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Abstract

Progressions of iterated reflection principles can be used as a tool for
the ordinal analysis of formal systems. We discuss various notions of
proof-theoretic ordinals and compare the information obtained by means
of the reflection principles with the results obtained by the more usual
proof-theoretic techniques. In some cases we obtain sharper results, e.g.,
we define proof-theoretic ordinals relevant to logical complexity T19 and,
similarly, for any class II9.

We provide a more general version of the fine structure relationships
for iterated reflection principles (due to U. Schmerl [25]). This allows us,
in a uniform manner, to analyze main fragments of arithmetic axioma-
tized by restricted forms of induction, including I3, I¥, , ITI,; and their
combinations.

We also obtain new conservation results relating the hierarchies of
uniform and local reflection principles. In particular, we show that (for a
sufficiently broad class of theories T') the uniform X;-reflection principle
for T is ¥j-conservative over the corresponding local reflection princi-
ple. This bears some corollaries on the hierarchies of restricted induction
schemata in arithmetic and provides a key tool for our generalization of
Schmerl’s theorem.

1 Introduction

Proof-theoretic ordinals: a discussion. Since the fundamental work of
Gentzen in the late 30’s it was understood that formal theories of sufficient
expressive power can, in several natural ways, be associated ordinals. Informally,
these ordinals can be thought of as a kind of quantitative measure of the “proof-
theoretic strength” of a theory. On a more formal level, proof-theoretic ordinal of
a theory is one of its main metamathematical characteristics, and its knowledge
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usually reveals much other information about the theory under consideration,
in particular, the information of computational character. Thus, the calculation
of proof-theoretic ordinals, or ordinal analysis, has become one of the central
aims in the study of formal systems (cf. [23]).

Perhaps, the most traditional approach to ordinal analysis is the definition
of the proof-theoretic ordinal of a theory T' as the supremum of order types of
primitive recursive well-ordering relations, whose well-foundedness is provable
in T. Since the well-foundedness is a II}-concept, this ordinal is sometimes
called the ITj-ordinal of T' (denoted |T'|r1). This definition provides a stable
and convenient measure of proof-theoretic strength of theories. Moreover, it
is not dependent on any special concepts of natural well-orderings, which is
typical for the other proof-theoretic ordinals discussed below. However, it has
the following drawbacks: 1) it is only applicable to theories in which the well-
foundedness is expressible, e.g., it does not (directly) apply to first order Peano
arithmetic; 2) it is a fairly rough measure. It is well-known that the IT}-ordinal
does not allow to distinguish between a theory and any of its extensions by true
¥{-axioms: all such extensions share one and the same II}-ordinal.

An alternative approach to ordinal analysis makes use of the notion of prov-
ably total computable function of a theory T, that is, a ¥{-definable function,
whose totality (formulated as an arithmetical II-sentence) is provable in 7.
The class of p.t.c.f. is an important computational characteristic of a theory. In
typical cases, for sufficiently strong theories, such classes can be characterized
recursion-theoretically using transfinite subrecursive hierarchies of fast growing
functions. This yields what is usually called the proof-theoretic II3-ordinal of
T. There are several choices for such hierarchies and the resulting ordinals de-
pend on what hierarchy you actually take as a scale. Most popular are the Fast
Growing (or the Schwichtenberg—Wainer) hierarchy, the Hardy hierarchy, and
the Slow Growing hierarchy. However, under certain conditions, there are fixed
relationships between these hierarchies, which allows to translate the results
obtained for one of them into the others.

19-analysis, although sharper, is more problematic than the II} one. A well-
known difficulty here is that the common hierarchies, most notably the Slow
Growing one, depend on a particular choice of the ordinal notation system and
a particular fundamental sequences assignment. Such a choice always presents
a certain degree of arbitrariness and technical complication.! However, there is
a payoff: first of all, TI3-analysis allows to extract computational information
from proofs. Another important aspect of II-analysis is that it is closely related
to constructing independent finite combinatorial principles for formal theories.

In this paper the Fast Growing hierarchy is taken as basic. This hierarchy
corresponds to a natural jump hierarchy of subrecursive function classes (the

11t is a long standing open question, whether a natural ordinal notation system can be
canonically chosen for sufficiently large constructive ordinals. It has to be noted, however,
that the standard proof-theoretic methods, in practical cases, usually allow to define natural
ordinal notation systems for suitable initial segments of the constructive ordinals, that is, they
simultaneously allow for I1}- and I1J-analyses of a theory, whenever they work. Pohlers [22]
calls this property profoundness of the ordinal analysis.



Kleene hierarchy) and therefore is less ad hoc. Besides, it is more robust than
the others, in particular, it is possible to give a formulation of the Fast Growing
hierarchy which is independent of the fundamental sequences assignments (see
Section 3 for the details). Whenever we speak about I19-ordinals of theories, we
always mean the ordinals measured by this hierarchy.

Proof-theoretic I1-analysis deals with independent principles of complexity
I19 (sentences, expressing the totality of fast-growing functions), but it fails to
distinguish between the theories only different in true I19-axioms. However, the
most prominent independent principle — Gddel’s consistency assertion Con(T")
for an axiom system T — has logical complexity I19. So, for example, |PA +
Con(PA)|ng = |[PA|g = €o. In general, theories having the same IT3-ordinal can
be of quite different consistency strength.

Historically, there have been proposals to define proof-theoretic ordinals rel-
evant to logical complexity I19. This level of logical complexity is characteristic
for the ‘consistency strength’ of theories and thus plays a role, e.g., in connec-
tion with Hilbert’s program. On the other hand, an independent interest in
9-analysis is its relationship with the concept of relative interpretability of for-
mal theories. By the results of Orey, Feferman and Héjek, this notion (for large
classes of theories) is equivalent to I19-conservativity. The proposals to define
general notions of proof-theoretic I1$-ordinals, however, generally fell victim to
just criticism, see [13]. To refresh the reader’s memory, we discuss one such
proposal below.

Indoctrinated by Hilbert’s program, Gentzen formulated his ordinal analysis
of Peano arithmetic as a proof of consistency of PA by transfinite induction up to
€0. Accordingly, a naive attempt at generalization was to define the II9-ordinal
of a system T as the order type of the shortest primitive recursive well-ordering
< such that the corresponding scheme of transfinite induction T'I(<) proves
Con(T).

This definition is inadequate for several reasons. The first objection is that
the formula Con(7T) may not be canonical, that is, it really depends on the
chosen provability predicate for T rather than T itself. Feferman [7] gave ex-
amples of X;-provability predicates externally numerating PA and satisfying
L&b’s derivability conditions such that the corresponding consistency assertions
are not PA-provably equivalent. In Appendix B we consider another example
of this sort, for which the two provability predicates correspond to sufficiently
natural proof systems axiomatizing PA. This indicates that the intended II9-
ordinal of a theory T can, in fact, be a function of its provability predicate (and
possibly some additional data), rather than just of the set of axioms of T taken
externally.? Two possible ways to avoid this problem are: 1) to restrict the
attention to specific natural theories, for which the canonical provability pred-
icates are known; 2) to stipulate that theories always come together with their
own fixed provability predicates. In other words, if two deductively equivalent
axiom systems are formalized with different provability predicates, they should

2This is also typical for the other attempts to define proof-theoretic ordinals “from above”
(cf. Appendix B for a discussion).



be considered as different. As remarked above, the second option appears to be
better than the first, and we stick to it in this paper.

The second objection is that the primitive recursive well-ordering may be
sufficiently pathological, and then TI(<) can already prove Con(T") for some
well-ordering < of type w (as shown by Kreisel). This problem can be avoided,
if we only consider natural primitive recursive well-orderings, which are known
for certain initial segments of the constructive ordinals. This would make the
definition work at least for certain classes of theories, whose ordinals are not
too large. Notice that essentially the same problem appears in the definition of
the proof-theoretic II-ordinal described above.

The third objection is that, although Con(T') is a IT19-formula, the logical
complexity of the schema TI(<) is certainly higher. Kreisel noticed that the
formulation of Gentzen’s result would be more informative, if one restricts the
complexity of transfinite induction formulas to primitive recursive, or open,
formulas (we denote this schema T'I,,.(<)). That is, Gentzen’s result can be
recast as a reduction of w-induction of arbitrary arithmetical complexity to open
transfinite induction up to €g-

This formulation allows to rigorously attribute to, say, PA the natural ordinal
(notation system up to) 9. However, for other theories T this approach is not yet
fully satisfactory, for it is easy to observe that T'I, . (<) has logical complexity
I19, which is higher than II9. So, the definition of |T'|rro as the infimum of order
types of natural primitive recursive well-orderings < such that

PRA + T, (<) F Con(T),

in fact, reduces a IT19-principle to a II9-principle. The opposite reduction, how-
ever, is not possible. Thus, the ordinals obtained are not necessarily ‘the right
ones’. For example, in this sense the ordinal of PA + Con(PA) happens to be the
same number €y, whereas any decent I19-analysis should separate the system
from PA. One can attempt to push down the complexity of T'I,, .. (<) by formu-
lating it as a transfinite induction rule and disallowing nested applications of
the rule, but in the end this would look less natural than the approach proposed
in this paper.

Proof-theoretic analysis by iterated reflection. The aim of this paper is
to present another approach to proof-theoretic IT9- and, in general, I1%-analysis
for any n > 1. The treatment of arbitrary n is not substantially different from
the treatment of n = 1. For n = 2 our definition is shown to agree with the
usual TI3-analysis w.r.t. the Fast Growing hierarchy.®> The apparent advantage
of the method is that for the ‘problematic’ cases, such as PA + Con(PA), one
obtains meaningful ordinal assignments. For example, we will see that |PA +
Con(PA)|e = €o - 2, which is well above the II{- and II3-ordinal €y of PA, as
expected.

A basic idea of the proof-theoretic IT% -analysis is that of conservative approz-
imation of a given theory 7' by formulas of complexity II9 whose behavior is

3This can be considered as an evidence supporting our definition for the other n.



well-understood. Many properties of T', e.g., its class of p.t.c.f., can be learned
from the known properties of the conservative approximations. As suitable
approximations we take progressions of transfinitely iterated reflection prin-
ciples (of relevant logical complexity). In particular, progressions of iterated
consistency assertions, which are equivalent to iterated IT{-reflection principles,
provide suitable approximations of complexity II9.

