Three Types of Redundancy in Integrity
Checking; an optimal solution

R.R. Seljée H.C.M. de Swart
e-mail: R.Seljee@everest.nl * e-mail: H.C.M.deSwart@kub.nl

May 29, 1998

Abstract

Known methods for checking integrity constraints in deductive
databases do not eliminate all aspects of redundancy in integrity
checking. By making the redundancy aspects of integrity constraint
checking explicit, independently from any chosen method, it is possible
to develop a new method that is optimal with respect to the classified
redundancy aspects. We distinguish three types of redundancy and
propose an integrity checking method based on revised inconsistency
rules.

1 Three Types of Redundancy

A deductive database consists of facts, rules and inconsistency indicators.
Facts are ground atoms of the form p(cy,...,c,) where p is an n-ary pred-
icate symbol and ¢,..., ¢, are (individual) constants. A rule is a clausal
form expression of the form HV...VH, < BiA...AB, A=A A...AN—A,
where each H;, B; and A; is an atomic formula. For reasons of simplic-
ity of presentation we restrict ourselves to rules with £k = 1 and n = 0.
An integrity constraint is a universally quantified closed first-order formula.
And an inconsistency indicator is the negation of an integrity constraint.

*Supported by a grant from the Cooperation Centre of Tilburg and Eindhoven Univer-
sities

So, if YXVY [parent(X,Y) = —student(X)] is an integrity constraint, then
AX3Y [parent(X,Y) A student(X)] is the corresponding inconsistency indi-
cator, frequently written as parent(X,Y), student(X). The variables in an
inconsistency indicator are supposed to be existentially quantified.

Sooner or later, facts, rules or even constraints change. Such a change is
called an update to the database. We restrict ourselves to updates consisting
of ground atoms, representing the insertion of a new fact. A database is
called consistent if it obeys all its specified integrity constraints.

Following J.M. Nicolas [2] we suppose that the deductive database is con-
sistent before the update. Throughout this paper we will use the following
deductive database for illustration purposes.

Example 1 Let D be the deductive database consisting of the following
facts, rules and inconsistency indicator.

F : father(1,10).

F, : father(1,11).

F3 : child(10, 2).

Fy : student(3).

Ry : mother(X,Y) < husband(Z,X), father(Z,Y).
Ry : parent(X,Y) < father(X,Y).

R : parent(X,Y) <= mother(X,Y).

R, : mother(X,Y) < child(Y, X).

11, : parent(X,Y), student(X).

Let U be the following update.

U: husband(1,2).

Because of the presence of rules, an update may induce other (implicit)
changes in the database. For instance, in Example 1 above the update
husband(1,2) induces mother(2,10) and mother(2,11) via rule R; and con-
secutively parent(2,10) and parent(2,11) via rule Rs. Mother(2,Y) and
parent (2,Y") are called potential updates of U. The database resulting from
updating database D by update U is denoted by Dy .

Definition 0 Let D be a deductive database and U an update to D.

i) Let R: H < By A... A By, be arule in D and let L be a literal which
is unifiable with B; in R for some i. If 7 is the most general unifier of L
and B;, we say that Hvy directly depends on L with respect to R. If o is a
substitution such that (B;y A... A B;_1 A Biy1 A ... A Bp)vo is true in Dy,

2

then we say that (Hvy)o is directly induced by L.

ii) A literal depends on L iff it directly depends on L or it directly depends
on a literal depending on L. And a literal is induced by L iff it is directly
induced by L or it is directly induced by a literal induced by L.

iii) Each literal depending on update U and U itself is called a potential up-
date (with respect to U). And each literal induced by U and U itself is called
an induced update (with respect to update U).

In this paper we address the problem of checking the integrity of the database
after an update U in the most efficient manner; i.e., we want to check as ef-
ficiently as possible whether, given a consistent database D and an update
U, the updated database Dy is still consistent. From the literature three
methods for consistency checking are known: the method based on induced
updates, the method based on potential updates and the method based on
inconsistency rules [3]. The first two methods are shortly explained in section
1.1 and the third method is described in section 2.1.

In this paper we analyze three types of redundancies and show that the
known methods suffer from at least one of them. Next we introduce the
method based on revised inconsistency rules and explain why this method is
optimal with respect to the redundancies just mentioned.

