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Abstract

A new sort of generative grammar (Sec2) will be demonstrated which
is more radically “lexicalist” than any earlier one (Sec1). It is a modified
Unification Categorial Grammar [1–4] from which even the principal syn-
tactic “weapon” of CGs, Function Application, has been omitted. What
has remained is lexical sign and the mere technique of unification as the
engine of combining signs. The computation thus requires no usual lin-
guistic technique (e.g. Move, Merge, traces [5], Function Application [6]);
which promises a straightforward implementation of GASG in Prolog. Our
parser decides whether a Hungarian sentence is grammatical and creates
its (practically English) DRS (Sec3).

1 DRT, UCG and Total Lexicalism

A “totally lexicalist” generative grammar will be demonstrated in this paper.
The first motivation of the enterprise was the stubborn problem of composition-
ality in DRT (Discourse Representation Theory; e.g. [7], [4])1.

The failure of elaborating a properly compositional solution to the language
→ DRS transition arises from the fundamental incompatibility of the strictly
hierarchically organized generative syntactic phrase structures (PS; e.g. [9], [5])
with the basically unordered DRSs. Nowadays [2], [4] some kind of Categorial

∗The authors were sponsored by Hungarian National Scientific Fund OTKA (grant no.
T038386).

1DRT is a successful attempt to extend the sentence-level Montagovian model-theoretic
semantics to the discourse level. Its crucial proposal is that a level of discourse representation
must be inserted in between the language to be interpreted and the world model serving as
the context of interpretation. The insertion of this level, however, has given rise to a double
problem of compositionality (language → DRS, DRS → world model), at least according to
the very strict sense of the Fregean principle of compositionality introduced by Montague [8].
As for the DRS → world model transition Zeevat [2] has provided a compositional solution,
which could successfully be built in the new version of DRT [4].
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Grammar (CG) is held to promise the best chance for capturing the language
→ DRS transition in a properly compositional manner. The reason lies in the
fact that, in a CG system, language-specific information (about how words can
combine to form constituents, and then sentences), stored in PS rules in the
transformational generative theory, is stored in the Lexicon; the reduced syntax
only “concatenates”: it permits the words with compatible lexical information to
combine (this operation of concatenation is referred to as Function Application).
The problem with Classical CG is that it has only a context free generative
capacity, which is held to be insufficient for the description of human languages.
There seem to be two ways to increase the generative capacity of CCG: to let in,
in opposition to the original goals, a few combinatorial means or to introduce
the technique of unification, applied e.g. in Prolog (UCG). It is straightforward
in the spirit of what has been said so far that DRT is (more) compatible with
UCG insisting on a reduced syntax.

UCG is a monostratal grammar, which is based on the formalized notion of
the Saussurean sign: a structure that collects a number of levels of linguistic
description and expresses relations between the levels by sharing variables in the
description of the level information [3 : p145]. The set of well-formed expressions
is defined by specifying a number of such signs in the lexicon and by closing them
under rule applications (i.e. the selected lexical signs can be combined to form
sentences via a finite number of rule applications). In monostratal grammars
the syntactic and semantic operations are just aspects of the same operation.
A prime example of such grammars, besides UCG, is HPSG.

The basic problem with UCG, which has amounted to the starting-point
of GASG, lies in the fact that syntax, deprived of the information concern-
ing sentence cohesion in favor of the unification mechanism and reduced to the
primitive task of combining adjacent words, will produce linguistically irrelevant
constituents. According to Karttunen’s [1 : p19] remark on UCG trees: they
look like PS trees but they are only “analysis trees”; and he adds “all that mat-
ters is the resulting [morphological] feature set.” Let us take this latter remark
on trees and feature sets seriously: adjacency of words is to be registered in the
course of analysis exclusively and precisely in the linguistically significant cases.
The corresponding technique is to be based on an approach where adjacency
and order among words are treated by, instead of the usual categorial apparatus,
the same technique of unification as morphological cohesion. And what will be
then the “engine” combining words to form sentences (since in CGs the lexical
features of words only serve as filters to avoid inappropriate combinations)?

