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ABSTRACT. This paper describes the process of building the first tree-bank for Modern Hebrew
texts. A major concern in this process is the need for reducing the cost of manual annotation
by the use of automatic means. To this end, the joint utility of an automatic morphological ana-
lyzer, a probabilistic parser and a small manually annotated tree-bank was explored. An initial
tree-bank that consists of 500 annotated sentences from a daily newspaper is described. The
annotation scheme that underlies the tree-bank analyses integrates morphology and syntax. An
existing morphological analyzer and a language-independent probabilistic parser were applied
to this tree-bank. Based on the results of some experiments with these tools, a semi-automatic
procedure for future enlargement of the tree-bank is outlined.

RSUM. Cet article décrit les différentes étapes dans la construction d’un corpus arboré de
l’Hébreu moderne. L’objectif premier vise à la réduction du coût des annotations faites à
la main à l’aide de moyens automatiques. À cette fin, nous montrons l’utilité de combiner un
analyseur morphologique, un analyseur probabiliste et un corpus de référence de taille réduite
manuellement annoté. Le corpus initial arboré consiste en 500 phrases annotées à la main
extraites d’un quotidien. Le schéma d’annotation intègre des informations morphologiques et
syntaxiques. Un analyseur morphologique et un analyseur syntaxique probabiliste ont été ap-
pliquées à ce corpus arboré. En fonction des résultats de quelques expérimentations avec ces
outils, une procédure semi-automatique est mise au point pour annoter de nouveaux textes.

KEYWORDS: Modern Hebrew, Corpus, Tree-Bank, Syntactic Analysis, Morphological Analysis,
Probabilistic Parsing, Semi-Automatic Annotation

MOTS-CLS : Hébreu moderne, corpus arbor, annotation semi-automatique, analyse morphologique
et syntaxique probabiliste
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1. Introduction

In recent years, the availability of corpora and linguistically annotated language
resources sparked new momentum into research towards computational solutions for
the ambiguity problem in language processing. Among these resources, tree-banks
have proved especially useful for the development of part of speech taggers, parsers
and other modules for language processing. Unfortunately, this development has been
restricted mostly to languages with large communities or to communities with suitable
resources for corpus collection and linguistic annotation. The cost of developing such
resources is by large the main prohibitive factor. This is one of the reasons that for
Modern Hebrew (as well as many other languages) large annotated corpora are not
currently available.

In this paper we describe an on-going project that develops a tree-bank of Mod-
ern Hebrew texts from a daily newspaper. We concentrate on the acquisition of an
initial environment that allows us to reduce the manual annotation cost by applying
automatic language processing modules in the annotation loop. A serious problem in
achieving this goal is the absence of reliable, broad-coverage parsers for Hebrew. The
alternative, general purpose probabilistic parsers, is also not directly applicable in this
case, because these require an initial training tree-bank. To overcome this “deadlock”,
this work explores the utility of a small Hebrew tree-bank for developing a tool for
further semi-automatic morphological and syntactic annotation.

The morphology of Modern Hebrew is quite complex. Hebrew words often con-
sist of more than one morpheme and include various affixes for agreement, pro-
nouns, prepositions and other linguistic items. Therefore, considerable ambiguity
exists already at the word level. This situation is further aggravated in the written
language since the common writing system of Hebrew omits most vowels and other
phonetic disambiguation clues. Hence, morphological analysis is a principal element
of any sentence processing system for Modern Hebrew. We used an earlier work
by [SEG 00], who developed a morphological analyzer for Hebrew using a small set
of manually analyzed words, complemented with an automatic learning scheme and
heuristic rules.

The annotation was done by manually correcting the analysis chosen by the mor-
phological analyzer, followed by manual syntactic annotation. The result is a small
tree-bank of 500 sentences featuring a single annotation scheme, where morphology
and syntax are integrated into parse-trees. The most costly task in this process is
the syntactic annotation. When expanding this small tree-bank, this cost would be
significantly reduced if the present tree-bank allowed us to train a usefully accurate
probabilistic parser. We address this question by experimenting with various settings
for utilizing the probabilistic Tree-Gram parsing model of [SIM 00] and Segal’s mor-
phological analyzer of Hebrew, for the future semi-automatic annotation of new texts
from the same domain. In each setting, we allowed a different amount of detail of mor-
phological analysis to accompany the sentence that is fed as input to the probabilistic
parser, varying from a mere segmentation of words into morphemes to a full fledged
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morphological analysis, including part of speech (POS) tagging. These settings simu-
late some of the viable alternatives for proceeding with the semi-automatic annotation
of new text. We report encouraging empirical results with some of these settings and
select one particular setting as the most promising. This setting cosists of three steps:
(1) manual segmentation of the input words into morphemes, (2) POS tagging and
parsing of the resulting morpheme sequences using the probabilistic parser with help
of the morphological analyser, and (3) manual correction of the resulting parse-trees.
The experiments exhibit the usefulness of the small but well-annotated tree-bank as
an initial step towards the acquisition of further annotated material.

The structure of this paper is as follows. Section 2 discusses the complexity of
morphological analysis of Modern Hebrew texts and the currently available auto-
matic systems for morphological analysis. Section 3 describes the annotation scheme,
summarizes the annotation process and gives some figures about the tree-bank. Sec-
tion 4 reports on the experiments with the application of the probabilistic Tree-Gram
parser to the small tree-bank. Section 5 presents our conclusions towards further semi-
automatic annotation of new material.

2. Hebrew morphological analysis – background

2.1. The problem

Morphological ambiguity is prevalent in written Modern Hebrew. Most Hebrew
texts are unvocalized. This means that most vowels are totally missing from the texts.
The rich agreement system of the language, the fact that many affixes (such as agree-
ment, prepositions, determiners, and conjunctions) are prepended or appended to the
word, and the lack of representation of gemination further contribute to the mor-
phological ambiguity. The dimension of the morphological ambiguity in Hebrew is
demonstrated in Table 1. The data was obtained by analyzing large texts, randomly
chosen from the Hebrew press, consisting of 38,898 word-tokens. According to this
table, the average number of possible analyses per word-token was 2.1, while 55% of
the word-tokens were morphologically ambiguous.

no. of- 1 2 3 4 5 6 7 8 9 10 11 12 13
Analyses
no. of 17551 9876 6401 2493 1309 760 337 134 10 18 1 3 5
Word-Tokens
% 45.1 25.4 16.5 7.1 3.37 1.27 0.87 0.34 0.02 0.05 0.002 0.007 0.01

Table 1. The dimension of morphological ambiguity in Hebrew

A morphological analysis of a word in Hebrew should extract the following infor-
mation:

– Lexical entry.
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– Part of speech.

– Prefixes (conjunctions, prepositions, and the definiteness marker).

– Gender and number.

– Status – a flag indicating whether a noun or adjective is in its construct or abso-
lute form.

– Person (for verbs and pronouns).

– Tense (for verbs only).

– Gender, number and person of pronoun suffixes.

For example, the morphological analysis of the Hebrew string wkfraiti 1 (=“and-when-
I-saw”), pronounced uk�sera’iti or vek�sera’iti, is as follows: Lexical entry: rah ( the
verb ‘to see’); Part of speech: verb; Gender: feminine or masculine; Number: singu-
lar; Person: first person; Tense: past; Prefixes: w+kf (‘and’+‘when’).

The above string is unambiguous. But most Hebrew words have more than one
analysis. As an example for a multiply ambiguous word, string lmwrh, which has (at
least) the following possible analyses:

Preposition l=“to” + feminine noun mwrh=“teacher”:
“to a female teacher”

Preposition l=“to” + masculine noun mwrh=“teacher”:
“to a male teacher”

Preposition l=“to” + definiteness marker h (unvocalized) + feminine nounmwrh=“teacher”:
“to the female teacher”

Preposition l=“to” + definiteness marker h (unvocalized) + masculine nounmwrh=“teacher”:
“to the male teacher”

Noun lmwr=lemur + female suffix h :
“a female lemur”

Noun lmwr=lemur + possessive feminine suffix h :
“her male lemur”

�. In both this paper and in the tree-bank we use a Latin transliteration, in which each Hebrew
letter is represented by a single Latin letter. See Appendix A for the details of this transliteration.
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2.2. Existing morphological analyzers for Hebrew

2.2.1. Context-independent morphological analyzers

A context-independent morphological analyzer gets a string and returns the set
of all possible morphological analyses of that string, regardless of context. Due to
the regularity of Hebrew morphology, context-independent morphological analysis is
feasible, and both academic and commercial analyzers are available.

Among the commercial systems, most noteworthy is the Rav Millim commercial
analyzer.2 Within a Machine Translation project, IBM Haifa Scientific Center, de-
veloped a morphological analyzer [BEN 92] that was later used in some commercial
products. The sources of these programs are not publicly available. We used a publicly
available morphological analyzer written by Erel Segal [SEG 00].

2.2.2. Finding the correct analysis

Choosing the correct analysis in context from the set of all possible analyses is a
much more difficult problem, since potentially it requires all levels of linguistic and
semantic knowledge. However, several researchers used bounded context to choose
the most likely analysis. Choueka and Lusignan [CHO 85] proposed to consider the
immediate context of a word and to take advantage of the observation that quite often if
a pair of adjacent words appears more than once, the same analysis is the correct one in
all their co-occurrences. This method leaves open the question of how to automatically
choose the correct analysis of the first occurrence of the word in such a pair.