1.1 Redundancy of the first type

By a redundancy of the first type we mean the redundancy caused by com-
puting irrelevant and/or ineffective derived updates.

Definition 1 Let U be an update to a database D. An induced or po-
tential update is called effective if it is an induced insertion that does not
hold in D. Otherwise, it is called ineffective.

For instance, in example 1, mother(2,10) is an induced update of update U:
husband(1,2), but it is ineffective because mother(2,10) does hold in D be-
cause of fact F3: child(10,2) and rule R,. On the other hand, mother(2,11)
is an example of an induced update that is effective. The potential update
mother(2,Y) is effective too.

Definition 2 Let U be an update to a database D. An induced or potential
update is called relevant to the integrity checking of the updated database

Dy if it is relevant to some inconsistency indicator in D. Otherwise, it is
called irrelevant. (A literal L is relevant to a formula F if it is unifiable with
some literal in F'.)

For instance, in example 1 the induced updates mother(2,10) and
mother(2,11) are both irrelevant to I1;. On the other hand, the induced up-
dates parent(2,10) and parent(2,11) are both relevant to 1/;. When looking
at the potential updates derived from update U, we see that mother(2,Y)
and parent(2,Y) are derived, of which mother(2,Y) is irrelevant to II; but
effective and parent(2,Y) is relevant and effective. This is shown in the
pyramid of figure 1.

<«———induced|updates— 3

-« potential| updates >
parent(2,11)

Figure 1: Redundancy of the first type

In this figure triangles are important for its interpretation. The semantics
of this pyramid is given in the following way. The whole pyramid consists
of derived updates that result from U. In fact, the pyramid consists of
potential updates represented by the triangle of which the basis is marked

4

with potential updates. Some of them can be instantiated to induced up-
dates. These induced updates are represented by the triangle of which the
basis is marked with induced updates. However, the potential updates may
have other instances, which do not correspond to induced updates. These
instances are present in the white area of the pyramid. Now, the derived
updates are observed from two other perspectives. On the left side of the
pyramid a distinction is made between effective and ineffective derived up-
dates. The effective part of all derived updates is enclosed in the triangle of
which the side is marked by effective. In the other part of the pyramid all
ineffective derived updates are represented. On the right side of the pyramid
a distinction is made between relevant and irrelevant derived updates. The
relevant part of the derived updates is enclosed in the triangle of which the
side is marked by relevant. In the other part of the pyramid all irrelevant
derived updates are represented. Note that the inner core of the pyramid is
the most interesting part with respect to the inconsistency indicator. This
part, represented by the smallest triangle in the figure, actually influences
the consistency of the database.

In the method based on induced (potential) updates three phases
are distinguished:

the generation phase, in which the induced (potential) updates are generated;
the selection phase, in which all induced (potential) updates relevant to the
inconsistency indicator are selected;

the evaluation phase, in which the induced (potential) instances of the in-
consistency indicators, derived in the previous phase, are evaluated.

So, in the method of induced updates, in example 1 the induced updates
parent(2,10) and parent(2,11) are selected, while the first one is not effec-
tive, and next the following instances of I, are evaluated:

parent(2,10), student(2);
parent(2,11), student(2).

Because student(2) does not hold in Dy, I1; is not validated in Dy and Dy
remains consistent.

And in the method of potential updates, in example 1 the potential update
parent(2,Y) is selected and next the following instance of I1; is evaluated:

parent(2,Y), student(2).

Note that in the method based on potential updates the computation of the
induced updates is postponed to the evaluation phase. So, we do not spoil
any evaluation time for finding instances of irrelevant potential updates, such
as instances of mother(2,Y’) in example 1.

In the methods based on induced and potential updates, all induced and
potential updates are generated before checking the consistency of the up-
dated database. Some or many of these derived updates may be irrelevant
and /or ineffective. Consequently, these methods suffer from the redundancy
of the first type.

The method based on inconsistency rules, given in Seljée [3] and to be de-
scribed shortly in section 2.1, does not suffer from this redundancy of the
first type.