There is no need for a separate engine at all! The engine must be unification
itself, which is capable of running Prolog programs properly. The rich descrip-
tion of a lexical sign serves a double purpose: it characterizes the potential
environment of the given sign in possible grammatical sentences in order for the
sign to find the morphologically (or in other ways) compatible elements and to
avoid the incompatible ones in the course of forming a sentence, and the lexical
description characterizes the sign itself in order for other words to find (or not
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to find) it, on the basis of similar “environmental descriptions” belonging to
the lexical characterizations of these other words. And while the selected words
are finding each other on the basis of their formal features suitable for unifi-
cation, their semantic features are also being unified simultaneously; so by the
end of a successful building it will have been verified that a particular sequence
of fully inflected words constitutes a grammatical sentence, and its semantic
representation, a DRS, will also have been at our disposal.

Sec2 provides the system of definitions of generative argument structure
grammars (whose superiority over PS grammars will be argued for in footnote
3), and in the last section our parser is sketched.

2 Definition System of GASGrammars

First of all, we provide the abstract definition of language, which is similar
to the one in [6]. Different alphabets (e.g. that of sounds and intonational
symbols) can be considered, however, depending on the task, and the definition
of phonological model is ambitious: it is the (morpho-) phonologist’s task to
collect both the relevant set of morpheme segments and the relations among
them.

[Def1: 1.1. Let A be a finite set: the alphabet. Let # and “.” are special
symbols which are no members of A: the space symbol and the full stop. Suppose
that, together with other symbols, they constitute a set Y , that of auxiliary
symbols. A member s of (A ∪ Y )∗ is called a sentence if at least one of its
members is an element of A, (s)1 6= #, (s)R

1 = . , there are no further full stops
in the list, and (s)i = # = (s)i+1 for no i.
1.2. An element of A∗ is the i-th word of a sentence s if it is the affix of s
between the i − 1-th and the i-th symbol #; the first word is the prefix of s
before the first #, and if the last # is the j-th, the suffix of s after it (and before
the full stop) is the j + 1-th, or last, word.
1.3. We call a subset L of (A ∪ Y )∗ a language (over alphabet A) if all of its
members are sentences.
1.4. We call Phon = 〈Mors, Rel〉 a phonological model (over alphabet A) if Mors
is a subset of A∗, called a set of morpheme segments, and Rel is a set of relations
in Mors.]

Numbering will prove to be a crucial question because corresponding elements
of intricately related huge representations should be referred to.

[Def2: 2.1. Let s be a sentence of a language L over an alphabet A. We call
an element n of (N3)∗ a (three-dimensional) numbering if (n)1 = 〈1, 1, 1〉, [if
(n)m = 〈i, j, k〉, either the first projection of (n)m+1 is i or (n)m+1 = 〈i+1, 1, 1〉],
and [for each number i in the first projection, the set of second elements consists
of natural numbers from 1 to a maximal value p, and for each pair 〈i, j〉 there
are exactly the following three members in the numbering: 〈i, j, 1〉, 〈i, j, 2〉 and
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〈i, j, 3〉, necessarily in this order (but not necessarily next to each other)].
2.2. An element mos of (N3 ×A∗)∗ is a morphological segmentation of s if [the
[1, 2, 3]-projection of mos is a numbering (the numbering of mos)], [it is excluded
in the case of each pair 〈i, j〉 that all three fourth members belonging to the
triples 〈i, j, 1〉, 〈i, j, 2〉 and 〈i, j, 3〉 in mos are empty lists], and [for each number
u of the domain of the first projection of mos, the u−th word of s coincides
with the concatenation of the fourth projection of the element of mos of the
form 〈u, 1, 1, 〉 with the fourth projections of all the following elements with
number u as its first projection, just in the order in mos].
2.3. If 〈i, j, k, a〉 is an element of mos, we say that a is the 〈i, j, k〉-th morph
segment of the given morphological segmentation; we can also say that the
triple consisting of the 〈i, j, 1〉-st, 〈i, j, 2〉-nd and 〈i, j, 3〉-rd morph segments,
respectively, is the 〈i, j〉-th morph of mos.]