The choice of the reflection formulas as the approximating ones has the
following two advantages. First of all, the hierarchies of reflection principles
are natural analogs of the jump hierarchies in recursion theory (this analogy is
made more precise in Section 3 of this paper). So, in a sense, they are more
elementary than the other candidate schemata, such as transfinite induction.
Second, and more important, they allow for a convenient calculus. That is, the
proof-theoretic ordinals for many theories can be determined by rather direct
calculations, once some basic rules of handling iterated reflection principles are
established. The key tool for this kind of calculations is Schmerl’s formula [25],
which is generalized and provided a new proof in this paper.

The idea of using iterated reflection principles for the classification of ax-
iomatic systems goes back to the old works of Turing [28] and Feferman [8].
Given a base theory T', one constructs a transfinite sequence of extensions of T'
by iteratedly adding formalized consistency statements, roughly, according to
the following clauses:

(T2) Tog1 =Ta + Con(Ty);
(T3) To = U<y Ip, for a a limit ordinal.

By G&del’s Incompleteness Theorem, whenever the initial theory T is sound?,
the theories T, form a strictly increasing transfinite sequence of sound II9-
axiomatized extensions of T'. Choosing for 7' some reasonable minimal fragment
of arithmetic (in this paper we work over the elementary arithmetic EA) this
sequence can be used to associate an ordinal |U |H(1) to any theory U extending
EA as follows:

|Ulmo := sup{a: EAq CU}.

This definition provides interesting information only for those theories U
which can be well approximated by the sequence EA,. For such U one should
be able to show that for a = |U|no the theory EA, axiomatizes all arithmetical
I19-consequences of U, that is,

U EH1 EAO( (1)

(Here and below T =q, U means that the theories T' and U prove the same
I1,-sentences.) Thus, (1) can be viewed as an exact reduction of U to a purely
IT9-axiomatized theory EA,, and in this sense |Uly is called the proof-theoretic

4That is, if all theorems of T hold in the standard model of arithmetic.



[I9-ordinal of U. Theories U satisfying equivalence (1) are called IT9-regular.
Verifiability of (1) within, say, EA implies

EA I Con(U) + Con(EA,),

and thus, |U |Hg can also be thought of as the ordinal measuring the consistency
strength of the theory U.

The program as described above, however, encounters several technical dif-
ficulties. One familiar difficulty is the fact that the clauses (T1)—(T3) do not
uniquely define the sequence of theories Ty, that is, the theory T, depends on
the formal representation of the ordinal a within arithmetic rather than on the
ordinal itself.

For the analysis of this problem Feferman [8] considered families of theories
of the form (T¢.).co satisfying (T1)-(T3) along every path within O, where
O is Kleene’s universal system of ordinal notation. Using an idea of Turing,
he showed that every true I19-sentence is provable in 7. for a suitable ordinal
notation ¢ € O with |¢| = w + 1. It follows that there are two ordinal notations
a,b € O with |a| = |b| = w+1 such that T, proves Con(T}3), and this observation
seems to break down the program of associating ordinals to theories as described
above, at least in the general case.

However, a possibility remains that for natural (mathematically meaningful)
theories U one can exhaust all II9-consequences of U using only specific natural
ordinal notations, and a careful choice of such notations should yield proper
ordinal bounds. This idea has been developed in the work of U. Schmerl [25],
who showed among other things that for natural ordinal notations

PA =1, PRA,,.

This essentially means that |PA|mo = €o, which coincides with the ordinal asso-
ciated to PA through other proof-theoretic methods.

The significant work of Schmerl, however, attracted less attention than it,
in our opinion, deserved. Partially this could be explained by a rather special
character of the results, as they were stated in his paper. At present, twenty
years later, thanks to the development of provability logic and formal arithmetic,
we know much more about the structure of the fragments of PA, as well as about
the properties of provability predicates. One of the goals of this paper is to
revise and put in the right context this work of Schmerl. We provide a simpler
approach to defining and treating iterated reflection principles, which helps to
overcome some technical problems and allows for further development of these
methods.

Plan of the paper. In Section 2 we define progressions of iterated reflection
principles and note some basic facts about them. This allows to rigorously define
I1%-ordinals of theories following the ideas presented in the introduction.

In Section 3 we relate, in a very general setup, the hierarchy of iterated
9-reflection principles and the Fast Growing hierarchy. This shows that our
approach, for the particular case of logical complexity II9, agrees with the usual



proof-theoretic I19-analysis and provides the expected kind of information about
the classes of provably total computable functions. Proofs of some technical
lemmata are postponed till Appendix A.

Section 4 can be read essentially independently from the previous parts of
the paper. It presents a new conservation result relating the uniform and local
reflection schemata. In particular, it is shown that uniform II;-reflection prin-
ciple is X»-conservative over the local X;-reflection principle. This yields as an
immediate corollary the result in [12] on the relation between parametric and
parameter-free induction schemata: IY, is X, ys-conservative over IX . The
results of that section also provide a clear proof of a particular case of Schmerl’s
formula, which already has some meaningful corollaries for fragments of PA.
At the same time it serves as a basis for a generalization given in the further
sections.

Section 5, aiming at a proof of Schmerl’s formula, presents a few lemmata
to the effect that some conservation results for noniterated reflection principles
can be directly extended to iterated ones. In Section 6 we formulate and prove
(a generalization of) Schmerl’s formula. In particular, we formulate a general
relationship between I19- and T19-ordinals of TI9-regular theories: I19-ordinal of
a theory is one w-power higher than its II3-ordinal.

In Section 7 we apply the general methodology to calculate proof-theoretic
ordinals of main fragments of PA, including forms of parameter-free induction
and their combinations with the parametric ones. This section is mostly meant
as an illustration of the possibilities of our techniques. In our opinion, the most
interesting examples treated are I19-irregular theories such as parameter-free
IT;-induction schema ITI;, PA + Con(PA), and the like.

Appendix A supplies technical lemmata for the results of Section 3. Ap-
pendix B discusses an attempt to define proof-theoretic ordinals “from above”,
and the role of nonstandard provability predicates. In Appendix C ordinal IT{-
ordinals of the weak systems (not proving the totality of the superexponentiation
function) are treated.
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2 Constructing iterated reflection principles
In defining iterated reflection principles we closely follow [3]. Our present ap-

proach is slightly more general, but the proofs of basic lemmas remain essentially
the same, so we just fix the terminology and indicate some basic ideas.



Iterated consistency assertions. We deal with first order theories formu-
lated in a language containing that of arithmetic. Our basic system is Kalmar
elementary arithmetic EA (or IAg(exp), cf. [11]). For convenience we assume
that a symbol for the exponentiation function 27 is explicitly present in the lan-
guage of EA. EA™ denotes the extension of EA by an axiom stating the totality
of the superexponential function 2% (or IAg + supexp). EAT is the minimal ex-
tension of EA where the cut-elimination theorem for first order logic is provable.
Hence, it will often play the role of a natural metatheory for various arguments
in this paper.

Elementary formulas are bounded formulas in the language of EA. A theory
T is elementary presented if it is equipped with a numeration, that is, an ele-
mentary formula Axy(z) defining the set of axioms of T in the standard model
of arithmetic.

By an elementary linear ordering (D, <) we mean a pair of elementary for-
mulas £ € D and = < y such that EA proves that the relation < linearly orders
the domain D. An elementary well-ordering is an elementary linear ordering,
which is well-founded in the standard model.

Given an elementary linear ordering (D, <), we use Greek variables «, 3, 7,
etc. to denote the elements of D (and the corresponding ordinals). Since D is
elementary definable, these variables can also be used within EA.

An elementary formula Axr(a, ) numerates a family of theories (T, )acp, if
for each a the formula Axr (&, z) defines the set of axioms of T, in the standard
model. If such a formula Axr exists, the family (T,)aep is called uniformly
elementary presented.

(From Axr(a,z), as well as from a numeration of an individual theory,
the (parametric) provability predicate Or(«,z) and the consistency assertion
Con(T,) are constructed in a standard way. Specifically, there is a canonical X9-
formula P(X, z), with a set parameter X and a number parameter x, expressing
the fact that = codes a formula logically provable from the set of (non-logical)
axioms coded by X. Then Or(a,z) := P({u : Axr(a,u)},z) and Con(Ty,) :=
—O7r(a, L). Notice that Or(a,z) is first order X1, and Axr(a,u) occurs in
Or(a,z) as a subformula (replacing the occurrences of the form v € X in
P(X,x)).

As usual, we write Or(a, ¢) instead of Or(a,"¢™), and Or(a, p(£)) instead
of Or(a,"p(£)™). Here "p(x)7 denotes the standard elementary function (and
the corresponding EA-definable term) that maps a number n to the code of the
formula ¢(7).

Now we present progressions of iterated consistency assertions. Somewhat
generalizing [3], we distinguish between explicit and implicit progressions. Both
are defined by formalizing (in two different ways) the following variant of con-
ditions (T1)—(T3): for all a € D,

To =T + {Con(Tp) : B < a}.

Suppose we are given an “initial” elementary presented theory 7' and an
elementary linear ordering (D, <). An elementary formula Axr(a, z) explicitly



numerates a progression based on iteration of consistency along (D, <) if
EAF Axr(a, z) ¢ (Axr(z) V3B < a z ="Con(Ty)"). (2)
A formula Axr(a, x) implicitly numerates such a progression if
EAF Or(a,z) < P({u: Axr(u) vV 38 < a u ="Con(T})}, z). (3)

Obviously, every explicit numeration is implicit, but the converse is generally
false. It is often technically more convenient to deal with implicit numerations,
for it allows one to disregard the superfluous information about the exact ax-
iomatization of theories T, (see, e.g., our proof of Theorem 1).

An explicit/implicit progression based on iteration of consistency is any fam-
ily of theories (Tn)acp presented by an explicit/implicit numeration. If (D, <)
is an elementary well-ordering and the initial theory T is X;-sound, then any
implicit progression based on iteration of consistency is a strictly increasing
sequence of ¥;-sound theories satisfying (T1)—(T3).?

Notice that the definition of explicit and implicit numerations is self-referential.
This raises the questions about the existence and uniqueness of such progres-
sions.

Lemma 2.1 (existence) For any elementary linear ordering (D, <) and any
initial theory T, there is an explicit progression based on iteration of consistency
along (D, <).