Orly Albeck [ALB 92] attempted to mimic the way humans analyze text by manu-
ally constructing rules that would allow to find the right analysis with no backtracking.

Since there is no large annotated Hebrew corpus, it is impossible to directly es-
timate the distributions of ambiguous words. The large number of manifestations of
each lexical entry introduces a severe sparseness problem, which further aggravates
the problem. Levinger et al. [LEV 95] gathered statistics on similar words in order
to estimate these distributions. For each analysis of a morphologically ambiguous
word they searched a large corpus in order to find words that differ only in one feature
(such as gender) from the original analysis. They assumed that the distributions of
the original and the perturbated words were the same. Thus, occurrence statistics of
the perturbated words can be used to estimate the distribution of the analyses of the
original ambiguous word. In most cases one analysis was much more frequent than all
the rest. Choosing this analysis in all cases gives a rough approximation to the correct
choice. Levinger [LEV 92] enhanced this system with a short context filter that looked
for agreement and several other local features.

Segal [SEG 00] tried to overcome the sparseness problem by assuming that the
distribution of the features is independent of the distribution of the lexical entries.
Segal therefore estimates the probability of each sequence of features from a large

�. http://www.cet.ac.il/rav-milim/
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corpus. The probabilities of lexical entries are estimated using Levinger’s “similar
words” method. The probability of an analysis is the product of the probability of
the sequence of features and the probability of the lexical entry. Choosing the most
probable analysis as the correct analysis yields a 14% error rate. To reduce the error
rate, Segal employed two more heuristics:

1. Correction rules were automatically acquired from the corpus by a method
resembling Brill’s transformation based method [BRI 95]. The program considered
three types of rules: rules that apply to a pair of syntactic categories, such as “change
an undetermined noun followed by a determined adjective to a determined noun fol-
lowed by the adjective”; rules that apply to a syntactic category and a single word;
and rules that apply to pairs of words. The program considered all possible rules and
adopted those rules that improved the performance of the morphological analyzer on
the training set.

2. Segal used a rudimentary deterministic parser that used some lexical depen-
dency rules. This part of the system was completely heuristic and was not acquired
from the corpus.

For each morphological analysis of a word the system assigned a score, which was
initialized to the probabilities given by Segal’s version of the similar words method.
The two heuristics were then employed to modify the score. The analysis with the
largest score was chosen as the correct analysis. Segal reports on tests according to
which, with these heuristics, the analyzer finds the correct analysis of 96% of the
words of test data (i.e. 4% error-rate).

As mentioned below, the morphological analysis of a word by the analyzer often
corresponds to more than one sequence of part of speech tags, which means that in
terms of standard POS tagging, the actual precision of the morphological analyzer is
somewhat reduced. In our work we did not attempt to evaluate Segal’s results, but
his analyzer proved useful in providing an initial POS tagging for the words in the
corpus.

3. Building a Hebrew tree-bank

Most current work on probabilistic models of syntactic analysis concerns English
(see [MAN 99] for some references). Large tree-banks of English text, notably the
Penn Tree-Bank [MAR 93], are available. In corpus-based processing of English,
morphological analysis has been of minor concern because it can be assumed that
words rather than morphemes constitute the atomic building blocks of sentences. 3

Clearly, statistics over word-occurrence is more prone to sparse-data problems than
morpheme occurrence. However, for English, it seems that the existence of large syn-
tactic tree-banks and extended POS tag-sets, combined with the less complex nature

�. In some cases, however, impoverished forms of morphological analysis are consulted in order
to deal with unknown words (see [COL 97, CHA 99]).
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of English word-structure, have been instrumental in avoiding the need for a level of
morphology in the tree-banks.

Corpora of morphologically rich languages are currently being developed for Czech
([HAJ 98, BEM 99]), Turkish ([TUR 99]) and Japanese [KUR 98]. Unlike English, in
these languages it is much harder to ignore the morphological level in the construc-
tion of the tree-bank, because the word level is often not fine-grained enough for syn-
tactic analysis. Currently, there are no tree-banks for Modern Hebrew, but building
such a tree-bank is an important step in facilitating future work on models of Hebrew
sentence processing, and as a test case for combining corpus based techniques for
morphological and syntactic analysis.

As discussed in the preceding section, morphological ambiguity is very common
in Hebrew texts, and syntactically important morphemes such as prepositions, con-
junctions and pronouns, as well as many agreement features, appear as word affixes.
Therefore, the syntactic annotation of the corpus must involve word-segmentation into
morphemes, morpheme POS tagging and feature annotation. In our tree-bank, words
are analyzed as strings of morphemes, where each morpheme is given a part of speech
tag. Because of the lack of vocalization in Hebrew written texts, it often happens that
the representation of a morpheme does not appear as part of the word, and conse-
quently the concatenation of morphemes in the morphological analysis of a word is
not identical with the word itself. For instance, as we have seen, a definiteness marker
after a preposition is often not vocalized in Modern Hebrew texts. Consequently, both
Hebrew words lamem�sala (“to-the-government”) and lemem�sala (“to-a-government”)
are spelled lmmflh. However, the morphemes in the representation of the word under
the first reading are l-h-mmflh. The morpheme ’h’, which represents definiteness, does
not appear in the original string.

The tree-bank itself is based on 500 sentences from articles inHa’aretz daily news-
paper. This text was chosen because it represents a fairly standard example of written
Modern Hebrew. The complexity of the syntactic structures in this corpus and the
average length of its sentences resemble those of the Wall Street Journal corpus, and
therefore make it possible to compare the performance of similar parsing models on
the Hebrew tree-bank to the much studied Penn tree-bank. In this section we describe
the annotation scheme of the corpus, including the POS tag set, the syntactic tag set
and bracketing methodology. Then we describe the construction process of the tree-
bank and give some figures on its structure. The tree-bank itself is available at the
following URL:

��������������������	��
�������������	�������	�����������������
���
��

3.1. POS tag set

We have tried to keep as close as possible to the English tag set used by the Penn
tree-bank. However, Hebrew is much richer than English in morphological marking of
agreement features. Consequently, for many POS tags there are additional agreement
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g (gender): Z=masculine, N=feminine, B=both
n (number): Y=singular, R=plural, B=both
p (person): 1,2,3
t (tense): V=past, H=present, T=future, C=imperative

Table 2. agreement features

features for gender (g), number (n), person (p) or tense (t), with values as specified in
table 2. In addition, tags for nouns, adjectives and numerals may have an ’H’ marking,
which indicates morphemes that are inherently definite.

The decision of whether to represent an affix using a ‘covert morpheme’ or using a
feature is not always straightforward, and involves considerations of consistency and
ease of annotation. For instance, the word bo, spelled bw, is a prepositional phrase
with the meaning “in-him”. For reasons of consistency with the tagging of other
prepositional phrases, where a full noun phrase is normally present, this word was
analyzed as consisting of the two morphemes: b (“in”) and hu (spelled hwa=“he”).
However, other affixes, like the genitive morpheme o in toxnito (spelled tknitw=plan-
he=“his plan”), are tagged as features of the morpheme. The reason for this choice
are more complex genitive constructions such as the following, which are given the
specified part of speech tags.

(1) tknitw/NN-NY-H-ZY3 fl/POS rz/NNP-ZY
plan-he of Raz

“Raz’ plan”

For linguistic arguments supporting this analysis, see [ENG 99] (but compare with
[BOR 84]).

Besides the addition of features, other modifications in the Penn tag set were mo-
tivated by phenomena or categories that are special to Hebrew, or by cases where the
distinctions of the Penn tag set are insufficient for our purposes.

The POS tags we added to the tag set of the Penn tree-bank are the following:

1. AGR,AUX: On the use of these two POS tags see the discussion below of the
predicative construction and the syntactic tag PREDP.

2. AT: A special tag for the accusative marker ?et (spelled at) which appears as a
separate word in written Hebrew. For example:

finh/VN-ZY3V at/AT h/H mdiniwt/NN-NY
changed ACC the policy

3. CDT: Numerals in determiner position. These are distinguished from appearances
of cardinal numbers as in dates or figures, which are classified as CD.
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4. COM: Complementizers, including ki and �se (“that”), which in Hebrew are sys-
tematically distinguished from prepositions.

5. JJT: The construct state form of adjectives. For instance, the following phrase has
the adjectival meaning “pitiless”.

xsrt/JJT-NY rxmin/NN-ZR
missing pity

6. H: A special tag assigned to the definiteness marker h, which appears with nouns,
adjectives and numerals.

7. HAM: A special tag for the complementizer/yes-no question word ha?im (“whether”).

8. MD: A tag for the class of “modal” verbs in Hebrew – verbs that subcategorize for
an infinitival complement. Examples: heci’a (“proposed”), hiskim (“agreed”).

9. MOD: Assigned to modificational elements like rak (“only”) and gam (“also”) and
to nominal prefixes like anti (“anti-”) and kdam (“pre-”), which in Hebrew texts
appear as separate words.