1.2 Redundancy of the second type

Suppose that in the example given above the father-relation does not contain
facts for person 1, but only facts for person 3. That is, suppose that the
facts F; and Fy are replaced by the facts father(3,30), father(3,31) and
father(3,32). Then the update U : husband(1,2) does not generate new
mother-facts and therefore also no new parent-facts. In other words, there
are no induced updates. However, the potential updates in the situation
just mentioned are mother(2,Y’) and parent(2,Y), of which the latter one is
relevant to the inconsistency indicator 11;. So, the following instance of 11;
is evaluated:

parent(2,Y), student(2)

Since there are no new parent-facts that were not present before the update,
the evaluation of /17 is redundant. We call this kind of redundancy a redun-
dancy of the second type.

This situation is illustrated in figure 2, where the dotted lines show the part
of the database that does not change. Being a literal in Iy, parent(X,Y)
is by definition the root literal of a tree Tpgrens(x,v)- Corresponding with the
rules R, and R3 there are two OR-branches leaving from the root, one with
mother(X,Y) and one with father(X,Y) as child node. Corresponding with
rule R; the node with mother(X,Y’) in its turn has two related (immediate)
AND-successors, one with husband(Z, X) and the other with father(Z,Y).
Related AND-nodes are indicated by an arc.

6

Il,:3X Y[parent(X,Y), student(X)]

L.

parent (XY)

mother(X,Y) father(X,Y)

father(3,30)

husband(Z,X) father(Z v) {father o

father(3,32)

husband(1,2)

Figure 2: Redundancy of the second type

Note that the occurrence of this type of redundancy is highly dependent on
the particular database state and therefore can only be determined at run-
time. Therefore, during an inconsistency check it is important to find out
with a minimum of database accesses if this situation occurs.

This kind of redundancy does not appear in the method based on induced
updates, because by generating the induced updates first, one can pick out
those inconsistency indicators that are really influenced by the update. It
is a serious problem in the method based on potential updates in which a
relevant inconsistency indicator may turn out to be irrelevant when actually
exploring the database.

1.3 Redundancy of the third type

A redundancy of the first type is a redundancy in the generation of derived
updates. A redundancy of the second type is a redundancy in the selection
of potential updates relevant to an inconsistency indicator. The third type of
redundancy is the redundancy that appears in the evaluation of the selected
inconsistency indicators. It involves an evaluation of parts of the database
that are not affected by the update.

For instance, in the method based on potential updates the update
husband(1,2) may cause an implicit update in the parent-relation because
of a change in the mother-relation.

II;:3X 3Y [parent(X,Y), student(X)]

!

parent(X,Y)

e
.,
.
.
.
.
.,
.
.,
.
.
.
*
.,
.

mother(X,Y) father(X,Y)

husband(Z,X) father(Z,Y)

LI

husband(1,2)

Figure 3: Redundancy of the third type

The resulting evaluation of parent(2,Y), student(2) will lead to a search
for a change of the mother-relation as well as the father-relation. But the
father-relation did not change by the update. Therefore, the evaluation of
the inconsistency indicator by going into the right branch of our tree is re-

dundant. This situation is shown in figure 3.

Besides a check of an updated branch of such a tree, this could lead to a
check of branches which are unchanged. We call this kind of redundancy a
redundancy of the third type.

Remark Redundancy of the third kind may exist also in the method based
on induced updates. For instance, the update husband(1,2) could lead to
an induced update in the parent-relation, resulting in an evaluation of an
induced instance of II;. This evaluation will search through the father def-
inition part of the parent-relation, which is clearly not changed.
Redundancy of the third type can lead to an enormous overhead in case of
dependency trees, representing the intensional database, which are deeply
and widely branched. This is represented in figure 4.

=3

‘ o
I::;S

o

* =3
=3

[=%

|

=)
=)|

Figure 4: Redundancy of the third type in case of large dependency trees

In this figure the dependency tree is represented by an and/or tree, in which
and-nodes are connected by an arc in the branches to the and-node. The
parent node of such and-nodes represents a head of a rule and the and-nodes
represent the body of that rule. The continuous lines in figure 4 show the

9

influence of the update, i.e., the relations that are updated by the update.
The dotted lines show the part of the database that does not change. But
evaluating the expression in the top node means that all the branches will be
searched for a change, even the dotted branches. Note further that in case
of a combination of redundancy of the second and third type, the overhead
can become extremely large, as the second picture in figure 4 shows.