Proof. The definition (2) has the form of a fixed point equation. Indeed,
the formula Con(T}) is constructed effectively from Axr(3,z), essentially by
replacing z by u and substituting the result into —P(X, L) for v € X. Hence,
there is an elementary definable term con that outputs the Godel number of
Con(T3) given the Godel number of Axz(B,z). Then the equation (2) can be
rewritten as follows:

EAF Axr(a,z) « (Axp(z) VIB<z (B <aiz= con("AxT(/J.’,w)j))). (4)

Fixed point lemma guarantees that an elementary solution Axr(a, x) exists.
To see that the solution satisfies (2) it only has to be noted that, assuming the
Godel numbering we use is standard, provably in EA for any g,

B <87 < TAxr(B,x)7 < "Con(Ty)",
q.e.d.

In the following, the words progression based on iteration of consistency
will always refer to implicit progressions. We note the obvious monotonicity
property of such progressions:

5This is essentially the only place in all the development below, where well-foundedness
matters. Actually, for the progressions based on iteration of consistency, well-foundedness
w.r.t. the Xo-definable subsets would be sufficient.



Lemma 2.2 EAF a < 8 — (Or(a,z) = Or (6, 2)).

The next lemma shows that any progression based on iteration of consistency
is uniquely defined by the initial theory and the elementary linear ordering.

Lemma 2.3 (uniqueness) Let U and V be elementary presented extensions of
EA, (D, <) an elementary linear ordering, (Us)acn and (Vo)acp progressions
based on iteration of consistency with the initial theories U and V', respectively.
Then

EAFVz (Oy(z) ¢ Oy(z)) = EAFVYaVz (Op(a,z) < Oy(a,x)).

The uniqueness property is a robust background for further treatment of
recursive progressions. In particular, it allows one to consistently use combined
expressions like (T,)s for the composition of progressions (along the same or-
dering). The proof of Lemma 2.3 employs a trick coming from the work of
U. Schmerl [25], which will also be used for the other results below.

Lemma 2.4 (reflexive induction) For any elementary linear ordering (D, <),
any theory T is closed under the following reflexive induction rule:

Va (Or (VB8 < & A(B)) = A(a)) F Va A(a).
Proof. Assuming T + Va (O7 (V3 < & A(B)) = A(a)) we derive:

T+ OrVa A(e) — YaOrVs < & A()
— Vo Aa).

Lob’s theorem for T then yields T F Va A(a), q.e.d.

Proof of Lemma 2.3 then easily follows by reflexive induction in EA. We
refer the reader to [3] for the details. It is important to realize that, although
the reflexive induction has formally nothing to do with the well-foundedness, it
allows one to prove certain properties of progressions as if they were proved by
transfinite induction, in agreement with the underlying intuition. This makes
the uses of reflexive induction in this context quite simple and natural.

Remark 2.5 All the above results continue to hold, if one replaces EA by EAT
or any other sound elementary presented extension of EA.

Iterated reflection principles. Let T be an elementary presented theory.
The local reflection principle for T is the schema

Rfn(T) : Ore — @, @ a sentence.
The uniform reflection principle is the schema

RFEN(T) : Vo (Orp(s) — ¢(z)), ¢(z) a formula.

10



Partial reflection principles are obtained from the above schemata by imposing
a restriction that ¢ belongs to one of the classes I' of the arithmetical hierarchy
(denoted Rfnp(T') and RFNp(T'), respectively). See [26, 14, 3] for some basic
information about reflection principles.

We shall also consider the following metareflection rule:

14
RRm, (1) re— o

We let I1,,,-RRyy, (T') denote the above rule with the restriction that ¢ is a IL,,-
sentence.

Forn > 1, I1,,(N) denotes the set of all true II,,-sentences. Truey;, (z) denotes
a canonical truthdefinition for IT,-sentences, that is, a II,,-formula naturally
defining the set of Gédel numbers of II,,(N)-sentences in EA.

Let T be an elementary presented theory containing EA. The set of axioms of
the theory T+11,,(N) can be defined, e.g., by the II,,-formula Axr(z)V Truer,, (z).
Then the formula

Dg" (z) := P({u : Axr(u) V Truem, (u)}, z)

naturally represents the X,,11-complete provability predicate for T+11,,(N), and
Con'!» (T) := —|D¥"L is the corresponding consistency assertion. (For n = 0 we
stipulate that these formulas coincide with Or and Con(T'), respectively.)
Relativized provability predicates DI%" , as well as the usual provability predi-
cate O, satisfy Lob’s derivability conditions. DI%" is EA-provably ¥, 1-complete,
that is,
EAF Vz (o(z) — O o (),

for any ¥, ;1-formula o(z). Besides, for n > 0 the following relationships are
known (see [4]).

Lemma 2.6 For any elementary presented theory T containing EA, the follow-
ing schemata are equivalent over EA:

(i) Con'™™(T);
(“) RFNHu+1(T)5
(i) RFNy, (7).

This shows that the uniform reflection principles are generalizations of the con-
sistency assertions to higher levels of the arithmetical hierarchy. (Notice that the
schema RFNy, (T') is equivalent to the standard consistency assertion Con(T').)

Relativized local reflection principles are generally not equivalent to any of
the previously considered schemata. They are defined as follows:

ang; (T) : Or g = ¢, for ¢ € Ty,
and similarly for the local II,,-reflection principle. Notice that the relativized

analog of, say, Rfny_ (T') is actually anglJrn (T).

11



Progressions based on iteration of reflection principles are defined in an anal-
ogy with (2). If ®(T) is any of the reflection schemata for T" introduced above,
then the progressions based on iteration of ® along (D, <) will be denoted
(®(T)a)aep- Thus, T, = Con(T)a; we also write (T')% short for RFN, (T') 4.

Theories ®(T'), are defined by formalizing the condition

ST)a=T+{2(®(T)p) : B < a}.

This can be done as follows. Since the instances of the reflection principles are
elementarily recognizable, with each of the above schemata ® one can naturally
associate an elementary formula ®-code(e,z) expressing that e is the code of
a X1-formula Oy (v), and z is the code of an instance of ®(U) formulated for
Oy. Then Axr(a,z) is called an explicit numeration of a progression based on
iteration of @, if

EA b Axp(a,z) < (Axp(z) V 38 < a ®-code("Or(3,v)7, z)),
and an implicit numeration, if
EAF Oz (a,z) ¢ P({u: Axr(u) V 38 < a ®-code("O7(B,v) 7, u)}, ).

Then the analogs of existence, monotonicity, and uniqueness lemmas hold for
such progressions too, with similar proofs. We omit them.

[1%-ordinals. Let an elementary well-ordering (D, <) be fixed. All the defini-
tions below are to be understood relative to this ordering. We define:

|T|mo := sup{a : (EA); C T}

If the ordering (D, <) is too short, that is, if for all @ € D, (EA)2 C T, we can
set |T'|mo := oco.
A theory T is 19 -regular, if there is an o € D such that

T =n, (EA)L. (5)

Notice that TI9-regular theories are I19-sound, because (EA)" is. If the equiva-
lence (5) is provable in a (meta)theory U, then T is called U -provably TI° -regular.
For U C T in this case we have a = |T'|yj0, because the formalization of (5) im-
plies

U F RFNq, (T) < RFNp, ((EA)™),

and T ¥ RFNp, (T) then yields (EA)Z,, Z T.

Comparing this definition with the above discussion of proof-theoretic I19-
ordinals we notice that it lacks the mentioned drawbacks 1) and 3).

Ad 1). Indeed, EA is a natural finitely axiomatizable theory, so it has a
canonical provability predicate. Uniqueness theorem then guarantees that the
progression (EA)” for a € D is uniquely defined. (There is no mentioning of
the provability predicates for T in the definition of |T'|pe )
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Ad 2). As defined above, the II2-ordinal of a theory 7T is a function of a
pre-fixed elementary well-ordering (D, <). We shall see later that the analysis of
natural theories requires imposing some additional natural structure on the well-
ordering. (This situation is only slightly better than a restriction to concrete
natural well-orderings.) As expected in view of the general problem of natural
ordinal notations, at present we do not have an answer to the question what
kind of structure is needed for the analysis of arbitrary theories. None of the
existing definitions of proof-theoretic ordinals of logical complexity below II} is
free from this drawback, and this may even be unavoidable.

Ad 3). Equation (5) provides an exact reduction of a given I1®-regular theory
T to a purely II%-axiomatized theory (EA)". This is the main advantage of the
considered definition.

3 Iterated Il;-reflection and the fast growing hi-
erarchy

In this section we relate the hierarchies of iterated uniform Ils-reflection princi-
ples and the hierarchies of fast growing functions. This shows that, under very
general assumptions, the proof-theoretic analysis by iterated Ilz-reflection prin-
ciples over EA provides essentially the same information as the usual I1-ordinal
analysis. For the natural ordinal notation system up to €y similar results can
be deduced from the work of R. Sommer [27]. Our present approach is some-
what more general and also seems to be technically simpler, so we opted for an
independent presentation.

Let £ denote the class of elementary functions. For any set of functions
K, C(K) denotes the closure of K U & under composition; E(K) denotes is
the elementary closure of I, that is, the closure of KX U £ under composition
and bounded recursion. If all the functions from K are monotone and have
elementary graphs, then C(K) = E(K), see [2].

Let an elementary well-ordering (D, <) be fixed. Throughout this section
we assume that there is an element 0 € D satisfying EAFVa (0=aV 0 < a).

A hierarchy of functions F, for a € D is defined recursively as follows:

Fa(z) = max{2Z + 1}U{F (u) +1: B < a, B,u,v <z} (+)

Since (D, <) is well-founded, all F,, are well-defined. The functions F, generate
the hierarchy of function classes

Fo =E{Fs:6 < a}).

One easily verifies that for the initial elements o € D the classes F, coincide
with the classes of the familiar Grzegorczyk hierarchy: Fo =&, Fy =&, ...,
F. = primitive recursive functions, ... The further classes are a natural exten-
sion of the Grzegorczyk hierarchy into the transfinite. Notice that this hierarchy
is defined for an arbitrary (not necessarily natural) well-ordering and does not
depend on the assignments of fundamental sequences.
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A slight modification of this hierarchy has recently been proposed by Weier-
mann and studied in detail by Mollerfeld [17]. Building on some previous results,
see [24] for an overview, he relates this hierarchy to some other natural hierar-
chies of function classes. Since our hierarchy has to be reasonably representable
in EA, in some respects we need a sharper treatment than in [17].

Proofs of the following two lemmas will be given in the Appendix.

Lemma 3.1 F,(z) =y is an elementary relation of a, x, and y.

Notice that a priori we only know that this relation is recursive. Let F,(z) ~y
be a natural elementary formula representing it.