10. NNG/NNGT: Gerund noun/Gerund noun in construct state form.

11. NNT: Noun in construct state form.

12. QW: WH words like when, where and how, which do not appear in a determiner
position (unlike e.g. which as in which students arrived?).

13. REL: The relativizers �se, a�ser and ha (=“that”).

14. VB-M: A verb in its infinitive form.

15. ZVL: Irrelevant data, like initials of author name etc.

Note that the construct state tags NNT, NNGT and JJT, by contrast to the tags
NN, NNG and JJ, do not have the definite and genitive features. This is due to the
ungrammaticality of examples such as (2c), as opposed to (2a) and (2b).

(2) a. mfxqi/NNT-ZR aimwn/NN-ZY
matches training “training matches”

b. mfxqih/NN-ZR-H-NR3
matches-her
“her matches”

c. *mfxqih aimwn
matches-her training

The part of speech tag set that was used for annotating the corpus is given in
table 3.
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1. AGR-gn Agreement particle
2. AT Accusative marker
3. AUX Auxiliary verb
4. CC Coordinating conjunction
5. CD-gn-(H) Numeral (definite)
6. CDT-gn-(H) Numeral determiner (definite)
7. COM Complementizer
8. DT Determiner
9. IN Preposition
10. JJ-gn-(H) Adjective (definite)
11. JJT-gn Construct state adjective
12. H Definiteness marker
13. HAM Yes/No question word
14. MD-gnpt Modal
15. MOD Modifier
16. NN-gn-(H�H-gnp) Noun (definite�definite-genitive)
17. NNG-gn-(H�H-gnp) Gerund noun (definite�definite-genitive)
18. NNGT-gn Construct state gerund
19. NNP-gn Proper noun
20. NNT-gn Construct state noun
21. POS Possessive item
22. PRP-gnp Personal pronoun
23. QW Question/WH word
24. RB Adverb
25. RBR Adverb, comparative
26. REL Relativizer
27. VB-gnpt Verb, finite
28. VB-M Verb, infinite
29. WDT-gn Determiner question word
30. ZVL Garbage
31. yy* various symbols, see appendix A

Table 3. The Hebrew POS tag set

3.2. Syntactic tag set and bracketing methodology

The syntactic tag set includes syntactic tags which are marked for agreement fea-
tures and functional features, the use of which is explained below. The syntactic tag
set is given in table 4, with the agreement features possible on each syntactic tag. The
values of agreement features are identical to the values possible on lexical tags that
were given in table 2 above. The functional features are given in table 5, with the tags
on which they appear.

Among the syntactic tags, the ones that do not appear in the Penn Tree-bank tag
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1. ADJP-gn-(H) Adjective phrase
2. ADVP Adverb phrase
3. FRAG Fragment of a declarative sentence
4. FRAGQ Fragment of an interrogative sentence
5. INTJ Interjection
6. NP-gn-(H) Noun phrase
7. PP Preposition phrase
8. PREDP Predicate phrase
9. PRN Parenthetical
10. S Declarative sentence
11. SBAR Clause introduced by a COM, REL or IN word
12. SQ Interrogative sentence
13. VP Verb phrase
14. VP-MD Verb phrase with a modal verb
15. VP-INF Verb phrase with an infinitival verb

Empty categories:
16. *T* NP “trace” in relative clauses
17. *PRO* an “understood” NP
18. *NONE* missing element

Table 4. The Hebrew syntactic tag set

set are the following:

1. FRAG: A short fragment, which functions as an indicative sentential unit but
has no obvious sentential structure. For instance: xbl (“too bad”), ech mspar 3 (“ad-
vice number 3”).

2. FRAGQ: Similar to FRAG, but in the interrogative. For instance: wmh bintiim
(“and-what in-the-meantime?”).

3. PREDP, VP-INF, VP-MD: See below.

One of the special characteristics of Modern Hebrew is the relatively free order
of the verb arguments. In sentences where an adverbial is pre-posed to the beginning
of the sentence, the subject often follows the verb, which means that the identifica-
tion of the verb’s complement(s) cannot be based on simple phrase structure notation.
We therefore use a “flat” sentence structure, where the subject, the verb and both its
adjuncts and arguments are all daughters of S. In order to distinguish between the
verb’s arguments and its adjuncts, we use special functional features. These features
are summarized in table 5. The features OBJ and COM are for complements. Di-
rect NP objects of finite verbs are marked by OBJ. The feature COM is used only for
complements of finite verbs that are not direct NP objects, and for any complements
of other categories (including infinitival verbs and gerunds). The feature ADV is for
adverbial NPs (e.g. four times), and it is used in order to distinguish them from the
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feature role appears on tags
SBJ subject NP, SBAR, VP-INF
OBJ object NP
COM complement NP, PP, SBAR
ADV adverbial NP
CNJ conjunction all tags

Table 5. functional features

(S
(PP (IN lcd) to-the-side-of

(NP
(NP-NR-H (H H) (NN-NR awtiwt)) the-letters
(JJ-NR-H (H H) (JJ-NR adwmwt)))) the-red

(VP (VB-ZY3V hcib)) put
(NP-SBJ (H h) (NN-ZY eitwn)) the-newspaper
(NP-OBJ (AT at) ACC
(NP (NNT-ZY sml) symbol

(NP (NNT-NY tnwet) movement
(NP

(NP-NY-H (H h) (NN-NY htngdwt)) the-resistance
(PP (IN l) to

(NP (NNT-NY mlxmt) war
(NP (NNP-NY wiijtnam))))))))) Vietnam

Figure 1. use of functional features

verb’s arguments. On the CNJ feature see below. An example for the usefulness of
these features is given in figure 1, where the subject appears between the verb and the
object. The translation of this example is: “the newspaper put side by side the red
letters and the symbol of the movement resisting to the war in Vietnam”.

In Hebrew, verbless clauses are very common. To annotate NPs, PPs and ADJPs
that function as predicates, we added a category PREDP that is used as their node
mother under this usage. There are two different kinds of copulas that can appear
in such predicative constructions. One, for which we use the tag AUX, is inflected
for tense (e.g. haya=hih=“was”). Another, for which we use the tag AGR, appears
only in the present (e.g. hu=hwa=“is”), which is the unmarked tense in Hebrew. The
distribution of the two particles is quite different. This is the reason for their different
classification. For instance, the past form copula allows for “subject-AUX inversion”
as in the annotated sentence in figure 2, which is translated: “in the days of the cold
war, Tukey was an enthusiastic anti-communist”. A parallel example with a present
tense copula would be ungrammatical.
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(S
(PP (IN b) in

(NP (NNT-ZR imi) the-days-of
(NP

(NP-NY-H (H h) (NN-NY mlxmh)) the-war
(ADJP-NY-H (H h) (JJ-NY qrh))))) the-cold

(S (AUX-ZY3V hih) was
(NP-SBJ (NNP-BY jwqi)) Tukey
(PREDP

(NP
(MOD anji) anti
(NN-ZY qwmwnisj) communist
(ADJP (JJ-ZY nlhb)))))) enthusiastic

Figure 2. subject-AUX inversion

In addition to these functional features, the CNJ feature marks conjunctions. This
feature, in addition to explicit head marking on syntactic tags, is needed in order
to identify the head constituent of a given subtree � , which consists of subtrees
��� ���� ��. This is done according to the following rules:

1. If�’s category is marked by ��, then � � is �’s head constituent.

2. Otherwise: if � is marked by the CNJ feature, then any subtree � � with a
category different than CC (coordinating conjunction) is a head constituent of� .

3. Otherwise: if ����� ���� �� are all of the same category then ��� ���� �� are all
head constituents of� .

4. Otherwise: The head constituent of � is ��, with the smallest � such that �� is
not of any category in �AT,DT,WDT,H,MOD,AGR,AUX�.

Rule 3 is due to the common apposition (‘tmura’) constructions. For instance, in the
noun phrase h-mamn rz (“the-coach Raz”) both constituents are NPs, and both are
head constituents.

The agreement features (see table 2) of the head constituent determine the agree-
ment features of the whole constituent. The same is true for the definiteness marking
feature H, except for one notorious case – the Hebrew construct state. In this case
the head constituent is the construct state nominal (the leftmost sub-constituent), but
the definiteness of the construction is determined by the nominal following it. For
instance, the construct state NP in (3a) is a definite whereas in (3b) it is indefinite,
although the head (the second NP) is indefinite in both cases.

(3) a. (NP-NY-H (NNT-NY nbxrt) (NP-ZY-H (H h) (NN-ZY nwer)))
team (construct state) the-youth
“the youth team”
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b. (NP-ZR (NNT-ZR ciwni) (NP (NN-NY drk)))
marks (construct state) road
“road marks”

The empty categories for *T* (trace) and *PRO* are quite standardly adopted from
theoretical linguistics. Traces are used for “missing” NPs in relatives. PRO elements,
which are quite frequent in Hebrew, indicate that a subject is missing, but the verb
shows agreement with this subject. *NONE* elements are used for cases of missing
elements which are not easily classified as one of these two empty categories. The
following examples illustrate the use of the three kinds of empty categories.

