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Abstract

In this paper we treat various aspects of a notion that is central in term
rewriting, namely that of descendants or residuals. We address both first
order term rewriting and A-calculus, their finitary as well as their infinitary
variants. A recurrent theme is the Parallel Moves Lemma. Next to the
classical notion of descendant, we introduce an extended version, known
as ‘origin tracking’. Origin tracking has many applications. Here it is
employed to give new proofs of three classical theorems: the Genericity
Lemma in A-calculus, the theorem of Huet and Lévy on needed reduc-
tions in first order term rewriting, and Berry’s Sequentiality Theorem in
(infinitary) A-calculus.

Note: This article is based on a lecture given by Jan Willem Klop at RTA
'98 held in Tsukuba, Japan.
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1 Introduction

This paper is an extended version of a talk by the second author given at
the conference RTA ’98 in Tsukuba. The purpose of the talk and the present
written version was and is to present a tour through term rewriting centered
around the notion that permeates all of the theory of rewriting, namely that
of descendants or residuals. A priori it is quite understandable why this notion
is so all-pervasive in rewriting: rewriting is about the way expressions change
due to fixed rewrite rules; to get a grip on this dynamic change one naturally
concentrates on what remains constant in this change—that is, what remains,
step after step, of some expression part (‘residuals’), or how a subsequent ex-
pression part ‘descends from’ its ‘ancestor’ part. It is therefore not surprising
that several of the basic lemmas in rewrite theory are phrased in terms of this
notion of descendants or residuals!.

The paradigm of such a classical lemma is the Parallel Moves Lemma (PML),
which roughly is half of the Church-Rosser Theorem, that is the cornerstone

Tn the classical A-calculus literature one usually reserves the term ‘residual’ for a descen-
dant of a redex.
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of A-calculus and first-order (orthogonal) term rewriting. Therefore, in the
tour along various rewriting systems made in this paper, we will at each ‘stop’
consider PML again and discuss its validity or failure.

Being a tour, the paper is rather loosely structured. The proofs of classical
facts are only sketched, but references to complete proofs are given. We have
included a few historical remarks, but without any claim of completeness. De-
scendants are studied in various settings. Apart from our primary concern with
A-calculus and first-order orthogonal term rewriting, we pay attention to the
notion of descendant in the ABn-calculus (Section 5), in orthogonal infinitary
term rewriting systems (Section 9) and in infinitary A-calculus (Section 10).

A major focus of this paper is a refined version of the descendant/ancestor
relation, called origin tracking, which was introduced in Klop [Kl0o90]. Sev-
eral variants of this notion have been studied, sometimes with applications
that are similar to the ones described in this paper. We mention the work
of Boudol [Bou85], Khasidashvili [Kha90, Kha93], Maranget [Mar92], Glauert
& Khasidashvili [GK94] and van Oostrom [Oo0s97a].2 A distinctive feature is
that our presentation makes extensive use of Lévy labels (see Section 6). The
method of origin tracking gives rise to perspicuous proofs of some well-known
classical theorems. In Section 7 we prove in some detail the Genericity Lemma
in A-calculus, and in Section 8 the theorem of Huet and Lévy on needed re-
ductions in first order term rewriting. In Section 11 we outline a new proof for
Berry’s Sequentiality Theorem in (infinitary) A-calculus.

To sum up, our subject matter stretches from first-order (orthogonal) term
rewriting to A-calculus; and in another dimension it stretches from finitary
rewriting to infinitary rewriting.

2 Early views on descendants

This paper does not intend to give a complete historical account of the origins of
the residual notion in lambda-calculus and term rewriting, but we will shortly
remember some of the prominent early contributions.

The notion of residual seems to originate with Church & Rosser [CR36],
where it as used in the proof of the Church-Rosser theorem. There, and in
Church [Chu41], one finds a lengthy verbal description of the notion of residual
of a [-redex (after a sequence of a- and (-reductions). A detailed definition
of residual for Af-calculus in the same style as that of Church & Rosser is
contained in Curry & Feys [CF58]; see Figure 1. This definition is clear but
also verbose, using some intuitive descriptions (‘homologous occurrence’).

The first abstract treatment of rewriting is given by Newman [New42]. The
paper contains the paramount result now known as Newman’s Lemma and also
proves the Finite Developments Theorem and the Church-Rosser Theorem for
A-calculus. The definition of residuals of a f-redex is given here by labeling
bracket pairs with natural numbers and tracing these. Thus, also the idea of

*Further detailed studies involving residuals include Glauert & Khasidashvili [KG96, GK96,
KG97], Kennaway et al. [KOV99], Khasidashvili & van Oostrom [KO95], van Oostrom [O0s96,
00s97b, O0s99].
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DEFINITION 1. Let R, S be redexes in X, and let the contractum of
R be A. Let the contraction of R in X reduce X to Y'; then Y is obtained

from X by replacement of a particular occurrence of [R] by A. Then the
residuals of S are those components of Y defined as follows:

Case 1. S is the same as R. Then S has no residual.

Case 2. R and S do not overlap. Then the residual of S is that inst.ance
of [S] which is homologous in Y to the original occurrence of [S] in X.

Case 3. Ris a part of S. Then there is an occurrence of [R] in S and the
contraction of R replaces this occurrence of [R] by one of [4]. Let this
convert [S] into [S']. Then the contraction of R replaces S (ascomponent
of X) by an occurrence of [S']. This occurrence of [S’] is the unique
residual of S.

Case 4. S is a part of R. Let R be [AxM]N. As in § 3D5 we call M the
base of R, and N the argument of R. We distinguish two subcases:

Subcase 4a. S is part of M. Then the contraction of R replaces every
free occurrence of % in M by an instance of [N], possibly with changes of
bound variables in accordance with (a). Let this same substitution convert
S into S’. Then the contraction of R replaces S, as component of the
base of R, by an occurrence of [S'] in 4 which is homologous to the original
occurrence of [S] in M. This occurrence of [S'] as component of Yisagain
the unique residual of S.

Subcase 4b. S is part of N. Then for each free instance of x in M there
is an occurrence of [N] in 4 and hence in Y. In each such occurrence
of [N] there will be an occurrence of [S] homologous to the original
occurrence of [S] in N. These occurrences of [S] are the residuals of S in
Y. In gl-conversion there may be one or more such residuals; in fK-con-
version there may be none, in which case we say that S is canceled by R.

These two cases are exhaustive. The remaining possibility that [S] be
AxM is not possible because AxM is not a B-redex.

1 .0 - 0 andasr € in aluraxre

Figure 1: Definition in Curry & Feys

defining residuals using labels originates with Newman [New42]. Later, Hind-
ley [Hin69, Hin74] conducted an extensive axiomatic study of residuals. See Fig-
ure 2, displaying several assumptions about nesting of redexes (<) and residuals.
Actually, several of these occur already in Newman [New42]. In recent years
such studies have been taken up again by, among others, Plotkin, Gonthier,
Lévy, Melliés and van Oostrom [Plo78, GLM92, Oo0s94, Mel97, Mel98|.

The use of labels to trace subterms through a reduction was, in the form
of ‘underlining’, an important ingredient in the early work of Barendregt. In
[Bar71] he developed the technique of underlining into a sophisticated tool for
the study of various systems of A-calculus and Combinatory Logic.

With the appearance of the efficient inductive Church-Rosser proof for \g3-
reduction discovered by Tait and Martin Lof (see e.g. Barendregt [Bar84]) de-
tailed studies of the descendant relation seemed to be somewhat superseded (as
remarked e.g. by Hindley in [Hin74]). This is not quite the case. We hope that,
if anything, this paper shows that the descendant is alive.

Finally we mention an important contribution by O’Donnell [O’D77], pre-
senting a deep analysis of orthogonal (first-order) term rewriting. He also in-
vestigated more general notions of residuals (‘pseudo-residuals’).
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(C) If a reduction p and a cell ¢ are coinitial, then there exist reductions o and v
such that p + o ~ ¢ + . (See Figure 3.)

FIGURE 3

THEOREM 1. Property (C) is implied by the conjunction of the following eight
assumptions:
(Al). é<9=>7K¢E
(A2). £<n&y<l=£<L
(A3). If £ K m, then &[4 has no more than one member.
(Ad). ¢/¢=o. :
(AS). mKéandn K= mn/éK naf€.
(A6). If ny <€ for i=1,---,n, then there exists k such that for all j # k,
73 K e and /€ K i/
(A7). If ¢ and n are coinitial, then there exist an MCD p of ¢[n and an MCD o
of n/é, such that ¢ + o ~ 7 + p.
(A8). If (A7) is true and { is any cell coinitial with ¢ and v, then [[(§ + o) =
U/(n + p) in the following two cases:
() IKEandIK,
Gi) < €and L < ¢ and L K v and [[€ K q/¢.

Figure 2: Hindley’s axioms

3 Preliminaries

We briefly collect some preliminary notations and notions needed in the sequel.
We assume familiarity with the A-calculus and the notion of (first-order) term
rewriting sytem (TRS). In general, we refer to Barendregt [Bar84], Dershowitz
and Jouannaud [DJ90], Klop [Kl0o92], Baader and Nipkow [BN9S§].

3.1 Terms

The set of A-terms is denoted Ter(A). M = N denotes syntactic equality of
terms M, N. Substitution of N for  in M is denoted by M[z := N]; here
bound variables in M are assumed to be renamed when necessary to avoid
capture of free variables in N. The notation C[,..., ] is used for a context
with some holes; e.g. (Az.z[ ])[ ]Jy. The result of substituting terms Ny, ..., Ng
for the holes, in the order from left to right, is denoted as C[Ny, ..., Ni]; in this
case variables may be captured.

If S is a subterm (occurrence) in M, we write S C M. Likewise s € M
when s is a symbol in M.

3.2 Reduction

We generally write — for a reduction or rewrite relation, possibly subscripted
as in —g. Its transitive reflexive closure is denoted by — (-4 etc.), its re-
flexive closure by —=. The convertibility relation, i.e. the equivalence relation
generated by —, is denoted by = (=3 etc.).
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We write M 55 N if M reduces to N by contracting the redex R. The
reduction consisting of just that step is also denoted with {R}.

3.3 Unsolvables

A X-term M is solvable if there are Ny,..., Ny such that MNy... Ny =5 I =
Az.z. Equivalently (see Barendregt [Bar84]): M has a head normal form. A
head normal form is a A-term of the form Azq...xz,.yM; ... My for some vari-
ables x1,...,Zn,y and A-terms My,..., My (n,k > 0). A term that is not
solvable (so without head normal form) is called unsolvable. Unsolvables are
closed under (G-reduction, abstraction, substitution, and right application. A
weak head normal form (see Abramsky & Ong [A093]) is a term of the form
Azx.M or yMi ... M, (n > 0). Note that a head normal form is also a weak
head normal form, but not vice versa: consider for instance Ay.(Az.xzx)(Az.zz).

A zero term is a term that does not reduce to an abstraction term Az.P.
A mute term is a zero term that does not reduce to a variable, nor to an
application M N where M is a zero term.

3.4 Term rewriting systems

We assume familiarity with the notion of (weakly) orthogonal first-order term
rewriting system. We also assume some familiarity with the notion of higher-
order rewriting, in the form of CRSs (Combinatory Reduction Systems) as in
Klop, van Oostrom, van Raamsdonk [KOR93], or HRSs (Higher-order Rewrite
Systems) as in Nipkow [Nip91]. SN stands for strong normalization, CR for
Church-Rosser (see Klop [Kl092]).

3.5 The \Q-calculus

The AQ2-calculus is A-calculus equipped with a single constant 2. Thus the set
Ter(AQ2) of AQ)-terms is obtained by adding €2 to the formation rules of terms.

Figure 3: Refining Q’s

The AQ2-terms can be ordered partially with least element €2 in the following
way: we say that a term NV is finer than a term M and write M <o N, if N
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originates from M by replacing some 2’s in M by some terms, or equivalently,
if M originates from N by replacing, cutting off, some subterms of N by €.
Figure 3 depicts this. In order to make this notion more precise, we shall identify
AQ-terms with their parse trees, i.e. rooted trees with binary application nodes
@, unary abstraction nodes Az (where z is any variable), and leaves labeled
either by a variable or by the constant 2.

Finally, we define a AQ-term M to be unsolvable if the A-term M[Q := 2],
that is, M with every occurrence of €2 replaced by some variable z, is unsolvable.
Thus € is treated as an ordinary constant.

3.6 Redex patterns

A redex pattern is the ‘fixed part’ of the left-hand side of a reduction rule.
So a pattern can be viewed as an incomplete term, or a context. In the Ag-
calculus, with only the §-rule, there is, up to the choice of the bound variable,
only one redex pattern: (Az.[ ])[ ]. We will also represent it by the AQ-term
(Az.Q)Q. Likewise, the redex patterns of a first-order term rewriting system can
be represented either by a context or by replacing each variable in the left-hand
side of a rewrite rule by the constant €2.

4 Descendants in Af-calculus

We will now give a more algebraic and less verbose definition of descendants in
AB-calculus. The definition is from Klop [K1o80]. We introduce simply labeled
A-calculus A 4 as follows:

Definition 4.1
1. A={a,b,c,...} is a set of labels.

2. Ter(Ay4), the set of Ag-terms, is given by the (quasi) BNF-definition
z* | (AB)* | (Ax.A)®. So, a Ag-term is an ordinary A-term with each
(occurrence of a) subterm superscribed with a label.

3. Labeled S-reduction, —4,, is defined as in Table 1:

(Az.M)°N)® —5, Mz := N]

z*z:=N] = N
ylle:==N] = y* (y#xo)
(AB)*[x:=N] = (A[z:= N]B[z:= N])*
Ay A)[z:=N] = (AyAlz:=N)* (y #z)
(Az.A)%z:=N] = (\z.A)°

Table 1: Labeled B-reduction and substitution
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A labeled M-term A will sometimes be written as M! where M is the A-term
obtained from A by erasing the labels and I is the labeling map, assigning a
label to each subterm occurrence. Note that one can equivalently think of the
labels being assigned to occurrences of symbols instead of subterms, a subterm
being determined in a one-one way by its head symbol. Examples are the terms
depicted as trees in Figure 4.

It is clear that, given a labeling I of M, a (-reduction step R = M KN
can be lifted to a labeled 4-step R* = M E)ﬂA NV for some labeling J of
N (simply by contracting the ‘same’ redex R, but now also taking care of the
labels).

Now in the following definition, we assume I be an initial labeling, that is:
labels of distinct subterm occurrences are distinct.

Definition 4.2 Assume A-terms M, N with M it N, an initial labeling I of M,

and let J be chosen such that the reduction step M K N lifts to M! E)gA N7,
as described above.

For symbol occurrences s € M, t € N and subterm occurrences S C M,
T C N we define the relation » as follows:

sptiff I(s) = J(¢)

S» T iff I(S) = J(T)

and likewise for reductions — g, of several steps. If s B ¢, we say that s descends
to t, or that t is a descendant of s, or that s is an ancestor of t. Likewise for
S, T.

An example of a G4-reduction step is in Figure 4. Note that the subterms
labeled with 37,4, 7,8 have no descendants; in particular a redex has no resid-
uals after its contraction®. Also, according to this definition, the function part
(Az.M in the notation of Table 1) of the redex leaves no residuals, nor the vari-
ables substituted for. In the example, only the subterms labeled with 20,2, 1,0
do have a residual after the displayed reduction step.