Lemma 3.2 The following properties are verifiable in EA:
() (m1 < @2 A Fo(@1) = 41 A Fa(@2) = y2) = y1 < g5
(it) (B < aAFa(z) =y A Fa(z) = y2) = y1 < ya;
(i) A natural formalization of (x) (axioms (F1)-(F3) from Appendiz A).

Let F,| denote the formula Vz3yF,(z) ~ y, and let S, denote the theory
EA+ {Fjl : B < a}. Obviously, the theories (Sa)aecp are uniformly elementary
presented, e.g., one can define

Axs(a, z) > Axga(z) VIB <z (B < a Az ="Vudv Fy(u) ~v7).

Our aim is to prove that (S, )aep is deductively equivalent to the progression
of iterated uniform IIy-reflection principles over EA.
Notice that Sy = EA, and S, contains EAT for a > 0.

Theorem 1 Provably in EAT, Va S, = (EA)2.
As a corollary we obtain the following statement.
Corollary 3.3 For all a € D, F((EA)2) = Fa.

Proof. Obviously, symbols for all functions Fj for 8 < a can be introduced
into the language of S,. The corresponding definitional extension of S, admits
a purely universal axiomatization, because the graphs of all Fjz are elementary.
By Herbrand’s theorem

F(Sa) = C({Fp : B < a}),

which coincides with the class F,, since all functions Fjz are monotone and have
elementary graphs, q.e.d.

Proof of Theorem 1. By the uniqueness lemma it is sufficient to establish
within EA*" that (Sa)aep\fo} is an implicit progression based on iteration of
uniform ITs-reflection principles over EAT. So, we show the following main
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Lemma 3.4 Provably in EAT,
Ya S, = EA+ {RFNHZ(Sﬁ) 18 < a}.

Proof. We formalize the proofs of the following two lemmas in EA*. (Notice
that the arguments are local, that is, they do not use any form of transfinite
induction on a.)

Lemma 3.5 Provably in EA,

V3 EA+ RFNp,(Sp) - Fyl.

Proof. Let Flgu) () ~ y abbreviate
ds € Seq[(s)o =z AVi < uFg((s)i) = (8)it+1 A (8)u = Y]
;From the assumption v < B within EA + RFN,(Ss) one can derive:
1. Og,F5)  (by the definition of Sp)

2. Vu Os,VzIy F;Sﬁ) () 2~y (by elementary induction on u from 1.)
3. Vo,udyF\" (z) ~y  (by RFNp,(Ss) from 2.)
This shows that
EA + RFNm, (Ss) F Vv < B Vo,uTyF{" (z) ~ y. (6)
On the other hand, by elementary induction on z one obtains
EAFVz 3y <zVy<z(y<B—=7=).

Reasoning inside EA, from (6) for this particular vy one obtains a y such that
F.$§ )(x) ~ y. We claim that y is as required. By (i) and (ii) of Lemma 3.2 and
by (6), for all u,y < x such that v < 3 one has 3z < yFé”) (x) ~ z. By property
(F3) from Appendix A we then obtain Fg(z) ~ y, q.e.d.

Lemma 3.6 Provably in EAT,
VB <a S,k RFNH2 (Sﬁ)

Proof. Let S} denote the definitional extension of Sg by function symbols for
all the functions {F, : v < g}. Clearly, S} is a conservative extension of Sg,
moreover, this can be shown in EAT uniformly in 8. Thus, it is sufficient to
prove the lemma for the theories Sj.

First of all, by a standard result (cf. [9] and [2], Proposition 5.11) based on
the monotonicity of the functions Fjz we obtain that S’ proves induction for
bounded formulas in the extended language (and this is, obviously, formaliz-
able).
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Second, since Herbrand’s theorem is formalizable in EAT, we have that, for
any elementary formula o(y, z),

Ss F Ayo(y,n) = Sg a(t,7),

for some closed term ¢ in Sg. So, it is sufficient to establish in S7, the reflection
principle for S5 for open formulas (in the language of SE) This proof is very
similar to the proof of Theorem 2 in [2], so we only sketch it.

The proof involves two main ingredients. First, we need a natural evaluation
function for terms in the language of S3, that is, a function evalg (e, z) satisfying

evals ("7, (&) = 1(®),
for all such terms t(Z).

It is not difficult to see that evalg € F, and is naturally definable in S%.
Essentially, it is sufficient to check that evalg is bounded by an elementary
function in Fj. Indeed, by monotonicity of all functions F, every term t(z) is
bounded by some iterate of a function F,, for a suitable v < 3, which means
that

evalg(e,z) < F,S("e()e))(ﬂf),

where v(e) and n(e) are elementary functions. For the natural coding of terms
we can additionally assume that n(e) < e, for all e. Then we can estimate the
evaluation function as follows:

E (@) < By (max(e, z)) < Fy(max(e,,7(e))).
Therefore, evalg is elementary in F and belongs to F,. As a corollary we obtain
that S proves Ag(evalg)-induction.

The second ingredient is a proof in S;, of the reflection principle for Sj for
open formulas. This is done straightforwardly by the induction on the length of
a cut-free Sj-derivation using evalg. This induction has Ag(evalg)-form, hence
it is formalizable in S,. The whole argument (involving cut-elimination) is then
formalizable in EAT. Details can be found in [2], Section 7. This completes the
proof of Lemma 3.6 and Theorem 1, q.e.d.

Remark 3.7 One can show that the hierarchy (7')2, for a given IIs-axiomatized
sound extension 7" of EA, corresponds to the so-called Kleene hierarchy over the
class F(T). The Kleene hierarchy is essentially obtained by adding a canoni-
cal universal function for the previous class at successor stages and taking the
unions at limit stages. For T' = EA a standard result (elaborated for the kind
of hierarchies considered here in [17]) shows that the Kleene hierarchy coincides
with the classes F, introduced above.

4 Uniform reflection is not much stronger than
local reflection

In this section we establish a relationship between the uniform reflection schema
and a suitable version of reflection rule. This allows us to prove that for every
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elementary presented theory T containing EA the theory EA + RFNg, (T) is
Yo-conservative over EA + Rfnyg, (T'). Since the arithmetical complexity of the
schema Rfny, (T) is B(X;), a somewhat unexpected aspect of this result is that
the Yo-consequences of RFNy, (T') can be axiomatized by a set of formulas of
lower arithmetical complexity.

A relativization of this theorem allows us to obtain an alternative proof of the
results of Kaye, Paris and Dimitracopoulos [12] on the partial conservativity of
the parametric induction schemata over the parameter-free ones. At the same
time, we also obtain for free the well-known result of Parsons on the partial
conservativity of induction schemata over the induction rules over EA. Further,
this result leads to a more general version of Schmerl’s theorem [25], which plays
an important role in the present approach to proof-theoretic analysis.

Theorem 2 Let T be an elementary presented theory containing EA, and let
U be a I, 11-aziomatized extension of EA (n > 1). Then U + RFNyg_(T) is
I1,,-conservative over U + I1,,-RRp, (T').

Proof. For the proof of this theorem it is convenient to give a sequential
formulation of II,-RRp, (T'). Let Hn—RRﬁ" (T') denote the following inference
rule in the formalism of Tait calculus:

T, p(s)
L, =Prfr(t,"—p(s)7)’

for all terms ¢, s and formulas ¢(a) € II,, where "¢ ($)™ denotes the result of
substitution of a term s in the term "¢ (a)™. T,-RR{; (T') will denote the same
rule with the restriction that I" consists of II,,-formulas.

The following lemma states that the terms "¢ ($)™ have a natural commuta-
tion property.

Lemma 4.1 For any term s(&), where the list T exhausts all the variables of s,
and any formula @(a) (where s is substitutable in ¢ for a) there holds:

EAFVE (Orp(s(Z)) < Orp(3)).
Proof. Obviously,
EAF s(Z) =y — (¢(s(F)) © »(y))-
Hence, by the provable X;-completeness and L&b’s conditions

EAFs(@) =y — Op(s(d)=79)

On the other hand, by the definition of "¢(3)7,

EAF s(Z) =y — (Or¢(3) ¢ Orp(y)),
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which together with (7) yields the claim, q.e.d.

Under the standard interpretation of a sequent as the disjunction of the
formulas occurring in it the following lemma holds.

Lemma 4.2 The rule Hn—RRg" (T) is equivalent to the schema RFNyg,_(T).

Proof. For a reduction of Hn—RRgn (T') to RFNx, (T) consider an arbitrary ¥,,-
formula o(a). In the formalism of Tait calculus ——o happens to be graphically
the same as o, so we can derive:

o(a),~o(a)
o(a),=Prfr(b,"a(a)™)
o(a),Vy—Prfr(y,"o(a)™)
Vo (Oro(z) = o(x)).

For a reduction of Hn—RRgn (T') to RFNy, (T') notice that for any terms s,t and
any II,,-formula ¢ we have:

EA+RFNg, (T)F o(s) — —Op-p(8)
= Vy=Prfr(y,"—(3)7)
— —|PrfT(t7'_—1(p(§)-')7
q.e.d.

Let Ol%"cp denote —|E|l%" —p. Notice that for any ¢, Ol%“go is EA-equivalent
to RFNy, (T + ¢).

Lemma 4.3 Forn > 1, the following rules are equivalent (and even congruent
in the terminology of [2]):

(i) n-RRy,, (T),
(”) HTL'RR%,L (T):
o To(s)
i) ————————, for T U {p} CII,.
) T wl
Proof. Reduction of (ii) to (iii) is obvious, because
EAL O lpo(3) = Orp(s)
- —|PrfT(t,'-—|cp(s')-').

For a reduction of (iii) to (i) we reason as follows. Let & denote the list of all
the free variables in I" and s. Notice that, if I' C II,,, then the universal closure
of VT V ¢(s) € I, and we can construct the following derivation:

L VT(Z) V o(s(7))
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2. V& (V@) V ¢(s(2)))
3. ONnTVE (VT(E) V o(s(F))) (by I,-RRp, (T))
4. VEOR" T (VT(@) V ¢(s(2))) (by Lob’s conditions from 3)

5. 01:,11"‘1(V I(2)) - V(@) (by provable X,,-completeness of Dl;"‘l)
6. VI'(Z) Vv Og"_lgo(s(.%’)) (by 4, 5 and Lob’s conditions )
7. VI(Z) v Og"_lgo(s') (by Lemma 4.1)

In order to reduce (i) to (ii), for any II,-formula ¢ and any ¥,_;-formula
o(x) we reason as follows:

—o(x),0(z)
¢ A o), o)
Srlp A -o(), o)
~Ors40(d),0()
Ve (Or450(2) = 0(2))

(by IL,-RR%_(T) and logic)

This gives the required proof of an arbitrary instance of RFNy,_, (T + ) from
a derivation of ¢, q.e.d.