1.4 Related research

In Seljée [4] some other kinds of redundancy are considered too: redundancy
by duplicates, redundancy by neglecting the relation between updates and
redundancy by replacement. The Fact Integrity Constraint Checking Sys-
tem, FICCS, presented in the same work and based on revised inconsistency
rules (to be presented below), can avoid or minimize all redundancies men-
tioned above.

Redundancies in the evaluation of inconsistency indicators may be caused
by the order of their subgoals and is the concern of query optimization tech-
niques. This is not the kind of redundancy that is studied here. Although,
in the literature, a lot of attention is paid to redundancy in query evalua-
tion, which can be found in papers devoted to query optimization, not much
fundamental research is done about the causes of redundancies in integrity
checking.

However, in [1] Lee and Ling discovered a redundancy caused by evaluable
predicates that appear in inconsistency indicators. Their idea is to evaluate
these predicates as soon as possible in order to prevent database accesses
caused by evaluation of other predicates in indicators. For instance, let

I1;: parent(X,Y), student(X), eval(X)

be an indicator that contains some evaluable predicate eval, which only de-
pends on variable X.

Lee and Ling show that their optimization technique can be added to in-
tegrity checking methods in order to avoid this kind of redundancy. For
instance, in the method of potential updates, first we could select the poten-
tial updates that are relevant to the indicator. When a potential update with
respect to relation parent or student exists, which binds X in the indicator,
then we should first evaluate eval before finding all induced updates that
correspond to the potential updates, in order to save database access time

10

when eval(X) does not hold.

In [5] another redundancy concerning integrity checking in the case of ag-
gregate constraints is studied. For instance, when an aggregate constraint
I states that a relation R must not exceed the number of n tuples, and a
tuple from R is removed, it is awkward to count the number of tuples in
R again. Instead of this recount, together with I the number of tuples is
stored. Say this number is v. So, checking I corresponds to finding out the
number of tuples added to this relation, say m, resulting from the update
and computing v + m to see if it does not exceed n, as stated by I. Hence,
this constraint can be checked without accessing the database.

2 Revised Inconsistency Rules

The main feature of the proposed method based on inconsistency rules, to
be explained below, is that the consistency check itself is completely goal
driven. The knowledge of how an arbitrary update may influence inconsis-
tency indicators is represented by so called inconsistency rules. These rules
are meta-rules that are asserted to the deductive database. By the applica-
tion of these rules, from any update the relevant instantiated inconsistency
indicators, that have to be evaluated in the deductive database, are found
in just one step. Therefore, it does not have the disadvantage of generating
induced or potential updates that are not relevant to any inconsistency in-
dicator. Hence, redundancy of the first type does not appear in the method
based on inconsistency rules.

In order to make this paper self-contained we first discuss the inconsistency
rules, presented in Seljée [3]. By using inconsistency rules redundancy of the
first type is avoided. Next we introduce revised inconsistency rules in order
to minimize redundancy of the second type and of the third type as well.

2.1 Inconsistency rules

Inconsistency rules are derived from inconsistency trees, which in turn are
derived from potential update AND/OR trees (see [4]). In what follows we
use example 2 for illustration purposes.

11

Example 2 Let D be the deductive database consisting of the following
facts, rules and inconsistency indicator.

F : father(1,10).

F, : father(1,11).

Ry : mother(X,Y) < husband(Z, X), father(Z,Y).

R, : parent(X,Y) < father(X,Y).

Ry : parent(X,Y) <= mother(X,Y).

Ry :age-dif f(X,Y,N) < age(X, N1),age(Y, N2), N is N; — Ns.
11 : parent(X,Y),age-dif f(X,Y,N), N < 15.

Let U be the following update.

U : husband(1,2).