Remark 4.3 A4 is an orthogonal CRS (HRS), and hence according to the general
theory for higher-order rewriting (see Klop et al. [KOR93], Nipkow [Nip93]) A4 is
confluent.

4.1 Elementary diagrams

We now give a definition by example of the notion of elementary diagram (e.d.)
for B-reduction.
Consider M = w3(II) with I = Az.z, w3 = Az.zzz and ‘diverging’ reduction
steps
M =g (IT)(IT)(II) = M’

and
M =g (A\z.xzz)l = M".

3This is Hindley’s assumption £/¢ = @ in Figure 2.
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@ @
/N N
Az Q? 784 Q? @’
RN / N\ /N
@? 4 2° y' 2° y! 2°
/ N\
.’L'7 $8

Figure 4: B4-reduction step

Clearly the canonical way of finding a common reduct M"" of M’ and M" is
given by the converging reductions

M’ BB 111
(here the three residuals of redex IT are contracted) and
M" —g IIT

(here the one residual of the redex ws(II) is contracted).

The diagram spanned by M, M’ M" M'" as points and these reduction
steps is an elementary diagram. It has the form of the first diagram in Figure 5.
So in general on the lower and right side of an e.d. the residuals of the original

Figure 5: Elementary diagrams

redex at the opposite side (upper and left, respectively) are contracted.* In the

“Historically, the root of the elementary diagram construction is ‘Property (D)’

& Feys [CF58], here (slightly) paraphrased as follows:

in Curry

If R and S are two redexes in X, and the contraction of R followed by contrac-
tions of the residuals of S converts X to Y, then a contraction of S followed by
contractions of the residuals of R also leads to Y.
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example the lower edge splits into three steps, in general the lower or right edge
may split into any number of steps.

When there are no residuals, e.g. when the redex R is erased, as in a re-
duction step (Az.y)R — y, we use so-called empty steps, in order to keep the
diagrams rectangular. Empty steps also result if the two original diverging steps
are in fact identical, i.e. contract the same redex.

Figure 5 displays (essentially) all types of e.d.’s that exist. Empty steps are
indicated by a dashed line. Note that also improper e.d.’s arise, when we start
with an empty step at the left and/or the upper side.

4.2 Reduction diagrams

The elementary diagrams (that we suppose are scalable) will now be used to
construct reduction diagrams spanned by two coinitial diverging finite reduc-
tion sequences. For A(@-calculus, this ‘paving’ or ‘tiling’ procedure will always
terminate successfully (i.e. we do not have an infinite regress of ever smaller
e.d.’s). See Figure 6 for a successfully completed reduction diagram.

Figure 6: Completed reduction diagram

The insight that the construction of a reduction diagram will always succeed,
is one route to the Church-Rosser Theorem, stating that any pair of (finite)
reductions originating in the same term M can be continued in such a way that
they meet again in a common reduct N:

M- My& M —» M, = (3N)(My— N & M; - N).

4.3 The Parallel Moves Lemma (PML)

If we set out a single reduction step against a multiple step reduction and
construct the corresponding reduction diagram, we have the situation of the
classical Parallel Moves Lemma of Curry & Feys [CF58] (Figure 7). The re-
duction in the right side of the diagram consists of ‘parallel’ contraction of the
residuals of the original redex contracted in the left vertical step; that is, the
residuals after the horizontal upper reduction. This follows from the way the
diagram is constructed: by simply tiling with elementary diagrams. The faint
arrows in Figure 7 suggest how residuals of the contracted redex propagate.
So the steps at the right side of the diagram are the parallel moves. The
word parallel should be understood here in the sense of ‘at once’; it is not meant



Descendants and Origins in Term Rewriting 11

Figure 7: Parallel Moves Lemma

to imply that the redexes involved should be disjoint. Actually, in A-calculus
this will not always be the case.’ In contrast: in orthogonal first-order term
rewriting systems ‘parallel’ can be taken in the strict sense, since there residuals
of disjoint redexes are always disjoint.

4.4 Projections

The diagram construction yields the notion of projection of reduction sequences
over each other. Thus, if R, S are coinitial reductions, constituting the left and
upper side of reduction diagram D respectively, then the lower side is S/R
(‘S projected over R’) and the right side is R/S (‘R projected over S’) (see
Figure 8).

s S
|
[
|

R D R/S R | 9=R/S
[
|
[

S/R S/R

Figure 8: Projection and Lévy’s partial order

4.5 Lévy-equivalence

Lévy [Lév78] has introduced an important notion of equivalence on reductions.
By our use of empty steps, it may happen that R/S or §/R are the empty reduc-
tion (. If both are empty, we say that R =1 S (R and S are Lévy-equivalent).
In a literal sense, R and S have cancelled each other out in the diagram, i.e.
they perform somehow the same steps in a permuted way. Therefore =p, is
also known as ‘permutation equivalence’. We can also obtain a partial order
on reductions (after Lévy): R Cp S if R/S = 0 (see Figure 8). Intuitively,
R Cr S means that R does less or the same work as S. So =y, is the symmetric
closure of Cp,.

®An interesting observation for A-calculus, due to S. Micali, is that if the upper side of the
PML diagram is a development, then the right side does consists of disjoint redex contractions;
see Klop [Klo80].
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“©.»

The projection operation “/”, together with concatenation of reductions
(R -8 is R followed by S) have the equational properties of Table 2. See also
Figure 9.

z-0 = x z-0 - T

0-x = z 0-x - x

z/0 = x z/0 -

0/x =0 0/x - 0

x/x = 0 z/x - 0

(@-y)/z = (z/2)(y/(z/x)) (-y)/z = (/2)-(y/(z/2))
Jaoy) = (/o) a-y) = (o)

Table 2: Lévy-equivalence

777777 \
I
x z : x z/z
I
777777777777 \ z[z
y y/(z/z)
(z/7)/y

Figure 9: Projections

Reading these equations as rewrite rules, we have an abstract description of
the process of construction of a projection. It is an instructive and non-trivial
exercise to prove that this ‘confluence TRS’ is itself terminating and confluent.
For the latter, an analysis of critical pairs suffices; most critical pairs are easily
seen to be convergent, but one is non-trivial and converges only after several
steps.

4.6 Redex creation and finite developments

Clearly, the descendants of a [-redex are again (-redexes. Vice versa, the
ancestor of a #-redex, which always exists, does not need to be a F-redex. Such
a redex, not being the descendant of a redex, is called created.
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Lévy [Lév78] has analyzed how such creations happen. It turns out that
there are the three situations responsible for redex creation depicted in Table 3
(see also Klop [Klo80]) where o is the substitution [z := \y.A], ¢’ is [z := D],

and C[] and ---[]--- are arbitrary contexts.
I. ---[(Az.ClzB))\y.A]--- —=s ---[C°[(\y-A)B7]]---
1. - [Oz2)OyA)B]-- =5 -[(M\y.A)B]--
1. - [AzAy.A)DB]--- —5 ---[(M\y.A")B]---

Table 3: Redex creation after Lévy

Remarkably, such redex creations are what makes infinite reductions possi-
ble: in every infinite reduction in A-calculus some created redexr must be con-
tracted. This is actually a rephrasing of the Finite Developments (FD) Theorem.
The usual formulation reads as follows: Let R : My —g My —g My —g -+ =g
M; —pg -+ be a reduction such that in each step, the contracted redex is a
descendant of some redex in My. Then R is in fact a finite reduction; it is
called a development of My. (If in the final term of R no descendant of a redex
in My is left, R is a complete development.) There are many proofs of FD. We
refer to Barendregt [Bar84|, Krivine [Kri93], van Oostrom & van Raamsdonk
[OR94], de Vrijer [Vri85].

So, a development arises by forbidding contraction of redexes created as in
I-III1. It turns out that types II and III of redex creation are a somewhat more
innocent way of creation. If we forbid only contraction of type I redexes in a
reduction, we have by definition a superdevelopment (van Raamsdonk [Raa93]).
Superdevelopments are also finite. It is interesting to note that, where develop-
ments correspond naturally with the notion of parallel reduction employed in
the confluence proof of Tait-Martin L6f, superdevelopments correspond to the
parallel reduction employed in a slight variant of that proof, by Aczel [Acz78].
See Appendix A.

4.7 Standardization and a duality

The next main theorem in A\F-calculus to be discussed is the Standardization
Theorem. Again its formulation and proof crucially depend on the notion of
descendant. Standardizing a reduction sequence can be compared to sorting
a sequence of natural numbers in ascending order. In standardizing a reduc-
tion the redex contractions are permuted so that they occur in a left-to-right
manner; the action in a standard reduction literally moves to the right, and an
increasingly large left part of the term is fixed. More precisely: at every redex
contraction in M we consider the A of the contracted §-redex and mark all A’s
to the left of it with *. These marks are inherited during the remaining reduc-
tion as if they were firmly glued to the A’s. Now the requirement for a standard
reduction is that no marked redex, i.e. of the form (A\*z.A)B, is contracted.
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We discuss two proofs of the Standardization Theorem (from [Klo80]). Given
a reduction R : M = My — -+ — M,, we call the redex occurrence R C M
the leftmost contracted redex (notation Imc(R)) if:

1. R has a descendant in some M; in R that is contracted in the step M; —
M,

2. Of the redexes in M satisfying 1, the redex R is the leftmost one. (Left-
most in the textual left-to-right order; we compare just the position of
‘the’ X of the redex.)

The algorithm to compute ‘the’ standard reduction R for a given reduction
R:My—---— M, is as follows. Define

Ro=R

Rn+1 = Ra/{lmc(Rn)}

Note that since {Imc(R;)}/Ri = 0, the endpoint of each R; is M,,.
Then the reduction

) Imc(Rq)

melo) pgp tmeRa) g tmeRa)

Rs : M()
will terminate in M,, and is indeed a standard reduction. The proof of termi-
nation in [Klo80] uses strong normalization of a labeled lambda calculus a la
Lévy, see Section 6. It is ‘the’ standard reduction for R, as it is Lévy-equivalent
to R and actually the unique standard reduction in the Lévy-equivalence class
of R.

Figure 10 gives an example of the operation of this algorithm. Here 1,2,3

(123) 3 . q123’y _ 2 123y 1 (1723

Figure 10: Standard reduction obtained by the ‘lmc’ procedure

are redexes and 1/,2, 3 are their respective contracta; (OOO) is some context
with three holes, e.g. Az.zO00O0O. The upper reduction is not standard; the left
reduction down is. Note the sorting effect obtained in the standard reduction.



Descendants and Origins in Term Rewriting 15

An example of a reduction that is not standard is
(Az.zz)((Az.2)y) = (N'z22)Yy — YY.

It is not standard, as the second step contracts a marked and thus forbidden
redex. We call a two step reduction that is not standard, an anti-standard pair,
and it is not hard to see that every reduction that is not standard must contain
such an anti-standard pair. Thus, an alternative standardization algorithm
suggests itself: swap such anti-standard pairs so that they become standard; an
example is in Figure 11, where the reduction w(II) — wlI — II is ‘swapped’
to yield w(II) — II(II) — I(II) — II which is standard. Now one can prove

ol

———_ Q)(||) N —pp

1

Figure 11: Swapping an anti-standard pair

(see Klop [Klo80]) that repeated swapping of anti-standard pairs in a given
reduction R will terminate eventually in a standard reduction R for R (that
coincides with the one found by the lmc algorithm above). The diagram in
Figure 10 shows how three swaps starting from the horizontal reduction yield
its standard reduction. We note that there is an interesting duality, expressed
in Figure 12: an elementary diagram as depicted there, traversed from top left

oIl ol

O———
anan 1 [

Figure 12: Duality between confluence and standardization

to bottom right tends to obtain confluence; traversed from top right to left
bottom it tends to obtain standardization. This duality is also discussed in
Mellies [Mel97].
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5 Descendants in A\fn-calculus

Extending the Af-calculus with the 7-rule, Axz. Mz — M if x occurs not free
in M, a complication arises due to overlap of the patterns of a S-redex and an
n-redex, as in Figure 13. First, let us consider how the definition of descendant

(@) (b)

Figure 13: @n-overlap

(residual) of a redex can be adapted.

The definition of Curry-Feys [CF58] was as follows. Let R be the redex
contracted in M — M’ and S C M the redex whose residuals we want to
define. Four new cases arise, by overlapping® the patterns of the respective
redexes:

1. R= (Az.Azg)B —4 AB,

2. S = (\z.Azg)B —, AB,

3. 5= (Aa.(-AW)z ) =5 Aa.Az),
4. R =M. (0y-A(y)z =y My Aly).

In all these cases Curry-Feys define that S has no residuals after contraction
of R. Indeed, this definition is entirely plausible. E.g. in case 1 contraction of R
makes the symbols @ and Az of its pattern disappear. But thereby also the pat-
tern of n-redex S is destroyed, since it uses the same symbol Az. Consequently,
S has no residual, and analogously in the other cases.

Remark 5.1 Note that with the Curry-Feys definition of gn-residual there is the
following phenomenon, that may seem curious. In case 2, if the n-redex R = Az.Ax
is actually Az.(Ay.A’'y)z, then n-reduction of R yields S’ = (Ay.A'y)B which is still
a f-redex, as before. So why would it not be a residual of the earlier one? Likewise
(dually) in case 3.

As for the elementary diagrams, the consequence of this definition is the ap-
pearance of two new e.d.’s as in Figure 14, corresponding to the two ways the
patterns of a G-redex and 7-redex may overlap. Actually, these e.d.’s also show

5In Hindley [Hin77] the overlapping redexes R, S, in any of the situations 1-4 are sugges-
tively called ‘too close together’.
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(Az.Az)B LN AB Az.(Ay. A(y))z LN Az.A(z)
\ \
[ \
7 :0 n : 0
\ \
\ \
AB—~ -~ - -AB My-AlY) — — — - M-AY) Za Az Az)

Figure 14: New elementary diagrams

that the critical pairs of the A\@n-calculus are trivial; in other words, that A\Gn-
calculus is weakly orthogonal. From this it follows by a recent general theorem
for higher-order rewrite systems (HRSs or CRSs), of which Agn-calculus is a
typical example, that the Af@n-calculus is confluent (cf. van Oostrom & van
Raamsdonk [OR94]). By contrast the CR proof of Curry & Feys is ad hoc and
uses postponement of n-reductions. A simpler proof using commutation of 3
and n-reductions was given in [Klo80].

However, standard proofs of confluence for Ag that rely on keeping track of
residuals do not carry over easily to AGn. This is because another classic result
in A-calculus, the Parallel Moves Lemma, fails for A\@n with the definition of
residuals due to Curry-Feys. Recall that PML reads:

Given a one-step reduction { R} against a reduction R, construction
of the diagram using tiling with e.d.’s yields a diagram D whose right
side {R}/R consists of contractions of the residuals of R after R.

The following counterexample is taken from [Klo80]. A similar counterexample
was given independently by R. Hindley in unpublished notes.

