI  be a multi-interpretation operator.  
 MI  satisfies belief monotony if for all  X, Y ��L1: 
  X ��Y  ¶��MI(X) ��MI(Y) 
c) Let  MI  be a multi-interpretation operator for which  L1 ��L2.  
 1. MI satisfies weak belief monotony if for all  X, Y ��L1: 
  X ��Y ��KMI(X) ¶��MI(X) ��MI(Y) 
 2. MI satisfies belief transitivity  if for all  X, Y, T ��L1: 
  T ��MI(X)  & X ��Y ��T ¶��KMI(Y) ��T 
 3. MI satisfies belief cut  if for all  X, Y ��L1: 
  X ��Y ��KMI(X) ¶��MI(Y) ��MI(X) 

 
Apart from belief monotony (which should in general not be expected), our multi-
interpretation operator is well-behaved. 
 
Theorem 2.7 

The multi-interpretation operator MImaxind  satisfies weak belief monotony, belief 
transitivity and belief cut. It does not generally satisfy belief monotony. 
 

Proof 
Abbreviate  MImaxind to  MI. Starting with belief monotony, consider a situation in which we 
have two properties, P1 and P2 (for simplicity), and suppose  KB  contains information which 
prevents P1 and P2  of both being indicative at the same time: there is an attribute  A  which 
has possible values  0 and 1. This means that  KB  contains the formula  has_value(A, 0) 

Ó�has_value(A, 1). Furthermore, suppose that we have  is_incompatible_with(P1, A, 0)  and  
is_incompatible_with(P2, A, 1) in  KB. Now let 
  X = { observed(P1) }, 
  Y = { observed(P1), observed(P2) }. 
Then MI(X)  contains one element (in which P1 is indicative), and MI(Y) contains two 
elements, one in which only  P1  is indicative, and one in which only  P2  is indicative. For this 
latter element there is no smaller set in MI(X). Therefore, belief monotony does not hold. 
 Let us now consider weak belief monotony and belief cut. Suppose X � Y � KMI(X)  and 
let  T � MI(X), then   
  T = Cn(X � KB � {is_indicative(p) | p � M})  
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for some  M � maxind(OBS(X)) and  Y ��T  (since Y ��KMI(X)). But as  X  and Y  contain 
only the predicate  observed  which is not present in  KB  or  in  {is_indicative(p) | p � M}, it 
must be the case that  Cn(Y) ��Cn(X), so that  Cn(X) = Cn(Y). This implies that  MI(X) = 
MI(Y), proving both weak belief monotony and belief cut.  
If T ��MI(X)  & X ��Y ��T, then the same argument shows that MI(X) = MI(Y), from which 

immediately follows that  KMI(Y) = KMI(X) ��T. This proves belief transitivity.    � 
 
Each of the belief sets is an approximation in the sense of an upper bound of the solution. If 
the number of observations increases, this upper bound decreases, as is established in the 
following theorem. 
 
Theorem 2.8 
For each pair of subsets X, Y ��L1 the following holds: 
  X ��Y  ¶��for all�S���MI(X) there exists a T ��MI(Y) such that  S ��T 
 

Proof 
From X ��Y it follows OBS(X) ��OBS(Y) (see note just below Definition 2.4) Therefore every 
maximal indicative subset of OBS(X) is an indicative subset S of OBS(Y). Within OBS(Y) this 
indicative subset can be extended to a maximal indicative subset S’ (see note just below 
Definition 2.3). This implies the theorem.      � 
 
This theorem guarantees that an increasing sequence of observations  
 
  X

0
 ��X1

 ��X2
 ��.... 

 
results in increasing beliefs sets within the sets MI(X

i
). These increasing belief sets correspond 

to decreasing sets of classifications, i.e., for each of the increasing belief sets the ranges of the 
possible values of attributes are decreasing: this provides an approximation of the 
classification by a sequence of decreasing upper bounds.  
 

S0  

X0   � X1   � X2     � ....

�

�

S12  

S11  

�

�

S212  

S211  

� S221  

S13  

�

�

S232  

S231  

� ....

� ....

� ....

� ....

� ....  