For example 2 we construct the potential update AND/OR trees Toarent(X,Y)
and Toge—qirs(x,v,n) for the literals parent(X,Y’) and age-dif f(X,Y, N) ap-
pearing in the inconsistency indicator II;, as follows. As before, being a
literal in Iy, parent(X,Y) is by definition the root literal of Tpsrent(x,v)-
Corresponding with the rules Ry and Rj3 there are two OR-branches leaving
from the root, one with mother(X,Y’) and one with father(X,Y) as child
node. Corresponding with rule R; the node with mother(X,Y) in its turn
has two related (immediate) AND-successors, one with husband(Z, X) and
the other with father(Z,Y). See figure 5. Related AND-nodes are indicated
by an arc.

parent(X,Y)

o

mother(X,Y) father(X,Y)

A

husband(Z,X) father(Z,Y)

Figure 5: Potential update AND/OR tree for example 2

Similarly, we can construct the potential update AND/OR tree Typge—aiff(x,v,N):

12

age-diff(X, Y, N)

age(X, N1) age(Y, N2) Nis N1-N2

A precise definition of potential update AND/OR trees is given below.

Definition 3 Let L be a database literal that appears in an inconsistency
indicator. Literal L is the root of a potential update AND/OR tree, say Tr..
L is called the root literal of T;,. We start with L as the first constructed
node. Let AV be a constructed node, then the following construction rules
are applicable:

1. If NV is unifiable with the head of any rule, then the construction of T},
is a top-down construction which proceeds as follows:
Let R: H <— Bi A---A B, be a rule, where H is a positive literal
which is unifiable with A" and where By, ..., B, are literals. Let o be
the most general unifier of N and H; then for each j the literal B;o is
an AND-node with respect to rule R of N only if it is not redundant. If
the literal is redundant it is not part of the potential update AND/OR
tree again. If more than one rule is applicable, then for each rule there
is an OR-branch for the literal A/, where each OR-branch ends in a
group of related AND-nodes corresponding to the body of the applied
rule.
A literal in the construction process is redundant if

e it is syntactically the same as some other node in the constructed
potential update AND/OR tree so far, or

e it is syntactically the same as some other node in the constructed
potential update AND/OR tree so far, except that both nodes
only differ with respect to some variables that do not occur in the
root literal.

2. If N is not unifiable with the head of any rule, then N/ does not have
any child node, i.e., the construction process stops.

13

In order to keep things simple and to avoid problems like those with view
updates, we assume that only the leaf nodes in potential update AND/OR
trees that are base relations in the given database are updatable. Figure 6
shows how in our example 2 the concepts of potential update AND/OR tree
and inconsistency indicator interact. An update may instantiate a leaf node
of some potential update AND/OR tree. By instantiating the leaf node of
a potential update AND/OR tree the root literal of this potential update
AND/OR tree is instantiated too.

I1::3X 3Y 3N [parent(X,Y), age_dif(X,Y.N), N < 15]

L]

parent(X,Y)
mother(X,Y) father(XY)

husband(Z,X) father(Z,Y)

L]

husband(1,2)

Figure 6: Updatable nodes in the potential update AND/OR tree for parent
leading to I

In figure 6 the substitution {X /2, Z/1} will instantiate parent(X,Y’) in I1;.
The instantiated root literal of this potential update AND/OR tree instanti-
ates the inconsistency indicator. The instantiated root literal is a potential
update with respect to the update in the leaf node. This is the reason for
calling these AND/OR trees potential update AND/OR trees.

Instantiation of inconsistency indicators by the updates in the transaction
(i.e., a set of updates) can be done in just one step. To express this one-step

14

instantiation we construct inconsistency trees. They are defined using the
definition of potential update AND/OR trees.

Definition 4 Let /1 be an inconsistency indicator. An inconsistency tree
(also called a one-level inconsistency tree, see Seljée [3]) Tj; is constructed
as follows. The root of an inconsistency tree Ty is I1. N is a child node
of the root (i.e., I1) of Ty if it is an updatable node of a potential update
AND/OR tree, Ty, for some literal L in I1. From N no other nodes are
derived.

Figure 7 shows the inconsistency tree for I1; in example 2. By the way,
the update husband(1,2) does not belong to the inconsistency tree.

113X 3Y N[parent(X,Y), age_di(X.YN), N < 15]

husband(Z,X) father(Z,Y) father(X,Y) age(X,N1) age(Y,N2)

I

husband(1,2)

Figure 7: Inconsistency tree for I/, in example 2

An instantiation of a node implied by some update now leads directly to a
potential instance of the inconsistency indicator. Inconsistency trees are only
needed to define inconsistency rules.