Thus each morpheme is divided into exactly three segments, 〈i, j, 1〉, 〈i, j, 2〉 and
〈i, j, 3〉 (out of which at most two are allowed to be empty). Why? In Semitic
languages certain stems are discontinuous units consisting of three segments
between which other morphemes are to be inserted in. It is allowed in GASG
that the cohesion between a morpheme and a particular segment of another
morpheme is stronger that the cohesion between the three segments of the latter.

In Hungarian, segments of the same morpheme can never be separated from
each other. It is useful, however, to refer to a certain segment of a morpheme
— in cases where another morpheme determines just the segment in question2.
Segmentation into just three parts is proposed as a language universal.

Important numbering techniques are defined below again.

[Def3: 3.1. We call an element m of (N2)* a strict (two-dimensional) numbering
if (m)1 = 〈1, 1〉, and [if (m)k = 〈i, j〉, then (m)k+1 = 〈i, j + 1〉 or 〈i + 1, 1〉].
3.2. A two-dimensional numbering m is a homomorphic correspondent of a
three-dimensional numbering n if there is a function hom such that for each
triple 〈i, j, k〉(k = 1, 2, 3) occurring in n, hom(〈i, j, k〉) = 〈i, j〉; which can be
said as follows: member 〈i, j, k〉 of the three-dimensional numbering is the k-th
segment of member 〈i, j〉 of the two-dimensional numbering.]

Despite their great length, Def4-6 are worth commenting together because the
intricate construction of gasg’s described in Def4 can be evaluated through un-
derstanding its functioning: generation (acceptance) of sentences.

[Def4: 4.1. A sextuple G = 〈A,Phon, B, int,X, R〉 is a generative argument
structure grammar (gasg) belonging to the phonological model Phon = 〈Mors,
Rel〉 over alphabet A (see def1.4.) if [X is a list of lexical items [def4.3.] whose
members are elements of Lex(Term)], and [R is a ranked rule system [def4.4.]

2In this footnote Hungarian morphs are demonstrated with stable first and third segments
but altering middle ones: al-hat ‘sleep-can,’ szúr-hat ‘prick-can,’ kér-het ‘ask-can,’ űz-het
‘chase-can.’ Besides this frontness harmony, other morphemes are sensitive to roundness as
well.
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also over term set B [def4.2.].
4.2. B, the set of basic terms, is the sequence of the following sets:

Con(j) =
⋃

Con(j)i, for j = 1, 2, 31, 32, and i = 0, 1, 2, . . .: finite sets of
constants of arity i,

Icon(j) =
⋃

Icon(j)i, forj = 1, 2, and i = 1, 2,: finite sets of inter-
pretable constants of arity i; int can be defined here as a total function
int: Icon(j)→ Rel,

Numb: a set of numbers that necessarily includes all natural numbers,

VAR0: variables that can substitute for elements of Con(2)0 and Numb,

Rank = {r1, . . . , rK} (K=7).

4.3. A lexical item is a triple li = 〈ownc, frmc, pdrs〉 where [1–3]:

1. Set ownc, own word conditions, is a subset of the following set Form(1) of
well-formed fomulas:

(a) For an arbitrary p ∈ Icon(1)k, k = 1or2, the expression p(t1, . . . , tk) ∈
Form(1) where an argument ti is a term, i = 1, 2, . . . , k.

(b) Triples of numbers, precisely, elements of Numb2×{1, 2, 3} are terms;
and lists of terms are also terms.

(c) Formula p ∨ q is an element of Form(1) if p and q are its elements.

2. Set frmc, formal conditions, is a subset of the following set Form(2) of
well-formed fomulas:

(a) For an arbitrary p ∈ Con(2)k, k = 2, 3, . . . , the expression p(t1, . . . , tk) ∈
Form(2) where argument ti is a term for i = 2, . . . , k, but ti /∈ Rank
for these values of i, whereas t1 ∈ Rank. We call the formulas defined
in this step ranked formulas. We also say that out of these ranked
formulas those which are members of set frmc belong to the given
lexical item li.

(b) For an arbitrary p ∈ Con(2)k or p ∈ Icon(2)k, k = 1, 2, . . . , the
expression p(t1, . . . , tk) ∈ Form(2) where argument t)i is a term for
i = 1, 2, . . . , k, but ti /∈ Rank for these values of i.