Counterexample 5.2 Consider the reduction

R: (Aa.(Ab.ba)a)[Az.(\y.z1y)] = M, —
(Ab.b[Aoz.(Moy-2Iy)]))[Mz-(My.2ly)] = My —
[A1z.(A1y-21y)][Aoz-(Moy.21y)] = My, —
A1y [Aoz.(Aoy.21y) Ty = M; —
Ay-(Aoy. IIy)y = My —
My Ily = M;

with I = Az.z. In the reduction sequence R (see also Figure 15) the labels 0, 1
are introduced to be able to indicate which redexes are contracted. The underlined
redexes are the n-redex R = Ay.zIy in My and its residuals. First R is doubled (A\oy
and A1y) in M; and then one of these residuals is substituted in the other (Agy in
A1y) in Ms. In My the symbol Aoy turns out to belong to the pattern of a S-redex
(MAoy-IIy)y. Contracting this redex destroys the other residual A1y, according to case
3 in the definition of CF-residuals. So, the n-redex My = A\1y.IIy is not a residual of
the original n-redex R. But precisely that redex is contracted in {R}/R. Hence the
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Parallel Moves Lemma does not hold for the residual concept of Curry-Feys. (Note,
however, that the final n-redex M5 is a residual of the original n-redex in My via the
alternative reduction path My — My — M| — M} — M} — M5.7)

My————No = (Aa.(Ab.ba)a)[Az.21]
Aa | B Aa|B

My 2 My N = (Ab.b[hoz.2I]) [\ 2.21]
Ab| B Ab| B Ab| B

My 2% My Y5 N = [\ z.21][hoz.2]]

——— N3 = [Aoz.2I]]

11

S
J
-K
J
pe
1l

17

=
P

ﬂ»
=
Il

Figure 15: Counterexample to PML

Apparently, the notion of Curry-Feys residual is problematic in A@n. This is
a drawback in proving some of the classical theorems such as Standardization
and Leftmost Normalization for A@n. There are several ways to overcome this
problem.

One is to avoid the concept of residual altogether in developing the syntac-
tic theory of ABn. An example of this strategy can be found in the work of
Takahashi [Tak95] who proves Leftmost Normalization using inductive proofs
in the style of Tait and Martin Lo6f’s well-known proof of confluence for AS.

Another way is changing the CF-notion of residual, in order to get a notion
that is better behaved. We list two approaches.

1. Klop, in [K1o80], remarks that tracing just the symbol A in a reduction
in A@n is easy and without problems, and defines:

Definition 5.3 Let R = My — -+ — M} be a fBn-reduction, Ry C Mj a
redex (- or 1), R C M}, a redex, such that the head-\ of Ry descends
(can be traced back) to that of Ry. Then, regardless of whether Ry, Ry
are - or n-redexes, Ry is a A-residual of Ry.

"This shows a fundamental weakness of the residual notion of Curry-Feys: it is not inde-
pendent of the order of reduction steps.
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Note that in the AB-calculus the notion of A-residual coincides with the
ordinary descendant notion. What is more, all residuals according to
Curry-Feys are also A-residuals. But in Figure 15 the final n-redex Ms
now is a A-residual of the original n-redex in Mj.

Then Klop [K1080] proves that PML for this revised notion of residual does
hold®. Furthermore, using this lemma, one can prove Standardization and
Leftmost Normalization for A\@7n. The proofs, however, are very laborious
and tiresome. A further drawback is that FD, the theorem of Finite
Developments, does not hold for A-residuals. See Appendix B.

2. A case of overlap that is similar to that between (- and n-redexes has
been studied by de Vrijer [Vri87, Vri89], in the context of A-calculus
with surjective pairing. It is between the reduction rules for projection,
mo(mXY) = X, and surjectivity, 7(mpX)(m1X) — X. The notion of clus-
ter residual® defined there can be easily adapted to the present case of
ABn. In the next section the approach with cluster residuals is briefly
sketched.

5.1 Cluster residuals

We will again use labels a, b, ¢, . .. in order to trace symbols through a reduction,
and indicate a redex by the pair of labels of the symbols that make up its
pattern. Note that the definition of CF-residual boils down to the requirement
that both symbols of the pattern, a A and a @, trace back to the pattern of the
ancestor. In contrast, in the notion of A-residual this requirement is made only
for the A. The notion of cluster residual lies somewhere in between. It is an
extension of CF-residuals with some, but not all, of the A-residuals. Moreover,
the symmetry in the treatment of the symbols A and a @, lacking in the X-
residual approach, is restored.

We take a closer look at the critical reduction step, My — Ms5, in the
reduction R in Counterexample 5.2. It is depicted in Figure 16, the relevant
symbols labeled with distinct labels a,b,c,d. The patterns of the involved
redexes have been encircled. The residuals (ab), (cd) of the original R (the
underlined redexes) with a drawn line, the contracted redex (bc) by a dotted
line. These three redexes form a cluster: the middle redex pattern shares a
symbol with each of its neighbour redex patterns.

It has already been observed above, in Counterexample 5.2, that the redexes
(ab) and (cd) in My have no CF-residual in M5. In order to get to Ny = I1
we need to contract the ‘created’ n-redex (ad). Now we declare this redex to
be a cluster residual of the two n-redexes (ab), (cd). The general definition just
follows this example.

Definition 5.4 CF-residuals are cluster residuals. Moreover, if in a term M we
have a cluster of overlapping redexes (ab), (bc), (ed), and M — N by contraction

8 Albeit, in a slightly weakened form: the parallel steps at the right side of the diagram are
A-residuals of the original R, but not necessarily all residuals.

°Tt is called ‘virtual residual’ in [Vri89], but the term ‘cluster residual’, which we now
propose, is more descriptive.
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|
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£

Figure 16: A redex cluster with cluster residual

of (bc), then (ad) in N is a cluster residual of (ab), (cd).

Note that a cluster residual is of the same type (8 or n) as its ancestors. An
example of a [-residual is depicted in Figure 17. Obviously this definition

Figure 17: A redex cluster with S-cluster residual

only works if one traces sets of redexes, rather than individual redexes. This
is a common procedure, but normally the residual relation is distributive: the
residuals of a set of redexes S is the set of the residuals of the elements of S. If
we also take cluster redexes into account this is not longer the case.

Along the lines of [Vri89] one can now show that with this extended notion
of residual both PML and FD go through, and also standard proofs of CR that
involve tracing of residuals. Moreover, the proof of standardization in terms
of the Imc-procedure, sketched above for A3, can also be easily generalized to
ABn.

It may be worth noting that the would-be residuals of Remark 5.1 are in
fact cluster residuals.
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6 Lévy’s labeled A-calculus

In the next two sections we will make use of a system of labeling A-terms, due
to Lévy [LévT75], that is a refinement of the simply labeled A-calculus of Defini-
tion 4.1. We will refer to Lévy’s labeled lambda calculus as Ar-calculus or just
AL. The Lévy-labels form a powerful tool, serving several purposes. The origi-
nal purpose was to have a notation that not only enables one to trace residuals
of redexes in the original term through a given reduction, as we did with A4 in
Section 4, but also to trace (-redexes that are created during that reduction.
In a very general way, Ay, records the history of what happens in a (-reduction.
Thereby it can be used to define the relation of Lévy-equivalence (or permuta-
tion equivalence) on reductions, which we discussed earlier in Section 4.5. Two
reductions are Lévy-equivalent if they, put roughly, perform the same ‘work’,
be it in a possibly different order. In some situations Lévy-labels are also a
useful tool for proving termination (SN).

We will apply Lévy-labels in our definitions of origin tracking in Sections 7
and 8. In the latter section Lévy-labels will be adapted to the framework of
first-order term rewriting systems.

The A\r-calculus is defined as follows.

Definition 6.1
1. L' ={a,b,c,...} is a set of atomic labels.
2. L is the set of composite labels defined by

(a) ' C L

(b) a,fe L=af €L

(c)a€eL=>a€lL
So the labels are words over the set of atomic labels, with (nested) underlinings.
An example of a label is: abac. Note that there is in general no unique decom-
position of labels that are formed with clause (b): there is only one label abc,
composed of either a and be, or ab and c¢. Further note the difference between
the labels d e and de.

Now the set of Ar-terms consists of A-terms where every subterm has a

label € L. Often we will write a labeled term as M7, where I is the function

that maps the subterm occurrences to the set of labels. Multiple labels will be
simplified as follows: (M*)? — M5,

Definition 6.2 The height h(a) of a label « is defined as follows:
1. h(a) =0 for a € L'

2. h(aB) = max (h(c),h(B))
3. h(a) = h(a) + 1.

So in the example a = abac, we have h(a) = 2.
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(A\z.M)*N =5, M2z := N9

Plz:=N?¢ = N
yole = N°] v (y#72)
(AB)P[x := N9 (A[z := N B[z := N2])#
(Ay-A) [z := N¢| (Ay-Alz := N2])? (y # @)
(A\z. APz =N = (\z.A)P

Table 4: Lévy-labeled S-reduction and substitution

Definition 6.3 The reduction relation —g, and substitution in Az, are defined
as in Table 4. Here the label « is called the degree of the redex (Az.M)*N.

Example 6.4 ((Az.(z2I)®)¢(\y.A)?)¢ — g, ((Ay.A)deal)bee

Here we just mention some of the most salient facts of Ap.

1.
2.

It is an orthogonal CRS, hence CR.

The simply labeled calculus A4 can be obtained as a projection of Ap.
Namely, replacing each label in a reduction in A;, by its first symbol
results in a reduction in A 4.

Descendant redexes have the same degree as their ancestor redex.

. Created redexes have a degree higher than that of the creator redex (that

is the redex contracted in the creating reduction step).

Bounded reduction is SN: suppose reduction is only allowed if the height
of the degree of the contracted redex is < N. Call the resulting rewrite
system AV, the N-bounded fragment of Ap; this still is an orthogonal
CRS. Now A" satisfies SN for all N. Note that for N = 0 this is just FD.

. Given a labeling I of My, a reduction ¢ : My — --- — M, can be

uniquely lifted to Az, : M{ — -+ — M.

Reductions 0 : Mg — -+ — My and 7: Ng — --- = N; with My = Ny
and My = N, are Lévy-equivalent if after lifting to M{ — --- - M kJ and
Nl = -~ = N/, respectively, we have J = .J'.

7 Origin tracking in A-calculus

In this section we will show how a refined notion of descendant, which we arrive
at via Lévy-labels, can be applied to yield a perspicuous proof of a well-known,
‘classical’ lemma in A-calculus, the Genericity Lemma. In Barendregt [Bar84]
(p- 374, Prop. 14.3.24) it reads:
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Lemma 7.1 Let U N € Ter()), with U unsolvable and N a normal form.
Then for every context C|]:

ClU) = N = VQ € Ter(\) C[Q] =g N.

Barendregt [Bar84] gives an elegant high level abstract proof, referring to the
tree topology. In this topology M is an isolated point (i.e. {M} is an open set)
iff M is a normal form; and M is a compactification point (i.e. the whole space
Ter () is the only neighbourhood of M) iff M is unsolvable. Using the fact that
for every context C] | the function M — C[M] is continuous, the Genericity
Lemma follows immediately.

An early proof, however only for CL (Combinatory Logic), is in Barendregt’s
Ph.D. thesis [Bar71]. There are several other proofs of the Genericity Lemma:
Takahashi [Tak95], Kuper [Kup94], Kennaway et al. [KOV99] and others. Our
interest here is primarily in the method employed.

The idea is, given a reduction C[U] —»g N, to trace the symbols of N all
the way back to C[U]. It will turn out that we will find a prefix of C[U] as
the origins of the symbols in N; this ‘useful’ prefix is followed by a lower part
that is ‘garbage’, i.e. can be replaced by arbitrary terms Q1, Qo, ... without
altering the normal form N. It will moreover turn out that the useful prefix is
independent of the actual reduction from C[U] to N.

Let us first observe that the classical notion of descendant, as defined in
Definition 4.2, does not yield these desiderata. Consider Figure 18. Here N

Figure 18: Failure of prefix property for »

traces back to the encircled part of M; but this is not a prefix of M (which by
definition is an upward closed part of the term formation tree).

We now apply Lévy’s Ap: given M — N and symbol occurrences s € M,t €
N we define s>t (t is a dynamic descendant of s) as follows.

Definition 7.2 Give M an initial labeling I and lift the step M — N to the
labeled step M1 — N7. Now s% in M/ traces (>) to all symbols t* in N’ such
that a € a (a occurs in a). Then we project this relation down again to the
original step M — N.

We call the inverse < of the dynamic descendant relation the origin relation:
if t < s, then t is an origin of s.

Note that we have p » ¢ = p I> ¢, but not conversely. For an example see
Figure 19.
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xf

Figure 19: ((\y.(zfy9)%)cz¢)® —8, (f zecg)ded

Remark 7.3 Khasidashvili [Kha90] uses a notion of descendant that also extends the
classical notion ». In his definition the contractum M|z := N] of a redex (Az.M)N has
as origins the redex itself, as well as the function part Az.M and its body M. These
are also origins in our definition.

Proposition 7.4 Let M =5 M' = C'[N1,...,Ng], so C'[,..., ] is a prefizx II
of M'. Then the original of II in M with respect to > (notation <II) is again
a prefiz. See Figure 20.1°

M > M

Figure 20: Prefix property of >

Proof. Let M have an initial labeling. Consider an occurrence of atomic label
a in M; let ™ be the path leading to it.

Now consider the position of the S-redex, given by its pattern (i.e. its @-node
with left-successor the A-node) relative to the path 7. We have the following
cases, of which we treat only 1 and 2. The third case is similar and left to the
reader.

Case 1. @ is not on 7, hence also A is not on 7.
Case 2. @ is on 7, but A is not.

Case 3. @ and A are both on 7.

See Figure 22.

Ad case 1. (See Figure 23)

"There is an analogy with the property “invert” studied by van Oostrom [Oo0s97b]. He
noted that it is related to earlier results that were obtained in the context of the Automath
project, especially van Daalen’s “square bracket lemma”, and to the folklore “Barendregt’s
lemma”. See [NGV94].
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Figure 21: Relative position of label a and contracted redex

1 2 3
Tt )\ Tt
A

Figure 22: Case distinction
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Figure 23: ((\y.(zfy9)?)°2°)b — (f z6c9)deb
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Consider a prefix IT of M’, and let (the occurrence in M with) label a
be in «II, the >-original of prefix II in M. We have to prove that all
labels between a and the root of M (e.g. a') are also in <II. This is in
this situation trivial, since the prefix border in M’ (see Figure 23) must
be below a.

Ad case 2. We only treat a typical case (see Figure 24).

e MI

Figure 24: ((\y.(zf (y9y9))9)¢(A2.29)% )0 — (2f (Az.2%)¥I(\z.2%)0' e’ )i )ded

Label a is in the >-original of prefix IT in M. So II must contain a copy
of z%, at least one. In the picture there are 3 possibilities, ITy, Iy, II3,
containing respectively 1, 1, 2 occurrences of z%. 1In all, it is clear that
the labels d/,... above a in M also are in <II; (i = 1,2, 3).

a

Proposition 7.5 Let M —5 N, where N is a normal form. Then the original
<N, a prefiz of M, is independent of the actual reduction from M to N.

Proof. If N is a normal form in ), then each labeled version N7 is a normal
form in Ar. Orthogonality of A implies uniqueness of normal forms. Hence if
MT — N7 (for I initial) on the one hand, and M! — NY' on the other hand,
we have N/ = N7 in particular J = J’. Therefore <<N in M is for both
reductions the same as it only depends on the initial labeling I and the final
labeling J (cf. the same situation in Section 8). O

Remark 7.6 Let M —»3 N, where N is not necessarily a normal form. Let II be
a prefix in N and <II its ancestor prefix in M. Now <II is dependent on the actual
reduction M —g N.