Definition 5 Let 71 be an inconsistency indicator, written without the ex-
istential quantifiers, and let A be a leaf node of the inconsistency tree Tj;.
Then

inconsistent(A) < I1

is an inconsistency rule, where only the variables in /7 that do not occur in
A are implicitly quantified existentially.

15

For instance, example 2 yields, among others, the following inconsistency
rules:

inconsistent(husband(Z, X)) < parent(X,Y), age-dif f(X,Y,N), N < 15.
inconsistent(age(Y, Na)) <= parent(X,Y),age-dif f(X,Y,N), N < 15.

From the construction of the inconsistency rules the following theorem is
clear. For an update U, the updated database Dy is the database that is
obtained by updating database D with U.

Theorem Let D be a consistent database and U an update. Then Dy
is consistent iff for each inconsistency rule inconsistent(A) < II and for
each substitution ¢ with U = Ao, 110 is false in Dy.

Proof Let D be a consistent database and U an update. Suppose Dy is
consistent, i.e., Dy satisfies the negation of each inconsistency indicator 11,
where all variables in 11 are implicitly quantified existentially.

Now let inconsistent(A) <= II be an inconsistency rule (with only the vari-
ables in T that do not occur in A implicitly quantified existentially) and let
o be a substitution with U = Ac; and suppose IIo were true in Dy. Then
11, with all variables implicitly quantified existentially, would be true in Dy.
Contradiction.

Conversely, suppose that Ilo is false in Dy for each inconsistency rule
inconsistent(A) < I and for each substitution o with A = Uo. And assume
that Dy were inconsistent, i.e., Dy satisfies some inconsistency indicator 1T
with all variables in I7 implicitly quantified existentially. Because D does
not satisfy /7, there must be an inconsistency rule inconsistent(A) < II
and a substitution o such that A = Uo and Il is true in Dy with all vari-
ables in /1o implicitly quantified existentially. Contradiction.

The integrity checking method based on inconsistency rules, described above,
avoids redundancy of the first type: no irrelevant or ineffective derived up-
dates are computed. As we have seen in section 1.1 both the method based
on induced updates and the method based on potential updates suffer from
this redundancy. However, the method based on inconsistency rules, as pre-
sented in [3], contains redundancy of the second and third type. In exam-
ple 2, the update husband(1,2) requires the evaluation of parent(2,Y), age-
dif f(X,Y,N),N < 15 which will be redundant if there are no father-facts

16

of the form father(1,Y) (redundancy of the second type) and which will
lead to a search for a change of the mother-relation as well as the father-
relation, while the father-relation did not change by the update (redundancy
of the third type). For this reason we refine our inconsistency rules to revised
inconsistency rules in the next section.

2.2 Revised inconsistency rules

In order to illustrate the advantages of revised inconsistency rules informally,
consider example 2. Suppose the update to this database is husband(1,2)
and let

parent(X,Y),age-dif f(X,Y,N), N < 15

be an inconsistency indicator. Following the construction of the inconsistency
rules in the previous section, the derived inconsistency rule with respect to
the relation husband has the following form:

inconsistent(husband(Z, X)) < parent(X,Y), age-dif f(X,Y, N), N < 15.

This means that whenever the inconsistency rule is applied to the update
husband(1,2), the evaluation in the updated database of the instantiated
inconsistency indicator

parent(2,Y),age-dif f(2,Y,N), N < 15

is necessary. In fact, what we really want to know is if there exists a parent
in the new database state, which was not present in the previous database
state, for which the age difference to the parent’s children is less than 15.
Note that the update husband(1,2) only changes the database through the
second parent-rule. In other words, only new mothers can contribute to
the change of the parent-relation. But when evaluating the instantiated
indicator, the subgoal parent(2,Y’) will try to find all parents of this form:;
so, the mother- as well as the father-part of the parent-rule is searched.
But it is known from the update that the father-relation has not changed.
The idea is to incorporate this knowledge into the (revised) inconsistency
rule. In order to do so, the relation parent is unfolded until the update of
concern is met. The literal parent(X,Y’) in the inconsistency rule is replaced
by an expression which gives a precise description of the change in parent.
In general, if husband(Z, X) is an update for some binding of Z and X, the

17

mother-rule states that mother(X,Y’) is a new instance if there exist fathers
of the format father(Z,Y) in the database. So, instances of father(Z,Y)
will give new instances of mother(X,Y) and consequently new instances
of parent(X,Y). So, only an instance of father(Z,Y) determines a new
instance of parent. Therefore, in our example in the inconsistency rule with
respect to husband, parent(X,Y) can be replaced by father(Z,Y). The
revised inconsistency rule is:

inconsistent(husband(Z, X)) < father(Z,Y),age-dif f(X,Y,N), N < 15.