(c) Elements of
⋃

Con(2)i, for i = 0, 1, 2, . . . , are terms;
elements of

⋃
Icon(2)i, for i = 0, 1, 2, . . . , are terms;

elements of Numb and VAR0 are terms;
lists of terms are also terms;
elements of Form(2) which are not ranked formulas are all terms too.

(d) Formula p ∨ q is an element of Form(2) if p and q are its elements.
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(e) Formula p ∧ q is an element of Form(2) if p and q are its elements.

3. Set pdrs, the proto-DRS provided by the given lexical item, is a pair 〈
bdrs, embc 〉 where bdrs (the basic DRS) is a subset of the following set
Form(31) of well-formed fomulas, and embc (the embedding conditions) is
a subset of set Form(32) of well-formed fomulas defined after that:

(a) For an arbitrary p ∈ Con(31)k, the expression p(t1, . . . , tk) ∈ Form(31)
where an argument ti is a term. If the given formula is an element
of subset bdrs, the terms occupying its argment positions are called
referents belonging to bdrs.

(b) Elements of {ref } × (NumbVAR0)3 are terms where ref is a distin-
guished element of Con(31)3.

(c) The expression p(t1, . . . , tk) ∈ Form(32) where argument ti is a term
for i = 1, 2, . . . , k, and p ∈ {oldref, newref} = Con(32)1 or p ∈
{fixpoint, 〈,≤, 6=,∼} = Con(32)2.

(d) Elements of {ref }× (Numb ∪VAR0)3 are terms where ref is a distin-
guished element of Con(32)3, and it is also a
restriction that a quadruple ref(i, j, k) can be considered here a term
if it is a referent belonging to set bdrs.

4.4. The ranked rule system denoted by R is defined as an arbitrary subset
of the set rr(Form(2)) of ranked rules over set Form(2) of formulas (defined
in def4.3.2.): all formulas of the form p ← q is an element of rr(Form(2)) if
p is a ranked formula, and [q is a conjunction of elements of Form(2): q =
q1 ∧ q2 ∧ . . . ∧ qd for some d].]

[Def5: 5.1. An element num of (N2 × X)∗ is called a numeration (over a
gasg G) if [the [1,2]-projection of the list is a strict two-dimensional numbering],
and [members of the third projection are lexical items (coming from the fifth
component of G)].
5.2. If 〈i, j, li〉 is an element of num, we can say that the given lexical item li is
the 〈i, j〉-th element of the numeration.]

[Def6: 6.1. A sentence s – a member of (A ∪ Y )∗ in Def1, is grammatical
according to a gasg G = 〈A,Phon, B,int, X,R〉 if

there is a numeration num of (N2 ×X)∗,
there is a (cohesion) function coh: VAR0 → Con(2)0 ∪Numb (def4.2.!),
and sentence s has a morphological segmentation mos of (N3 × A∗)∗

(Def2.2.)
such that the numbering of numeration num is a homomorphic correspon-
dent of the numbering of segmentation mos
and the 〈coh,int〉 pair satisfies [def6.2.] numeration num according to rule
system R.
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6.2. Pair 〈coh,int〉 satisfies (def6.2.) numeration num according to rule system
R if for each possible 〈i, j〉, the lexical item li which is the 〈i, j〉-th member of
the numeration is satisfied. This lexical item li = 〈ownc,frmc,pdrs〉 is satisfied
if its all three components are satisfied.

1. Formula set ownc is satisfied if,
[in the case of 4.3.1.a., 〈int′(t1), . . . ,int′(tk)〉 ∈ int(p) ∈ Rel, where (Rel
is the set of relations in the phonological model Phon belonging to gasg
G, and) function int′ is an extension of int that assigns a number triple
〈i, j, k〉 the 〈i, j, k〉-th morph segment of the morphological segmentation
mos, and a number pair 〈i, j〉 the 〈i, j, 1〉-st morph of mos];
[in the case of 4.3.1.c., p is satisfied or q is satisfied].