An example is: M = (Az.2)(A\y.y)z — (Aa.a)xr = N. Depending on whether the
Az- or the Ay-redex is contracted, we find different prefixes in M as original of the prefix
indicated by underlining in N: (A\a.a)z. Namely: with respect to the contraction of
the Ay-redex, the original is everything in M but the nodes Az and z; with respect to
the contraction of the Az-redex the original is everything but the nodes Ay and y.
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Now on the basis of Proposition 7.5 we can define the useful prefix of a
term having a normal form. For reasons that will become clear in Section 8 the
useful prefix is also called needed prefiz.

Definition 7.7 Given a term M with normal form N, the prefix <{/V is the
useful prefiz of M. The rest of M is called garbage.

The essence of the next three propositions is that in a reduction to normal
form only the useful prefix is relevant. In whatever way the garbage part is
changed, the normal form stays. We will be very sketchy. In Section 8 analogous
results are proved, in much more detail, for the case of first order term rewriting
systems. The reasoning here would be similar.

The essential technique is that of cutting off garbage (i.e., parts of the term
that are below the needed prefix) with Q’s. It is essential that we cut off
only garbage. That is, we only consider M >q N where M = C[Ny,..., N,
N =C[9Q,...,9] and Ny,..., N are in the garbage part of M.

Furthermore it is essential that the needed prefix of a term M is ‘redex
pattern closed’ (i.e. when it contains the root of a redex in M, then it contains
the entire redex, cf. Definition 8.19 and Proposition 8.20). The effect is that
replacing the garbage by €2’s never cuts a redex in two.

Proposition 7.8 [Cutting off a reduction] Let M = C[Ny,...,Ng] - N, where
C[,..., | is the useful prefiz of M and with N in normal form. Then we can

‘cut off ’ this reduction to a reduction using only the useful prefiz of M, disposing
of the garbage: C[Q,...,Q] - N.

Proof. The proof is similar to the proof of Propostion 8.25 in Section 8. O

Proposition 7.9 Q-refinement commutes with G-reduction. See Figure 25.

clQ....Q] — ClQ....Q]

b
CINg,...NJ] — CIN'g....Ni

Figure 25: Q-refinement commutes with S-reduction

(Note that the § in C’[(}] that are refined to C'[N] are the descendants of the
Q in C[Q].)

Now we can prove the garbage property.
Proposition 7.10 [Garbage property] Everything below the useful prefix found

by tracing back the normal form to the original term, can be replaced by whatever
terms without altering the normal form. See Figure 26.
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M= CINy,..N] ——p5 > N

v
M

M= ClQu Q) ——(5 N

Figure 26: Proving the garbage property

Proof. Let M = C[Ny,...,Ni] - N, where C[ ,..., ] is the useful pre-
fix of M and with N in normal form. By cutting off this reduction we get
C[f,...,9] - N. Then we can, for arbitrary Q1,...,Q by repeatedly apply-
ing Proposition 7.9, refine this reduction to C[Q1,...,Qk] = N. Note that the
refining does not affect N, since N is Q)-free. See Figure 26. O

Before turning to the Genericity Lemma we need one more fact.

Proposition 7.11 Let U be unsolvable, and M = C[U] -3 M' = C'[U’] with
U U'. Then U’ is unsolvable.

Proof. Easily obtained from the fact that an unsolvable stays so after internal
reduction, after deletion of a Az at the root, and also after substitution. O

Theorem 7.12 [Genericity Lemma] If C[U] - N, with U unsolvable and N a
normal form, then C[Q] — N for any term Q.

Proof. Suppose M = C[U] - N, with U unsolvable, N a normal form.
Trace N back to M; result M = D[Ny,...,Ng], where D is the useful prefix
and Ni,...,Ni is the garbage part.

Claim: U must be in the garbage part Ny,..., Ng.

Proof of the Claim: Suppose not, then the root of U is in the prefix
D]...]. By the definition of useful prefix, this root then is con-
nected (via >) to some symbol in N. Now along this >-trace, U
stays unsolvable. But then N contains an unsolvable subterm, in
contradiction with the assumption that NV is a normal form.

Now the garbage property applies and we are done. O

8 Origin tracking in first-order rewriting

After the preceding exercise in origin tracking in the A-calculus, we now turn
to a similar enterprise in first-order term rewriting. The main device will be a
labeling system inspired by the Lévy labels for A-calculus. The theorem that we
now address with this method is the classical one of Huet and Lévy concerning
needed reduction.
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8.1 The theorem of Huet and Lévy

We adopt the framework of orthogonal first-order term rewriting systems (for
details we refer e.g. to [Klo92]). So we may assume confluence of the reduction
relation and uniqueness of normal forms: each term can have at most one
normal form.

The theorem of Huet and Lévy [HL91] concerns the notions of needed redex
and needed reduction.

Definition 8.1 A redex in t is needed if in every reduction from ¢ to its normal
form, some descendant of that redex must be contracted. A reduction is needed
if in each reduction step a needed redex is contracted.

Example 8.2 Consider the well-known orthogonal TRS for addition and multiplication
on natural numbers generated by 0 and S. The reduction rules are given in Table 5.
Now the redex A(0,0) in the term M (A(0,0),0) is not needed. It is erased in the

p1 A(z,0) - x

p2 Alz,S(y)) — S(A(z,y))

P3 M(.CC,O) - 0

P4 M(I’S(y)) - A(M(ac,y),x)

Table 5: The TRS for addition and multiplication

reduction to normal form consisting of the single reduction step

M(A(0,0),0) -, 0.
Theorem 8.3 [Huet and Lévy]

1. Consider a term t having a normal form. Ift is not a normal form itself,
at least one of its redezes is a needed redez.

2. Repeatedly contracting needed redezes must lead eventually to the normal
form, provided the original term has a normal form. In other words,
needed reduction is a normalizing reduction strategy.

3. Needed reduction is not only normalizing, but even hyper-normalizing:
there does not exist an infinite reduction of t containing infinitely many
steps in which a needed redex is contracted. In other words, even the
relaxed notion of needed reduction which allows between needed reduction
steps any finite number of arbitrary reductions is normalizing.

Without putting further restrictions on orthogonal term rewriting systems, this
result is nice, but not necessarily very useful: we cannot always determine what
the needed redexes are. The notion of needed redex is undecidable. However,
Huet and Lévy [HL91] gave reasonable restrictions that ensure the decidability.
Here we will not discuss this matter. What we are aiming at is a proof of this
general theorem by means of origin tracking.
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Remark 8.4 Note that if ¢ has no normal form, every redex in ¢ is trivially needed.
Hence the present concept of neededness is not useful for terms without normal form,
even though such terms may be very informative (e.g. computing an infinite stream of
integers). Therefore Khasidashvili [Kha93] developed the notion of essential instead of
needed, to cope with this situation. Middeldorp [Mid97] defined a variant of neededness
called root-neededness that is also adequate for terms without normal form, and proved
generalizations of Huet and Lévy’s theorem for the setting of infinitary rewriting. In
this section we stick to the theorem as stated, since the point we are presently discussing
is about the method of proof, namely origin tracking.

8.2 The needed prefix

Consider a term ¢ and a reduction t = tg — t; — -+ = t, (n > 0), where
tn is a normal form, and let us try to determine the part of #y that has been
‘necessary’ in manufacturing t,. The idea is to look at each symbol s in %,,
and to determine what symbols s’,s”,... in t,_1 were ‘responsible’ for the
occurrence or appearance of s in t,. Here ‘responsible’ is in a wider sense
than the classical descendant-ancestor notion; also the symbols in the redex
pattern are responsible for creating the situation after the redex contraction.
The precise definition follows below.

The symbols s',s” can also be viewed as the ‘causes’ or ‘origins’ of s. In
turn, we trace back the symbols s’, s”, ... to the previous term ¢,,_o, and so on.
In the end we arrive at a bunch of symbol occurrences in ¢y that are the original
causes of the symbol s in ¢,,. Doing this for all symbols in t,, and taking all the
‘origins’ together, we have what we call the ‘needed part’ of #y,. Actually we
will find that the situation can be summarized as follows.

The origins in the original term ¢ = ¢y of all symbols in ¢,, will make
up a prefix of t.

It will be called the needed prefix of t, since all redexes having their pattern in
the needed prefix are in fact needed. Moreover, if ¢ is not a normal form, the
needed prefix will contain at least one redex (or rather a redex pattern). Finally,
everything in the non-needed, dark part of ¢ is garbage; it can be replaced by
anything without affecting the normal form ¢,. The situation is depicted in
Figure 27.

needed prefix
roots of

maximal redexes

\ _ non-needed part

Figure 27: Needed prefix
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8.3 Tracing back

How to define the tracing or tracking relation to find the s’, s” in ¢,_; that are
the origins of s in ¢,7 By way of example we have visualized in Figure 28(a)
the trac(k)ing relation between symbols in the reduction step

S(F(G(0,1),H)) = S(R(S(1),1)),
obtained from the reduction rule
p: F(G(z,y),H) = R(S(y),y)-

We now describe the intended tracing relation more precisely. Let #(Z) and

(a) (6)

Figure 28: Tracing symbols

s(Z) be terms involving the variables ¥ = x1,...,z, and let p : t(Z¥) — s(Z) be
a rewrite rule. We call the context ¢(~) obtained by replacing in ¢ the variables
Z by n holes the redez pattern of the rewrite rule p, and s(”) the contractum
pattern of p.

Example 8.5 Soin the rule p: F(G(z,y),H) — R(S(y),y) we have as redex pattern
the context F(G(O,0), H) and as contractum pattern the context R(S(0O),0).

Moreover, let C[t(Z?)] — C[s(Z?)], be a rewrite step generated by p. (Here C[]
is a context and o is a substitution.) There are three cases for the position of
a symbol to be traced:

Definition 8.6

1. A symbol in the context C[ ] of the left-hand side of the rewrite step
traces to the same symbol in the right-hand side C[]. So in Figure 28(a)
the two top S’s are connected.
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2. A symbol in z{ in the left-hand side of the rewrite step traces to the same
symbol in all the copies of z¢ in the right-hand side. So in Figure 28(a)
the 1 in the left-hand side is connected to both 1’s in the right-hand side;
the 0 is not connected to anything, it is erased.

3. A symbol in the redex pattern traces to all the symbols of the contractum
pattern. In the figure each of the symbols F, G, H is connected to both
R and the lower S in the right-hand side.

If symbol s in the left-hand side connects to ¢ in the right-hand side, we say
that s is the origin of t, and t is a dynamic descendant of s. Notation s > t.

8.4 Collapsing rules

As often in term rewriting, collapsing reduction rules require special attention.
A reduction rule I — r is called collapsing if the right-hand side r is a mere
variable.

Example 8.7 The rule A(z,0) — x from Table 5 is collapsing. And so is the rule for
the combinator K from Combinatory Logic, Kzy — x.

The definition above of the tracing relation does not provide for this situation,
since in a collapsing rule there is no contractum pattern. It is the trivial or
empty context 0. So where to attach the traces leaving the symbols in the
redex pattern? We extend Definition 8.6 with a fourth clause:

Definition 8.8

4. If Ct(z7)] — C[z?] is a collapsing step, then all symbols in the redex
pattern ¢(”) are connected with the top symbol (the root) of z?.

In Figure 28(b) we depicted the tracing relation between symbols in the re-
duction step that consists of contraction of the redex A(A(0,0),0) with the
collapsing reduction rule A(z,0) — z.

As we did for the A-calculus in Section 7 we prefer to work with an algebraic
characterization of the origin relation, in terms of a labeling system. It will be
introduced in the next section.

Remark 8.9 The tracing definition (1-4) was suggested in Klop [K1090]. A rather
similar notion of trace has been defined by Boudol [Bou85]; it lies somewhere between
the classical descendant notion and the present dynamic descendant notion. In Boudol’s
definition each symbol in the redex pattern traces to the top of the contractum. Note
that this entails that the set of origins of a symbol may be empty, in contrast with the
present definition. The same definition occurs in the work of Khasidashvili [Kha93].
Another study of origin tracking is by Bertot [Ber92], who uses ‘origin functions’.
Maranget, in his Ph.D. Thesis [Mar92] uses a labeling device, just as we do in the
next section. It is somewhat different from ours, but also derived from Lévy labels for
A-calculus.
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8.5 Labels

We present an algebraic formulation, in the syntax of term rewriting systems
itself, of the origin relation. It is inspired by Lévy’s labeled lambda calculus,
already discussed extensively in Section 6. The actual labelings that we employ
were introduced in Klop [Klo80].

The Lévy labels were defined in Definition 6.1. Recall that they are formed
from atomic labels a, b, ¢, ..., using the operations of concatenation and under-
lining. That is, if « is a label, then ¢ is a label and if o, 8 are labels, then a8
is one. E.g. abcad is a composite label. In our notation labels will be attached
to symbols as superscripts, but their actual status is that of unary function
symbols.

We are now going to decorate rewrite rules with labels. Consider the rule
F(G(z,y),H) — R(S(y),y) above. For every label «, [,y we will have the
labeled version:

F*(GP(z,y), H") — RYY(S2E(y), ).

So, every symbol in the redex pattern has some label. All these labels are swept
together (say in order of appearance) and underlined. This new label is then
attached to all symbols in the contractum pattern.

Now if R is an orthogonal TRS, then RL will be the labeled TRS consisting
of all labeled versions of the rewrite rules of R. We note that R is again an
orthogonal TRS, because an overlap of the labeled rules will yield at once an
overlap of the unlabeled rules after omitting the labels.

As before, we will use the notation ¢! for a term ¢ in R with labeling I. The
labeling I can be perceived as a map from the symbol occurrences of ¢ to the
set of labels. So ¢! is a term in R”. Labelings will be denoted by I, J, .. ..

We can now give a precise definition of the tracing relation between symbols
in a rewrite step t — s. It is the analogue of the previous Definition 7.2, that
we used in the A-calculus case.

Definition 8.10 Provide ¢t with an initial labeling I, that is, a labeling where
each symbol of ¢ gets an atomic label such that different symbol occurrences
get different labels. The result is the labeled term t!. We then lift the rewrite
step to the labeled TRS RE, obtaining a labeled step t! — s7.

Now we stipulate that a symbol p® in ¢! traces to all symbols ¢® in s such
that a € a. This tracing relation is then projected down again to the original
unlabeled rewrite step ¢ — s. That is, if the symbols p in ¢, ¢ in s correspond
qua position to the labeled symbols p® and g%, then p traces to g. We also say
that, or that ¢ traces back to p, or p is an origin of q .

Notation 8.11 We use the notations > and < for the tracing relation and its
inverse, the origin relation. That is, we write p > ¢ or, equivalently, ¢ < p, if ¢
traces back to p. If ¢t — s and p, ¢ are symbols in t, s respectively, then <q is
the set of symbols in ¢ to which g traces back. Likewise if @ is a set of symbols
in s, <@ is the union of the origins in ¢ of all ¢ € Q.
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The following example demonstrates that for a non-collapsing rule the present
algebraic definition of > by means of labels indeed yields the same notion as
the one described in the more verbose way in Definition 8.6.

Example 8.12 Consider again the rule p: F(G(z,y), H) — R(S(y),y), yielding the
rewrite step in Figure 28:

t = S(F(G(0,1), H)) — S(R(S(1),1)) = s.