(4) rpwbliqaim/NN-ZR h/REL *T*/-NONE- nwjim/MD-ZRAH
republicans who *T* tend

lhskim/VB-M at/IN hm/PRP-ZR3
to-agree with them

“Republicans who tend to agree with them”

(5) *PRO*/-NONE-fmeti/VB-BY1v at/AT h/H tiawrih/NN-NY h/H zw/JJ-NY
*PRO* heard-I ACC the theory the this

“I heard this theory”

(6) jwqi/NNP-BY qibl/VB-ZY3V rq/MOD 52/CDT-BR
Tukey received only 52

alp/CDT-BR *NONE*/-NONE-
thousand *NONE*

“Tukey received only 52 thousand (dollar)”

3.3. The construction process of the tree-bank

In the annotation of the corpus we made use of two available software tools:

– The morphological analyzer of Segal [SEG 00], which was used to obtain a prelim-
inary segmentation, POS tags and agreement features of words in the corpus.

– The SEMTAGS graphical tool of Bonnema [BON 97], which was used for aiding
manual syntactic annotation.

The annotation of the sentences in the tree-bank was obtained as follows:

1. General translation from morphological analysis to POS tag sequences: PERL
scripts were developed in order to transform the morphological scheme of [SEG 00]
into a preliminary POS tag set. This translation is not one-to-one, because the tag
set that is used in Segal’s morphological analysis is less fine-grained than the one
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we used for syntactic annotation. For instance, Hebrew prefixes that have different
syntactic roles (preposition, relativizer, conjunction, etc.) were all identified in the
morphological analysis of a word under a morphological feature of “conjunction”. In
average, each morphological analysis of a word corresponds to 1.4 sequences of POS
tags in the corpus, with standard deviation 1.

2. Preliminary morphological analysis: The input for this stage consisted of mor-
phological annotations of 250 sentences that were manually analyzed by Segal and
the choices of his morphological analyzer ([SEG 00]) for the words in additional 250
sentences. These morphological representations were translated to the POS tag set
using the PERL scripts.

3. Correction of morphology, and syntactic analysis: These 500 sentences were
manually given a syntactic annotation. This process was aided the SEMTAGS graphi-
cal tool. In this process the annotators corrected wrong morphological analyses, chose
among the different translations of correct morphological analyses into POS tag se-
quences, and added syntactic annotation according to the scheme described above.

4. Correction of annotation scheme: The lexical and syntactic annotation scheme
was updated according to the experience gained with these 500 sentences, and the
sentences in the tree-bank were corrected accordingly.

The manual annotation was done by two students with undergraduate training in
Linguistics. The annotation process was very slow – around 40 words per hour for full
syntactic annotation. The annotation rate for the Penn tree-bank (375-475 words per
hour) reported in [MAR 93] was 10 times higher. We believe that there are two main
reasons for this large difference:

– The annotation of the Penn tree-bank relied on much experience from tagging
of other large English corpora. By contrast, no annotated Hebrew corpus is presently
available, and consequently some of the syntactic and lexical conventions had to be
modified during the annotation process.

– The syntactic annotation of the tree-bank had to be performed without the aid
of any parser, while the Penn tree-bank was annotated by correcting the output of an
English parser (Donald Hindle’s Fidditch).

This indicates that a parser for Hebrew could significantly increase the annotation
rate. In section 4, we describe the adjustment of the Tree-Gram model for Hebrew
and results of testing the parser generated by the Tree-Gram model on the annotated
sentences.

3.4. Figures about the tree-bank

Some numbers summarizing numerical aspects of our tree-bank are listed in ta-
ble 6. Most notable are the figures concerning the frequencies of occurrence of mor-
phemes and words: while 67% of all morphemes occur only once, this is 75% for
words. Figure 3 shows a graph of the frequency counts of the 50 most frequent mor-
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Sentence, word and morpheme statistics
Number of sentences 498

Number of unique sentences 492

Number of unique morphemes 3130
Number (%) of once-occurring morphemes 2103 (67.1%)

Total count of morpheme-occurrences 10866
Average occurrence per morpheme 3.5

Number of unique words 4027
Number (%) of once-occurring words 3033 (75.3%)

Total count of word-occurrences 8419
Average occurrence per word 2.0

POS tags and constituent labels (with semantic/complement tags attached)
�POS tag-set� without (with) features 42 (204)

�Bare constituent-labels set� 22
�set of constituent-labels� without (with) features 99 (128)

Total number of constituents in all trees 11123
Morpheme ambiguity: mean and std of POS tags with features

over all morphemes 1.3 (0.7)
over morphemes with occurrence-count� � 2.4 (0.9)

Number of (context-free) grammar rules
lexical rules without (with) features 3431 (3515)

once-occurring lexical rules without (with) features 2363 (2439)
non-lexical rules without (with) features 1106 (1580)

once-occurring non-lexical rules without (with) features 728 (1012)

Table 6. The tree-bank in numbers

phemes and words. As expected, morphemes are more frequent than words and suffer
less from sparse-data problems. Among the ten most frequent morphemes, one finds
“h” (the), various prepositions e.g. “b” (in) and “l” (to) and punctuation marks (e.g.
the comma).

Other interesting figures pertaining to the ambiguity of morphemes on the POS
tag level are shown in the last rows of table 6. While over all morphemes the average
number of POS tags per morpheme is 1.3 (std4 0.7), this figure rises to 2.4 (std 0.9)
for morphemes occurring more than once. This could be seen as evidence for the fact
that in our small tree-bank, the ambiguity level of once occurring morphemes (1.0
(0.0)) is too far from reality. Hence, once occurring morphemes could constitute a
coverage problem for POS tagging and parsing. In the sequel, we employ the Hebrew
morphological analyzer as a supplementary source of knowledge on the unknown and
once-occurring morphemes to avoid problems of coverage.

�. Statistical standard deviation.
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Figure 4 shows the number of sentences as a function of their length (i.e. number of
morphemes). The mean sentence length is 22.8 morphemes with a std of 13.7. These
figures are comparable with the average sentence length (counting words instead of
morphemes, though) in the WSJ tree-bank. About 90% of all sentences consist of 40
or less morphemes. Very few sentences consist of more than 70 morphemes (exactly
4 sentences, i.e. 0.8%).

Table 6 also shows some other figures pertaining to the syntactic annotation in
the tree-bank. The total number of constituent nodes (beyond POS tags) in parse-
trees expresses that the parse-trees contain, on average, just over one constituent-node
per word. The number of Context-Free Grammar rules which constitute the parse-
trees are partitioned into lexical and non-lexical rules. The lexical rules are those
consisting of a left-hand side labeled with a POS tag and a right-hand side labeled with
a morpheme (i.e. terminal). About 69% of the lexical-rules and 65% of the non-lexical
rules occur exactly once. The length of the right-hand side (rhs) of a non-lexical rule
may vary from one (unary rules) to ten; the number of different rules per rhs length is
respectively as follows: 78, 296, 290, 204, 139, 49, 37, 6, 5, 1. With so many different
rules containing 2-6 symbols on the right-hand side, there is reasonable chance that
many more will appear in parse-trees of future, novel sentences.
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4. Evaluating the utility of a small tree-bank

The main reason for building a Hebrew tree-bank is to facilitate Hebrew language
processing, in particular morphological and syntactic analysis. The cost of annota-
tion of the present tree-bank, currently estimated at about 400-500 man hours for the
first 498 sentences, exhibits the complexity of the task that a human annotator must
accomplish. The question that arises at this stage of the project is whether we can use
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the currently available tree-bank of 498 analyzed sentences in order to obtain a more
efficient semi-automatic annotation process.

The small size of the tree-bank raises at least two problems for probabilistic parsers.
In the first place, the notorious sparse-data problem: because of the small tree-bank,
many phenomena will not have occurred in it, and the distribution of phenomena that
did occur will probably not be representative. Once occurring phenomena provide
good examples of this sparseness problem. As Table 6 shows, once-occurring mor-
phemes (67% of all morphemes) are dramatically less ambiguously represented at the
POS tag level than other morphemes, and the many once-occurring grammar rules
(66%) signify, most probably, non-representative distributions over syntactic struc-
tures, but possibly also annotation errors. As a result, any probabilistic parser that
can be generated using this corpus is expected to suffer from coverage problems. As
mentioned in section 3.4, the length of the symbol-sequences on the right-hand side
of grammar rules varies between one and ten. Around 65% of the non-lexical rules
occurred only once. Hence, there is a strong possibility for variation in grammar rules
in future, unseen sentences. This implies that it might be hard to predict syntactic
structure with high accuracy.

In what follows we explore the utility of the available tree-bank in combina-
tion with the Tree-gram model [SIM 00] and the morphological analyzer of Segal
[SEG 00]. After a short introduction of the Tree-Gram model, we describe the ex-
periments we ran on the tree-bank using this model. Analyzing the results of these
experiments, we conclude that at this stage, semi-automatic segmentation of words
(without full POS tagging) in conjunction to the Tree-gram Hebrew parser that is gen-
erated from the existing tree-bank, will be very useful for semi-automatic syntactic
annotation of a larger Hebrew corpus.

