A calculus of lambda calculus contexts

Mirna Bognar and Roel de Vrijer (mirna@cs.vu.nl,rdv@cs.vu.nl)
Vrije Universiteit, Amsterdam

Abstract. The calculus Ac serves as a general framework for representing contexts.
Essential features are control over variable capturing and the freedom to manipulate
contexts before or after hole filling, by a mechanism of delayed substitution. The
context calculus Ac is given in the form of an extension of the lambda calculus. Many
notions of context can be represented within the framework; a particular variation
can be obtained by the choice of a pretyping, which we illustrate by three examples.

1. Introduction

The central notion in this paper is that of context, i.e. an expression
with special places, called holes, where other expressions can be placed.
For example, in the lambda calculus, (Az.0) z, where O denotes a hole,
is a context. In formal systems with bound variables, such as lambda
calculus, a distinctive feature of placing an arbitrary expression into a
hole of a context is variable capturing: some free variables of the expres-
sion may become bound by the binders of the context. For example,
placing the expression zz into the hole of the context above results in
the expression (Az.zz)z, where the free variable x of the expression
has become bound by the binder Az of the context.

In many formal systems, the standard transformations, which are
defined on expressions, are not defined on contexts. This implies that
contexts are treated merely as a notation, which hinders any formal
reasoning about contexts and the interaction with expressions put into
their holes. Our objective is to add contexts as first-class objects, and
to gain control over variable capturing and, more generally, ‘communi-
cation’ between a context and expressions to be put into its holes.

1.1. MOTIVATION, APPLICATIONS AND RELATED WORK

The starting point of our research has been De Bruijn’s calculus of
segments, which was proposed in the context of the family of proof
checkers Automath. From a broader perspective, the increasing inter-
est in contexts has its motivation from many directions, as diverse as
modeling programs and program environments, operational semantics
and dealing with anaphora in natural language representation. In all
these cases there is a need for manipulating contexts on the same level
as expressions. The study and formalization of contexts has been the

';:‘ © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

contexts.tex; 8/01/2001; 18:58; p.1

2

subject of various papers; we list a few from the problem areas just
mentioned.

In [6], N.G. de Bruijn introduced a lambda calculus extended with
incomplete terms of a special form, called segments. The purpose of
segments was facilitating definitions and manipulation of abbreviations
in Automath (see [16]). Technically, segments can be characterized as
contexts with precisely one hole at a special position. The segment
calculus included means for representing segments, variables over seg-
ments and abstraction over segments. In [2, 3] H. Balsters gave a
simply typed version of the segment calculus and proved confluence
and subject reduction.

With the goal of optimalization of interactive proof checking, L.. Mag-
nusson (see [13]) presented an algorithm for incomplete proofs. The
algorithm is designed for Martin-Lof’s type theory with explicit sub-
stitutions and it is used in the proof editor ALF. The unfinished parts
of a proof are denoted by placeholders, which are assigned a type
and a local context. When filling in a new part of a proof into a
placeholder, it is sufficient to check the new part. With the goal of
representing incomplete proofs and supporting incremental proof de-
velopment and higher-order unification, C. Mufioz presented in [15] a
name-free explicit substitutions calculus with dependent types and with
meta-variables over the missing parts of an expression. In both formal-
izations, filling of the missing parts of an expression is an operation,
which ‘commutes’ with (a refined version of) S-reduction.

With the development of programming languages in mind,
M. Hashimoto and A. Ohori (see [8]) proposed a typed context calculus,
which is an extension of the simply typed lambda calculus. The type
system specifies the variable-capturing nature of contexts with one hole
using a-sensitive interface variables. The relations of g-reduction and
hole-filling reduction are combined, under the restriction that no (-
steps are allowed within a context. With the aim of building a theory
of separate compilation and incremental programming, S.-D. Lee and
D. Friedman (see [12]) designed a schema for enriching lambda calculus
with contexts. They employ contexts for modeling program modules
and their calculus for modeling module linking. In their calculus the
binders in contexts are treated as identifiers whose binding scope is by
compilation extended to objects filled into the holes. Computation is
performed by (-reduction and additional compilation rules. M. Sato,
T. Sakurai and R. Burstall (see [22]) defined a simply typed lambda
calculus with first-class environments. The calculus is provided with op-
erations for evaluating expressions within an environment and includes
environments as function arguments.

contexts.tex; 8/01/2001; 18:58; p.2

3

For dealing with contexts in operational semantics, D. Sands (see
[21]), contributing the idea to A. Pitts, proposed a representation of
contexts with function variables for holes, meta-abstractions over vari-
ables to be captured for terms to be filled into the holes, and sub-
stitution of hole variables for hole filling. Using this representation,
the operation of hole filling is freely combined with S-reduction. With
the same motivation, I.A. Mason (see [14]) extended the syntax of
lambda calculus with denotations for holes labeled by a substitution.
He introduced two notions of variable replacement, weak and strong
substitution, which differ in the behavior at hole labels. Weak substi-
tution is used for a- and S-reduction, and for filling holes with terms.
Strong substitution is used for filling holes with contexts. Hole filling
is defined as an operation, which ‘commutes’ with 8-reduction.