Provide the left-hand side ¢ with an initial labeling:
Se(Fb(Ge(0%,1°), HY)).
We now apply the following labeled version of p:
FO(G(z,y), HT) — RL(S™L(y), y)
yielding the labeled step
tl = S¢(F*(G°(0%,1°), HY)) — S*(R"/(S%/(1°),1°)) = s’.

Inspection of the labels clearly shows what pairs of symbols (p, ¢) in the corresponding
unlabeled reduction step are in the relation > and it is easily checked that this is just
the relation described in Definition 8.6.

So our algebraic approach works for non-collapsing rewrite rules. However, it is
a nasty technical problem to extend the tracing definition by means of labels as
above to the case of collapsing rules, while still retaining an orthogonal TRS.
We are not aware of a solution that is both simple and natural. There are some
tricks to eliminate the problem, however. The method we choose is to code
the collapsing rules away. This is done by replacing e.g. the rule A(z,0) — =
by A(z,0) — e(z), where £ is a unary ‘dummy’ symbol. Then one has to
add infinitely many new reduction rules, saturating’ all left-hand sides with the
symbol €. The reader is referred to Appendix C.

Remark 8.13 Up to now we have only defined the tracing relation > for symbols
in begin and end of a single reduction step ¢ — s. We would like to do this also for
many-step reductions ¢ — s, or more explicitly, t = tg — --- = t, = s. This is very
simple: we extend > by transitivity in the obvious way. There is however another way
as follows. Give ¢ an initial labeling ¢/ and lift the reduction ¢ - s to the labeled
reduction ¢/ — s/. Now define as before that a symbol p in ¢ traces to ¢ in s if and
only if its label (in ¢!) is included in the label of ¢ (in s7).

So the difference is that in the former definition tracing is defined by repeated
initialization of the labels: in each step the labels are ‘refreshed’ to an initial labeling.
Fortunately we can without much effort prove that both ways yield the same. In other
words, repeated initialization is superfluous. The proof is given in Appendix D.

This remark has an important consequence. Given a reduction t — s, with
s a normal form, let us trace back symbol ¢ in s to its origins in ¢. Now the
question is whether the set of origins depends on the actual reduction from ¢
to s.

Having the second definition of I> in mind (direct comparison of an initial
labeling of ¢ with the resulting labeling of s) we can now state that the set of
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origins is independent from the actual intermediate reduction. To see this we
first observe that if s is a normal form (in R), then each labeled version s’ is
a normal form in RF. Now orthogonality of RY implies uniqueness of normal
forms. Hence if t/ — s/ on the one hand, and ¢t/ — s/ " on the other hand, we
have s/ = s/', in particular J = J'. Therefore <I¢ in ¢ is for both reductions
the same, as it only depends on the initial labeling I and the final labeling J.

By these observations it follows that the following is a sound definition.

Definition 8.14 Let t — s, where s is a normal form. Then the set of positions
in ¢ that are the origins of s is called = (¢).

Remark 8.15

1. Note that traces can stop in forward direction. That is, if f — s and p is a symbol
in t, the set >p (i.e. the set of p’s dynamic descendants) may be empty. But in
backward direction traces do not stop. Everything has an origin—symbols are
not created out of the blue.

2. Note also that a redex has no ordinary descendants (as defined below, notation
») after its contraction. Further note that the assumption of orthogonality yields
that if p » ¢ and pis a redex root, then so is g. For pr>q the analogous statement
does not hold.

3. Usually the notion of descendant is seen as a relation between subterm rather
than symbol occurrences. But since subterms and their roots are in 1-1 corre-
spondence, defining the relation on symbols, as we do here, amounts to the same
thing.

8.6 Ordinary descendants and simple labels

With > and < we are able to follow symbols forwards and backwards through
a reduction. But in a different way than according to the classical, standard
descendant/ancestor relation. Let us compare the two approaches. Note that
everything remains in perfect analogy with what we did before for A-calculus,
cf. Section 4, Definition 4.2.

Again we use a labeled system to define ordinary descendants. However,
now only simple labels are allowed: €,a,b,c,.... Here a,b,c,... are proper
labels, they are single letters, and e is the empty label.

Again we decorate rules with labels. Rule p gives now rise to all labeled
versions

F*(G’(z,y),H") = S(R(y), ).

Now the classical descendant relation » is defined analogously to the definition
of > with this difference: p » ¢ if and only if p and ¢ have the same proper

labeling.
We have p » ¢ = p > g, but not vice versa. For occurrences of variables
z,Y,2,..., and the symbol €2 that will be used later, the two notions are iden-

tical. In Tip [Tip95] the notion > is called dynamic dependence tracking.
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8.7 The prefix property

Consider again the reduction tg — t; — --- — t, with ¢,, in normal form. We
will prove that <it, in tg, that is, all the origins of ¢,, traced back to ¢g constitute
a prefix w of tg. A prefiz of a term is a set of occurrences that is upward closed.
(So in the pictures, an upper ‘half’ of the triangle if terms are written as trees.)
We will denote prefixes of terms by 7, etc.

Notation 8.16 If p, g are symbol occurrences, then p < g means that p is above
q or q itself. We call < the prefiz ordering.

Now we have the following proposition. (See Figure 29.)

Proposition 8.17 The prefix order < and the tracing relation > commute, in
the sense that:
s<spt = It <t

Proof. The proposition is easily proved by distinghuishing some cases. Let
r be the contracted redex. Here we consider only the cases where s is in the
redex pattern.

- If s’ is above s in the redex pattern, we can just take any # in the contractum
pattern above ¢ (or t itself). Then s’ <.

- If s’ is above the redex pattern, then actually it is in the context of 7 and we
take the corresponding ' (at the same position).

Figure 29: A commuting diagram yielding the prefix property

From the proposition we have at once that prefixes are preserved in tracing
back: if ¢ — s, and 7 is a prefix of s, then <x is a prefix of . Moreover, by
transitivity we have the same if ¢ — s. In particular, when s is a normal form
and for m we take the whole term s, this yields the prefix property: 7(s) is a
prefix of t.

Remark 8.18 Actually, we have some immediate generalizations of the preservation
of prefixes under <1. We make use of the following terminology.

A set of occurrences is conver, if with each two points it also contains all points
in between in the sense of the prefix ordering. A convex set of occurrences in ¢ can
be characterized as a union m U...U m,, with 7y, ..., 7, prefixes of disjoint subterms
81,-..,8, of t. Note that a prefix of ¢ is any convex set containing the root of ¢.
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A convex set is called a slice, if it is a prefix of a single subterm, i.e. a convex set
with only one maximal occurrence (in the prefix order). Note that a singleton set of
occurrences, a single point in a term, is also a slice.

The notion of prefix, slice and convex set have been depicted in that order in
Figure 30(a, b, c). Now, first, if C is convex then <C is again convex. Secondly (and

S A aA

Figure 30: Prefix, slice and convex set of occurrences

this is not the same!) also slices trace back to slices under <. This fact is used in
‘program slicing’, for the analysis of dependencies within programs and error recovery,
by Field, Tip [FT94, Tip95] and others.

In the sequel we will need the following property of prefixes.

Definition 8.19 A prefix ¢’ of a term t is redex-pattern closed, or for short, has
the rpc property, if it contains redex patterns only in their entirety, and not
‘half’ of a redex pattern. In other words, if the prefix ¢ contains the root of
a redex r in t, it must contain the whole redex pattern p of r. See Figure 31,
where 7’ is the intersection of redex r and prefix ¢'.

Figure 31: The rpc-property

Now we can strengthen our previous result that prefixes are preserved in
tracing back.

Proposition 8.20 All prefixes that we find by tracing back the normal form
tn, have the rpc property.

Proof. That t, itself, being its own prefix, has the rpc property, is trivial as
it contains no redexes at all. The further proof is again by a simple analysis of
cases, and will be omitted here. |
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We have the following nice situation:

All terms in the reduction graph of ¢y are partitioned in a ‘white’
prefix above and a ‘dark’ remainder. The white prefixes are made
up from the origins of all the symbols in %,. If ¢, s are reducts of ¢y
and t — s, then their white prefixes 7(t) and 7(s) are related by
gm(s) = w(t).

This is illustrated in Figure 32, where the dark and white area’s are indicated
for some reducts of the original term #¢, including its normal form £,

Figure 32: Reduction graph of ¢

In the sequel we will employ €2-terms, i.e. terms where the constant 2 may
occur. We will use €2 as demarcation of prefixes, by appending them at the cut-
points of the prefix. More precisely, if the prefix m(¢) rendered as a multi-hole
context is C, then () is identified with C[S2,..., ], the result of placing Q’s
at the open places.

Definition 8.21 Let t, s be reducts of t;. Then t —q s if s results from ¢ by
replacing a subterm #' of ¢ in the garbage part by Q. (Here, in order to avoid
vacuous reduction steps, it is assumed that not already ¢’ = Q.)

So, in particular we have that ¢ -q 7(t). Note that —q is SN and CR.

0] (i) (iii)

Figure 33: Q-postponement
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Proposition 8.22 [Q-postponement.] In a reduction involving — r-steps and
—q-steps, the —q-steps can be postponed.

Proof. See Figure 33. Diagram (i) is a routine check. Further (i) = (ii) = (iii).
Then the result follows by simply permuting 2- and R-parts of a reduction. O

0] (i) (iii)

Figure 34: Commutation of {2- and R-reduction

Proposition 8.23 Q- and R-reduction commute in the sense of Figure 34(i).

Proof. We recall the rpc property (Proposition 8.20). It entails that either
R C Qor 2 C R, where R, ) denote the relevant R-redex and 2-redex. So we
have either diagram (ii) or diagram (iii) in Figure 34. O

Proposition 8.24 Lett — s. Then for some s' we have 7(t) Sg s —q 7(s).
See Figure 35.

Figure 35: Projecting —p over m

Proof. By employing Proposition 8.23 and CR for —q we obtain Figure 36.
The Q-reduction from 7(s) must be empty, since 7(s) is an Q-normal form. (It
is left to the reader to verify that all 2-steps involved here are indeed ‘garbage-
collecting’ steps.) Note that, as a matter of fact, w(s') = 7(s), again since 7(s)
is an 2-normal form. i

Proposition 8.25 Lett=1ty— --- — t,, where t, is in normal form. Then
m(to) = tn.

Proof. First, we have the upper part of Figure 37. Then by Q-postponement we
obtain the lower part: 7(tg) - g s —q t, for some s. Since ¢, is in normal form,
it contains no ’s, and thus the reduction s —q t, is empty. So 7(tg) > g tn.
O
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P T(S)

empty.
reduction

ns)= ()

Figure 36: Proof of Proposition 8.24

R o} R o)

(o) ) (tp) mty) = ty

R Q

Figure 37: Projecting a reduction to the prefix

40
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Remark 8.26 The way Proposition 8.25 is proved via Proposition 8.24 derives from
an analysis of abstract rewriting in de Vrijer [Vri87, Vri89].

We have several consequences of Proposition 8.25.

Corollary 8.27 Let tg be not a normal form. Then w(ty) contains a redex
pattern.

Proof. Suppose not. Then 7(ty) is a normal form, so by Proposition 8.25 we
have

7(to) = tn (4)

So 7(tg) is Q-free. But then the reduction ¢ty —q 7(tg) is empty, i.e.
m(to) = to (12)

From (i) and (ii) follows ¢y = t,,. This contradicts the assumption that ¢y is
not in normal form. a

Corollary 8.28 The subterms ‘under’ the (white) prefix w(to) (i.e. the dark
part), are indeed garbage.

More precisely: Let the prefiz ww(ty) be the Q-term C[Q,...,Q], so ty =
C[so,---,8n). Then for arbitrary qi,...,q, we have C|qo,--.,qn] = tn.

Proof. This follows readily from 7(ty) — ¢, and the simple fact that Q-
refinement commutes with R-reduction. (Which actually is nothing more than
substitutivity of R-reduction: if ¢ — s, then ¢[Z := ¢] = s[Z = q].) O

Corollary 8.29 A redex r in the dark part is not needed.

Proof. Let w(ty) = C[Q,...,], to = C[so,...,8m), and 7 C s; for some
1. To show that r is not needed we have to establish a reduction from ¢
to t, in which no descendant of r is contracted. This is easy: just take the
reduction 7(ty) — t, found above in Proposition 8.25 and substitute s, ..., Sm
for Qp...,Q,. Clearly in this reduction all descendants of r stay ‘at rest’,
actually they will all be erased on the way to t,, but none of them is contracted.
O

The proof of the following lemma is routine and omitted.

Lemma 8.30 Lett —,+ s be a reduction step in which redex r* is contracted.
Let r # r* be a different redex occurrence in t and let p be the head symbol of r
(or any symbol in the pattern of r). Then for all symbol occurrences q in s we
have: p>q & pw»q.

Corollary 8.31 Any redez r in the prefiz w(ty) is needed.
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Proof. Suppose not, then there is a reduction ty — ) — ¢, = - =t =1,
such that in some ¢}, (k < n) all »-descendants must have vanished, not by
contraction, but by erasure. Now consider the root symbol of r, call it p. Then
for some symbol ¢ in ¢}, we must have p > ¢; otherwise p was not in the prefix
m(to). Now, observing that in the considered reduction no descendant of r is
contracted, Lemma 8.30 yields p » ¢g. But this contradicts the assumption that
the redex headed by p has no »-descendant in ¢}.

(More precisely: Observe that in the reduction we are considering no de-
scendant of r is contracted. Lemma 8.30 now yields p » q. But this contradicts
the assumption that the redex headed by p has no »-descendant in ¢}.)

a

8.8 Needed reduction is (hyper)normalizing

We will now show that repeated contraction of needed redexes must terminate,
in the normal form, even when between needed contractions we contract some
non-needed redexes. To this end we assign a norm ||t|| to each term ¢ in the
reduction graph of ¢y. First we define the norm |a| of a label: this is just the
number of its symbols, counting an underlining as one symbol. Now ||¢|| is the
sum of the |a| for every « in the prefix 7(¢). Now (i) for a needed contraction
t — s we have ||t|| < ||s||, while (ii) for a non-needed contraction we have
It < ||s]|- The proper increase in (i) is due to the fact that the labels attached
in the contractum pattern are underlined. That in case (ii) no decrease is
possible, is due to the fact that the non-needed redexes are in the dark part
below the white prefix—so they cannot erase symbols and labels in the white
prefix. From (i) and (ii) we immediately have termination as announced, since
the norms are bounded by ||t,]|, the norm of the normal form.

Remark 8.32 Tt is worthwhile to remark that we also have as an immediate corollary
that parallel outermost reductions are normalizing as first proved in O’Donnell [0’D77].
This is seen by first noting that there must be a needed outermost redex, since need-
edness is preserved upward. If redex r is needed, and r’ is a redex containing r as a
subterm, then r' is needed. So one of the outermost redexes must be needed. Parallel
outermost reduction therefore must be normalizing by the termination theorem just
mentioned.

Remark 8.33 Actually, we can give a bound on the degrees of needed redexes and
thereby obtain an alternative termination proof of needed reduction as follows. Here
the degree of a redex ¢(Z”) is the concatenation of all labels in the pattern ¢(7), in
the order of appearance. This definition is from Klop [K1o80], but is a straightforward
generalization from Lévy’s similar notion for the labeled lambda calculus as in Section
6.