4.1. Tree-gram probabilistic parsing

S(3)

NP(2)

JJ

last

NN

week

NP(2)

DET

a

NN

deal

VP(1)

VBD

was

VP(1)

VBN

sealed

Figure 5. An example parse-tree. The number of the head-child of a node is specified
between brackets (e.g. the third child (VP) of the node labeled S carries the head).

In many contemporary models of language processing, a tree-bank provides an
important source for statistics over linguistic phenomena, which can be employed for
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(a)

[S���

NP

(b)

[S���

NP]

NN

[NP]

DET NN

(c)

VP]���

[VP]

[VBN]

sealed

(d)

[NP]���

[DET]

a

[NN]

deal

(e)

S]���

[VP]

[VBD]

was

[VP]

[VBN]

sealed

(f)

S]���

NP]

[NN]

deal

VP]

[VBN]

sealed

Figure 6. Some T-grams extracted from the tree in figure 5: the superscript on the root label
specifies the T-gram role,. e.g. the left-most T-gram is in the LEFT role. Non-leaf nodes are
marked with “[” (left-STOP) and “]” (right-STOP) to specify whether they are complete from
the left/right or both (the other non-complete nodes, i.e. from both sides, are not marked at all).

(L)

����

�� . . . ��

�

...

� �
���� �
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���� � �����

�� . . . �� �� . . . ��

(R)

...
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���� �

�� . . . ��

�

����

�� . . . ��
��

...

��
���� � �����

�� . . . �� �� . . . ��

Figure 7. A T-gram is generated by attachment at � in a partial parse-tree. The T-
gram being generated is marked with � and � to denote its role. In (L) a LEFT
Tree-gram and in (R) a RIGHT Tree-gram is generated. Note that node � must be
non-complete.

resolving ambiguities during processing. In probabilistic syntactic parsing, a tree-
bank is used for inducing probabilistic grammars e.g. [SCH 90, BOD 92, MAG 95,
BOD 95, COL 97, CHA 99, SIM 00].

A probabilistic language model consists of a probabilistic grammar and a model of
how probabilities of parse-trees and sentences are derived. In a probabilistic grammar,
a formal grammar is extended with a finite set of conditional probabilities, each asso-
ciated with a ���	
� ������� pair. The ��	
 is a “rewrite-event” (e.g. a Context-Free
Grammar (CFG) rule) and the ������ consists of contextual material. The probabil-
ity expresses the “likelihood” of the rewrite-event given the history, i.e. it is condi-
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tioned on that history. Usually, these probabilities are acquired from the tree-bank by
normalizing the relative frequency counts ��
� of the rewrite-event 
 by the relative
frequency count ���� of the history �; smoothing methods are also used for estimat-
ing the probabilities of rewrite-events that did not occur together with some histories
in the training tree-bank. When parsing an input sentence �, a probabilistic model
aims at finding the parse-tree � which maximizes the joint probability of � with � ,
i.e., it aims at solving ���������� ��� �� for the probabilistic grammar�.

The question of what rewrite-events and what histories to extract from the tree-
bank trees is a major question in probabilistic parsing. In this paper we adopt the Tree-
gram model [SIM 00], which combines aspects from Data-Oriented Parsing (DOP)
[SCH 90, BOD 95, SCH 99, SIM 99] with aspects from Bilexical-Dependency Markov-
Grammars [COL 97, CHA 99]. We now provide a brief overview of the Tree-gram
model. Further details of the Tree-gram model can be found in [SIM 00].

The rewrite-events of the Tree-gram model are connected subgraphs of the tree-
bank trees, called Tree-grams. A Tree-gram is a “partial” parse-tree: its leaf nodes
are labeled either with terminals or with non-terminals, and its internal and root nodes
are labeled with non-terminal symbols. A non-terminal node may be complete, in the
sense that the node already dominates all “necessary” children, or it may be incom-
plete. A complete node is labeled with an extra special symbol “STOP” both at its
its left and right hand sides, specifying that the node does not accept anymore chil-
dren to the left/right of the children that it currently dominates. When STOP is absent
from either the left or right hand sides of a node (or both), the node is incomplete. In
this case, the subtrees that it dominates may be extended with additional subtrees that
are embedded in some other Tree-grams as described next (hence, non-terminal leaf
nodes are always incomplete).

The Tree-grams are partitioned into three subsets, called roles, according to the
kind of children that the root of a Tree-gram dominates. When a Tree-gram’s root
dominates its head-child5 (and possibly other children), the Tree-gram is in the “Head”
role; when it dominates only children which are originally found (in the tree-bank tree
from which the Tree-gram was extracted) to the left (right) of the head-child (e.g. left-
modifiers of the head-child), it is in the LEFT (RIGHT) role. In essence, these roles
express information about the nature of the Tree-gram with respect to the context from
which it was extracted. Some example Tree-grams are shown in Figure 6.

The history � on which the probability � ���� of a Tree-gram  is conditioned,
consists of the label of the root-node of  and the role of  (i.e. HEAD, LEFT or
RIGHT). Further conditioning material in the histories aims at capturing information
about the nature of the child/sister nodes that it usually appears with (as encountered
in the training tree-bank). For example, LEFT and RIGHT Tree-grams probabilities
may be conditioned on so called “Markovian” information, e.g the label of the sister
to the left/right in the original tree-bank tree; while HEAD tree-grams probabilities

�. The head child-node of a given node is the child that carries its head-word.
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may be conditioned on a subcategorization-frame set of the head-word (see [COL 97,
SIM 00]).

Tree-gram rewrite processes, i.e. derivations, start from the start-symbol TOP,
which is an incomplete non-terminal. At each rewrite-step, an incomplete node � is
selected and rewritten by a suitable Tree-gram. When � is a leaf node labeled with
a non-terminal �, it is rewritten by a HEAD Tree-gram with a root labeled � (much
like rewriting takes place in CFGs, i.e. “vertical expansion”); when a non-leaf node
� is labeled with a non-terminal � and it is incomplete, it may be rewritten with
LEFT and RIGHT Tree-grams that have roots also labeled �. The latter rewriting
allows horizontal expansion of the parse-tree at node � (see Figure 7). The rewrite
process terminates when the resulting parse-tree consists entirely of complete nodes.
We assume that the derivations are statistically independent, thus the probability of a
derivation is equal to the product of the probabilities of all Tree-grams that participate
in the rewrite steps, while the probability of a parse-tree is the sum of the probabilities
of all possible derivations that generate it (through the different Tree-gram combi-
nations). In the present implementation, for an input sentence �, the parser aims at
finding the derivation � which solves �������� ��� ��, rather than the parse-tree �
that solves �������� ��� � �. We choose to do so, simply because the latter problem
is known to be NP-Complete [SIM 96], while the first one is solvable in time cubic in
sentence-length e.g. [SIM 99].

4.2. Tree-gram parsing of the Hebrew tree-bank

The widely used Penn tree-bank [MAR 93], which is based on English articles
from the Wall Street Journal (WSJ), consists of approximately 50,000 syntactically
analyzed sentences. The availability of such large annotated corpora for English is
the one of the main reasons that most existing parsing models were applied to this
language. Morphology does not play a major role in English tree-banks. Evidence
for this observation comes from various works: many models that were applied to
the Penn tree-bank collected sufficiently reliable statistics over joint-occurrences of
syntactic and lexical phenomena, where the words are not segmented into morphemes,
e.g. [COL 97, CHA 99, SIM 00]. Furthermore, a single probabilistic model is often
used for both part-of-speech tagging (POS tagging) and syntactic parsing.

At this stage, our tree-bank is too small (1% of the Penn tree-bank) to allow the
full integration of both morphological and syntactic analysis into one model. In fact,
it is unclear whether the direct application of existing parsing models to Hebrew, with
its complex morphology, can be as successful as for English. Clearly, this question
will become relevant only when the size of the tree-bank allows better estimation of
language models. Therefore, the first short-term objective of the project is to minimize
the cost of the tree-bank annotation.

There are various different settings for utilizing the existing tree-bank through the
Tree-gram model together with the available morphological analyzer. Given a Hebrew
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sentence, the analysis of this sentence consists of (1) segmentation of the words into
morphemes, (2) the assignment of a POS tag and suitable features to each morpheme,
and (3) the assignment of a syntactic structure. In what follows we explore the second
and third aspects of sentence analysis and leave word-segmentation for future work.
Word-segmentation into morphemes requires additional integration between the mor-
phological analyzer and the Tree-gram parser, which has not been achieved yet.

The following settings are explored for further semi-automatic annotation of the
Hebrew corpus by means of the Tree-gram model:

– POS tagging + Parsing using only the tree-bank: We assume that the mor-
phological analysis consists only of segmentation of the words into morphemes: this
may involve human corrections. The parser is applied to morpheme sequences and
aims both at POS tagging and parsing. The main problem under this setting is to deal
with unknown morphemes: initially we will assume no prior knowledge on unknown
morphemes.

– POS tagging + Parsing - using the morphological analyzer for unknowns:
The setting here is the same as before, except that now the morphological analyzer
is used for helping to determine the unknown morphemes. The analyzer is run on
some text from the corpus. The morphemes and POS tags that it produces are gath-
ered in a “sublexicon” which serves the parser as an ambiguous, imperfect resource
on unknown-morphemes. We also explored a direct generalization of this setting by
allowing the POS tag sets of the once-occurring morphemes, in the parser’s training
set, to be expanded by their tag set as found in the sublexicon, just like unknown-
morphemes.