With the purpose of modeling binding mechanisms in natural lan-
guage, M. Kohlhase, S. Kuschert and M. Miiller (see [11]) introduced
dynamic lambda calculus as an extension of the simply typed lambda
calculus with declarations. In their approach the scope of
binders sometimes extends the textual scope of a sentence. Declara-
tions are a-sensitive and F-reduction is not defined on declarations.
In addition to types, expressions are provided with modality, which
describes their variable binding power.

Other contributions to the formalization of contexts have been made
by C.L. Talcott [23] and S. Kahrs [9].

1.2. OUR APPROACH

Although emerging from different fields of research, with different mo-
tivations, the problem of formalizing contexts and communication can
be tackled uniformly. The context calculus Ac can serve as a uniform
framework for representing different kinds of contexts. It is an exten-
sion of the lambda calculus with facilities for representing contexts
and context-related operations such as filling the holes of a context by
expressions (called ‘hole filling’) or by contexts (called ‘composition’),
and establishing the (explicit) ‘communication’.

Communication is meant here in the broad sense of interaction
between a context and the expressions that are put into its holes.
In particular, we present a technique that allows us to control the
passing of variable bindings. This regards not only potential capture
of a variable by a binder in the context, but also passing on imminent
substitutions that emerge from earlier G-reduction within the context.
It is accomplished by giving both the context and the holes, as well as
the expressions that are candidates to be filled in, a functional represen-
tation. There is an analogy to techniques used in higher-order rewriting

contexts.tex; 8/01/2001; 18:58; p.3

4

(see for example J.W. Klop [10], T. Nipkow [17], V. van Oostrom & F.
van Raamsdonk [19]), and in the field of higher-order abstract syntax
(see for example F. Pfenning & C. Elliott [20], J. Despeyroux, F. Pfen-
ning & C. Schiirmann [7]), where variable capturing is accomplished
by a substitution calculus. Similar techniques are applied in the work
of D. Sands which we already mentioned.

An important characteristic of our approach is that we also give
the contexts a functional representation. This is accomplished by A-
abstracting the hole variables; a context is seen as a function of its holes.
It is in this way that a calculus arises, where contexts can be freely
manipulated on the object level and where hole filling is computed
within the calculus, as opposed to hole filling as a meta-operation. More-
over, having contexts as objects is essential for having functions over
contexts. Such a calculus is necessary for applications in proof checking
(segment calculus) and in linguistics, as can be seen in the previously
mentioned work of N.G. de Bruijn, H. Balsters and M. Kohlhase et al.
A functional representation of contexts is also present in the work of
M. Hashimoto and A. Ohori.

The power of our calculus is its expressivity, which is achieved by on
the one hand a flexible syntax, and on the other hand the possibility of
term-formation restrictions within the framework. The syntax allows
for a first-class treatment of contexts by having explicit abstraction
over context variables and free context manipulation. Term-formation
restrictions are implemented by ‘pretypings’. Via the choice of an ade-
quate pretyping different notions of context can be represented within
Ac. Last but not least, the calculus can directly be translated to lambda
calculus. Bearing this in mind, we perceive Ac as a comfortable level of
abstraction for dealing with contexts as first-class objects.

1.3. OUTLINE

The paper is organized as follows. Section 2 introduces and analyzes
first informal notions of context in the lambda calculus, and then an
example of the use of contexts in proof checking. Section 3 explains the
working of our context calculus. Section 4 defines the context calculus
Ac, the untyped version of the framework. Section 5 contains the proof
that Ac is confluent. Section 6 contains three examples of pretyping for
different notions of context, including De Bruijn’s segments. Section 7
summarizes this all and suggests some directions for future research.

contexts.tex; 8/01/2001; 18:58; p.4

2. Examples of contexts

In this section we first describe contexts as they are encountered in the
lambda calculus literature, usually as an informal notational device.
Then we give a simple example of the use of contexts in proof checking.