2. Formula set frmc is satisfied if one of the cases discussed below is satisfied.
First of all, however, coh’(p) is to defined for elements of formulas of
Form(2) and Form(3): it is a formula whose only difference relative to p is
that each occurrences of variable v (elements of VAR0) has been replaced
with coh(v).
In the case of 4.3.2.a., a ranked formula p(t1, . . . , tk) is satisfied if there is
a formula p(t′1, . . . , t

′
k)← q′ in rule system R such that

coh(p(t′1, . . . , t
′
k)) = p(t1, . . . , tk), there is a formula q such that coh(q)

= coh(q′), and q belongs to the 〈i′, j′〉-th lexical item in numeration
num for an arbitrary pair 〈i′, j′〉, and coh(q′) is satisfied.

In the case of 4.3.2.b., a formula p(t1, . . . , tk) is satisfied if

EITHER there is a formula p(t′1, . . . , t
′
k)← q′ in rule system R such

that

coh(p(t′1, . . . , t
′
k)) =coh(p(t1, . . . , tk)), there is a formula q such

that coh(q) = coh(q′), and q belongs to the 〈i′, j′〉-th lexical item
in numeration num for an arbitrary pair 〈i′, j′〉, and coh(q′) is
satisfied (indirect satisfaction),

OR coh(p(t′1, . . . , t
′
k)) belongs to the 〈i′, j′〉-th lexical item in numer-

ation num for an arbitrary pair 〈i′, j′〉 (direct satisfaction),

OR 〈int′(coh(t1)),. . . ,int′(coh(tk))〉 ∈int(p) ∈Rel (int′ has been de-
fined in def6.2.1. (direct satisfaction).

In the case of 4.3.2.d., p ∨ q is satisfied if p is satisfied or q is satisfied.
In the case of 4.3.2.e., p ∧ q is satisfied if p is satisfied and q is satisfied.

3. Formula sets bdrs and embc are satisfied if each formula p that can be
found in one of them is satisfied. This arbitrary formula p is satisfied
without conditions.
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6.3. Let us denote sem the set consisting of the 〈coh(bdrs),coh(embc)〉 for all
lexical items in the numeration. We can call it the discourse-semantic represen-
tation of sentence s.]

In harmony with our “total lexicalism,” lexical item is the crucial means of
a gasg (def4.3.). Its first component out of the three (def4.3.1.) consists of
conditions on the “own word” deciding whether a morpheme in a (potential)
sentence can be considered to be a realization of the given lexical item (see
def6.2.1. and the last footnote on allomorphs). It is our new proposal [12] that,
instead of fully inflected words (located in a multiple inheritance network), li’s
are assigned to morphemes – realizing a “totally lexicalist morphology”

The component of formal conditions (def4.3.2.) is responsible for selecting
the other li’s with which the li in question can stand in certain grammatical
relations (def6.2.2.). It imposes requirements on them and exhibits its own
properties to them. As for the range of grammatical relations in a universal
perspective [10], there are unidirectional relations, e.g. an adjective “seeks” its
noun, where the “seeking” li may show certain properties (number, gender, case,
definiteness) of the “sought” one, and bidirectional relations, e.g. an object and
its regent (in whose argument structure the former is) “seek” each other, where
the argument may have a case-marking depending on the regent, and the regent
may show certain properties (number, person, gender, definiteness) of the argu-
ment. The rule system in the sixth component of gasg’s (def4.4.), among others,
makes it possible to store the above listed language-specific factors outside li’s
so frmc (def4.3.2.) is to contain only references to the relations themselves.

It is ranked implication rules (def4.3.2., def6.2.2.) that we consider to be
peculiar to GASG. In addition to satisfying a requirement described in a li
directly by proving that either some property of another li is appropriate or the
morphemes / words in the segmented sentence stand in a suitable configuration,
the requirement in question can be satisfied indirectly by proving that there
is a lexical item which has a competitive requirement ranked higher. This
optimalistic technique enables us to dispense with phrase structure rules: the
essence (precise details in [13,14]) is that, if word (morpheme) w1 stands in
a certain relation with w2, w1 is required to be adjacent to w2, which can be
satisfied, of course, by putting them next to each other in a sentence, but we
can have recourse to an indirect way of satisfaction by inserting other words
between them whose adjacency requirements (concerning either w1 or w2) are
ranked higher (and these intervening words, in a language-specific way, may be
allowed to “bring” their dependents)3. In def4.2. seven ranks are proposed as