Take an arbitrary reduction from tg to its normal form ¢,. Assume that the set
of degrees of needed redexes contracted in this reduction is {dy,ds,...,dn}. Then,
for every reduct t' of t, we have that if a redex in t' is needed, it has as degree
one of the doy,d;,...dm. (The converse does not hold.) Lévy [LévT75] proved that in
labeled lambda calculus, bounded labeled reduction is terminating—or rephrased, that
in every infinite reduction labels must grow unboundedly. This also holds in the present
setting of first-order orthogonal rewriting. As a corollary we again have immediately
the termination of needed reduction.
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A precise treatment of this matter, the termination of needed reduction via termi-
nation of bounded reduction, is given in the Ph.D. Thesis of Maranget [Mar92]. He
uses the method of recursive path orderings to prove termination of bounded reduction.

9 First-order infinitary rewriting

In this section we explain the development of infinite term rewriting as reported
in Kennaway, Klop, Sleep & de Vries [KKSV95a], Klop & de Vrijer [KV91]. A
complete formal treatment, including full proofs, can be found in [KKSV95a].
This work was stimulated by earlier studies of infinite rewriting by Dershowitz,
Kaplan & Plaisted [DKP89] and Farmer & Watro [FW89].

As we will see, the crucial step in setting up a satisfactory framework for
infinitary rewriting, namely establishing the notion of strong convergence, is
induced by the very need to have a good concept of descendant.

Remark 9.1 There is ample motivation for a theoretical study of infinite rewriting,
in view of the facility that several lazy functional programming languages such as
Miranda ([Tur85]), Haskell ([Hud88]), Clean ([PvE93] have, enabling them to deal with
(potentially) infinite terms, representing e.g. the list of all primes. Another motivation
is the correspondence between infinite rewriting and rewriting of term graphs: a theory
for infinite rewriting provides a foundation for a theory of term graph rewriting, since a
cyclic term graph yields after unwinding an infinite term. Indeed, this correspondence
has been the starting point for the work of Farmer & Watro [FW89].

Our starting point is an ordinary TRS (X, R), where ¥ is the signature
and R is the set of rewrite rules. In fact, we will suppose that our TRSs are
orthogonal, just as in the previous section. Now it is obvious that the rules
of the TRS (X, R) just as well apply to infinite terms as to the usual finite
ones. First, let us explain the notion of infinite term that we have in mind.
Let Ter(X) be the set of finite Y-terms. Then Ter(3) can be equipped with the
usual distance function d such that for ¢,s € Ter(X), we have d(t,s) = 27" if
the n-th level of the terms s,t (viewed as labeled trees) is the first level where a
difference appears, in case s and ¢ are not identical; furthermore, d(¢,t) = 0. It
is well-known that this construction yields (Ter(X), d) as a metric space. Now
infinite terms are obtained by taking the completion of this metric space, and
they are represented by infinite trees. We will refer to the complete metric
space arising in this way as (Ter>(X), d), where Ter>(X) is the set of finite and
infinite terms over .

A natural consequence of this construction is the emergence of the notion
of Cauchy convergence as a possible basis for infinite reductions which have
a limit: we say that ¢ — t1 — to — --- is an infinite reduction sequence
with limit ¢, if ¢ is the limit of the sequence ty,%¢1,... in the usual sense of
Cauchy convergence. See Figure 38 for an example, based on a rewrite rule
F(z) — P(z,F(S(z))) in the presence of a constant 0 in 3. In fact, this
notion of converging reduction sequence is the starting point for Dershowitz e.a.
[DKP89]. In the sequel we will however adopt a stronger notion of converging
reduction sequence which turns out to have better properties. First, let us argue
that it makes sense to consider not only reduction sequences of length w, but
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F(O) —» P —_— ...

N\ /N

O_(_/)__I_I
(0]
av)

Limit: infinite sequence of natural numbers 0

Figure 38: Generating the sequence of natural numbers

even reduction sequences of length « for arbitrary ordinals . Given a notion
of convergence, and limits, we may iterate reduction sequences beyond length
w and consider e.g. tg = t; =ty = - D>ty > S1 > S2 > S3 —> e
where lim, o t, = s¢ and lim,_,, s, = r. See Figure 39 for such a reduction
sequence of length w 4+ w, which may arise by evaluating first the left part of
the term at hand, and next the right part. Of course, in this example a ‘fair’
evaluation is possible in only w many reduction steps, but we do not want
to impose fairness requirements at the start of the theory development even
though we may (and will) consider it to be a desirable feature that reductions
of length a could be ‘compressed’ to reductions of length not exceeding w steps,
yielding the same ‘result’.

P —™ P ——- P
F/ N F ? P/ N F ? P/ ™~ R
| AT \ \
L 5 R IR
A PAPA
0S R 0S R 0S R
[REAS 5% 5%
rooN N TN
0 0 0
Transfinite reduction sequence of length @+ @

Figure 39: A transfinite reduction sequence

We will give a formal definition now.

Definition 9.2 Let (X,R) be a TRS. A (Cauchy-) convergent R-reduction
sequence of length o (an ordinal) is a sequence (tg | # < a) of terms in Ter*™ (%),
such that

1. tg =g tgqr forall B < a,
2. t) = limg.) tg for every limit ordinal A < a.

Here 2. means: Vn3u < AWVv( p <v < A=d(t,,ty) <27").
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Notation 9.3 If ({3 | # < «) is a Cauchy-convergent reduction sequence we
write tg —¢ t, (‘¢’ for ‘Cauchy’).

The notion of normal form as a final result has to be considered next. We simply
generalize the old finitary notion of normal form to the present infinitary setting
thus: a (possibly infinite) term is a normal form when it contains no redexes.
The only difference with the finitary case is that here a redex may be itself an
infinite term. But note that a redex is still so by virtue of a finite prefix, called
as before the redex pattern—this is so because our rewrite rules are orthogonal
and hence contain no repeated variables'!. So, in Figure 40 we have, with as

C—A—A—- A =4
coa
e
J

Figure 40: Limit an w-normal form but not an infinitary normal form

TRS {C — A(C), A(z) — z}, a (Cauchy-) converging reduction sequence with
as limit the infinite term A(A(A(A--., abbreviated as A“; this limit is not a
normal form in our sense but it is an w-normal form, as A“ only reduces to itself:
AY — A“. (Note that this step can be performed in infinitely many different
ways, since every A in A“ is the root of a redex.) Normal forms in our sense
are shown in Figures 38, 39 as the rightmost terms (if no other reduction rules
are present than the one mentioned above). Henceforth we will often drop the
word ‘infinite’ or ‘infinitary’. Thus a term, or a normal form, may be finite or
infinite. Note that the concept ‘normal form’, in contrast to that of ‘w-normal
form’, only depends on the left-hand sides of the reduction rules in the TRS
(3, R), which makes the former notion more amenable for analysis.

The notion of Cauchy-converging reduction sequence that was considered so
far, is not quite satisfactory. We would like to have the compression property:

to —)g ta = to —)csw tao-

That is, given a reduction ty —¢ 4, of length «, the result ¢, can already
be found in at most w many steps. (‘At most’, since it may happen that a
transfinite reduction sequence can be compressed to finite length, but not to
length w.) Unfortunately, —¢ lacks this property:

" This choice of ‘normal form’ deviates from that in Dershowitz e.a. [DKP89]: there a
(possibly infinite) term ¢ is said to be an w-normal form if either ¢ contains no redexes, or the
only possible reduction of ¢ is to itself: ¢ — ¢, in one step.
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Counterexample 9.4 Consider the orthogonal TRS with rules
{A(z) » A(B(z)), B(z) —» E(z)}-

Then A(z) —, A(B¥) = A(E(BY)), so A(z) =w+1 A(E(B*)). However, we do not
have A(z) =<, A(E(B%)), as can easily be verified.

Parallel Moves Lemma

R
t t
0 - - - n (@)
s
S
?—» s
g:: 5"
t t*

projection R'

infinite reduction R ®)

I

projection R'

Figure 41: Projecting an infinite reduction

Another obstacle to a satisfactory theory development for —¢ is that the Par-
allel Moves Lemma resists a generalization to the present transfinite case. We
recall the Parallel Moves Lemma in Figure 41(a): setting out a finite reduction
R : ty —» t, against a one step reduction ty —s t' (where s is the contracted
redex), one can complete the reduction diagram in a canonical way, thereby
obtaining as the right-hand side of the diagram a reduction ¢, —» t* which
consists entirely of contractions of all the descendants of s along R. Further-
more, the reduction R’ : ¢ — t* arising as the lower side of this reduction
diagram, is called the projection of R over the reduction step ty — t'. Nota-
tion: R' = R/(tg —s t').

We would like to have a generalization of the Parallel Moves Lemma where
R is allowed to be infinite, and converging to a limit. In this way we would
have a good stepping stone towards establishing infinitary confluence properties.
However, it is not clear at all how such a generalization can be established. The
problem is shown in Figure 42. First note that we can without problem general-
ize the notion of ‘projection’ to infinite reductions, as in Figure 41(b): there R’
is the projection of the infinite R over the displayed reduction step. This merely
requires an iteration of the finitary Parallel Moves Lemma, no infinitary version
is needed. Now consider the two rule TRS {A(z,y) = A(y,z),C — D}. Let R
be the infinite reduction A(C,C) — A(C,C) — A(C,C) — ---, in fact a reduc-
tion cycle of length 1. Note that R is Cauchy converging, with limit A(C,C).
The projection R’ of R over the step A(C,C) — A(D, C), however, is no longer
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Cauchy-converging. For, this is A(D,C) — A(C,D) - A(D,C) — ---, a ‘two
cycle’. So, the class of infinite converging reduction sequences is not closed un-
der projection. This means that in order to get some decent properties of infini-
tary reduction in this sense, one has to impose further restrictions; Dershowitz
e.a. [DKP89] chooses to impose these restrictions on the terms, thus ruling out
e.g. terms as A(C, C) because they are not ‘top-terminating’. Another road, the
one taken here, is to strengthen the concept of converging reduction sequence.
This option is also chosen in Farmer & Watro [FW89].

A(C,C)—— A(C,C) —— A(C,C) >

A(D,C) —— A(C,D) —— A(D,C) >

Figure 42: Cauchy converging reduction with divergent projection

As the last example shows, there is a difficulty in that we lose the notion of
descendants which is so clear and helpful in finite reductions. Indeed, after the
infinite reduction A(C,C) — A(C,C) — A(C,C) — --- , with Cauchy limit
A(C,C), what is the descendant of the original underlined redex C' in the limit
A(C,C)? There is no likely candidate.

We will now describe the stronger notion of converging reduction sequence
that does preserve the notion of descendants in limits. If we have a converging
reduction sequence ty —+5, t1 —s, - -+ t, where s; is the redex contracted in the
step t; = t;+1 and ¢ is the limit, we now moreover require that

lim depth(s;) = 0. (%)

1—00
Here depth(s;), the depth of redex s;, is the distance of the root of ¢; to the root
of the subterm s;. If the converging reduction sequence satisfies this additional
requirement (%), it is called strongly convergent (see also Figure 43). The differ-
ence between the previous notion of (Cauchy-) converging reduction sequence
and the present one, is suggested by Figure 44. The circles in that figure in-
dicate the root nodes of the contracted redexes; the shaded part is that prefix
part of the term that does not change anymore in the sequel of the reduction.
The point of the additional requirement (x) is that this growing non-changing
prefix is required really to be non-changing, in the sense that no activity (redex
contractions) in it may occur at all, even when this activity would by accident
yield the same prefix.

Note that there is now an obvious definition of descendants in the limit
terms; the precise formulation is left to the reader.
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0 W w.2 w3 w?

depth of contracted redex tends to infinity
at each limit ordinal

Figure 43: Depth of redex contractions in strongly convergent reduction se-

AAAMA A

Cauchy converging reduction sequence: activity may occur everywhere

DS

Srrongly converging reduction sequence, with descendant relations

Figure 44: Cauchy convergence and strong convergence

In fact, we define strongly converging reductions of length « for every ordinal
a, by imposing the additional condition (*) whenever a limit ordinal A < « is
encountered. See Figure 43. (It will turn out however that only countable
ordinals will occur.) More formally:

Definition 9.5 Let (X, R) be a TRS. A strongly convergent R-reduction se-
quence of length o is a sequence (tg | B < a) of terms in Ter*™(X), together
with a sequence (sg | f < «) of redex occurrences sg in tg, such that

1. tﬁ —)SB t5+1 for all ﬁ < «,
2. for every limit ordinal X < a:

Vndp < A\WWv( p<v < A=d(t,,ty) <27" & depth(s,) > n ).

Often we will suppress explicit mention of the contracted redexes sg. If (t3 |
B < «a) is a strongly convergent reduction sequence we write tg —>4 to-
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Henceforth all our infinitary reductions will be strongly convergent. Now
we can state the benefits of this notion; for the full proofs we refer to Kennaway
e.a. [KKSV95a, KKSV97].

Compression Lemma 9.6 In every orthogonal TRS:
t oot =t <t

(Note that Counterexample 9.4 to compression for Cauchy converging reduc-
tions was not strongly converging.)

Infinitary Parallel Moves Lemma 9.7. In every orthogonal TRS:

to ———— ta

s descendants of s

~

tl > t*

That 1is, whenever tg —o to and tg —s t', where s is the contracted redex
(occurrence), there are infinitary reductions t' —4 t* and to, — t*. The latter
reduction consists of contractions of all descendants of s along the reduction
to —a ta-

Actually, by the Compression Lemma we can find 3,7 < w.

Remark 9.8

1. In every TRS (even with uncountably many symbols and rules), all transfinite
reductions have countable length.

2. All countable ordinals can indeed occur as length of a strongly convergent re-
duction.

3. For ordinary Cauchy convergent reductions this is not so: the rewrite rule C — C
yields arbitrarily long convergent reductions C' —¢, C. However, these are not
strongly convergent.

The infinitary Parallel Moves Lemma is “half of the infinitary confluence prop-
erty”. The question arises whether full infinitary confluence holds. That is,
given tg —4 t1, to —g t2, is there a t3 such that ¢; —, t3, t2 —s t3 for some
v,8?7 Using the Compression Lemma and the Parallel Moves Lemma all that
remains to prove is: given tg —, t1, tg — t2, is there a t3 such that ¢; —<,, t3,
to —><w t3?7 Surprisingly, the answer is negative: full infinitary confluence for
orthogonal rewriting does not hold. The counterexample is in Figure 45, con-
sisting of an orthogonal TRS with three rules, two of which are collapsing rules.
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Indeed, in Figure 45(a) we have C —, A%, C —, B“ but A“, B“ have no
common reduct as they only reduce to themselves. Note that these reductions
are indeed strongly convergent. (Figure 45(b) contains a rearrangement of these
reductions.)

AX) o X
B(x) - X
C - AB©)
@ (b)
C C
A(B(C)) ABC
/ \ !
AO B(C) ?\BABC
AABO)  BAGOY) ABABABC
l l M
/j(A(C)) l B(B(C)) ABABABABAB...
AAAB(C))  B(B(AB())) y \Q;
1 !
A(A(A(C B(B(B(C
i((()» l_((())) 0 W
. ’ o U

Failure of infinitary confluence

Figure 45: Counterexamples to infinitary confluence

However, we do have unicity of (possibly infinite) normal forms.

Theorem 9.9 For all orthogonal TRSs: Let t —o t', t =5 t" where t',t" are
(possibly infinite) normal forms. Then t' = t".

Here = denotes syntactical equality. Note that in the ABC counterexample in
Figure 45 the terms AY and B“ are not normal forms.