2.1. INFORMAL NOTIONS OF CONTEXT IN THE A-CALCULUS

The standard theory of the untyped and simply typed lambda calculus
with constants is presupposed; the interested reader is referred to [4].

A context over A-terms, or a A-context for short, is basically a -
term with some holes in it. Contrary to A-terms, A-contexts are not
considered modulo a-conversion (in the name-carrying representation),
nor are A-contexts subject to G-reduction. That means, for example,
that Az.0 #, Ay.0 and (Az.x0)y A5 yO.

We distinguish two basic context-related operations, both concerned
with filling holes. The first operation, called hole filling, deals with
placing terms into the holes of a context. The second operation, called
composition, deals with putting contexts into the holes of a context.
For example, the composition of A-contexts A\z.0 and x(Ay.0) results
in Az.z(Ay.0). In both operations, when a term or a context is placed
into a hole of a context, variable capturing may occur. The difference
between these operations is, in addition to the difference in the objects
that are placed into the holes (terms vs. contexts), in the resulting
object: a A-term, in the case of hole filling; and a A-context, in the case
of composition. The resulting objects are denoted as C[M] and C[D]
where C' and D are contexts, M is a term and where [] denotes the
textual replacement of the hole(s) in C by M or D.

As a matter of fact, several variants of this simple view on contexts
exist. The first possibility for variation is in the number of holes allowed
in a context: precisely one (as for example in [10]), or many, including
zero. The second possibility for variation is, in the case where many
holes are allowed, in the way these holes are treated: as copies of the
same hole, which therefore must be filled with the same term (as for
example in [4]); as copies of different holes, which therefore may be filled
with possibly different terms; or as combination of both treatments by
distinguishing between holes and hole occurrences.

A formalization of A-contexts should ideally provide means for rep-
resenting contexts and context-related operations, as well as rules for
computing these operations, and, moreover, should extend the standard
rewrite relations to (the representations of) contexts. The major prob-
lem in a naive formalization is that the standard rewrite relations do

contexts.tex; 8/01/2001; 18:58; p.5

6

not commute with the new context reductions. Confluence is lost and,
consequently, the corresponding equational theory is inconsistent. The
non-commutation of S-reduction and hole filling is demonstrated by the
next example, where a representation for hole filling, hf (here seen as an
operator), has been introduced, where hole filling is computed by fill-
reduction and where §-reduction has naively been extended to contexts;
a similar example of non-commutation can be given for a-conversion

and hole filling.

Ezample 1. Let C = (Az.z0O)y and M = z. Then

hf (C, M)
= hf((Az.z0)y, z) hf (C, M)
—a (Az.zz)y but —5 hf(yO, z)
-8 Yy —fll YT
= N % N.

In the example, the reductions end in different terms because in the
reduction on the left the substitution [z := y], which emerged from
the rewrite step in context C is applied to the term M, while in the
reduction on the right the substitution is not applied to the term M,
but only to the hole, which ‘forgets’ it. Note that the result of the left
reduction is the intended one.

What is needed is a way of denoting the intended bindings, which
keeps track of a-conversion or (-reduction in the outer context and
passes the effects of these reductions on to the terms (or contexts)
replacing the holes. We call this interaction between holes and objects
to be put into the holes communication. It is common to both hole filling
and composition and it can be tackled separately. Then hole filling and
composition reduce to replacing holes, without any communication.

Accordingly, the reduction on the right can be repaired by explic-
itly keeping track of these «,-changes and applying the resulting
substitution to the term after hole filling:

W (Az.z0)y,) =5 hf(yol™= 2) —a y(z[z = y]) = yy.

The problem of establishing communication is reduced to the encoding
of this substitution.

2.2. AN EXAMPLE FROM PROOF CHECKING

What is still missing in the above account of A-contexts is the use of
variables for contexts, which then also can be abstracted. We illustrate
this with an example from type theory, when used for the representation
of mathematical concepts, in the realm of proof checking.

contexts.tex; 8/01/2001; 18:58; p.6

7

A context that is suitable for reasoning about reflexive relations,
and hence in a way representing the notion of reflexive relation, could
be the following:

M : Set.AR: (A — A — Set).Arfl : (Vo : A.Rzx).O.

Let us call this context refl. Then, an argument on reflexive relations,
say a piece of mathematical text text, can be performed within this
context, via hole filling:

hf (refl, teat).

In text the identifiers A, R, rfl can then be used. In a larger piece of
text this can happen more than once. Say in a proof term

P(hf (refl, text1), hf (refl, texta), hf (refl, teats)).