Resuming the proof of Theorem 2 we show that the standard cut-elimination
procedure can be considered as a reduction of RFNx, (T') to TI,-RR{; (T'). Con-
sider a cut-free derivation of a sequent of the form

_'Ua_'RFNEn (T)7H7 (8)

where II is a set of II,,-formulas, —U is a finite set of negated axioms of U, and
—RFNgy, (T) is a finite set of negated instances of RFNx_ (T) of the form

Fy3z [Prir(y, "—e(2)7) A p(z)]

for some ¢(z) € II,. Let R,(x,y) denote the formula in square brackets. We
can also assume that the axioms of U have the form Vz; ...Vz,,—A(z1,... ,Tm)
for some II,-formulas A(Z).

By the subformula property, any formula occurring in the derivation of a
sequent T' of the form (8) either (a) is a II,-formula, or (b) has the form
-RFNsx, (T'), 3zR,(t,x) or R,(t,s), for appropriate terms s,¢, or (c) has the
form

Azipr .. Fem A1, Sty Tig1y - s Tm)

for some ¢ < n and terms #1,...,t;. Let I~ denotes the result of deleting all
formulas of types (b) and (c) from T'.

Lemma 4.4 If a sequent T of the form (8) is cut-free provable, then T~ is
provable from the azioms of U (considered as initial sequents) using the logical
rules, including Cut, and the rule IL,,-RRf; (T).
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Proof goes by induction on the height of the derivation d of I'. It is sufficient
to consider the cases that a formula of the form (b) or (¢) is introduced by the
last inference in d. Besides, it is sufficient to only consider the formulas of the
form R,(t,s) and 3z, A(t1,. .. ,tm—1,%m), because in all other cases after the
application of ()~ the premise and the conclusion of the rule coincide.

So, assume that the derivation d has the form

PrfT(ta r_'(p(s.)-l)a A 90(8)7 A
Rw(tv S), A

()

where ¢ € II,. Then by the induction hypothesis we obtain II,,-RR{; (T')-
derivations of the sequents

Prz(t,"—p(3)7), A~ )
and

o(s), A™. (10)
Since A~ consists of TI,-formulas, the rule I1,-RR{; (T') is applicable to (10),
and we obtain a derivation of
—Prfp(t,7—p(8)7), A

Applying the Cut-rule with the sequent (9) we obtain the required derivation
of A™. If the last inference in d has the form

A(tla s ;tm—lytm)a A

EI:L'mA(tl, e 7tm—1; SEm),

NG
then by the induction hypothesis we obtain a II,,-RR}; (T')-derivation of
Altry .. s tmet1tm), A7,
Then a derivation of
Azq ... 3 A1, ..., Tm), AT

is obtained by several applications of the rule (3). The sequent A~ is now de-
rived applying the Cut-rule with the axiom sequent V1 ...Vem—-A(21,. .. ,Tm),
q.e.d.

Theorem 2 now follows immediately from Lemmas 4.4 and 4.3, q.e.d.

Proposition 4.5 If T is a II,41-axiomatized extension of EA, then T +
RFNy, (T') is IL,-conservative over (T)™.

This statement has been obtained (by other methods) for T'= PRA in [25], and
forn=1and T = EA in [1].

Proof. It is sufficient to notice that (T')" is closed under the rule IT,,-RRy, (T'),
q.e.d.
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Proposition 4.6 If U is a II,1-axiomatized extension of EA, then U +
RFNyx, (T') is a ¥,,41-conservative extension of U+ ang:‘l (T). In particular, if
U is IIy-aziomatized, then U+ RFNyx, (T') is 3a-conservative over U + Rfnyg, (T).

Proof. Assume U + RFNy, (T') I o for a sentence o € ¥,,41, then
U+ -0+ RFNg, (T)F L,

and by Theorem 2

U+ -0+ 1,-RRy,, (T) - L.
Notice that the rule II,-RRm, (T") is obviously reducible to the schema
ang:‘l(T). Hence, we obtain

U+ -0 + Rfng" ™ () + L,
and by deduction theorem
U + Rfny" ™" (T) + o,
q.e.d.

Thus, from our characterization of parameter-free induction schemata (cf. [2]
or Section 7 of this paper) we directly obtain an interesting conservation result
due to Kaye, Paris and Dimitracopoulos [12] (by a model-theoretic proof).

Corollary 4.7 Forn > 1, I%,, is a X,42-conservative extension of IX .

(From Proposition 4.5 and the characterization of induction rules in terms
of reflection principles (cf. [2]) one can also obtain the following theorem of
Parsons [21].

Corollary 4.8 Forn > 1, IY,, is I, 1-conservative over IEf.

Proposition 4.5 also implies that I3 is II>-conservative over (EA)2. To-
gether with Corollary 3.3 this implies that F(IX;) coincides with F,,, that is,
with the class of primitive recursive functions. This well-known result was origi-
nally established by C. Parsons [20], G. Takeuti and G. Mints by other methods.

5 Extending conservation results to iterated re-
flection principles

The definition of progressions based on iteration of reflection principles allows
one to directly “extend by continuity” some basic conservation results for reflec-
tion principles to their transfinite iterations. In particular, this leads to a useful
generalization of Schmerl’s fine structure theorem, which will be discussed in
the next section. Here we just state a number of such easy extension results.
Throughout this section we fix an elementary well-ordering (D, <) and an initial
elementary presented theory T'.
The following proposition generalizes Statement 3 of Theorem 1 in [3].
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Proposition 5.1 The following statements are provable in EA:
(i) Va Rfng, (T)a C Rfn(T)q4;
(’LZ) Va an(T)a gB(El) Rfny, (T)a.

Proof. We give an informal argument by reflexive induction on «. Since both
(i) and (ii) are formalized as II,-formulas, we may actually argue in EA + BY;
(and then use IIo-conservativity of the latter over EA). Denote V' := Rfny, (T)4
and U® := Rfn(T) .

(i) By the definition of (implicit) progressions, modulo provable equivalence
every axiom of V¢ is either an axiom of T, and in this case there is nothing to
prove, or it is an instance of the schema Rfny, (V?) for some 8 < «, that is,
it has the form Oyso — o for a sentence o € 3;. By the reflexive induction
hypothesis we have

EA Oyso — Oyso,

whence
EAF (Oyso — o) = (Oyso — o).

Thus, U® + Oyso — o, by the definition of U?, that is, every axiom of V¢ is
provable in U, as required. (BY; then implies that every theorem of V* is
provable in U®. In the following we shall not mention such uses of BY;.)

(ii) Assume U* | §, where § is a B(X1)-sentence. By the definition of U®
and the formalized deduction theorem there exist 81,... , 8m < a and sentences
©¥1,... ,pm such that

T+ N\ @ys.pi = i) = 6.

=1
By provable monotonicity, stipulating 8 := max_{f1,... ,Bm}, we obtain
Tk /\(DU,@QOi — ;) = 0. (11)
i=1

Lemmas 4 and 5 in [3] then yield B(X;)-sentences 1, ... ,%m, such that

m

T+ N\ (@ustyi = ¢) = 6. (12)

i=1

(Note that these sentences together with a proof of (12) are constructed elemen-
tarily from the proof (11).) The reflexive induction hypothesis implies

EA - DUﬁwi — Dvﬁwi,

whence o
T+ N\ (@vstyi = ) = 6.

i=1
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Thus, V* I 4, by the definition of V¢, q.e.d.

The following generalization of Statements 1 and 2 of Theorem 1 in [3] is
similarly proved.

Proposition 5.2 For all n > 1, the following statements are provable in EA:
(i) Ya Rfn(T),, =x, Rfng, (T)a;
(ii) Ya Rfn(T)o =n,, Rfnm, (T)a.
We also state without proof an obvious relativization of 5.1.

Proposition 5.3 For all n > 1, the following statements are provable in EA:
Va Rfn™ (T)a =p(x,,.) Riny”,, (T)a-

The next proposition generalizes Proposition 4.6. Its proof is based on a
formalization of Theorem 2, which is possible in EAT, but not in EA itself. (The
nonelementarity is only due to the application of cut-elimination in that proof.)

Proposition 5.4 If T is a II,,11-aziomatized extension of EA, then the follow-
ing is provable in EAT:

Va RFNg, (T)a =s,,, Rfng" ™ (T)a.

Proof. Inclusion (D) is obvious. We give a proof of (Cx,,,) for n = 1 (for
n > 1 the proof is no different, but the notation would be heavier to read).
Denote U® := RFNg, (T)a; V* := Rfng, (T),- We give an informal argument
by reflexive induction on « in EAT.

Assume U F o, where o € ¥5. By the definition of U, for some § < a we

have
T + RFNg, (UP) F 0.

Notice that by the monotonicity of V?
T + RFNg, (V?) F RFNg, (EA),

that is, T + RFNg, (V?) contains EAT. On the other hand, by the reflexive
induction hypothesis

EAT FVz € Xy (Oys (x) < Oys(x)),

whence
EA* F RFNy, (U?) & RFNg, (VP).

Therefore, RFNyx, (U?) is contained in T' 4+ RFNyx, (V?), and thus,
T +RFNy, (VP) Fo.
It follows that
T + -0+ RFNyg, (VP) F 1,
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and by (formalized) Theorem 2
T + -0 4+ I;-RRyy, (VP) F 1,

and
T + -0 + Rfng, (VP) F L.

Thus,
T + Rfng, (VP) F o,

that is, V, - o, q.e.d.

6 Schmerl’s formula

Our approach to Schmerl’s formula borrows a general result from [3] relating
the hierarchies of iterated local reflection principles and of iterated consistency
assertions over an arbitrary initial theory T'. This result and the results below
hold under the assumption that (D, <) is a nice elementary well-ordering. A nice
well-ordering is an elementary well-ordering equipped with elementary terms
representing the ordinal constants and functions 0,1, +, -,w®. These functions
should provably in EA satisfy some minimal obvious axioms NWO listed in
[3]. Besides, there should be an elementary EA-provable isomorphism between
natural numbers (with the usual order) and the ordinals < w. Under these
assumptions on the class of well-orderings we have the following theorem [3].