– Syntactic parsing: We assume a more advanced morphological analysis which
does all the work necessary at the word level. This stage may combine automatic
annotation by means of the existing morphological analyzer [SEG 00] together with
a human annotator that further disambiguates and corrects the POS tags. Hence, the
parser applies to disambiguated correct POS tag sequences and aims at syntactic pars-
ing only. Unknown POS tags are resolved through an impoverished implementation
of the notion of “similarity” to known POS tags.

Next we describe the general experimental conditions followed by the details and
results of the experiments pertaining to each of the above listed settings.

4.3. Setup of the experiments

In this section we explain the limitations of the current implementation and define
the evaluation methodology.

4.3.1. Pharsal labels including features

A tree-bank non-terminal symbol consists of the conjunction of a syntactic cate-
gory (e.g. NP) and a sequence of features (gender, number, person, tense and definite-
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ness). Currently, we do not percolate the features from the lower nodes (manually an-
notated features) to the upper nodes of the tree-bank trees for two reasons: (1) to avoid
further complications with sparse-data, and (2) because we expect the Tree-grams to
capture feature agreement through their probabilities of joint occurrence.

4.3.2. Dealing with sparse-data: Katz smoothing

Naturally, due to the small size of the tree-bank, there are many non-terminals
(conjunctions of syntactic categories and features) and Tree-grams that did not appear.
A Tree-gram’s probability is conditioned on some portions of the context in which it
occurred. In this case, the context of a Tree-gram consists of, among others, the label
of its root-node ���� �, where � is the syntactic category and � is the sequence
of features. Tree-grams that did not appear in such complex contexts will receive
probability zero. To avoid the degradation of coverage of the parser, it is necessary
to simulate unseen Tree-grams. Here we apply the Katz back-off smoothing model
[KAT 87, CHE 98] to the Tree-grams that were found in the Tree-bank. A set of Tree-
grams that did not occur in a given context is simulated by “backed-off” Tree-grams:
backed-off Tree-grams are obtained from the Tree-grams that occurred in the Tree-
bank by removing the features (and any other information) from their conditioning-
context, thereby leaving only the syntactic category as conditioning context.

4.3.3. Evaluation methodology

For each experiment, we employ 5-fold cross-validation blind testing: we ran-
domly split the tree-bank into a training-set of 448 trees and 50 test trees; we repeat
this procedure 5 times with different random partitions. The test-trees are not involved
in any training activity.

In each experiment, the trained parser is applied to the sentences found in the
corresponding test-set. The parser’s output is compared to the test-set trees on the
PARSEVAL measures [AL. 91]: labeled bracketing precision and recall. In PARSE-
VAL, a parse-tree is considered as a set of constituents:6 each constituent is a triple
��� �� ��, where � and � are indices into the words dominated by the constituent and �
is its phrasal-label. A tree � in the output of the parser is compared to the correspond-
ing test-set tree � by computing �� � � �, i.e. the number of matching constituents
(brackets and labels)7. Labeled Bracketing Recall (LBR) is the mean (over the test-set
sentences) of ���� �

�� � and Labeled Bracketing Precision (LBP) is the mean of ���� �
�� �

(precision is defined to be zero when �� � is empty). We also report two more mea-
sures: the tree Exact-Match (ExM) measure (percentage of parser-output trees that

�. POS tags are not included as constituents because they are trivial constituents. POS tagging
is evaluated separately.
�. The output parse-trees does not specify any of the label-extensions �SBJ,OBJ,COM�. Fur-
thermore, the parser’s output specifies gaps and features (only on the labels where the tree-bank
annotation provides the features, i.e. no percolation). However, gaps and features are not in-
cluded in the current evaluation on the syntactic level (i.e. beyond POS tags); when present,
POS tag features are always included in the evaluation of POS tagging recall and precision.
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exactly match their test-set counterparts) and the No Crossing measure (percentage
of parser-output trees that contain only brackets that do not cross any of the test-tree
brackets). When relevant, we also report the POS tagging precision (PTP) (the num-
ber of correct tags to total number of tags in parser-output, including features) and
recall (PTR) (the number of correct tags to total number of tags in test-parse, includ-
ing features). This evaluation procedure is employed in all experiments reported in
the sequel.

4.4. Input: morpheme-sequences – Output: POS tags and parses

LU # sen. LBR LBP No Cros. ExM PTR PTP
10 9.4 (2.0) 58.7 (7.3) 58.6 (8.0) 72.7 (21.6) 7.8 (7.2) 82.3 (3.9) 83.1 (3.9)

20 25.4 (4.6) 54.0 (4.4) 54.5 (5.0) 43.3 (6.2) 3.2 (3.1) 84.8 (3.4) 85.0 (3.2)

30 39.0 (4.9) 51.0 (2.7) 51.7 (2.6) 29.8 (6.5) 1.9 (1.9) 83.6 (2.7) 84.3 (1.7)

40 44.8 (2.6) 48.7 (3.8) 50.0 (3.2) 27.3 (6.1) 1.7 (1.8) 81.8 (3.3) 83.8 (2.0)

� 50.0 (0.0) 46.7 (4.2) 48.3 (3.2) 25.2 (5.2) 1.6 (1.6) 80.3 (3.6) 83.6 (1.7)

Table 7. Results of parsing morpheme sequences to length upper-bound (LU). The
averages and standard deviations are taken over a 5-fold cross-validation experiment.
The standard deviations (std) are reported between parentheses.

In this experiment we evaluate the utility of the combination of the Tree-gram
parser with the small tree-bank on the combined task of POS tagging and parsing. We
assume that the input of the parser is a correct segmentation of words into morphemes.
Note that our expectations from this experiment should be modest given the available
statistics over morphemes; with about 3130 different morphemes and a total of 10866
morpheme-occurrences in the whole tree-bank, every morpheme is expected to occur
in a sentence about 3.5 times only. In reality, about 67% of all morphemes occur only
once in the whole tree-bank.

4.4.1. Training procedure

Due to the small size of the tree-bank, it turned out that on average about 21%
of the morphemes in every test-set were unknown in the training-set. With an av-
erage sentence length of around 23.5 (std of 2.3) morphemes, there are on average
about 4.7 unknown morphemes per sentence. Moreover, 95.2% of all test-sentences
contained at least one unknown morpheme. To avoid run-time memory problems, es-
pecially with so many unknown morphemes, we had to remove all features from the
annotation, leaving bare phrase-structure symbols (pretty much similar to the Penn
tree-bank). This reduces the total number of POS tags (lexical-categories with feature-
sequences) from 199 to only about 30.

For this experiment, we extract from each of the (featureless) training tree-banks
a Tree-gram parser. We allow morphemes to lexicalize only Tree-grams that have a
root labeled with a POS tag category, that is, only Tree-grams of depth 1 are lexical-
ized. Furthermore, we limited the size of the Tree-grams by limiting their depth to
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5 and their number of incomplete nodes to 4. This limits the number of Tree-grams
drastically (to around 50,000). The conditioning history of a Tree-gram probability
consisted of its root-label together with a choice of one of two possibilities: if the
root-node of the Tree-gram has a subcat-frame, this is used as conditioning material;
otherwise, we employed a first-order Markov process conditioning on the label of
preceding sister node of a LEFT/RIGHT Tree-gram.

4.4.2. Unknown morphemes

For every unknown morpheme, we allowed all open-category POS tags in the
training-set (on average 29.6 POS tags) to be supplied to the parser with a uniform
distribution (signifying our state of complete ignorance as to the category of the mor-
pheme). Hence, the input to the parser, when there are unknown morphemes, is a
graph, where for every morpheme, there are several alternative POS tags. For the
known morphemes, there were on average about 1.15 POS tags in the training-set; a
very small number, probably due to the size of the tree-bank. This means that the av-
erage number of POS tags-sequences per average sentence of 20 morphemes is about
������� � �������� 	 � 
 �	� sequences. These POS tag sequences are packed into a
so called “word-graph” (Finite-State Machine) representation, which originates from
work on speech-understanding [OED 93]. The parsing of word-graphs is described in
[SIM 99].

4.4.3. Empirical results

Table 7 lists the average and standard deviation results over the five blind tests
on parsing morpheme-sequences without word-boundaries. The effect of unknown
morphemes clearly shows on these results. With 95% of the sentences containing at
least one unknown morpheme, contextual syntactic information is a weak means for
POS tagging: 80.3% mean-recall and 83.6% mean-precision. The same conclusion
applies to syntactic (featureless) parsing where only less than half the nodes is com-
pletely correct (label and bracket) 46.7% labeled recall and 48.3% labeled precision.
As expected, in general, it is easier to score better on shorter sentences. In a similar
experiment we added to the input of the parser special markers of word-boundaries,
but this did not result in any significant change in the results.

4.5. Input: morpheme-sequences + sublexicon – Output: POS tags and parses

In this experiment, we changed the following elements from the preceding setting:

– We do not strip off the features. Rather, we keep them on the non-terminals,
employing Katz back-off for avoiding coverage problems.