Fig. 1.  Example approximate classificationsbased on an increasing sequence of observations 

 
Note that Theorem 2.8 leaves open the possibility that belief sets remain constant, or new 
belief sets arise in some stage, i.e., sets of which no sub-set occurs in the previous set of belief 
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sets. In general, for a given sequence of observations the resulting belief sets will form a set of 
trees as depicted in Figure 1. Here 
 
  MI(X

0
) = {S

0
} 

  MI(X1) = {S11, S12, S13} 
  MI(X

2
) = {S

211
, S

212
, S

221
, S

231
, S

232
} 

 
The following proposition covers the case of an observed set of properties OBS  which has a 
unique interpretation: 
 
Proposition 2.9 

For each subset of properties OBS�� Props the following are equivalent: 
 (i)  MImaxind ({observed(p) | p � OBS})  contains just one element. 
 (ii)  the set OBS is an indicative set of properties. 

 
If these (equivalent) conditions are satisfied, all observed properties are indicative, and there 
are no alternative interpretations. This means there is no need for further selection from 
alternatives. The possible values of the attributes are contained in  MImaxind ({observed(p) | p � 
OBS}). 
 If MImaxind ({observed(p) | p � OBS})  contains more than one element, then a further 
selection process can be started. But even before this selection process, conclusions can be 
drawn: the kernel of the MImaxind  operator contains the most certain conclusions, so 
KMImaxind ({observed(p) | p � OBS})  may be inspected. For instance, there may be two 

possible views in MImaxind ({observed(p) | p � OBS})  due to the fact that there is an attribute  
A1  for which no value is compatible with all the observed properties. However, all of these 
properties may indicate that another attribute  A

2
  must have a certain value, and this 

conclusion will be in KMImaxind ({observed(p) | p � OBS}). If  A2  is all one is interested in, 

there is no need for selection. If one is interested also in A
1
, this selection has to take place. If 

one is interested in the properties which are indicative in both maximal indicative sets, one 
can either examine KMImaxind

 ({observed(p) | p � OBS}), or the intersection of the maximal 

indicative sets: 
 

KMImaxind (X) ��{ is_indicative(p) | p ��P } = { is_indicative(p) | p ����maxind(OBS(X)) }. 

 

For the multi-interpretation operator  MImaxind, the language and the format (the kinds of 
rules) of the knowledge base KB were fixed. When the language and format of  KB  is left 
open, we get a general class of multi-interpretation operators that can deal with input which is 
contradictory in the sense that it is inconsistent with a knowledge base. 
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3  An Example Application  

In this section we will briefly describe a domain to which the formalization above was applied 
(see [1]). Nature conservationists are interested in a number of so-called abiotic factors of 
terrains. These factors, examples of which are the moisture, acidity and nutrient value, give an 
indication of how healthy a terrain is. As these factors are difficult to measure directly, a 
sample of plant species growing on a terrain is taken.  
 
 

 Moisture Acidity  Nutrient  
Value 

 Species vd fd fm vm fw vw bas neu sac fac ac np fnr nr vnr 

                

 Angelica sylvestris       x x   x x         x x    

 Carex acutiformis       x x   x x         x x    

 Carex riparia       x x x x x           x x  

 Cirsium oleraceum       x x   x x         x x    

 Phalaris arundinacea     x x x x x x           x x  

 Phleum pratense ssp pratense     x x     x x           x x  

 Poa trivialis     x x x   x x           x x  

                

 Caltha palustris ssp palustris       x x   x x x     x x x    

 Carex acuta       x x x x x x       x x x  

 Cirsium palustre       x     x x x     x x x    

 Crepis paludosa     x x x   x x x       x x    

 Deschampsia caespitosa     x x x   x x x       x x x  

 Epilobium parviflorum     x x     x x x       x x    

 Equisetum palustre     x x x x x x x     x x x    

 Filipendula ulmaria       x     x x x     x x x    

 Galium palustre       x x   x x x     x x x x  

 Glyceria fluitans       x x x x x x x     x x x  

 Juncus articulatus       x x   x x x     x x x x  

 Lathyrus pratensis     x x     x x x       x x    

 Lotus uliginosus     x x x   x x x     x x x    

 Lychnis flos cuculi       x x   x x x       x x    

 Lysimachia vulgaris     x x x   x x x     x x x    

 Myosotis palustris       x x   x x x       x x x  

 Scirpus sylvaticus       x x x x x x       x x    

                

 Anthoxanthum odoratum   x x x         x x   x x      

 Carex nigra     x x x       x x x x x      

 Carex panicea     x x x       x x   x x      

 Epilobium palustre     x x x       x     x x      

 Juncus conglomeratus   x x x         x x   x x      

 



11 

Moisture  (vd: very dry, fd: fairly dry, fm: fairly moist, vm: very moist, fw: fairly wet, vw: very wet) 

Acidity    (bas: basis, neu: neutral, sac: slightly acid, fac: fairly acid, ac: acid)  

Nutrient value (np: nutrient poor, fnr: fairly nutrient rich, nr: nutrient rich, vnr: very nutrient rich) 

Table 1.  Maximal indicative subsets within an inhomogeneous sample of plant species. 