Proposition 6.1 EA proves that, for all a, B such that a > 1, there holds

(an(T)a)ﬂ =1, Tw"‘-(l—i—ﬁ) .

In particular, for all & = 1, Rfn(T), =n, T

A proof is obtained by elementary reflexive induction and for the nontrivial
inclusion (Cyy,) it only uses provability logic. Since the relativized provability
predicates satisfy the same provability logic, essentially the same argument also
yields the following theorem.

Proposition 6.2 For any n > 1, provably in EA,
Vo= 1 Y8 (R (T)a)s =m, (T)la.115)-
Proof. One only has to notice that provably in EA, for all «,

Con™='(T)4 = RFN, (T, = (T)"

)
which can be verified by a straightforward reflexive induction on «, g.e.d.

Now we can combine this result with Proposition 5.4 and obtain a generaliza-
tion of Schmerl’s theorem. (U. Schmerl [25] proves this statement for specially
defined progressions corresponding to (PRA)”).
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Theorem 3 (Schmerl’s formula) For all n > 1, if T is an elementary pre-
sented I, 1-aziomatized extension of EA, the following holds provably in EAY:

Va = 1(T)3*! =n, ()%
Proof. It is sufficient to notice that for all o > 1,
(T)e+ =54, Ring) ™ (T)a =11, (T)0e,
by Propositions 5.4 and 6.2, respectively, q.e.d.

Next we observe an easy but useful extension lemma.

Lemma 6.3 Let U,V be elementary presented extensions of EA, and T be one
of the classes Ypt1, U1 or B(Zg), for k> n > 1. Then

EAFUCrV = EAFVa (U)" Cr (V)™.

Proof. Reasoning by reflexive induction on « assume U, F ¢ for a sentence
@ € I'. Then for some 8 < «,

U +RFNp, ((U)3) F o.
By reflexive induction hypothesis
U + RFNm, (V)3) F ¢,

whence
Utk ﬁRFNnn((V)g) V.

The latter formula is in I' (modulo logical equivalence), therefore
V F =RFNp, ((V)3) V ¢,
and thus V,, I ¢, q.e.d.

Remark 6.4 This lemma also holds for EAT in place of EA, with the same
proof.

The ordinal functions w,,(a) are introduced as usual:

{ wo () a

wipr(@) = wer®

Denote wy, := wy(1), € :=sup{w,:n < w}.
Our next theorem generalizes Theorem 3 to mixed hierarchies (for 7= PRA
established by Schmerl).

Theorem 4 For all n,m > 1, if T is an elementary presented II, ;-
aziomatized extension of EA, the following statements hold provably in EAT:
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(i) Vo= 1 (T)5*™ =n, (T)]

wm (@)’

(i1) Yo = 1 (X)) =0, (T, (o 1)
Proof. Part (i) follows by m-fold application of Theorem 3. For a proof of (ii)
notice that by (i) and 5.4

n+m — n — IIn_a
(T)a+ =lln41 (T)w;:l_l(a) =Xn41 Rf"zn (T)wm_1(a)'

Lemma 6.3 and Proposition 6.2 imply that

nrrmyn — n n — H’n— n — n
((T)a+ )ﬁ =In41 ((T)wzl_l(a))ﬂ =t (anEn 1(T)wm—l(ot))['l =1, (T)w“’m—1(a).(1+g)7
which yields the required formula

(Ma"™) =m. (D)2, (a)-(148)
g.e.d.

This theorem directly applies to theories T like EA or PRA. Following
Schmerl’s idea it is also possible to derive from it similar formulas for iterated
reflection principles over PA, which we obtain in the next section.

Corollary 6.5 If T is a TI3-regular theory, then it is T3 -regular and |T|yo is
one w-power higher than |T|g»

Proof. If T is a Mj-regular theory and |T|pg =a, then T =m, (EA)Z. By
Theorem 3 (EA)?2 =p, EA,«, which means that T =g, EA,a, that is, T is
I1Y-regular and |7y = w®, q.e.d.

7 Ordinal analysis of fragments

Now we have at our disposal all necessary tools to give an ordinal analysis
of arithmetic and its fragments. The general methodology bears similarities
with the traditional IIj-ordinal analysis, see [23]. To determine the ordinal
of a given formal system 7" one first finds a suitable embedding of T into the
hierarchy of reflection principles over EA. Then one applies Schmerl’s formula
for a reduction of the reflection principles axiomatizing T to iterated reflection
principles of lower complexity. ;From this point of view the use of Schmerl’s
formula substitutes the use of cut-elimination for w-logic. Notice that, although
the meaning of the ordinals is different, ordinal bounds are essentially the same
in both approaches. Also notice that in the present approach the embedding
part is more informative. In particular, this allows to obtain upper and lower
bounds for proof-theoretic ordinals simultaneously.
The following embedding results are known (n > 1).
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(E1) Leivant and Ono [15, 18] show that I, is equivalent to RFNy, ,(EA)
over EA, that is,
IY, = (EA)T2.

Notice that this is sharper than the related results in [25] and the original
result by Kreisel and Lévy [14] stating that

PA = EA + RFN(EA).

(E2) For the closures of EA under ¥,,- and II,,;;-induction rules we have the
following characterization (cf. [2]):

Isf=mk = EAT.

(E3) Parameter-free induction schemata have been characterized in [5]:
(a) IS, = EA+Rfng”  (EA).
(b) IT,,, = EA+Rfny" _ (EA).
(c) EA* + ITI] = EA' + Rfny, (EA) = EA* + Rfny, (EA™).

Over EA the schema ITI] is equivalent to the local ¥y-reflection principle
for EA formulated for the predicate of cut-free provability, see [5] and
Appendix C for more details.

Remark 7.1 The upper bound results only require the embeddings (E1)—(E3)
from left to right, that is, the provability of the induction principles from suitable
forms of the reflection principles. All these embeddings are very easy to prove
using a trick by Kreisel [14]. For example, in order to prove I%, C (EA)7*?
let o(x,a) be any X, -formula and consider the formula v (z,a) := ¢(0,a) A
VYu (o(u,a) = o(u + 1,a)) = o(z,a). 1 is logically equivalent to a IL,1o-
formula. By an elementary induction on m it is easy to see that, for all m, k,
EA F ¢(m, k), and this fact is formalizable in EA. Hence EA I Vz,a Ogath(%, @),
and applying uniform II,,, o-reflection yields

EA + RFNp, ., (EA) F Vz,a 9 (z,a),

which is equivalent to an instance of I3;. The proofs of the corresponding
embeddings in (E2) and (E3) are rather similar.

The embeddings (E1)—(E3) from right to left are increasingly more difficult
to prove (but, if one is only intersted in the upper bound results, this is not
strictly necessary). The simplest argument for PA, due to Kreisel and Lévy [14],
goes from an EA-proof of a formula ¢ to a cut-free derivation in Tait calculus of
a sequent consisting of ¢ and some negated instances of the axioms of EA. All
formulas occurring in this derivation are II,,, where n is the maximum of the
logical complexity of ¢ and 2 (since all the axioms of EA are II;). Then one can
use a truthpredicate for II,-formulas and prove by induction on the depth of
the cut-free derivation that all sequents occurring in it are true. This induction
argument is clearly formalizable in PA.
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Remark 7.2 All the embedding results mentioned in (E1)—(E3) can be natu-
rally formalized in EA. This is obvious for the finitely axiomatized systems in
(E1) and can be checked for (E2) and (E3) as well.

Now we obtain some corollaries, starting from the simplest analysis of I3,
and PA.

Proposition 7.3 For alln > 1,
(i) 1%, =n, (EA)2, =m, EAu, ., hence |IZn|no = wni1;
(i) PA =n, (EA)?, hence |PA|m = €.

€0’
Proof. Statement (i) follows from (E1) and Theorem 4. Statement (ii) similarly
follows from the equivalence

PA= |J (EA)™ =0, |J (EA)L, ),
m>0 m>0

which holds for any n > 1, g.e.d.

Remark 7.4 Part (i) of this proposition is formalizable in EAT. Part (ii) will
be formalizable in EAT under some additional assumptions on the choice of a
nice well-ordering. For example, we can extend NWO by a binary function
symbol for w,(a) and a constant symbol €y with the obvious defining axioms.
The extended theory will be denoted NWO(eg), and we require that the nice
well-ordering interprets these axioms by elementary functions.

For the induction rules from (E2) we obtain the same bounds (n > 1).

Proposition 7.5 ITE =1, (EA)2 =p, EA

Wn 41 °

For parameter-free induction schemata we have, by the conservation results
for local reflection principles in [2, 5] and Section 4 of this paper

Proposition 7.6 (EA)7™? =5, IS, =B(Sng1) 1y

It follows that, for n > 1, the theories X, ITI; ., and I, have the same II9-
and TI9-ordinals.

In [5] the theory I%, + ITI, is analyzed (n > 1). On the basis of (E3)(b)
it is shown that

IS, + I, =n,,, ([T,)07 = (EA)TH?)LT.

n+1 w

Applying Theorem 4 yields the following corollary, which determines its I13- and
I19-ordinals.

Proposition 7.7 1Y, + I, | =, (EA)in(z) =m EAL,..(2)-
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Now we consider the exceptional case of the parameter-free II;-induction
schema. We first analyze the system EA* + ITI|, the weaker theory EA + ITI;
will be treated in Appendix C.

Notice that by (E3)(c) the theory EAT +ITI; is certainly not IIo-conservative
(not even IIj-conservative) over EAT. Yet, the next proposition shows that its
class of provably total computable functions coincides with that of EAT. This
means that EAT + ITI; is not IIy-regular (its [13-ordinal equals 1).

Proposition 7.8 (i) F(EAT + IlI]) = F(EAY) = Fy;
(ii) F(EA+IIIT) = Fo =E€.
Proof. By (E3)(c), EA* + ITI] is contained in EA* + Rfn(EA™) and similarly
EA + ITI] C EA + Rfn(EA).

Feferman [7] noticed that Rfn(T") is provable in T together with all true II;-
sentences. Yet, it is equally well-known that adding any amount of true II;-
axioms to a sound theory does not increase its class of provably total computable
functions. This proves both parts (i) and (ii), q.e.d.

Proposition 7.9 EA" 4+ ITI; is I1{-regular and |[EAY + ITI; |0 = w®.

Proof. Recall that by Proposition 6.1 (for this particular case established by
Goryachev [10]) T + Rfn(T) is II; -conservative over T,,. Hence, by Theorem 4,

EAT + ITI; =y, (EAT), = ((EA)}), =m, EA,-.
Thus, the theory is II9-regular with the ordinal w?, q.e.d.