– We employ an automatically acquired ambiguous “sublexicon” for supporting
the analysis of (most of) the unknown and low-frequency morphemes. This sublexicon
was extracted by running the morphological analyzer [SEG 00] on a corpus containing
ours (consisting of 526 sentences) and collecting a set of morpheme-POS tag pairs,
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with on average 1.4 POS tags per morpheme (and standard-deviation of 1.0). Because
the sublexicon contains morphemes that were obtained by automatic segmentation of
the words, the segmentation did not always agree with the tree-bank. Therefore, there
were morphemes in the test-sets that were not found in the sublexicon (about 2.5% of
all unknown morphemes, or approximately 0.5% of all test morphemes).

4.5.1. Applying the sublexicon to unknown morphemes only

LU # sen. LBR LBP No Cros. ExM PTR PTP
10 9.4 (2.1) 81.4 (4.4) 78.4 (6.4) 78.3 (8.2) 21.9 (20.0) 89.1 (1.1) 89.1 (1.1)

20 25.4 (4.6) 77.3 (1.6) 75.0 (1.8) 43.3 (7.5) 10.5 (9.9) 89.6 (2.3) 89.6 (2.3)

30 39.0 (4.9) 73.5 (1.9) 71.5 (1.7) 29.6 (6.6) 6.7 (6.5) 90.0 (1.0) 90.0 (1.0)

40 44.8 (2.6) 71.5 (1.5) 70.0 (1.2) 26.3 (6.8) 6.0 (5.9) 89.0 (1.2) 89.7 (0.7)

50 48.0 (0.7) 69.0 (3.7) 68.4 (1.5) 25.4 (6.1) 5.8 (5.7) 87.5 (3.5) 89.6 (0.6)

� 50.0 (0.0) 65.5 (4.3) 68.0 (1.5) 26.0 (5.5) 5.6 (5.5) 83.7 (4.5) 89.7 (0.7)

Table 8. Results of parsing morpheme sequences to length upper-bound (LU) with a
morphological-analyzer applied for obtaining a sublexicon for unknown morphemes.
No word-boundaries used. The averages and standard deviations are taken over a
5-fold cross-validation experiment.

For this experiment, the parser consulted the sublexicon every time it encountered
an unknown morpheme.8 For the unknown morphemes that it did not find in the
sublexicon, the parser assumed all 199 POS tags. In both cases it assumed a uniform
distribution over the POS tags that are possible for an unknown morpheme.

Table 8 exhibits the results of this experiment. Most notably, the LB recall and
precision for all sentences (65.5% and 68%) are at least 15% better than the best
results in the preceding experiment (row 5 in Table 7: 48.7% and 53.2% respectively).
Furthermore, POS tagging recall and precision (83.7% and 89.7%) are respectively
3% and 6% better than the preceding experiment (80.3% and 83.6%). For sentences
of length less than or equal to 40 morphemes (about 89.6% of all test sentences), the
POS tagging result (89.0% and 89.7%) is 6-9% better than the results on the same
sentences of the preceding experiment (row 4 of Table 7); on the same sentences,
LB recall and precision (71.5% and 70%) are about 20% better than the results of
assuming no knowledge on the unknown morphemes (48.7% and 50% respectively).

Clearly, although the morphological analyzer is an ambiguous POS tagging source,
and although it is imperfect, still it is a very useful source on unknown morpheme POS
tags. It enables limiting the number of POS tags per unknown morpheme from 199
to 1.4 (on average), enabling the Tree-gram parser to improve POS tagging and labeled-
bracketing by a significant percentage.

�. Strictly speaking, it is possible to reduce this ambiguity a bit by eliminating potential POS
tags of closed categories that do not match the morpheme. However, the improvement that can
be obtained in this way is negligible.
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4.5.2. Applying the sublexicon to morphemes with frequency� �

As mentioned earlier, due to the small size of the tree-bank, about 67% of all mor-
phemes occur only once. The POS tag set for each once-occurring morpheme is a
singleton set. Given that more frequent morphemes have an ambiguity POS tag set
of average size 2.4 (0.9) (i.e. on average 2.4 POS tags per morpheme), it is highly
probable that once-occurring morphemes will miss many of their possible POS tags
in new contexts. In the light of the relative success of supplementing the parser with
the (imperfect) sublexicon for resolving unknown morphemes, it is reasonable to ap-
ply the same strategy to once occurring morphemes. This is what we did in a second
experiment maintaining, otherwise, the same setting as the preceding one. For once-
occurring morphemes, we supplemented their singleton POS tag sets with the set of
POS tags found in the sublexicon, as assigned by the morphological analyzer. We
maintained a uniform distribution over the morphemes originating from the sublexi-
con. This raises the ambiguity of once-occurring morphemes at all levels, from POS
tagging to syntax. However, this, hopefully, gives the parser a more (limited) choice
which, on average, will prove beneficial. Table 9 shows the results of this experiment.

LU # sen. LB Rec. LB Prec. No Cros. ExM PTR PTP
10 9.4 (2.1) 84.3 (6.4) 83.2 (6.4) 91.5 (5.1) 20.6 (14.8) 89.6 (3.1) 91.5 (2.7)

20 25.4 (4.6) 77.1 (1.3) 75.5 (1.9) 47.1 (9.8) 9.6 (7.6) 89.3 (2.3) 89.7 (2.4)

30 39.0 (4.9) 74.9 (2.1) 73.2 (1.6) 34.7 (7.0) 5.8 (4.4) 90.3 (0.6) 90.5 (0.8)

40 44.8 (2.6) 73.3 (1.7) 71.5 (1.8) 30.3 (7.4) 5.2 (4.1) 89.9 (0.8) 90.1 (1.0)

50 48.0 (0.7) 71.0 (3.4) 69.6 (2.7) 28.8 (7.3) 5.0 (4.1) 89.1 (1.9) 90.0 (0.8)

� 50.0 (0.0) 66.7 (4.8) 69.2 (2.6) 29.6 (6.4) 4.8 (3.9) 84.1 (4.8) 90.0 (0.9)

Table 9. Results of parsing morpheme sequences to length at most (LU) with a
morphological-analyzer applied for obtaining a sublexicon for unknown and once-
occurring morphemes. No word-boundaries used. The averages and standard devia-
tions are taken over a 5-fold cross-validation experiment.

There is an improvement of about 1.5% LB recall and precision on all sentences, and
even 3% on shorter sentences; a similar level of improvement can be seen on POS tag-
ging recall and precision; and even a 3-5% improvement on non-crossing parse-trees
(on sentence up to ten morphemes there is a 13% improvement, mostly due the small
number of such sentences). These improvements come at the price of a slight degra-
dation in tree exact-match (0.5-0.8% degradation corresponds to, on average, less than
a “half parse-tree” in a test-set). Although the difference in results does not test sig-
nificant, even at � 
 	�� (in a paired -test we have ��� 
 ���), we believe that it is
still encouraging that there is chance of improvement using such simple means 9.

�. Significance testing at the �% level implies a �% probability for the difference in results
actually occurring given the null hypothesis (i.e. that the two settings are actually “the same”).
However, in our case, it is sufficient to suspect that the better result is not due to chance but due
to a better system, in order for it to better qualify for use in semi-automatic annotation; this is
especially because the “price” for acquiring the two systems is identical.
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4.6. Input: Correct POS tag-sequences only – Output: Parses

LU # sen. LBR LBP No Cros. ExM
10 9.4 (2.0) 86.5 (4.3) 86.9 (5.1) 75.8 (6.4) 39.0 (21.3)
20 25.4 (4.5) 83.0 (2.2) 83.0 (2.4) 50.2 (5.6) 19.4 (9.9)
30 39.0 (4.9) 79.3 (1.0) 79.8 (1.2) 37.7 (3.8) 14.3 (7.0)
40 44.8 (2.6) 78.5 (1.6) 79.1 (0.77) 33.5 (3.7) 12.6 (6.4)
� 50.0 (0.0) 76.7 (2.2) 76.4 (1.8) 30.0 (3.7) 11.6 (6.2)

Table 10. Results of parsing POS tag sequences without word-boundaries to length
upper-bound (LU): averages and standard deviations over 5-fold cross-validation.

In this experiment we evaluate the utility of the combination of the Tree-gram
parser with the small tree-bank on the sole task of parsing POS tag sequences. Hence,
we assume that a stage of morphological analysis exists, possibly with human inter-
vention, which segments the words into morphemes and provides a single (correct)
POS tag per morpheme. The parser is expected to deliver syntactic parses including
the feature annotation of each phrasal-label. However, the parser is evaluated only
on the phrasal-labels excluding the features. We ran two experiments, once with and
once without the word-boundaries. The experiment with the word-boundaries resulted
in slightly lower LB recall (2%).

4.6.1. Training procedure

Again, the parser was trained on each of the five training-sets (separately, of
course) and applied to the corresponding test-set sentences. The upper-bound on the
depth of a Tree-gram was set at 5 and the upper-bound on the number of incomplete
nodes was also set at 5.