 
 
For each species, the experts have knowledge about the possible values of the abiotic factors 
of a terrain on which the species lives. So it may be known, for example, that a certain species 
can only live on medium to very acid terrains. Combining such knowledge for each of the 
plant species observed on a terrain leads to conclusions about the abiotic factors of the terrain.  
 During the development of a knowledge-based system, EKS, to automate this classification 
process, however, it turned out that the samples of species taken were often incompatible 
(e.g., see the sample depicted in Table 1). That is, there was at least one abiotic factor for 
which no value could be found that was permissible for all species. This is not due to errors in 
the knowledge of abiotic factors needed by species to live, but due to other effects. For 
example, a terrain may lie on the transition of a dry and a wet piece of land. Some of the 
observed species may occur on the drier, and others on the wetter side. This can also be due to 
the presence of ponds in an otherwise dry terrain. Also transitions of a terrain over time, or 
vertical inhomogeneity may be causes. 
 The approximate classification task described above is an example of the task performed 
by the multi-interpretation operator  MImaxind. The object to be studied is a terrain, and the 
attributes of interest are the abiotic factors. The presence of certain species are the observable 
properties of the object. So we can specialize the generic knowledge base to this case. The 
language is as follows: 
 
properties: (occurrence of) plant species names achillea_millefolium,  
    achillea_ptarmica, .... 
attributes: abiotic factors   moisture, acidity, nutrient_value 
values for each of the attributes abiotic factors: very_dry, fairly_dry, ......,  
    basic, neutral, ......,  
    nutrient_poor, fairly_nutrient_rich, ... . 
 
The experts’ knowledge about the possible values of abiotic factors for a species, is 
formalized by (a large number of) instances of the predicate  is_incompatible_with(P, A, V), 
where  P  is one of the plant species names, A is an abiotic factor, and  V is a value of that 
factor. This knowledge leads to a specific instantiation of  MImaxind, we will denote by the 
same name. The alternative interpretations given by  MImaxind(X)  are extremely useful. Each 
of the alternatives leads to a different set of (possible) values for the abiotic factors. If this is 
for instance due to the fact that the terrain consists of a drier portion and a wetter portion, then 
a selection can be made for the portion of interest, whose possible values for abiotic factors 
are contained in the corresponding interpretation. This selection process can be formalized by 
a selection operator as defined in Definition 2.2. At this moment, that process has not been 
analyzed in more detail, but that is one of the future directions of research. 
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 As mentioned before, a system called EKS has been developed to help a user in 
establishing the abiotic factors of a terrain. The correspondence between the formalization of 
the expert reasoning task and the interactive knowledge-based system EKS that models the 
approximate classification task is as follows (see Figure 2).  
 

selection 
of a maximal 

indicative 
subset

determination 
of maximal 
indicative 
subsets

MImaxind(X)X suser(MImaxind(X))
MImaxind suser

CEKS(X)X
CEKS

 
 

Figure 2.  Correspondence between the formalization and the system. 

 
The first component of the system, determination of maximal indicative subsets, is formalized by 
the belief set operator  MImaxind  defined in Section 2.2. The second component of the system, 
selection of a maximal indicative subset, which models (an interface to) the selection process by 
the user of the system, is formalized by a single-valued selection function  suser. 

 
The composition CEKS of MImaxind and suser  defined by 
 
    CEKS(X)  = suser (MImaxind (X))        for X ��L1

 
 
is a selective interpretation operator for MImaxind (as described in Definition 2.2b). This 
operator formalizes the reasoning of the system in interaction with the user as a whole. Note 
that from the two functions of which this overall function is composed, one is fixed and 
defined by the system itself (i.e., MImaxind), whereas the other can be changed dynamically, 
depending on the user  (i.e., suser). For more details on this application, see [1]. 