We will now investigate the extent to which infinitary orthogonal rewriting
lacks full confluence. It will turn out that non-confluence is only marginal, and
that terms which display the bad behaviour are included in a very restricted
class. The following definition is inspired by the corresponding notion in X-
calculus; see Section 3.3 or, for more details, Barendregt [Bar84].

Definition 9.10

1. The term ¢ is in head normal form if t = C[t1,...,t,] where C[,..., ]
is a non-empty context (prefix) such that no reduction of ¢ can affect
the prefix C[ ,..., ]. More precisely, if ¢ - s then s = C[s1,...,s,] for
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some s; (1 = 1,...,n), and every redex of s is included in one of the s;
(t=1,...,n).

2. t has a head normal form if t -» s and s is in head normal form.!2

Definition 9.11 If ¢ is a term of the TRS R, then the family of ¢ is the set of
subterms of reducts of ¢, i.e. {s | t - C[s] for some context C[ |}.

Theorem 9.12 For all orthogonal TRSs: Let t have no term without head
normal form in its family. Then t is infinitary confluent.

Actually, this theorem can be much improved. Consider again the ABC
example in Figure 45. Rearranging the reductions C —, AY, C —, B“ as in
Figure 45(b) into reductions C' —, (AB)¥ —, AY and C —, (AB)¥ —, B¥
makes it more perspicuous what is going on: (AB)“ is an infinite ‘tower’ built
from two different collapsing contexts A( ), B( ), and this infinite tower can be
collapsed in different ways.

Remark 9.13

1. The ABC example (Figure 45) is not merely a pathological example; the same
phenomenon (and therefore failure of infinitary confluence) occurs in Combina-
tory Logic, as in Figure 46, where an infinite tower built from the two different
collapsing contexts KOK and KOS is able to collapse in two different ways.
(Note that analogous to the situation in Figure 45, the middle term, built alter-
natingly from KOK and KOS, can be obtained after w steps from a finite term
which can easily be found by a fixed point construction.)

2. Also for A-calculus one can now easily construct a counterexample to infinitary
confluence.

Remarkably, it turns out that the collapsing phenomenon is the only cause of
failure of infinitary confluence. (The full proof is in Kennaway e.a. [KKSV95a].)
Thus we have:

Theorem 9.14

1. Let the orthogonal TRS R have no collapsing rewrite rules t(z1,...,Z,) —
xz;. Then R is infinitarily confluent.

2. If R is an orthogonal TRS with as only collapsing rule: I(x) — x, then
R is infinitary confluent.

Call an infinite term Ci[Ca]--- Cp[--+]---]], built from infinitely many non-
empty collapsing contexts Cj[ |, a hereditarily collapsing (hc) term. (A context
C[ ] is collapsing if C[ ] contains one hole O and C[ ] — O.) Also a term
reducing to a hc term is called a hc term. E.g. C from the ABC example in
Figure 45 is a hc term. Clearly, hc terms do not have a head normal form.

'2 Actually, this definition is equivalent to one of Dershowitz e.a. [DKP89]; there a term ¢ is
called ‘top-terminating’ if there is no infinite reduction t — t' — " — - in which infinitely
many times a redex contraction at the root takes place. So: t is top-terminating iff ¢ has a
head normal form.
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Sxyz ., xz(yz) Q(@(@(S, x), ), Z)a @(@(x 2), @(y, 2))
Kxy - X @(@(K, x),y) X

@ Q@

@ K @
K/ h K/h

collapsing contexts

/\ /\ K /\
/\ /\ /\
/\ AP /\
/\ NN /\
@/\K AR - /\
N NVAN /\
AW A8 /\
/\ NN /\

VAN PN

Failure of infinitary confluence for Combinatory Logic

Figure 46: Failure of infinitary confluence for CL

Theorem 9.15 Let t be a term in an orthogonal TRS, which has not a hc
term in its family. Then t is infinitary confluent.

This theorem can be sharpened somewhat, as follows. Let us introduce a new
symbol e to denote hc terms, with the rewrite rule:

t =, 0 iftisa hcterm.

We call e the ‘black hole’, because of its infinite collapsing behaviour. Of course
this rule is not ‘constructive’, i.e. the reduction relation —, may be undecidable
(as it is in CL, Combinatory Logic). However, we now have that orthogonal
reduction extended with —, is infinitary confluent.

10 Infinitary A-calculus

After our exploration of infinitary rewriting for the first-order case we now turn
to the same endeavour for A-calculus. In part, infinitary A-calculus is already
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wwy —— Q)

wWiwr

I(wrwr)

]Z(u)]w])

Iw

Figure 47: Fixed point of I: failure of PML in infinitary A-calculus

well-known in so far as Bohm Trees can be perceived as a kind of “infinitary
normal forms”, but before [KKSV95b] (since then superseded by [KKSV97])
this intuitive idea was not yet made precise. The basic idea to set the scene
for infinitary A-calculus is analogous to the first-order case. In particular, the
requirement of strong convergence is essential here again.

But there are some striking differences too. One of these is that PML does
not hold anymore, as the simple counterexample in Figure 47 demonstrates.

We use the abbreveations I = Az.xz, w = Az.zz, Q = (Ar.2z)(\z.21),
wr = Az.(zz). So wwr =g YI, where Y = Af.[\x.f(zz)][A\z.f(zz)],
Curry’s fixed point combinator. The limit I* = I(I(I(... is depicted as
an infinite term tree in Figure 49.

Both © and I* only reduce to themselves. Note that the infinite reduction
wwy — .-+ 1% is strongly convergent indeed, i.e. the contracted redex depth
tends to oo.

A fortiori, CR fails—but this we knew already from the first-order case, as
the counterexamples there can be transposed easily to infinitary A-calculus (e.g.
the example in Figure 46).

Many basic concepts easily generalize from finitary A-calculus to the in-
finitary case: normal form, (-reduction, substitution, a-conversion, etc. The
Finite Developments Theorem of course does not generalize, since an infinite
A-term may possess infinitely many redexes. But a satisfactory analogous fact
does hold: the end result of all strongly convergent complete developments of
some possibly infinite set of redexes in an infinitary A-term M is unique. The
complication here is that a set of redexes in M cannot always be completely
developed in a strongly convergent way. (E.g. take the redexes in I“.)

We did not yet stipulate what an infinite A-term actually is. The first
thought is that it is a possibly infinite unary-binary tree built from the binary @
(application), the unary Az (abstraction), and variables z, v, z, ... and possibly
constants, notably Q (to denote ‘undefined’), together with the ‘usual’ metric.

Remark 10.1 A different notation for Bchm Trees is employed in Barendregt [Bare84],
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where the nodes of such a tree are of the form either z, or 2, or:

ALy - Tn.Y
7 N
o... O

For obvious reasons, we call this the ‘head normal form notation’, or briefly hnf notation
(refer to Section 3.3). This notation is suitable for terms in normal form, among which
Bohm Trees; but the notation does not lend itself for representing terms containing
B-redexes.

Figure 48 gives as examples the finite term Az.y(zz) and the infinite Bohm tree
of the Y-combinator of Curry, BT(Y"), written in both notations. We will henceforth
employ only the ‘applicative’ notation.

Az.y Az

i :

| /N

T Y @
Az.z Az

L .

| N,

| RN
z T @]

Figure 48: \z.y(zz) and BT(Y) in hnf and applicative notation

Now, continuing with the definition of infinite A-terms, there is an interesting
ramification presenting itself. In Figure 49 we have displayed the term Iv,
encountered before, and its ‘mirror image’ “I, possessing an infinite left branch
of @-nodes.

This “I is an anomalous object; e.g. it is a normal form, but it is also
unsolvable (in the obvious generalization of that concept to the infinitary case).
We can exclude such unwanted terms, in a way that has some unexpected extra
benefits.

Trees composed of @- and Az-nodes have 3 dimensions in which they can
grow, depicted in Figure 50: down, left, right (dir).

We now define 8 notions of depth of an occurrence in a A-term, indexed by
the tuples listed in Table 6.

E.g. the 110-depth counts only d- and [-steps, disregarding the r-steps. So
the displayed occurrence of z in the term Azy.((zy)(Az.z)) (see Figure 51)
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Figure 49: Trees of the terms I and “I

AT Q Q
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Figure 50: Directions down, left, right
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Table 6: The 8 possible dlr-tuples
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Figure 51: Depth in a A-term
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has 110-depth 3. Accordingly, we define the usual notion of distance between
M,N € Ter(\) (Ter()) is the set of A-terms): it is 27" where n is the minimal
depth such that M, N differ at an occurrence of depth n. If M = N, their dis-
tance is 0. Now by parametrizing the depth d as before, e.g. 110-depth etc., we
have 8 metric spaces (Ter(\), dgpc) leading after completion to 8 complete metric
spaces (Ter®(A), dape) of finite and infinite A-trees. They can be equipped with
generalizations of the finitary notions of substitution, a-conversion, S-reduction
(now infinitary!) etc. Let us call these A-calculi Agpe.

One of the calculi, Mgy, is trivial as an infinitary calculus: it is the finite
A-calculus. Four others, Ag1g, Ao11, A100 and Ai19, turn out to be uninterest-
ing (they lack some basic properties, such as substitutivity of the reduction
relation). Three remain: Ago1, A1o1 and Aqig.

Note that I“ is an object (a term) in all three of Ago1,A101,A111; but
“I ¢ Ter(Aoo1), Ter(A101). And the term consisting of an infinite string of
abstractions Azg.(Az1.(Aza.... 13 is absent in Agg1, but is present in A1g; and
A111- Also any term which “would have” an infinite dl-branch (a ‘spine’ in the
sense of Barendregt et al. [BKKS87]) is absent in Ago;. (See the Remark 10.2
below).

(a) (b)
Axo )\|x0
Ax e
1
L
AXy
@
/N
Axy

Figure 52: Example of an infinite d-branch and an infinite dl-branch

It turns out that the three infinitary calculi Agg1, A1g1, A111 are the natural
home resorts for two well-known concepts and one recently emerged:

- Ago1 contains the B6hm trees BT (M),
- A101 contains the Lévy-Longo (or lazy) trees LLT (M),
- A111 contains the Berarducci trees BeT(M).

Béhm trees are well-known (see Barendregt [Bar84]). For LL-Trees, in lazy
A-calculus, see Abramsky & Ong [AO93]. For Berarducci trees, see Berar-
ducci [BI96]. The latter arose in studies of consistent extensions of A-calculus.
For a general introduction to these three models we refer to Kennaway et
al. [KKSV93] and Kennaway et al. [KKSV95a].

13Note that due to a-conversion there is only one such term, not continuum many as oth-
erwise would be the case.



Descendants and Origins in Term Rewriting 57

BT | LLT | BeT
(B-reduction ° ° .
M —uns Q if M has no

hnf/has no whnf/is mute * ° °
Q-rule QM — Q ° °
Qg-rule Az.Q2 — Q .

Table 7: Infinitary A-calculi compared

The three models (BT, LLT, BeT) employ different notions of undefined.
In the BT-model Agg1, terms without head normal form (i.e. the unsolvable
terms) are equated to Q. In the LLT-model \1g1, terms without weak head
normal form are equated to §2. In the BeT-model A11; mute terms are equated
to €. In all three calculi we obtain the BT’s, LLT’s, BeT’s in a uniform way as
infinitary normal forms with respect to the notions of reduction as in Table 7;
each consists of f-reduction, the ‘unsolvable rule’, and 0,1 or 2 Q-simplification
rules according to the dlr-parametrization discussed so far.

All three of these notions of reduction are infinitarily confluent, so the cor-
responding trees (BT’s etc.) are unique.

Viewing Bohm trees as normal forms obtained by a possibly infinite reduc-
tion is obviously a view that is totally different from the more usual alternative
definitions using coinduction or direct approximations and ideal completion.
The main difference is that now we can obtain information by inspection of the
reduction sequence yielding the Bohm tree, as indeed we will do now.

Remark 10.2

1. The term consisting of an infinite list of abstractions Z = Azg.(Az1.(Az2. ... can
be obtained as the fixed point YK where K = Azxy.xz. In Agp; we have Z = Q,
but not so in Ajp;- Indeed, every term Z such that Z = Zy —» Azxo.Z1,2Z; —»
Ar1.29, Ly = Ax9.Z3,. . ., is unsolvable. Likewise, every term that would ‘gener-
ate’ in a similar manner an infinite dl-path (from the root) is unsolvable.

2. With respect to the partial order >q (called Q-refinement) we have for all M:

BT (M) <q LLT (M) <q BeT(M).
So Berarducci Trees contain most information, Béhm Trees the least.
3. As to the domains of the three models:
Ter(Xoo1) C Ter(Ao1) C Ter(Aq11).

4. An example of a nontrivial Berarducci Tree that trivializes (i.e. = Q) in both
Aoor and Aqor:

Q3I, where Q3 = wsws = (Az.xzzz)(A\z.zT2).

The Berarducci Tree of this term is depicted in Figure 53. It is a so-called ‘easy’
term, i.e. one that can consistently be equated to any desired A-term.

5. For the terms in Figure 49 we have BT (I¥) = LLT(I¥) = BeT(I¥) =
BT(“I) = LLT(“I) = Q. BeT(“I) is the nontrivial infinite tree displayed there.
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AN
AN
7N\

3

Figure 53: Example of a Berarducci tree

11 Origin tracking in infinitary A-calculus

In the previous section we have set up a framework for infinitary A-calculus
that enables us to compute Bohm Trees (and Lévy-Longo Trees, and Berar-
ducci Trees) by infinitary rewriting. In this section we will apply this rewrite
system to obtain a perspicuous proof of an important theorem due to G. Berry
that establishes the inherently sequential nature of evaluation in A-calculus.
(Other proofs can be found in Berry [Ber78],[Ber79], Barendregt [Bar84], Curien
[Cur93].) We will restrict ourselves to the case of Bohm trees, but we expect
that the same analysis can also be applied to the other two kinds of trees (LLT
and BeT).

Analogous to the sections 7 and 8 we will start from the normal form
BT(M), and then trace back the origin of an Q in BT(M) all the way to
M. The difference is that now we are dealing with infinite terms (trees) and
infinite reductions. Let us first consider Berry’s Sequentiality Theorem (BST).
It states that, given a AQ2-term M as ‘input’, the ’s in the Bohm tree of M,
BT (M), the ‘output’, are causally related in a very specific way to the 2’s in
the input. Namely either

1. an output €2 is not causally related to any of the input 2’s, or
2. an output 2 is caused by precisely one of the input (’s.

In Figure 54, this situation is depicted. Note that an input €2 may be the ‘cause’
of several (even infinitely many) output €’s. But never will one output 2 be
caused by more than one input 2. Case 1 means that no refinement of the
input ’s will cause a proper refinement of the considered output €2; case 2
means that a proper refinement of the considered output €2 can only be realized
by a proper refinement of the one input €2 that is the cause, the origin, of the
considered output €2. More precisely stated:

Theorem 11.1 [Berry [Ber78]] Let M € Ter™(\2) and let Q2 occur in BT (M)
at position p (notation BT (M) |,= ). Then one of the following two cases
holds:
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Figure 54: Causal dependence of Q’s in Bohm tree from those in original term

1. The Q 1is independent of the Q’s in M. This means that no refinement of
M 1is able to give more information at position p, i.e.

VM' >q M BT(M') |,= .