Note that with this revised inconsistency rule not only redundancy of the
third type is eliminated, but also redundancy of the second type is mini-
mized. With update husband(1,2) only father-facts of the form father(1,Y)
and no father-facts of the form father(3,Y) can lead to an inconsistency.

In order to give a precise definition of revised inconsistency rules we first
have to introduce update expressions and revised inconsistency indicators. In
example 2, given above, the update expressions A%Tent(x’y) of parent(X,Y),
with N being an updatable node, will be: AiZﬁiZﬁii’ZY}) = father(Z,Y),

A?Z;;Z:E)Z(;/)) = husband(Z, X) and A?Z;Z:;gg = true.
Below we give the general definition of update expressions.

Definition 6 Let C' and D be literals appearing in some potential update
AND/OR tree Ty, in which C is ancestor of D. A conjunction of literals
is collected from 7} starting with D as the current node and the empty
conjunction. The collecting process proceeds as follows.

e Let D’ be the parent node of the current node, then collect all child
AND-nodes related to the current node, excluding the current node,
and add these nodes to the current literal set, resulting in the literal
set Spr.

Proceed this process with D’ as the current node and Sp as the current
literal set.

Continue this algorithm until C is reached. By A, we denote the conjunction
of all collected AND-nodes in S¢ in order of derivation, or true if S¢ = 0.

18

Definition 7 Let II be an inconsistency indicator, let L be a literal in
IT and let N be an updatable node from the potential update AND/OR tree
Ty. Then we call A% the update expression of L by N.

Definition 8 Let I/ be an inconsistency indicator, let L be a literal in
IT and let N be an updatable node from the potential update AND/OR tree
Ty. The expression that is derived from IT by replacing L by A%, is called
a revised inconsistency indicator with respect to L and N. This revised in-
consistency indicator is denoted by II(L,N).

Definition 9 Let I/ be an inconsistency indicator, let L be a literal in
11. We call the expression that is derived from /7 by leaving out L from the
conjunction the remainder 11, of I1 with respect to L.

Remark The revised inconsistency indicator in definition 8 is expressed by:
II(L,N) = AL ITT,.

Let II be the inconsistency indicator in example 2: parent(X,Y), age-
dif f(X,Y,N), N < 15. Let L be the literal parent(X,Y) and let N; be
the updatable node husband(Z, X) in the potential update AND/OR tree
Ty. Then II(L,N;) =

(A g xy, I11) = father(Z,Y),age-dif f(X,Y, N), N < 15.

Let N5 be the updatable node father(Z,Y) in the potential update AND/OR
tree Tr,. Then I1(L,N5) =

(A?Z;ZZ;E)Z(%), I1}) = husband(Z, X),age-dif f(X,Y,N), N < 15.
Let N3 be the updatable node father(X,Y) in Ty. Then
II(L,N3) = (Ao 11,) = age-dif f(X, Y, N), N < 15.

Definition 10 Let /1 be an inconsistency indicator and 77; the correspond-
ing inconsistency tree. For each leaf node N in 777, which is by definition an
updatable node of a potential update AND/OR tree T}, for some literal L in
11,

inconsistent(N) < II(L,N)

19

is a rewised inconsistency rule.

The five revised inconsistency rules that are derived from example 2 are:

e inconsistent(husband(Z,X)) < father(Z,Y),age-dif f(X,Y,N),
N <15

inconsistent(father(Z,Y)) < husband(Z,X),age-dif f(X,Y,N),
N <15

inconsistent(father(X,Y)) < age-dif f(X,Y,N), N < 15;
e inconsistent(age(X, N1)) < parent(X,Y),age(Y, N2), N1-N2 < 15;
e inconsistent(age(Y, N2)) <= parent(X,Y),age(X, N1), N1-N2 < 15.