An efficient representation, without the need to repeat refl, could then
be given as:

(Ac.P(hf (c, texty), hf (c, texta), hf (c, texts)))refl.

Once expressions of this kind are allowed, also explicit hole abstraction
becomes very natural, if not unavoidable.

The use of the context refl that we indicated is also a typical example
of a segment, according to N.G. de Bruijn [6]. A technical treatment of
segments using our calculus Ac will be given in Section 6.3.

3. An introduction to Ac

The main aspects of the context calculus are sketched. A formal de-
scription of the calculus is given in Section 4.

Contexts. A context will be considered as a function over the pos-
sible contents of its holes. For this reason, in the context calculus
hole variables h, g, k, . .. are introduced and contexts are represented as
functions over (one or many) hole variables. The abstractor* for hole
variables is denoted by d,, where n € IN is the number of variables
which é,, binds.

Communication. At first sight, it seems natural to use explicit substi-
tutions (see for example [1]) for communication, by for example labeling
holes with a substitution, viz. 0. This idea can be found e.g. in the
work on contexts of L. Magnusson [13], C. Mufoz [15], I.A. Mason [14]

* The symbol ¢ is used also by M. Hashimoto and A. Ohori for abstracting hole
variables, but only as a ‘unary’ abstractor.

contexts.tex; 8/01/2001; 18:58; p.7

8

and M. Sato et al. [22]). In the present paper it is our objective to
reduce the whole matter of context manipulation to the very basic and
well-understood notions of A-abstraction and fg-reduction. An explicit
substitution calculus could then be used to eliminate 8-reduction again,
for example with the purpose of giving an efficient implementation. At
this point we think it is profitable to separate the two issues.

So we take a basic, lambda-calculus-like approach, and solve the
problem of encoding communication by using the fact that in lambda
calculus substitution emerges as the result of a [-step: M [z := N]
—p(Az.M)N. Since it is convenient to use multiple substitutions, we
will introduce new constructors A, _. _ for multiple abstraction of n
variables and _(_,...,_), for multiple (n+1-ary) application, together
with a multiple version (@) of the [-rule. This is illustrated by the
following example.

Ezample 2. The reduction on the right in Example 1 of Section 2 now
becomes, in a reverse order of the steps (the hole-filling constructor Af
is still auxiliary, indices are implicit and h is a hole variable):

yy = y(z[z == y])
<@ Y((Az.z)(y))

< hf(y(h(y)), Az.x)
5 bf(Az.z(h(z)))y, Az.x)

where the last term shows the new representations of the hole (h(z))
and of the communicating term (Ax.x).

In general, holes are represented as multiple applications of hole
variables to a sequence of terms that keeps track of the relevant af-
changes. Such a representation of holes resembles the representation
of meta-variables in higher-order rewriting, where a similar binding
effect is encoded. Communicating terms and, in the case of composi-
tion, communicating contexts are represented as multiple abstractions
over variables that will become bound by the binders of the context
where they will eventually be placed. When a communicating term is
placed into the hole, communication can be computed by applying a
generalized form of the §-rule

(Az1,..yzn . U)(Vi, .o, Vi) —@p Ulzy := Vi, ...,z := V3],
recovering the binding intention and passing the changes.

Hole filling and composition. Since we represent contexts as func-
tions over holes (i.e. as abstractions over hole variables), hole filling sim-
ply boils down to (multiple) S-reduction. Thus, in our representation

T The notation () in the representation of holes is also used by D. Sands.

contexts.tex; 8/01/2001; 18:58; p.8

9

of Example 1 we get (0h. Az.z (h(zx))y) [Az.x] = Av.z((Az.) (z))y,
where _[_] denotes a hole-filling constructor. In general, a context
representation may be a function over many holes and consequently,
hole filling may involve filling many holes simultaneously, viz.

(Onhiy- oo hn U) [V, oo Vo, 2 U TR ==V, o by = V0]

Here, the number of holes (i.e. the index of d,,) equals the number of
arguments between the brackets (i.e. the index of _[_,...,_],). Note
that, in general, the arity of _[_,...,_],, isn+ 1.

Also composition may involve filling many holes simultaneously.
This explains the need for composition operators o, for arbitrary n.
However, the rewrite relation of composition is more complicated than
in the case of hole filling: it includes some shifting of abstractions. This
is explained by the following example of a binary composition.