3We regard [14] the phenomenon of free-word-order languages sketched below as a clear
advantage (of (the ranked rule system) of GASG over PS grammars: the word-order version
‘*I gave yesterday Mary in the library a paper.’ of the correct sentence ‘Yesterday I gave
Mary a book in the library.’ is also acceptable in Hungarian (with no difference in meaning),
but not in English. Thus certain free adverbs (‘yesterday,’ ‘in the library’) can be inserted
between the finite verb and its arguments quite freely (in the case of idioms as well, as if
‘Peter kicked yesterday the bucket.’ were correct in English); which can be accounted for in
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a universal concerning the complexity of human languages.
The discourse-semantic component of li’s (def4.3.3.) is practically intended

to check nothing4 (def6.2.3.) but their “sum” coming from the whole numeration
(def6.3.) provides a “proto-” DRS in the case of sentences that have proved to
be grammatical. Our proto-DRSs seem to have a very simple structure in com-
parison to DRSs with the multiply embedded box constructions demonstrated
in [11]. Nevertheless, they store the same information due to the conditions of
a special status defined in def4.3.3.2. Moreover, several cases of ambiguities can
simply be traced back to an underspecified state of these special conditions. Let
us consider an illustration of these facilities.

(1) Most widowers court a blonde.

(2)

most(e0; e1, e2) fixpoint(e0), e0 < e1, e1 < e2, newref(e0)
widower(e1; r2) newref(e1), newref(e2)
court(e2; r2, r3) newref(r2), e1 ≈ r2

blonde(r3) newref(r3), r3 ≈ ???

(3) e2 ≈ r3: ‘It is often true that if someone is a widower he courts a blonde.’
e0 ≈ r3: ‘There is a blonde whom most widowers court.’

The basic proposition (whose eventuality referent is e0) is that a situation [e1:
somebody is a widower] often implies another situation [e2: he courts somebody];
symbols ‘<’ refer to these situations’ not being facts but their and some of their
characters’ belonging to fictive worlds [15]. The widower necessarily belongs to
the fictive world of our thinking about an abstract situation (e1 ≈ r2). But
which world does the blonde belong to? Referent r3 is

looking for its place. . . And it can find its place in different worlds (3) –
without assuming different syntactic structures behind the two readings5.

Let us finish the section with the definition of a language generated by a
gasg:

[Def7: In the circumstances defined above in def6, we can say that gasg G gen-
erates sentence s through segmentation mos and numeration num, and G assigns
the given sentence DRS sem as its discourse-semantic representation. It can also
be said in this situation that gasg G has generated reading 〈s,mos, num, sem〉.
L(G) ⊂ (A ∪ Y )∗ is called the language defined by gasg G if L(G) consists of
the sentences generated by G.]

GASG easily - by choosing the same rank parameter, namely 7, for both the regent-argument
adjacency requirement and that between free adverbs and the finite element of sentences - in
the case of Hungarian. In English, however, the regent-argument adjacency requirement is to
be qualified as stronger. Whilst in a PS grammar a regent and its arguments are to constitute
a phrase so the case of Hungarian (with intervening free adverbs) is hard to explain.

4Semantic restrictions (e.g. on the [+human] status of an argument) can be put in the set
of formal conditions (def4.3.2.) among morphologic and syntactic ones.

5The freedom in finding the appropriate world has language-dependent restrictions de-
pending also on the argument status and other grammatical relations of the li of the indefinite
article in question, of course.
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3 Implementation in Prolog

Our work is permanently developed, and the version which is available now
can parse uncompound neutral Hungarian sentences. In our parser we insist
on the theoretically clear principles of GASG, but naturally we have to make
some technical changes according to the special features of programming in Pro-
log. Hence, parts of the lexical items in GASG are stored in different places in
the program. The database section contains the lexical items which are mor-
phemes and consist of the ownword, phonological features and some inherent
syntactic conditions (e.g. the argument structure). Other environmental con-
ditions and properties of morphemes that a lexical item searches are put down
in the synrelations predicate. This part means the syntactic parsing together
with a checking that contains the immprec predicate. The third part of a GASG
lexical item – which is semantics – is represented in the semantics predicates.