Note that the definition of A guarantees the following property.

Theorem AB = AB AS for literals B, C and D in some potential up-
date AND/OR tree, where each of the A’s are defined and ‘,” represents the
operation of conjunction between the two operands.

Proof In the computation of AB, following definition 6 we first collect all

literals going from D to C' and next all literals going from C to B. Hence,
AB — AB AC

This property shows that an adjustment of the database schema will lead
to a natural adjustment of A. For instance, the adjustment of the definition
of a predicate which appears in C' does not imply a complete recomputation
of AB, but is constrained to A%,

Summarizing: The method based on revised inconsistency rules does not
contain redundancy of the first type, because in methods based on incon-
sistency rules no inconsistency rule exists for updates not relevant to any
inconsistency indicator. So, such updates will not lead to any action in our
method, as we might have expected.

Our method minimizes the redundancy of the second type. Given the revised
inconsistency rule

inconsistent(husband(Z, X)) < father(Z,Y),age-dif f(X,Y,N), N < 15

20

and given update husband(1,2) the evaluation of this rule hardly takes time
if there are no facts of the form father(1,Y’). Of course, it is important to
choose an optimal order of the subgoals in the body of the revised inconsis-
tency rules. In the rule above the literal father(Z,Y") should be the first one
in the body.

The optimal order of the subgoals can be determined by a query optimizer,
but our Fact Integrity Constraint Checking System FICCS can deliver also
revised inconsistency rules in which an optimal order of the subgoals is de-
termined.

From the construction of the revised inconsistency rules it is also clear that
it eliminates redundancy of the third type: no branches are searched that
are unchanged.

3 Conclusion

In section 1 we saw that the method of induced updates suffers from re-
dundancy of the first and third type, while the method of potential updates
suffers from redundancy of all three types. In section 2.1 we saw that the
method based on inconsistency rules, as presented in [3], does not suffer from
redundancy of the first type, but that it does suffer from redundancy of type
2 and 3. Therefore we introduced in section 2.2 the method based on revised
inconsistency rules.

e It does not contain the redundancy of the first type.

e It minimizes the redundancy of the second type by choosing an optimal
order of the subgoals in the body of the inconsistency rules.

e It eliminates the redundancy of the third type, because only branches
with changes are evaluated.

The method based on revised inconsistency rules can be extended in sev-
eral ways. For instance, we could introduce negation or recursion into our
language, or we could allow updates of rules and/or constraints or even re-
placements in our transactions. These extensions are elaborated in Seljée [4].
In [4] it is also shown that the method of revised inconsistency rules can eas-
ily be implemented, particularly in Prolog. The revised inconsistency rules
can be generated automatically at compile time. Therefore, they can be opti-
mized before any update of the database is made. The revised inconsistency

21

rules can be adjusted incrementally; so, they do not have to be generated
from scratch each time the set of rules or constraints is updated.

In the appendix of [4] a case study concerning a Deductive Hospital Infor-
mation System and some test results are given in order to show the practical
use and applicability of the proposed method.

References

[1] S. Y. Lee and T. W. Ling, Improving Integrity Constraint Checking for
Stratified Deductive Databases, in: Dimitris Karagiannis, ed., Lecture
Notes in Computer Science, volume 856 (Springer, 1994) 591-600.

[2] J.M. Nicolas, Logic for Improving Integrity Checking in Relational
Databases, Acta Informatica, Vol 18, no 3 (1982) 227-253.

[3] R.R. Seljée, A new method for integrity constraint checking in deductive
databases, Data & Knowledge Engineering 15 (1995) 63-102.

[4] R.R. Seljée, FICCS; A Fact Integrity Constraint Checking System for
the validation of semantic Integrity Constraints after updating consis-
tent deductive databases, Ph.D. thesis, Tilburg University, 1997. URL:
http://wwwis.tue.nl/~seljee/

[6] W. Weber, W. Stucky and J. Karszt, Integrity Checking in Data Base
Systems, Information Systems, Vol 8, no 2 (1983) 125-136.

Acknowledgement: we are grateful to two anonymous referees for suggest-
ing many improvements of an earlier version of this paper.

22