4  Representation in Default Logic 
The previous section described the generic multi-interpretation operator  MI, which 
formalizes the interpretation of (possibly inconsistent) observation information using maximal 
indicative sets. A specification of this multi-interpretation operator in a (well-known) logical 
formalism would mean that known results about this logic can be applied to this situation, but 
it would also allow for the use of proof mechanisms for this logic to be used in an 
implemented system based on such an operator. In [6] and [9] default logic is used as a 
specification language for families of belief sets. These results can be applied to the 
formalization of the previous section. 
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 To start, a brief overview of Reiter’s default logic (cf. [2], [11]) is provided. Although 
Reiter’s definitions are stated for any first-order language, here they are restricted to 
propositional logic, as is commonly done. So let us again assume a propositional language  L. 
A default rule (or default) is an expression of the form  (m � �1, ..., �n) / �  where  m, �1, ..., �n  and  
�  are propositional formulae. Intuitively such a default rule means: if  m  is believed and it is 
not inconsistent to assume �1  through  �n  , then assume �. A default theory   Ì  is then a pair  
< W, D >  with  W  a set of sentences (the axioms  of  Ì) and  D  a set of default rules. The 
default rules are used to extend the axioms to a (larger) set of formulas, called an extension. 
The following definition of the notion of extension is slightly different but equivalent to 
Reiter’s original definition. 

Definition 4.1 (Reiter extension) 
Let  Ì�=  < W, D >  be a default theory. A set of sentences  E  is called a Reiter extension  
of Ì  if the following condition is satisfied: 

    E =  §i=0

�    Ei 

where 
   E0 = Cn(W),  
and for all  i ��0  
 Ei+1 = Cn(Ei � { � | (m����1,...,�n) / �  ��D, m���Ei  and  Å��1 ½�E, ... , Å��n ½�E }) 

The set of Reiter extensions of Ì is denoted by Ext(Ì) . 
 
Extensions of a default theory are closed under propositional provability, so  Ext(Ì)  is a 
family of belief sets. In a sense, this family is represented (or specified) by  Ì. For an arbitrary 
family of belief sets, the question can be posed whether it can be represented by a default 
theory. 
 
Definition 4.2 (Representability of a family of belief sets) 

Let  Ì�=  < W, D >  be a default theory. A family of belief sets  F  is representable by   Ì  
if Ext(Ì) = F. The family  F  is called representable by a default theory if there exists such 
a default theory. 

 
In [9] the following theorem has been proven (Corollary 5.2): 
 
Theorem 4.3   

A family  F  of theories is representable by a normal default theory if and only if  F = {L}   
or there is a consistent set of formulas  W  and a set of formulas  C  such that 
 F = { Cn(W � Í) | Í  is a maximal subset of  C  consistent with  W } 

 
In [6] the question is posed whether a belief set operator can be represented by a set of 
defaults. Below, the definitions in that paper are slightly generalized to deal with a different 
input and output language. Recall that  L1  is the input language, and L2 is the output 
language. We make the assumption that L1 ��L2. 
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Definition 4.4  (Representability of a multi-interpretation operator) 
Let  Ì�=  < W, D >  be a default theory. A multi-interpretation operator  MI  is 
representable by  Ì, if for all  X � L1  it holds that  MI(X) = Ext(< W ��X, D >). The 
operator  MI  is called representable by a default theory if there exists such a default 
theory. 

 
Consider the family of belief sets  MImaxind(X)  where X ��L1. Then Theorem 3.3 can be 
applied to  MImaxind(X)  by setting: 
 
  W = X � KB 
  C = { is_indicative(p) | p � OBS(X)} 
 
whith  KB  as defined in Section 2.2. Now Theorem 4.3 implies that for each X � L1 there 
exists a normal default theory that represents the belief sets of MImaxind(X). The theorem does 
not imply that there exists one set of defaults D which works for all sets X � L1 , so this does 
not imply that the multi-interpretation operator MImaxind is representable by a default theory. 
However, the normal default theory can actually be found by defining the following generic 
set of defaults  D: 
 
  (observed(p) : is_indicative(p)) / is_indicative(p)    for all properties  p in Props. 
 
This set of defaults is independent of  X, so  MImaxind  is representable using the above set of 
defaults  D  and the  KB  of Section 2.2. 
 
Theorem 4.5 

The multi-interpretation operator  MImaxind  is representable by the normal default theory  
< KB, D >. 
 