Now we consider the extensions of PA by reflection principles. The following
proposition holds for nice well-orderings satisfying NWO(ep). Notice that the
function € can be expressed in NWO(eg) by the term w .

Proposition 7.10 For each n > 1, provably in EAT,

(1) (PAYG =i, (EA)L (1107

(i) (PAY;* =n, (PAYS, if a > 1.
Proof. By formalized Proposition 7.3(ii), provably in EAT,

PA =, ., (EA)ZT.
By Lemma 6.3 and Theorem 4(ii) we then obtain:
(PA)s =114, (EA)L)E =11, (EA)L . (140)-
Formula (ii) follows from (i) and Theorem 3, because for a = 1 one has
(EA)::(11+Q) =, (EA)]w-a4a) = (EA)?O-(H-CSL) =1, (PA)?(C;;

q.e.d.

As a particular case we obtain that PA + Con(PA) is a I9-regular theory
with the ordinal w - 2.
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Corollary 7.11 PA+ Con(PA) =1, EA, 2.

Since Con(PA) is a true II;-sentence, [PA + Con(PA)|mg = €o, therefore PA +
Con(PA) is not I9-regular.

As another example of this sort let us compute the ordinals of the following
I19-regular, but M3-irregular, theories.

Proposition 7.12 (i) |IZ; + Con(PA) |y = €0 + w®;
(i) |EAT + Con(I%1)[mp = w* +w.
Proof. For (i) notice that by Theorem 4 provably in EAT,

(IT1)!, = ((EA)))L =m, EAu,(1)-(14e0) = EA¢, =m, PA.

w =

Therefore,
EA* F Con(PA) + Con((IX1)1).

It follows that
IS + Con(PA) = IX; + Con((IX1)F,) = (IX1)}, 41-
For the latter theory we have
(IZ0)L 11 = (EAYD)L 11 =11, EAyeoy1) = Ay
For (ii) reasoning in a similar way we obtain
EAT + Con(I%1) = ((EA)})we+1 =1y EAu (14we 1) = EAve o,

q.e.d.

8 Conclusion and further work

This paper demonstrates the use of reflection principles for the ordinal anal-
ysis of fragments of Peano arithmetic. More importantly, reflection principles
provide a uniform definition of proof-theoretic ordinals for any arithmetical com-
plexity 1%, in particular, for the complexity TI9.

The results of this paper are further developed in our later paper [6], where
the notion of graded provability algebra is introduced. It provides an abstract
algebraic framework for proof-theoretic analysis and links canonical ordinal no-
tation systems with certain algebraic models of provability logic. We hope that
this further development will shed additional light on the problem of canonicity
of ordinal notations.
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9 Appendix A

Let (D, <) be an elementary well-ordering. Define

alz] = maxs{f<z:f<a}
B<a & (BLzAB<a).

Recall that the functions F, are defined as follows:
F,(z) :==max{2 + 1} U {Fév)(u) +1:8<a, u,v,8 <z}

For technical convenience we also define F_;(z) = 2” and afz] = —1, if there is
no 3 <, a.

Lemma 9.1 For all a,8,2,v,
(1) <y = Falz) < Fa(y);
(i) B < a — Fg(z) < Fu(x).
Proof. Part (i) is obvious. Part (ii) follows from the fact that
Y=< B<Ra=>v<aq
q.e.d.
Lemma 9.2 For all a,z, F,(x) = sz] (z) + 1.

Proof. This is obvious for a[z] = —1. Otherwise, from Part (i) of the previous
lemma we obtain ) @)
u,v < x — Fév (u) < F3% ().

Part (ii) a nd Part (i) by an elementary induction on y then yield
B=<a— FY¥(z) < F¥(2).
Hence, if u,v < z and 8 <, a, then 8 <, a[z] or § = afz], and in both cases
F{(u) < F) (),
q.e.d.

We now define evaluation trees. An evaluation tree is a finite tree labeled
by tuples of the form {a, z,y) satisfying the following conditions:

1. If there is no 8 <, «, then (o, z,y) is a terminal node and y = 22 + 1.

2. Otherwise, there are x immediate successors of {a,z,y), and their labels
have the form

(O[[.Z'],.Z’,y1>, <a[$]7y17y2>7 N 7<a[$]7yzflyyw>

and y =y, + 1.
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Obviously, the relation z is a code of an evaluation tree is elementary.

Lemma 9.3 (i) If a node of an evaluation tree is labeled by (a,x,y), then

F.(z) =y.
(1) If Fo(x) = y, then there is an evaluation tree with the root labeled by
(o, z,y).
Proof. Part (i) is proved by transfinite induction on a. If afz] = —1, the

statement is obvious. Otherwise, a[z] < «, hence by the induction hypothesis
at the immediate successor nodes one has Fy[,](y;) = yit1 for all i < 2 (where

we also put yg := z). It follows that y, = Fifm)] (x), whence y =y, + 1 = Fu ().
Part (ii) obviously follows from the definition of Fy,, q.e.d.

Now we observe that, for any evaluation tree T, whose root is labeled by
(a, z,9), the value max(a,y) is a common bound to the following parameters:

(a) each v, u,v such that (v, u,v) occurs in T}

(b) the number of branches at every node of T;

(c) the depth of T.

Ad (a): If {7y, u,v) is an immediate successor of (o, z,y), then v = a[z] < ,
and u,v < y by the monotonicity of F.

Statement (b) follows from (a) and the fact that the number of branches at
a node (v, u,v) equals u.

Statement (c) follows from the observation that if (7y,u,v) is an immediate
successor of (o, x,y), then y > v.

An immediate corollary of (a)—(c) is that the code of the evaluation tree T'
is bounded by the value g(max(a,y)), for an elementary function g. Hence we
obtain

Proof of Lemma 3.1. Using Lemma 9.3 the relation F,(z) = y can be
expressed by formalizing the statement that there is an evaluation tree with the
code < g(max(a,y)), whose root is labeled by {a,z,y). All quantifiers here are
bounded, hence the relation F,(z) = y is elementary, q.e.d.

Inspecting the definition of the relation F,(x) = y notice that the proofs of
the monotonicity properties and bounds on the size of the tree only required
elementary induction (transfinite induction is not used). Hence, these properties
together with the natural defining axioms for F, can be verified in EA. This
yields a proof of Lemma 3.2. Here we just formally state the required properties
of F,, formalizable in EA.

Fl. (V8<z-f<0qa) = [Fa(z) ~y ¢y =22 +1]

F2. Fa(m)’:y/\ﬁﬁa:/\,@’%a—)ﬂzgyﬂu,vgmFﬁgv)(u):z
F3. V3,u,v<z(f<a—>Jy<z2 F/B(U)(u) ~y)—= Ay <z Fy(z) ~y.
Here, as usual, Fﬁ(w)(:v) ~ y abbreviates

ds € Seq[(s)o =x AVi <z Fp((s)i) = (8)ix1 A (8)z = y)].
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10 Appendix B

One can roughly classify the existing definitions of proof-theoretic ordinals in
two groups, which I call the definitions ‘from below’ and ‘from above’. Informally
speaking, proof-theoretic ordinals defined from below measure the strength of
the principles of certain complexity I' that are provaeble in a given theory T'.
In contrast, the ordinals defined from above measure the strength of certain
characteristic for T' unprovable principles of complexity I'. For example, Con(T")
is such a characteristic principle of complexity II9.

The standard IT}- and II3-ordinals are defined from below, and so are the
II9-ordinals introduced in this paper. The notorious ordinal of the shortest
natural primitive recursive well-ordering < such that T'I, . (<) proves Con(T)
(apart from the already discussed feature of logical complexity mismatch) is a
typical definition from above.

All the usual definitions of proof-theoretic ordinals can also be reformulated
in the form ‘from above’. Let a natural elementary well-ordering be fixed. For
the case of T1%-ordinals the corresponding approach would be to let

|T|}o := min{a : EAT + RFNp, ((EA)Z) F RFNp, (T)}.

(Notice that for n > 1 the theory on the left hand side of - can be replaced by
(EA)at1-)

In a similar manner one can transform the definition of the I13-ordinal via
the Fast Growing hierarchy into a definition ‘from above’. The class of p.t.c.f.
of T has a natural indexing, e.g., we can take as indices of a function f the pairs
(e,p) such that e is the usual Kleene index (= the code of a Turing machine)
of f, and p is the code of a T-proof of the II-sentence expressing the totality
of the function {e}. With this natural indexing in mind one can write out a
formula defining the universal function ¢r (e, x) for the class of unary functions
in F(T). Then the II9-sentence expressing the totality of @7 would be the
desired characteristic principle. (It is not difficult to show that the totality of
o7 formalized in this way is EA*-equivalent to RFNy, (7').) The I19-ordinal of
T can then be defined as follows:

|T|§[f5: min{a: ¢ € Fot1}-

Notice that the proof-theoretic ordinals of T" defined ‘from above’ not only
depend on the externally taken set of theorems of T', but also on the way T is
formalized, that is, essentially on the provability predicate or the proof system
for T. For example, in the above definition the universal function ¢r(e,x)
depends on the Godel numbering of proofs in 7. In practice, for most of the
natural(ly formalized) theories the ordinals defined ‘from below’ and those ‘from
above’ coincide:

Proposition 10.1 If T is EAt-provably TI° -reqular and contains EA*, then
IT1Ye = Tlns
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Proof. Let a = |T'|go. By provable regularity,
EAT - RFNp, (T) <+ RFNp, ((EA)?),
hence EA* + (EA)%,; F RFNp, (T'). On the other hand, by Gddel’s theorem
EAT + (EA)2 C T ¥ RFNp, (T),
q.e.d.

The following example demonstrates that, nonetheless, there are reasonable
(and naturally formalized) proof systems for which these ordinals are different,
so sometimes the ordinal defined from above bears essential additional informa-
tion.

Consider some standard formulation of PA, it has a natural provability pred-
icate Opa. The system PA* is obtained from PA by adding Parikh’s inference

rule:
Opag

)
%)

where ¢ is any sentence. For the reasons of semantical correctness, Parikh’s
rule is admissible in PA, so PA* proves the same theorems as PA. However, as
is well known, the equivalence of the two systems cannot be established within
PA (otherwise, PA* would have a speed-up over PA bounded by a p.t.c.f. in PA,
which was disproved by Parikh [19]).® Below we analyze the situation from the
point of view of the proof-theoretic ordinals.