Ezample 3. Let C = A\z.0 and D = x(Ay.O) be two A-contexts. Then
the composition of the two results in the A-context Az.z(\y.0O). Note
that the hole of the result of the composition is the ‘lifted’ hole of the
second A-context, which potentially binds variables x as well as y.

In the context calculus, these A-contexts are represented as C. =
dg. \x.g(x) and D. = 6h.x(Ay.h(y)). Because the second context is
going to be put into the hole of C., it is provided with means of
communication: the preamble Az and ‘lifted’ hole h(z,y) adapted for
this purpose, viz. D, = Az.déh.z(\y.h(z,y)). The composition puts
the second context into the hole, and moves the abstraction dh to the
beginning of C¢, so that the whole becomes an abstraction over the
‘lifted’ hole h of D.. The composition rewrite step should result in
C.o D! —, 6h.\zx.(Az.z(Ay.h{z,y)))(z), where o is the composition
constructor in Ac. Note that by performing the ensuing communication
step this term reduces to dh. \z.z (Ay.h(z,y)), which is a representation
of the resulting composition in lambda calculus.

The o-step of the example is an instance of the binary-composition
rewrite rule (o):

(6g.U) o (Auq,...,un.6h.V) =, 6h.Ulg := Auq, ..., u,. V]

where dh is shifted to the beginning of the reduct (after the variable
h has been renamed if it occurs free in U). In the example a binary
composition was used. In general, if a context representation is a func-
tion over n holes, the composition o, will involve n + 1 contexts: one
outer context and n contexts that are filled into the holes of the outer
context. The resulting context is a context over the holes of the n

contexts.tex; 8/01/2001; 18:58; p.9

10

contexts; hence, the composition will shift the hole abstractions of all
n contexts to the beginning of the reduct.

Framework. In the context calculus the building blocks can freely
be combined to form Ac-terms: variables, abstractions, applications
and compositions. If a context contains many occurrences of a hole,
these may be given the same name, like in for example the Ac-term
dh.Ax.(h{z))(h(z)). If a context contains many holes, these can be rep-
resented by different hole variables, as in 6h, g. Az. (h(z)) (A\y. g(z,y)).
An alternative representation is 6h.dg. \x. (h{(z))(A\y.g(z,y)), where
the holes are filled sequentially. Last but not least, the calculus may
include variables over contexts and functions over contexts, witnessing
the true first-class treatment of contexts.

In Ac different notions of context can be represented. However, con-
sidering a calculus with contexts of a specific form, a criterion for
well-definedness of such a calculus is of course that that specific form
of contexts is preserved under transformations such as substitution, a-
and B-rewriting, hole filling and composition.

Pretyping. The flexibility of the framework can be controlled by ‘pre-
typing’, that is, by restricting the Ac-term formation. The aim of these
restrictions is to gain more control over the form of Ac-terms. Pretyping
works in Ac¢ like typing does in lambda calculus. In a typed lambda
calculus, each variable has a type and term formation is led by a set
of typing rules. Analogously, a set of pretyping rules controls the Ac-
term formation. By means of pretyping, Ac-terms can be restricted to
representations of contexts with only one hole, variables in abstractions
can be ensured to match their arguments, or the whole context calculus
Ac can be restricted to a subset of term constructors and rewrite rules,
for example.

4. Definition of Ac

This section conveys the definitions of the basic notions of the (un-
typed) framework.

As we have explained in the previous section, in addition to the
lambda-calculus constructors, in Ac there are two more pairs of ab-
stractors and applicators, namely (A, ()) and (4, []), and, moreover, a
composition constructor o. The pair (A, ()) and the rule (@3) will be
used for representing and computing communication. The pair (4, [)
and the rule (fill) will be used for representing contexts and hole fill-
ing. The constructor o and the rule (o) will be used for composition.
Hence, these added constructors with the rules together form a part of

contexts.tex; 8/01/2001; 18:58; p.10

11
the calculus that will be concerned with representing and computing
context-related operations.

We now give the definition of Ac. Let IN = {0,1,2,3,...} as usual,
and let V be a countably infinite set of variables.