4.6.2. Unknown POS tags (a nearest neighbor strategy):

There were on average only 5 unknown POS tags per test-set (containing on aver-
age about 1110 POS tag occurrences, i.e. sentence length about 22.4 POS tags). This
time, instead of assuming all possible POS tags, we employed a “nearest neighbor”
strategy: when a POS tag was unknown, we compared it to all known POS tags ac-
cording to a simple distance measure and substituted the single “closest” known POS
tag and provided that as input to the parser. The distance measure is very simple and
consists of two steps: reordering and distance-computation:

Reordering: the POS tag components were reordered into the following rank or-
der (from more important to less important): category, gender, number, per-
son, tense and definiteness. This order has been selected (almost) ad hoc and
has no theoretical justification. A better reordering can be applied taking the
information-gain of each feature into consideration as done in e.g. [DAE 97].

Distance-computation: The distance between two such ordered sequences is the to-
tal weighted distance on each component. If the two values of the same com-
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ponent (category or feature) in the two ordered sequences are exactly the same,
the distance is zero. Otherwise, the distance is a function of the inverse of the
rank order of the component, i.e. disagreement on a more important component
results in larger distance than disagreement on a less important one.

4.6.3. Empirical results

Table 10 lists the results of this experiment. The table shows per sentence of length
at most (10–�), the average (std) number of sentences among the 50 test-sentences,
and the other evaluation measures. For all sentences, an average LB recall/precision of
76.7%/76.4% is achieved, i.e., around 3/4 of all constituents (excluding the root node
which is trivial) of a parse-tree are exactly the same (brackets and labels, excluding
the features) as in the test-set. Furthermore, about 30% of the parser-output trees
did not cross at all with the test-set trees and (only) 11.6% matched exactly. For
sentences of length at most 30 POS tags, about 78% of all sentences are included and
the parser delivers around the 80% LB recall and precision. As the sentence upper-
bound decreases, the success rate rises.

It is clear that the mean results of LB recall and precision in this experiment are
much better than the preceding one (respectively about 10% and 7% improvement
on all sentences). In a paired -test, e.g. the mean LB recall in this experiment is
significantly higher than the respective mean in the preceding experiment (i.e. with
sublexicon “treatment” of the unknown and once-occurring morphemes), ��� 
 ����,
�   	�	�. Hence, providing the correct POS tags to the parser reduces the amount
of ambiguity significantly. Furthermore, this reduces the sparse-data effects, e.g., the
number of unknown and once-occurring POS tags is much smaller than the respective
numbers for morphemes. The cost of this level of performance, however, is larger:
unambiguous, (manually) corrected POS tags must be provided for every sequence of
morphemes.

4.7. Discussion

The preceding experiments warrant the following conclusion with respect to the
utility of the small tree-bank of 448 training trees:

1. The tree-bank allows probabilistic language models to perform syntactic pars-
ing of POS tag sequences with 76% of all constituents being retrieved correctly.

2. The tree-bank allows probabilistic language models combined with an ambigu-
ous, imperfect lexical source (in the form of a morphological analyzer), to perform
syntactic parsing of morpheme-sequences with 65-70% of the constituents and 83-
89% of the POS tags being retrieved correctly.

We find it encouraging that such a small tree-bank of morphologically and syntacti-
cally analyzed sentences allows to achieve these results on new unseen morpheme/POS
tag sequences. Note that in the three sets of experiments, the accuracy of the Tree-
gram parser consistently increases as its input is made less ambiguous. This suggests



30 Nom de la revue ou confrence ( dfinir par ���������� 	� ��	
���
�)

that the parser can be expected to achieve better results if its input is further enriched
manually with some parsing clues, e.g. brackets on the � and �!�" levels. There-
fore, we think that the parser should be useful as a tool for semi-automatic annotation
as discussed in the next section.

5. Semi-automatic annotation methods

The possibility of parsing morpheme-sequences seems the most attractive alterna-
tive, because it assumes a less complex input but achieves relatively good results. For
parsing morpheme-sequences, we assumed: (1) that the words are correctly segmented
into morphemes, which is a major element of Hebrew language analysis, and (2) that
the tree-bank contains a detailed analysis of the morphemes, thereby exposing the ma-
jor features that demand agreement at the syntactic level. While the first assumption
has a reasonable expected manual cost, the second one is truly demanding.

For the next stage of the project, however, the second assumption (i.e., feature-
annotation) may be relaxed considerably through allowing the syntactic parser to sug-
gest syntactic annotations (including features) followed by manually correction. When
parsing morpheme-sequences of length up to 30 morphemes (about 80% of all sen-
tences), the POS tags are expected to be correct (including the features) about 90% of
the time, while constituent nodes will be correct about 70-75% of the time. Hence,
manually correcting the POS tags can be followed by a simple automatic procedure
for correcting the features up at the constituent nodes accordingly; we conjecture that
heuristic rules can be developed for this task with reasonable accuracy. The utility
of this semi-automatic annotation process will depend mostly on the availability of
annotation tools that provide an easy environment for tree-correction (e.g. POS tag
correction, node-label correction, bracket correction).

It is important to stress that it is easy to improve on our results with a few simple
modifications:

Probabilities from morphological analyzers: In the current implementation, we as-
sumed uniform distributions over a set of POS tags for the unknown mor-
phemes. If the morphological analyzer could provide a probability estimate
� ������
�
��#����, however, this probability can be combined with the
probabilities of the Tree-gram model in a simple fashion. This probability en-
codes lexical knowledge which the parser can not acquire from a small tree-
bank.

Percolation of features and backoff: It is possible to percolate the morphological
features up the parse-trees for providing stronger symbolic means for agree-
ment. For this, one would need better implementations of the Katz backoff.
Rather than implementing the backoff over the features in a single step (as we
currently do), one could allow a multiple-step backoff, each time on another
feature. This seems a practical method for the estimation of probabilities of
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feature-grammars without entering the zone of complex and time-consuming
training methods that demand extensive training material.

Manual sentence segmentation: It is clear that for long sentences, e.g., morpheme-
sequences longer than 30 morphemes, the performance results of the parser
become significantly worse than for shorter sentences. It is reasonable to as-
sume that long sentences are combinations of two or more shorter sentences
(involving constructs such as conjunctions, relative clauses and sentential com-
plements). Segmenting these long sentences (about 20% of all sentences) manu-
ally is not a particularly demanding task but could enhance the parser’s labeled-
bracketing results by about 10%.

To summarize, optimally, it seems that the next phase of semi-automatic tree-bank
annotation should consist of the following manual activities:

– Segmentation of words into morphemes, could be possibly done by manually
correcting the output of the Hebrew morphological analyzer. 10

– Segmentation of long sentences (over 30 morphemes) into sub-sentences, e.g. at
the � and �!�" levels, by placing (labeled) brackets.

– Manual correction of the parse-trees obtained from the combination of the prob-
abilistic parser and the morphological analyzer.

Semi-automatic annotation will take place in cycles: a new sequence of sentences
(say 500) are automatically annotated and manually corrected; the parser (and possibly
the Hebrew morphological analyzer) is trained on the union of the newly acquired tree-
bank and the old tree-bank, and the cycle of annotation starts again. At a certain point,
it might be possible to use automatic methods for sampling sentences from the corpus,
that have a particularly high expected utility for the parser’s accuracy [ENG 96].

6. Conclusions

Manual morpho-syntactic annotation of a Hebrew corpus is a demanding task. In
addition to the syntactic work, which is comparable to the annotation of English cor-
pora, the process of annotating Hebrew corpora involves morphological analysis of
words and their systematic translation into unambiguous sequences of POS tags. In
this paper we described the construction process of a small Hebrew tree-bank and the
experiments we performed on this tree-bank. The results suggest that the costly man-
ual syntactic annotation can be significantly aided by using a probabilistic parser. The
utility of a well-annotated small tree-bank for training probabilistic parsers is larger
than initially expected. In this sense, the general learning model of Tree-gram parsing
is useful for specific problems that emerge in Hebrew due to the absence of a robust
parser. Moreover, we have seen that dedicated morphological tools are useful for the

�	. As the size of the tree-bank grows, we can retrain the analyzer for improving its accuracy
and coverage.
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standard ? b g d h v z x t i k l m n s @
adopted a b g d h v z x t i k l m n s e

standard p c q r 
s t
adopted p c q r f t

Table 11. Transcription of Hebrew letters

o u yyCM yyCLN yyLRB yyQUOT yyDOT
% ” , : ( ” .
yyDASH yyRRB yyEXCL yyQM yySCLN yyELPS
– ) ! ? ; ...

Table 12. Transcription of symbols

initial processing of the input: the experiments described in Section 4 indicate that
the parsing results improve dramatically when the morphological analyzer comple-
ments the parser’s sublexicon on unknown and low-frequency morphemes. We be-
lieve that these conclusions hold for a variety of morphologically rich languages, and
are therefore of general interest for corpus linguistics and statistical natural language
processing.

A. Appendix I: The writing system in the corpus

In the corpus the writing system used is a non-standard transcription of Hebrew
letters into English letters, according to Table 11. Additional symbols are denoted as
in Table 12. The reason for this special notation is merely technical, since some of the
tools we used expect only English letters.
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