The parsing starts with the main predicate gramm, which, after a successful
phonological and morphosyntactic parsing, gives semantic representation for-
mulated as a DRS:

gramm(SENTENCE):-

words(SENTENCE,WL1), corr(WL1,WL), morphwl(WL, MLABL),

numberlist(1,MLABL,NMLABL), phon(NMLABL,WL), immprec(NMLABL),

synrel(NMLABL, SYNRELLIST, MIXEDLIST),

semantics(MIXEDLIST, DRS, SYNRELLIST, MIXEDLIST),

write(S), writeline(NMLABL), writeln2(SYNRELLIST), writeln3(DRS).

The first six predicates provide for the morphophonological cheking. The input is
a simple string e.g.: "A fiú beül a székbe." ‘the boy in-sit the chair-INESS’ (The
boy sits into the chair.). The words and the corr predicates find the words in the
string and give us a list: ["a", "fiú", "beül", "a", "székbe"], and after this the
morphwl predicate searches the morphemes in the sentence according to the lexical
items in the database section. Before the linguistic parsing there is a technical but
quite important step: to give serial numbers to the morphemes. It is necessary because
of the unambiguous identification of the morphemes in the sentence. The morphemes
get double numbers that shows in which word is which morpheme. For example in
the sentence Péter be-ül-tet-i a lány-t a szék-be ‘Peter in-sit-cause-3sg.defobj the girl-
ACC the chair-INESS’ (Peter sits the girl into the chair.) the morpheme -tet gets the
numbers (2,3). In this way we can always refer squarely to the morphemes.

The database section contains such lexical items as it is shown below:
lexi(m("","ül",""),labstem("sit",phonfst(1,1,1,2),2,[["NOM","LOC"]])).

lexi(m("t","A","t"),labder("cause",phonfsu(2,2,0.2,2),2,ac(-1,0,1))).

All lexical items contain the ownword of the morpheme (m("","fiú","")), and a
“label” with the English “translation”, the phonological features (phonfst), the cat-
egory (1=noun/suffix for nouns, 2=verb/suffix for verbs, 3=determiners, 4=adjunct)
and the syntactic conditions.

In this phase of the programme we can already account for such phonological phe-
nomena as vowel-harmony, lowering, V∼ � alternation, linking vowels, lengthening,
shortening etc. Phonologically two kinds of requirements are needed. The first one
accounts for the choice of the possible realizations of the given morpheme (lexical
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item), these possible realizations are technically variables in the own words. E.g. in
the case of bokor (‘bush’) the own word is bokOr, and the phonological realization
depends on the following suffix: bokor-ban ‘bush-INESS’ but bokr-ot ‘bush-ACC’. Or
in the case of the suffix -ban/-ben (‘in’) the own word is -bAn, and the frontness of
the vowel depends on the frontness of the stem: bokor-ban ‘bush-INESS’ but szék-ben
‘chair-INESS’. The other kind of requirements says how the lexical items effect on the
phonological realizations of other lexical items in the same word (e.g. lowering stems
or suffixes, or again vowel-harmony).

The most simple example of indirect satisfaction (def6.2.2) is the calculation of
order of morphemes within words. Every suffix would like to be adjacent to the
stem, but these requirements are not equally strong. According to the definition, if a
requirement cannot be satisfied directly (there are more than one suffix in a word), it
could be satisfied indirectly. If a suffix A wants to be adjacent to the stem on rank
α, and a suffix B wants to be adjacent to the stem on rank β, and α < β then the
acceptable morpheme order is: stem, A, B.

The checking/parsing demonstrated above gives us a list that calls the synrel

predicate, which provides the syntactic parsing accordig to the morphemes in the words
of the sentence. The synrel predicate calls the synrelations predicates, namely the
morphemes call their own syntactic requirements. In this way the programme creates a
new list, where next to the morphemes there is always another list, which contains the
grammatical relations that the given morpheme can establish in the given sentence.
The representation of a grammatical relation is an ordered septuple: gr[X,Z,Y, N,M,

K,L]. In the expression the first three elements are the determiners of the relation:
the first string is the name of the element that calls the relation, the second string is
the environmental element that the first one searches and the third one is the type of
the relation. The other four elements in the representation are the two numberpairs
of the morphemes that have the relations.