Definition 1. (Ac) The set of un(pre)typed Ac-terms Ac is defined
inductively by

U i=u u.0) (0]
(Anut, ... un.U) | (U,...,U),) |
(Gnut, .- un.U) | Ur.. Ul,) | (en(U,T,...,U))
where u, u1,...,un, € YV and U, ..., U abbreviate n U’s .
Notation. In general, a sequence of objects a1, ..., a, will be abbre-
viated by the vector @, where the vector is empty if n = 0, and the
length of the vector will be denoted by |@|. Thus, variables u1, ..., un

in (Aput,...,u,.U) and (d,u1,- .., u,. U) will be abbreviated by @, and
terms Uy, . .., Uy, in the expressions (U (U1, ...,Uy),), (U[Ui,...,Uy],)
and (0, (U, Uy, ...,Uy)) will be abbreviated by U, where if n = 0 the
preceding comma, is dropped in the case of [| and o. We will even
omit the index n and assume that the arities of A, (), d, [| and o and
the number of their arguments match. Furthermore, if o is binary, it
is used in infix notation. As usual, standard abbreviations regarding
brackets apply. In the remainder, the following convention considering
typical elements will be adopted (if not explicitly stated otherwise):
i,7,l,m,n € IN, u,u',u;,v,w,... €V and U, U, U;, V,W ... € Ac.
Although the context calculus is designed to work with contexts as
first-class objects, we could still make use of a notion of (meta-)contexts
over Ac-terms. A meta-context in Ac is a Ac-term with some holes, all
of which are considered different. If C' is a meta-context with n holes
and U are n Ac-terms, then the hole filling results in the Ac-term C[U]
where the i** hole in C is replaced by U;, for 1 < i < n. Composition is
defined analogously. In both operations, variable capturing may occur.

The constructors A,_._ and d,_._ are multiple abstractors, which
bind n variables simultaneously, and the constructors _(_,...,_),,
I ...,], and on(_, _,...,_) are n + l-ary function symbols. The free
and bound variables in a Ac-term are defined as in lambda calculus.
As in the case of lambda calculus, Ac-terms are considered equal up
to a-conversion. Moreover, we assume that bound variables are re-
named whenever necessary. In Ac, we need multiple substitutions, which
are a straightforward pointwise extension of (single) substitutions. For

contexts.tex; 8/01/2001; 18:58; p.11

12

U, V € Ac and m distinct variables ¥, where m is also the number of
terms in V', the result U[¢ := V] of substituting V; for free occurrences
of v; in U (1 <i < m) is defined as:

Vi : fu=wv;forsomel <i<m
u : otherwise,
'[7:=V]),

u[7:=V] = {
(B&.U")[7:= V] = Bi.(
F (U, Un,...,Up)[F = V]
= F(U'[¢:=V], B[e:=V],...,Un[7 := V]).
Here B denotes A, A or §, and F denotes - (implicit application), (), []

or o. It is assumed that the bound variables in the second clause are
renamed to avoid clashes.

Definition 2. (Context calculus Ac) The context calculus Ac is defined
on terms of Ac with rewrite relations induced by two collections of
rewrite rule schemas, the lambda calculus rewrite rule schema and
the context rewrite rule schemas. The two collections of rewrite rule
schemas (rewrite rules, for short) are given below.

i) The lambda calculus rewrite rule is:
A.U)V =5 Ulu:=V]. (B)

1) The context rewrite rules are:

(AG.U)(V) —gps Ul :=V] (@0)
(68.U)[V] —gu Ul := V] (fill)
on((Bu@.U), (AT. 65" VA1), ..., (AB. 6" V)

—o (5’17/, .. ,QI)”.U[[Ul = AT. Vi, ty i= Aw. Vn]] (O)

As usual, it is assumed that the bound variables in the rewrite rules
are renamed to avoid clashes.

The rewrite rules (m03), and (fill) denote actually one rewrite rule for
each index n € IN of the abstraction and application. The rewrite rule
(o) denotes a rewrite rule for each combination of the indices involved,
with only one condition: the indices of o and of the first § have to
match. Since these rewrite rules implement context-related operations
in Ac, we call them the context rewrite rules and denote the rewrite
relation generated by these rewrite rules by —..

Ezample 4. Instances of the rewrite rules (@), (fill) and (o) are (let
z,2',y be term variables, and other variables be hole variables):

contexts.tex; 8/01/2001; 18:58; p.12

13
Az, 2" U)(V,V') =@ Ulz =V,2":= V']

- (
@O = U
- (
- (

N

w

09.U) o (Az,x'.6h. V) —, 6h.U[g := Az,2'. V]
0g.U) o (Ay.6h, k. V) — 0h,k.U[g := Ay.V]

ot

. 02((69,¢'.U), (Az.6h. V), (Ay. 5k, k'. W)
—o Ok, K. Ulg := Az.V, ¢ = Ay. W].

The last instance illustrates the composition of a two-hole context
with two contexts, where the hole abstractions of the latter contexts
are shifted to the beginning of the resulting context.