Proof 
Let  X  be a set of formulas in L1. Let  X ��KB  be consistent (if it is not, verification is 
straightforward and omitted). The extensions of < KB ��X, D > are sets of the form  Cn(KB 
��X ��S),  where  S  is a subset of  { is_indicative(p) | observed(p) � Cn(X) }, which is 
maximal such that Cn(KB � X � S)  is consistent. This is proved below. The sets 
Cn(KB � X � S)  with  S  as above together comprise MImaxind(X). 
First of all, let  S  be such a maximal set, and let  E = Cn(KB ��X ��S). Then if the  Ei  are 
defined as in Definition 4.1, the following holds: 

  E0 = Cn(KB ��X), 
  E1 = Cn(E0 ��{ is_indicative(p) | observed(p) ��E0 , Å�is_indicative(p) ½�E } ) 

As  E1  does not contain more instances of the  observed  predicate than  E0  (this follows from 
the fact that  X  contains only the  observed  predicate, whereas  KB  does not), Ei = E1  for all  
i > 1. The claim is that  
  { is_indicative(p) | observed(p) ��E0 , Å�is_indicative(p) ½�E } = S.  
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Suppose observed(p) ��E0  and  Å�is_indicative(p) ½�E. Then observed(p)  is in  Cn(X)  and 
Cn(KB ��X ��S ��{ is_indicative(p) } )  is consistent. But as  S  was maximal with respect to 
these properties, is_indicative(p) ��S. On the other hand, if is_indicative(p) ��S, then 
observed(p) ��E0  and Å is_indicative(p) ½ E (as E = Cn(KB ��X ��S) is consistent). 
Now let  E  be an extension of  < KB ��X, D >, then it is of the form Cn(KB � X ��S), where 
S  contains (only) formulas of the form is_indicative(p). Examination of  KB  (and the 
restriction on the language of  X), shows that only if observed(p) ��Cn(X)  is 
is_indicative(p) ��E. As extensions are always consistent (if each rule has a justification and 
the axioms are consistent), Cn(KB � X � S)  must be consistent. Suppose there exists a  
T ��S  (strict inclusion) respecting the conditions, then there must be a default rule  
observed(p) : is_indicative(p) / is_indicative(p), with observed(p) � Cn(X) ��E  and 
Cn(KB � X ��S ��{ is_indicative(p) } ) consistent, implying that  Å�is_indicative(p) ½�E. But 
that means there is an applicable default rule for which the conclusion is not in  E, 
contradicting the assumption that  E  is an extension. Therefore  S  must be maximal. � 
 
At this point the reader may wonder what the benefit is of the representation in default logic. 
The multi-interpretation operator MImaxind  arose during the analysis and formalization of the 
application described in the previous section. The system, EKS, was designed and 
implemented based on this operator MImaxind. The implementation in fact follows the 
definition (Definition 2.4) rather closely. The results of the current section indicate that 
alternatively a theorem prover for default logic (or, rather, a program computing extensions of 
default theories) could be used. A highly optimised theorem prover for default logic obviates 
the need to optimise this part of the system ourselves. This is the subject of current work on 
the system. 

5  Discussion 

In most real-life classification problems, the information about the object to be classified can 
be interpreted in different ways. In this paper, multi-interpretation operators were introduced 
to formalize this interpretation process. In particular, observation results of the world may 
underspecify or overspecify a classification. Overspecification means that the observations are 
in contradiction with knowledge about the world. A generic multi-interpretation operator was 
introduced for approximate classification tasks where attribute values of an object are 
determined on the basis of imperfect interpretation of observable properties of the object. The 
multi-interpretation operator formalizes in a neat manner the different variants of approximate 
classifications of the object. This operator is rather well-behaved, and can be represented by a 
default theory. This can be a basis for the use of (highly optimized) theorem provers for 
default logic, to implement a system formalized by the multi-interpretation operator. For the 
domain of ecological classification an application for the theory has been developed, and the 
resulting system, EKS, that has been implemented has shown to be a useful tool for nature 
conservationists. 
 After multiple interpretations of observation information have been identified, often a 
choice is made for one of them. Which view is (or which views are) most appropriate 
presumably requires additional heuristic (strategic) knowledge (cf. [3], [4], [12]). One of the 
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areas of future research is to further analyze this choice process, in general terms, but also in 
particular for the knowledge-based system. Future research will focus on the acquisition of 
this knowledge to be able to support users in the selection process. 
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