2. There is an Q in M which causes the 0 at position p in BT (M). This
means that ) at p is insensitive for increases at any of the other Q’s in
M and, moreover, that 2 at p will be properly increased when the Q0 in M
1s refined to a fresh variable z, i.e. there exists some context C such that
M = C[Q] and for all one-hole contexts C' >q C and every fresh variable
2,

BT(C'[Q)) |,= Q and BT(C'[2]) |,# Q.

Berry’s Sequentiality Theorem can be used to prove the non-definability of
‘parallel-or’ and other parallel functions. See Appendix E, where the non-
definability (in A-calculus) of ‘parallel-or’ is proved.

As said, the idea is to trace back a given Q in BT (M) for M € Ter(AQ2)
to its origin in M. Now there are two cases. Either the 2 under consideration
traces back to a unique 2-occurrence in M, or € has no origin at all. This will
happen if the €2, or rather the unsolvable AQ2-term that gave rise to the €, is
created along the way (see Section 4.6).

Let us consider the rewrite system that is used to trace back the Q €
BT (M). In first approximation this is the system in Table 8. Note that we do
not have £ —,,s €2, since €2 is not an unsolvable AQ-term; see the definitions
in Section 3.3 and 3.5.

In order to define the tracing relation that we need, we now lift this rewrite
system to a labeled version, as in Table 9.

So we have in fact partially labeled A\Q2-terms (or in other words, one of the
labels is the empty label). As in the simply labeled A-calculus (Definition 4.1,
Table 1) the labels are simple letters a,b,c,.... Now the tracing relation is
given as before in the simply labeled A-calculus, by identity of labels. That is,
in the rule ; the Q in the righthand side traces back to the displayed €2; the
Q) in the lefthand side—and not to the whole term. Likewise for the Q4-rule.
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(Az.M)N —g M|z := N]
M —yns ©, if M is unsolvable
QM —; Q

Az =4 Q

Table 8: Bohm reduction

B ((A\z2.2)*Z")° -5 Z[x := Z']
uns M —yuns Q, if M is an unsolvable AQ2-term
Q  (QeM)b — Q°

Q. (Az.Q9)b -4 Qo

Table 9: Labeled Bohm reduction

Example 11.2 Figure 55 gives an example of the tracing relation that results from
the following labeled B6hm reduction.

(A2 Xy (z°QH))QN" =5 Ay (Q904)°
—1 )\by.Qg
—>d 95

Note that origins, if they exist, are unique. (But in contrast to the situation
in Section 7, not everything has an origin.) Moreover, they are independent of
the actual reduction sequence. For finite reductions this follows from the fact
that labeled Bohm reduction is confluent; the proof is not much harder than
the confluence proof in Barendregt [Bar84] for the (unlabeled) AQ2-calculus.

It still may not be clear how we can trace back an 2 in BT (M) to M, since
an infinite reduction M —, BT(M) is involved here. Figure 56 clarifies the
working of this procedure. We have the infinite reduction M = My — M; —
-ev = M, — ---M, = BT(M). Let Q occur in M, at position p. We wish
to trace back € to the original term My. Let n be the depth of Q in M,,.
Then from some M} onwards, the redexes contracted are deeper than n. So in
the tail of the reduction sequence from My to M, the prefix up to n of M,
Myi1,...,M, is ‘at rest’. So we can take the ancestor of {2 in My, via the trivial
descendant relation.
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Q@ — o N ——,
7\ | |
Az® Qs ' @ o
/N
YL - Q o
Qe
/N
z° 0

Qg

Figure 55: Origin tracking

no redex activity in this
area

tracing ordinary descendant

relation

— depth n

Figure 56: Tracing back along infinite reduction sequence
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From M} to M, the symbol €2 can now be traced back by the definition of
tracing given above. In this way we see that an Q in BT (M) traces back to a
unique symbol €2 in M—or it has no origin at all.

Finally, we can with little effort establish the properties concerning refining
of s that BST asserts, by following the infinite reduction from M to BT (M)
step by step, and apply the fact that § and >o commute. (See Proposition 7.9.)

Remark 11.3 The above proof sketch applies, mutatis mutandis, just as well to LLT’s
and BeT’s. In that case we need not both rules ; and €24, but as already displayed in
Table 7, only €; for LLT’s and none of the rules €2;, Qg4 for BeT’s.

Acknowledgements. We thank Henk Barendregt, Stefan Blom, Gérard
Boudol, Vincent van Oostrom, Gordon Plotkin and Femke van Raamsdonk for
help and useful discussions. Vincent van Oostrom was particularly helpful in
pointing out the norm used in the proof that needed reduction is hypernormal-
izing and in pointing out some errors.

12 Appendices

Appendix A: Parallel reduction a la Aczel

We compare the notions of parallel reduction as it usually employed in proofs
of CR due to Tait and Martin-Lof, and the amended notion that was proposed
by Aczel [Acz78]. For an extensive discussion see van Raamsdonk [Raa96].

We use the notation —e+ for parallel reduction. In the style of Tait and
Martin-Lof, it is defined by the inductive clauses in Table 10. It characterizes
complete developments, in the sense that M —» N if and only if there is a
complete development from M to N.

M —o+ M

M — M’
Ae. M —e> \x. M’

M —o M’ N —> N/
MN —e> M'N!

M —> M’ N -3 N’
(Az.M)N —o» M'[z := N']

Table 10: Parallel reduction & la Tait & Martin-Lof

In Aczel [Acz78] the last clause is replaced by:
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M —e Az. M’ N -3 N’
MN —e3 M'[z := N']

Now there is a complete (-superdevelopment form M to N if and only if
M —e+ N according to Aczel’s definition.

Example 12.1 In the first definition, due to Tait and Martin-Lof, we do not have
IIIT —e» I (with I = Az.z); in Aczel’s definition we do.
Likewise (Azyz.zyz)abc —e+ abc and even IT(Azyz.xyz)abc —e+ abce.

Appendix B: Failure of FD for \-residuals

We give the counterexample to Finite Developments for the notion of A-residual
in A@n from Klop [Klo80]. See Definition 5.3.

The following is an infinite reduction in which all the contracted redexes are
A-residuals of redexes in M.

My, = Aoz.zx)(A12.(Aoy.yy)2)

A1z.(Aoy.yy)z)(A1z.(A2y.yy)2)

(
o (

= (Aeyyy)(Mz.(A2y.yy)2)
(

= = (Ay.yy)(Mz.(Aey.yy)z)

_)

Note that FD does hold for (ordinary) CF-residuals in A\37n. See e.g. Baren-
dregt, Bergstra, Klop and Volken [BBKV76], Chapter II, using the method of
decreasing weights (also used for FD in AJ in Barendregt [Bar84]). FD also
holds for cluster residuals (de Vrijer [Vri89]).

Appendix C: Collapsing reductions

In this section we will treat the case of collapsing reductions and verify in detail
that the main properties of the needed prefix, Corollaries 8.27-8.31, carry over
to the presence of collapsing reductions.

Definition 12.2 Let R be an orthogonal TRS. To R we associate a TRS R; as
follows. We extend the signature of R with the unary function symbol e. We
will use the collapsing rule (z) — z, and call it the e-rule. If ¢ reduces to s by
applying the e-rule, we say that ¢ is an e-expansion of s.

Now let r : ¢ — s be a rule from R. Then R. will contain all rules (in
the extended signature) of the form t* — £(s), where ¢* is an e-expansion of ¢
obtained by e- expanding some internal subterms ¢ of ¢ to €(g). (A subterm
(occurrence) g of ¢ is internal if it is not a variable nor the whole ¢.) Call the
collection of all such rules: r¢.

Now R, has as rules the union of ¢ for all rules in R.

Example 12.3 Let r be the collapsing rule A(z,0) — z. Then 7° consists of the rules
A(z,0) — e(x), A(z,e(0)) — &(x), A(z,e(e(0))) — e(z) etc.
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Proposition 12.4 Let R be an orthogonal TRS. Then R, is an orthogonal
TRS with only non-collapsing rules.

Proof. That R, is non-collapsing is clear. Left-linearity of R, is also clear.
The rules of R, are also non-overlapping. For suppose there is an overlap, then
removal of €’s would yield an overlap between rules of R. Making this argument

more precise is routine. O
o W » §* to 3 tl* —p tz* ...... —Pp tn*
|
|
& € i € € €
v
v
t——Ps
n

Figure 57: Lifting of reductions

Proposition 12.5 [Lifting of reductions]

1. Let t —, s be a reduction step in R according to rule r. Let t* be an
e-expansion of t. Then for some rule re € r® and e-expansion s* of s we
have t* —,_ s*. (See Figure 57(i).)

2. A reduction tg =ty — -+ — t, can be "lifted” to a reduction ty =ty —
t} — ... =t} in R, as in Figure 57(ii).

Proof. Straightforward from the definitions. O

We can now state the definition of [> also when collapsing rules are present.
Note that this formalizes the verbal description that was given in four clauses
in Definitions 8.6 and 8.8.

Definition 12.6 Let R be an orthogonal TRS, possibly with collapsing rules.
Let t9 =& t1 — --- — t, be a reduction in R. We define the relation > C
Symb(ty) x Symb(t,) as follows. (Here Symb(t) denotes the set of symbol
occurrences in ¢.)

1. Lift the reduction to to = tj — t] — ... = t; in R,.

2. Consider the relation > C Symb(tg) x Symb(t}) as defined above for the
non-collapsing case.

3. “Project back” > to Symb(ty) x Symb(t,), by forgetting £’s. More pre-
cisely:
Let t € Ter(R.) and let t. € Ter(R) be the e-normal form of ¢. Then
to each occurrence of p € t there corresponds in the obvious way an
occurrence p, of te.
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Now let t,s € Ter(R,), with > C Symb(t) x Symb(s), and define >, C
Symb(t.) x Symb(s.) by:

PP q = DeDe Qe
Then >, is the relation that we aimed to define.

It is now crucial that Proposition 8.20 generalizes to the case of collapsing
rules.

Proposition 12.7 All prefizes obtained by tracing back the normal form have
the rpc-property.

Proof. We assume the proposition proved for the non-collapsing case, as in
Section 8.7.

Consider a reduction R : tg — --- — t,, where ¢, is in normal form, in
R. Lift this reduction to R* : tg — -++ — ¢ in R.. Let 7*(to) be the prefix
obtained by tracing back the R.-normal form ¢} to ¢y via R*. As before, 7(tp)
is the prefix obtained by tracing back t, to ty via R.

Note that 7(tg) = 7*(tg), by the trace definition for the collapsing case. Now
suppose that m(ty) would not have the rpc property. Then there is an R-redex
r whose pattern crosses the border of 7 (¢y). But an R-redex is also an e-redex;
so the rpc-property would fail for R., contrary to our initial assumption. O

This proposition entails that the commutation of Q- and R-reduction (which
rests on the rpc-property) generalizes to the collapsing case. Hence also Propo-
sition 8.24; hence also 7(tg) — tn; and hence Corollary 8.27: the prefix 7 (tg)
contains a redex pattern. Also the other three corollaries of Proposition 8.24
go through.

Appendix D: Transitivity of the descendant relation

In this Appendix we elaborate the claim made in Remark 8.13. We start with
a simple observation about substitutivity of labeled reduction.

Definition 12.8

1. A label substitution is a map from atomic labels to the set of labels,
extended to the set of labels in the obvious (homomorphic) way.

2. If t! is a labeled term and o a label substitution, t() is the labeled term
obtained by substituting for every atomic label a the label o(a).

3. if t/ is a labeled term, p a symbol (occurrence) in ¢, and « its label, we
simply write p® € t/.

Proposition 12.9 [Substitutivity of labels]

1. Let t' — 57 be a labeled step. Let o(I) and o(J) be obtained from I,.J by
label substitution o. Then t°(0) — s7(),
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2. Let t! — 57 be a labeled step; and let t10 — s7° be an initially labeled step.
Then I,J are label substitutions of Iy, Jo: i.e., I = o(ly), J = a(Jy) for
some label substitution o.

a
L t
4 4
t
a° t,
-/\- thea
q

Figure 58: A tree of descendants

Proposition 12.10 Lett =ty — t1---t, = s be a reduction. Let > be defined
by transitivity as suggested in Remark 8.13 and let >' be defined directly without

re-initialisation of labels after each step. Then > = >'.

Proof. Induction on n, the length of the reduction.

Basis. If n = 1, the statement follows by definition.

Induction step. Consider a reduction t = tg — t1---tnt1 = s. (See Fig-
ure 58.)

1. (> C >'.) Take p € ty, q¢ € tyy1 such that p>q. To prove p > gq.
Give tg an initial labeling I = Iy, and lift the reduction to

(t0)™ = (t)" = -+ = ()™ = (tns1) ™+,

Let p have label a. We must prove that the label o of ¢ in ¢,41
contains a. By definition of >, there is some ¢’ in ¢, such that
p> ¢ > ¢. By induction hypothesis p >’ ¢', so (definition of >') ¢’ in
(tn)'" has some label a containing a: o = ———a———. Now consider
¢’ > q. Re-initialising the labels in ¢,, we have in the step ¢, — t,11:
¢ > gt-¢). By the preceding proposition on label substitutivity
we therefore have in (t,)™ and (t,4 1)+, respectively, the labeled
symbols ¢® and ¢~*+ = ¢+~ ~% . So the label of ¢ indeed
contains a, and therefore p >’ q.

2. (>’ C 1>.) In the labeled reduction
(o)™ = (t1)™  (t)™ = (tns1)™*,

let p® € (tg) and ¢~ %"~ € (tpy1)™+, so p >’ q. To prove:
p > q. Consider the ancestors of ¢ in %, with respect to >. Clearly
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at least one of these ancestors, say ¢’, must have a label containing
a. (By (ii) of Proposition 12.9 on label substitutivity.) So p > ¢’ by
induction hypothesis, and p > ¢’ > ¢, yielding p 1> q.

Appendix E: Undefinability of parallel-or

We would like to define a A-term P (‘parallel-or’) together with A-terms T
(‘true’) and F (‘false’) satisfying for all AQ-terms X:

PXT =5 T (1)
PTX =5 T (2)
PFF =3 F (3)

For T, F we can take as in Barendregt [Bar84] Azy.xz and Azy.y respectively.
Now we can prove using BST and basic properties of Béhm Trees that such a
A-term P does not exist.

Consider BT (PQS). Since PQQ <q PzT (for some arbitrary variable z),
we have by monotonicity of BT’s and (1) that BT (PQS2) <q T'. Likewise, using
(3), we have BT (PQX2) <q F. Since 2 is the only ‘minorant’ of both 7" and F,
we have

BT (PQQ) =Q (%)

Now we can apply BST, and conclude that the € in the right-hand side of (x)
is in one of three cases:

Case 1 The Q2 has no origin in PQf2.
Case 2 The  has as origin the first Q2 in PQSQ.

Case 3 The 2 has as origin the second 2 in PQSQ.

Ad case 1 According to BST, the Q in the right-hand side then is insensitive
for increases at the two input Q’s in PQS2. However, refining to PFF
yields as BT output F, by equation (3); and this is a proper refinement
of 2. So this case does not apply.

Ad case 2 Now BST states that the right-hand side Q2 is insensitive for in-
creases of the second 2 in PQS). However, refining to PQT and using (1)
we have as BT output 7', a proper refinement of € in the right-hand side.
So also this case is impossible.

Ad case 3 Now BST and (2) yield the impossibility.

We conclude that there is no AQ-term P with the desired behaviour (1)-(3).
A fortiori there is no such A-term.
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