Remark. The context calculus can be defined more efficiently and,
ultimately, translated to lambda calculus. The pairs of constructors
(A, ()) and (6, []) with the corresponding rewrite rules have the same
behavior, so the latter can be defined in terms of the former. Also, since
compositions are functions on contexts, they can be defined as Ac-terms,
provided a powerful enough pretyping system is employed. In the case
of Example 3 in Section 3, let comp = Ae.dd'.8g". c[Az'.(d'(z")) [¢']]-
Furthermore, by encoding the single abstraction and single application
as special cases of the corresponding multiple one, the only constructors
that are really needed are A and () and the rewrite rule (@/03). These
constructors and the rewrite rule (hence, all constructors and rewrite
rules) can, in turn, be translated to the lambda calculus (using cur-
rying). This implies that the context calculus can be simulated within
the lambda calculus where the computation of hole filling, composition
and communication is performed in an algorithmic way, by rewriting
groups of redexes simultaneously. However, we believe Ac puts us at a
suitable level of abstraction for working with contexts.

5. Confluence of \c¢

The next theorem states the main result on Ac¢, saying that the order
of computations is irrelevant.

Theorem 1. Ac is confluent.

The proof is done indirectly, via higher-order rewriting systems
(HRSs), a framework for term rewriting systems with binders. Since

contexts.tex; 8/01/2001; 18:58; p.13

14

the context calculus is such a rewriting system, it can very naturally
be written as a HRS. First, the higher-order system H is defined, by
translating the constructors and rewrite rules of the context calculus
into the HRS-format. The higher-order system # turns out to be or-
thogonal: there are no critical pairs and all rewrite rules are left-linear
(i.e. free variables occur at most once on the left-hand side of a rewrite
rule). Since any orthogonal HRS is confluent (cf. [10], [19], [17]), it
follows that #H is confluent. Next, H is restricted to a subsystem, called
Hye, which is closed under reduction and which corresponds to the
context calculus. From the properties of H and the theory of HRSs, it
can be shown that H,. is confluent, hence the context calculus too.

The remainder of this section conveys some details of the proof. The
proof considers the complete system Ac, but it holds also for any sub-
system of Ac (which is closed under reduction). For more background
on HRSs, we refer to [17].

In general, in the meta-language of HRSs, i.e. the simply typed
lambda calculus, the set of types T is defined over a set of base types
using the function constructor —. Here, we restrict the set of base
types to the singleton {0}. Furthermore, we assume there is a count-
ably infinite set of typed variables at our disposal, V7 = U, V.
Without loss of generality, we assume that the variables V° of type
0 range over the same names as variables V of Ac. Then, the terms
of H are well-typed terms of the simply typed lambda calculus with
constants corresponding to the constructors of the context calculus,
and the rewrite rules of H are, loosely speaking, translations of the
rewrite rules of Ac.

Definition 3. (HRS H) 1. The set of constants Cy contains the fol-
lowing constants (n € IN):

abs :(0—-0)—0
app : O_‘—) 0—+0
mabs, : (0, - 0) >0
mapp,, : 6ﬁ+1 -0
habs, : (0, - 0)—0

—

hfn : On+q — 0

—

comp,, : Op411 — 0.

2. Terms of the HRS H are simply typed A-calculus terms generated
from the set of typed variables V" and the set of typed constants
Cy. The set of terms of HRS # is denoted by TERM(H).

3. The set of rewrite rules Ry of H contains the following rewrite
rules:

contexts.tex; 8/01/2001; 18:58; p.14

app (abs(Au.z u)) 2" —p 2z 2/ (b)
mapp (mabs(\i. z @)) 2/ —mp 2 2’ (mb)
hf (habs()\ﬁ.z ’L_[)) Z! — il 2 Z! (ﬁ”)

comp (habs(\i. z @)) (mabs(AT. habs(A7'. 21 T7"))) ...

(mabs(AwW. habs(Aw'. z, W w")))

— =/

—>emp habs(AT', ..., @’ z (mabs(AT. 21 7)) ...

(mabs(\@. z, W'))). (cmp)
Proposition 1. H is confluent.

Proof. ‘H is orthogonal. Hence, H is confluent. O

However, from the context calculus point of view, H contains too
many elements: H contains also terms like abs(Au. z u), Au.u and app = ,
which are intuitively meaningless in the context calculus. The mean-
ingful terms, in the context calculus’ viewpoint, are the terms which
mimic the term formation of Ac: starting from variables, terms are
built using abstractors and functors (in #, constants) provided with
the right number of arguments. The following definition describes such
terms inductively.