Notice that PA* is a reasonable proof system, and it has a natural ¥; prov-
ability predicate Opa+. P. Lindstrém [16] proves the following relationship be-
tween the provability predicates in PA and PA*:

Lemma 10.2 EAF Vz (Opa+(x) <> In Opa0%,(£)), where O}, means n times
iterated Opy.

Notation: The right hand side of the equivalence should be understood as the
result of substituting in the external Opa the elementary term for the function
An,z. TOR(Z)7.

Proof (sketch). The implication (+) holds, because PA* is provably closed
under Parikh’s rule, that is,
PAFOpap = PA*F g,

by n applications of the rule, and this is obviously formalizable.
The implication (—) holds, because the predicate In OpaOF, (£) is provably
closed under PA, modus ponens and Parikh’s rule:
PAFp = PAFO0,
PAF Ofyp, PAFOR(p—¢) = PAFOmXmmy
PAF 05\ (Opap) = PAF O,

6An even simpler argument: otherwise one can derive from OppOpa L the formulas Ofa L
and Opp L, which yields PA F OppOpa L — Opp L contradicting Lob’s theorem.
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and this is formalizable, q.e.d.
Corollary 10.3 EA Con(PA*) + Con(PA,).

Proof. By induction, Con(PA,) is equivalent to —Opa0g,L, moreover this
equivalence is formalizable in EA (with n a free variable). Hence, Con(PA,,)
is equivalent to Vn —=Opa0p, L, which yields the claim by the previous lemma,
g.e.d.

Applying this to I19-ordinals defined from above, we observe
Proposition 10.4 (i) |PA|¥I(1) = €o;
(ii) |PA*|I\§9 =€ - w.

Proof. Statement (i) follows from the EA*-provable II9-regularity of PA.
To prove (ii) we first obtain

PA, =m, EAqw
by Proposition 7.10(i). Formalization of this in EAT yields
EAT +EA,, 41 - Con(PA,) - Con(PA*),
by Corollary 10.3. By Schmerl’s formula it is also clear that
EAT + EAyw C ((EA)?) - ¥ Con(PA%),
which proves Statement (ii), q.e.d.

Observe that the I19-ordinals of PA and PA* defined from below both equal
€0, because PA* is deductively equivalent to PA. Hence, for PA* the I19-ordinals
defined from below and from above are different — this reflects the gap between
the power of axioms of this theory and the effectiveness of its proofs.

Despite the fact that, as we have seen, the proof-theoretic ordinals defined
from above may have some independent meaning, it seems that those from below
are more fundamental and better behaved.

11 Appendix C

Here we discuss the role of the metatheory EAT that was taken as basic in this
paper. On the one hand, it is the simplest choice, and if one is interested in
the analysis of strong systems, there is no reason to worry about it. Yet, if one
wants to get meaningful ordinal assignments for theories not containing EAY,
such as EA + ITI] or EA 4+ Con(IX;), the problem of weakening the metatheory
has to be addressed. For example, somewhat contrary to the intuition, it can be
shown (see below) that EA + Con(IX;) is not a I9-regular theory in the usual
sense.
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These problems can be handled, if one reformulates the hierarchies of iterated
consistency assertions using the notion of cut-free provability and formalizes
Schmerl’s formulas in EA using cut-free conservativity. Over EAT these notions
provably coincide with the usual ones, so they can be considered as reasonable
generalizations of the usual notions in the context of the weak arithmetic EA.
The idea of using cut-free provability predicates for this kind of problems comes
from Wilkie and Paris [30]. Below we briefly sketch this approach and consider
some typical examples.

A formula ¢ is cut-free provable in a theory T (denoted T <t o), if there is a
finite set Ty of (closed) axioms of T' such that the sequent =Ty, ¢ has a cut-free
proof in predicate logic. Similarly, ¢ is rank k provable, if for some finite Ty C T,
the sequent —Tp, ¢ has a proof with the ranks of all cut-formulas bounded by &.

If T is elementary presented, its cut-free OSf and rank k provability predicates
can be naturally formulated in EA. It is known that EAT proves the equivalence
of the ordinary and the cut-free provability predicates. On the other hand, EA
can only prove the equivalence of the cut-free and the rank k provability pred-
icates for any fixed k, but not the equivalence of the cut-free and the ordinary
provability predicates.

The behavior of O in EA is very much similar to that of Or, e.g., O
satisfies the EA-provable X;-completeness and has the usual provability logic —
this essentially follows from the equivalence of the bounded cut-rank and the
cut-free provability predicates in EA.

A. Visser [29], building on the work H. Friedman and P. Pudldk, estab-
lished a remarkable relationship between the predicates of ordinary and cut-free
provability: if T is a finite theory, then”

EA b Vz (Orp(i) < OgaOF0(E))- (13)
In particular, for EA itself Visser’s formula (13) attains the form
EA b Vz (Oeap(d) ¢ OgaOgap(E))-

This can be immediately generalized (by reflexive induction) to progressions
of iterated cut-free consistency assertions. Let Con® (T) denote =05 L and let
a nice well-ordering be fixed.

Proposition 11.1 The following holds provably in EA:
(i) If a < w, then EA, = Con“*(EA)z.q;
(i) If o is a limit ordinal, then EA, = Con®(EA),;
(i) Ifa=w-B+n+1, where 3 =0 and n < w, then

EA, = Con“(EA), s12n41-

7A. Visser works in a relational language and uses efficient numerals, but this does not
seem to be essential for the general result over EA.
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We omit a straightforward proof by Visser’s formula. We call a theory T
09 -cf-regular, if for some a,

T =n, Con“'(EA).,. (14)

The situation with the cut-free reflection principles of higher arithmetical
complexity is even easier.

Proposition 11.2 Let T be a finite extension of EA. Then for anyn > 1,
EA - RFN{ (T) < RFNp, (T).

Proof. We only show the implication (—), the opposite one is obvious. For
any ¢(z) € II, the formula O7¢(#) implies O$0% (). Applying RFN§{ (T)
twice yields ¢(z), q.e.d.

This equivalence carries over to the iterated principles. Let (7)™ denote
RFNﬁfn (T)q- For successor ordinals a the theories (T')7<! are finitely axiomatiz-
able, so we obtain by reflexive induction using Proposition 11.2 for the induction

step:
Proposition 11.3 For any n > 1, provably in EA,

Vo (T)a = (D).

We say that T is cut-free IL,,-conservative over U, if for every ¢ € II,,
T+ ¢ implies U - . Let T ={{ U denote a natural formalization in EA
of the mutual cut-free IT,,-conservativity of T and U. Externally Effn is the
same as =y, , so the difference between the two notions only makes sense in
formalized contexts.

Analysis of the proof of Schmerl’s formula reveals that we deal with an ele-
mentary transformation of a cut-free derivation into a derivation of a bounded
cut-rank. To see this, the reader is invited to check the ingredient proofs of
Theorem 2 and Propositions 4.6 and 5.4. All these elementary proof transfor-
mations are verifiable in EA, which yields the following formalized variant of
Schmerl’s formula (we leave out all the details).

Proposition 11.4 For all n > 1, if T is an elementary presented II,y;-
axiomatized extension of EA, the following holds provably in EA:

Va = 1 (T3 =4, (T)2, ()

We notice that this relationship holds for the ordinary as well as for the
cut-free reflection principles, because the ordinal on the right hand side of the
equivalence is a limit (if m > 0).

Now we consider a few examples. The following proposition shows that the
theory EA + ITI; is both II{-cf-regular and I19-regular with the ordinal w.
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Proposition 11.5 Provably in EA,
EA + ITI] =p, Con®(EA),, =, EA,.

Proof. The logics of the ordinary and the cut-free provability for EA coincide,
so by the usual proof the schema of local reflection w.r.t. the cut-free provability
is II;-conservative over Con” (EA),,. But the former contains EA + ITI by the
comment following (E3)(c), moreover this inclusion is easily formalizable in EA
(both in the usual and in the cut-free version). This proves the first equivalence.
The second one follows from Proposition 11.1(ii), q.e.d.

Consider the theories EA+Con“/(1%;) and EA+Con(I%;). We show that the
first one is T19-cf-regular with the ordinal w* + 1, and the second is I19-cf-regular
with the ordinal w* +2. Notice, however, that only the first theory is II{-regular
in the usual sense: by Proposition 11.1(iii), EA w11 = Con®(EA) w11, whereas

EAv 42 = Con(EA) w3 Z Con™(EA) e s
Proposition 11.6 Provably in EA,
(i) EA + Con(I%;) = Con“(EA) o 41;
(ii) EA + Con(I%;) = Con'(EA) e 4o.

Proof. Part (i) follows from the (obvious) formalizability of the equivalence of
I%; and (EA)3 in EA and Proposition 11.4. One can show that the two systems
are also cut-free equivalent, provably in EA.

To prove Part (ii) recall that by Visser’s formula (13), provably in EA,
Con(I%,) is equivalent to Con'(EA + Con!(I%)), and hence to Con®(EA) w40
by Part (i), q.e.d.

The following facts are also worth noticing. Statement (i) below implies that
IY,, is not EA-provably II9-regular (and thus the original Schmerl’s formula is
not formalizable in EA). In contrast, Statement (ii) implies that incidentally PA
itself is EA-provably II{-regular.

Proposition 11.7 (i) EA¥ Con(EA,,,,) = Con(I%,);
(ii) PA =n, EA.,, provably in EA, hence EA F Con(EA.,) — Con(PA).

Proof. Fact (i) has just been proved for I¥;: Con(I%,) is II9-conservative
over Con*(EA),,,,,+2, whereas Con(EA,,,,,) is equivalent to Con“’(EA)., 41
by Proposition 11.1(iii). Hence, (i) follows by Léb’s principle for the cut-free
provability.

To prove (ii) we formalize the following reasoning in EA: Assume 7 € II;
and PA . Then for some n, I¥,, - 7. Since IY,, is finitely axiomatized, by
(13) we obtain that 3n EA F°f O%%; m, therefore by Proposition 11.4

In EA < DEwanHW,
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which can be weakened to

dn EA, F szwa“Hw. (15)
On the other hand, we notice that (provably in EA) for every fixed 8 < €p and
S Hl,

EA., k- Ofs, 7™ =,

by the cut-free version of the ¥;-completeness principle, and applying this to
(15) yields EA., F 7, q.e.d.

Corollary 11.8 |EA + Con(PA)|ro = €0 + 1.
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