In our system finite verbs look for the two pillars of their arguments – the arguments
are defined in the lexical item. For example a non-transitive verb searches the noun
pillar and the determiner pillar of its nominativ argument (relations: gr("regent",

"noun", "subj", X, Y, N, M) and gr("regent", "det", "subj", X, Y, K, L) and
a transitive verb searches four elements: the noun and determiner pillar of its nom-
inative argument (the same as before) and looks for the determiner pillar and an
accusative suffix as the representative of the noun pillar of its accusative argument.
Determiners look for a noun stem for relation gr("det", "noun", "free", X, Y, K,

L) and the stem of the finite verb for relation gr("det", "regent", " ", X, Y, K,

L). The common nouns search the finite verb for a subject relation if they do not
have a case marking suffix. In the case when the noun has a case marking suffix, it
looks for the environmental morpheme. And finally the affixes search the stem for
gr("pref/suff", "stem", "free", X, Y, N, M) and an environmental morpheme
for a grammatical relation. For example the prefix be- ‘in’ searches a case marking
suffix, which is the -bAn ‘INESS’.

At this point the programme executes a “local search” – in the sense that every
morpheme is to find environmental morphemes satisfying the appropriate grammatical
relations. But this is far from enough becuse in this way sentence A fiú a lány ül ‘The
boy the girl is sitting’ could be accepted as a grammatical one. That is why some
mutual search is required, which means that members of a pair of morphemes in a
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grammatical relation must find each other but no further morphemes can be found for
the same relation. The mutual search is satisfied if every relation gr(A,B,REL,X, ,Z, )

finds the relation gr(B,A,REL,Z, ,X, ).

If all predicates above are satisfied, the sentence is grammatical “according to”
morphosyntax, and the program gives us a right morphosyntactic output, which calls
the predicate semantics.

If a sentence has a right morphosyntactic output, predicate semantics carries out
semantic selection, and if it is also successful, it can provide the semantic representa-
tion: a DRS.

According to DRT, determiners (and proper names) provide referents, common
nouns predicate something of them, and finite verbs provide a situation referent besides
predicating something (of other predicates). In our new conception determiners tell
in which world they provide the given referent [15]. The output of our semantic
representation is shown in (4-5). The referents contain three numbers that refer to the
morpheme that has provided it (e.g. r(3,1,1)=the first provided referent by the first
morpheme of the third word). The ordering between the worlds they belong to (see
(2-3)) is also represented by the following relations: ∼, <or=, <.

(4) A fiú be-ül-tet-het-i a büszke medvé-jé-t a szék-em-be.
the boy in-sit-cause-can-sg3.objdef the proud bear-poss.3sg-ACC the chair-poss.1sg-INESS

‘The boy can sit his/her proud bear in my chair.’

(5) semantic output for sentence (4):

provref("old",[r(1,1,1)])

provref("<or=",[r(1,1,1),(e(4,4,1)])

pred("clever",[r(1,1,1)])

pred("boy",[r(1,1,1)])

provref("new",[e(4,2,1)])

provref("∼",[(e(4,3,1),e(4,2,1)])
pred("sit into",[e(4,2,1),r(5,1,1),r(8,1,1)])

provref("new",[e(4,3,1)])

provref("<",[(e(4,4,1),e(4,3,1)])

pred("cause",[e(4,3,1),r(1,1,1),e(4,2,1)])

provref("fixpoint",[e(4,4,1)])

pred("may",[e(4,4,1),r(1,1,1),e(4,3,1)])

provref("old",[r(5,1,1)])

provref("<or=",[r(5,1,1),(e(4,4,1)])

pred("proud",[r(5,1,1)])

pred("bear",[r(5,1,1)])

pred("owns",[r(0,1,3),r(5,1,1)])

provref("old",[r(8,1,1)])

provref("<or=",[r(8,1,1),(e(4,4,1)])

pred("chair",[r(8,1,1)])

pred("owns",[r(0,1,1),r(8,1,1)])

yes
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