Definition 4. (TERM(H).)) Let TERM(H).) be the smallest subset
of the terms of ‘H defined inductively as follows

1. VO C TERM(H,).); and

2. if u,i@ € V° and s,t,5 € TERM(H).), then abs(\u.s), app st,
mabs(\d. s), mapp s §, habs(A\@. s), hf s 3, comp s § are all elements
of TERM(H).

Equivalently, one could say that TERM(H).) contains the elements
s of TERM(H) such that s is of type 0, s is in long Sn-normal form,
and s contains only variables of type 0.

By the next proposition, TERM(H).) is closed under the rewrites
of H. Accordingly, Hy. = (TERM(H,.), R%) may safely be called a
sub-HRS of H.

Proposition 2. Let s € TERM(H).). If s — t then ¢t € TERM(H)).
Proof. First, one proves that if [7]5 € TERM(H).) then r9]g €

TERM(H), for every rewrite rule [— r of H and HRS-substitution
o. This is based on the fact that, by definition, HRS-substitutions

contexts.tex; 8/01/2001; 18:58; p.15

16

assign long fn-normal forms, and if 1?5 € TERM(H).) , then Vz €
dom(o). o(z) = Ai.s with ¥,s € TERM(H).). Then the proposition
follows by induction to s. O

Corollary 1. The sub-HRS H,). is confluent.

Proof. Confluence of Hj. is a corollary of Proposition 1 using the
fact that subsystems of the confluent ones, are confluent themselves. O

The definition of lifting spells out the intuition used when defining
H e Lifting specifies the one-to-one correspondence between the terms
of Ac and TERM(#H). We will call the inverse function projection and
denote it by | - .

Definition 5. (Lifting Ac to TERM(H).)) Let U € Ac. The transla-
tion (lifting) of U to sub-HRS H,., [U1 is defined by the structural
induction on U:

Ml = u

MUl = abs(hu.TUT)
Tuv] = app U1 V1
FA@.U1 = mabs(\a.TUT)
[U(@)1 = mapp U1 1771
l6a.U1 = habs(\i. [UT)

TU[d11 = bf Tyl 1§77
WO(U,Z?)]] = comp WU] Wﬁ]]

where the variables u, % on the right-hand sides are all of type 0.

Proposition 3. 1. Let U,[j € Ae. If U —>U; - ... > U, then
vl - Tl —» ... Ty, 1.

2. Let s,5€ TERM(H)). If s =81 = ... > s, then 18] = |51 —
el |$n] -

Proof. The proofs of the two parts resemble each other and are
conducted by induction to n. The crux of the proofs is that a lifted
contraction of a rewrite rule (p) in Ac is a contraction of the corre-
sponding rewrite rule (r) in H,., and that a projected contraction of
a rewrite rule (r) in), is a contraction of the corresponding rewrite
rule (p) in Ac, which is proved by case analysis on the rewrite rules of
Ac and H)., respectively. O

Then, Ac is confluent: Each pair of diverging reductions U —» Vj
and U —» Vs of Ac can be lifted to a pair of diverging reductions

contexts.tex; 8/01/2001; 18:58; p.16

17

Ul — Tvil and TUT — TV41, respectively, in H., by Proposition 3
(7). Since Hy, is confluent (Proposition 1), there is a pair of converging
reductions V;1 — ¢ and 1V31 — ¢ in .. The converging reductions
can be projected back to converging reductions from V; and Vs, i.e.
Vi = [L"—VI-HJJ —* 1t and Vo = "_WVQ]]J] = |t respectively, in Ac, by
Proposition 3(i7) and by the fact that lifting and projecting are each
others inverse.

Remark. Actually, even a stronger result than confluence holds: in
‘H any pair of (unions of) rewrite rules commutes. This commutation
property rests on the Prism Theorem for higher-order rewriting (cf.
[18]), which is employed in confluence proofs via developments. The
commutation property of rewriting in H), implies the commutation
property of rewriting in Ac.

6. Three case studies of pretyping

The three examples of this section illustrate the flexibility of the frame-
work Ac that can be obtained by fine-tuning the pretyping rules. The
first example is a calculus for representing the untyped lambda calculus
with A-contexts. The representations can be manipulated in Ac, but
there are no variables or functions over (representations of) A-contexts.
The second example describes a calculus over simply typed lambda
calculus with A-contexts. By ignoring the types this example becomes
an extension of the first example with first-class contexts. The third
example is a calculus for simply typed lambda calculus with a special
kind of contexts, namely De Bruijn’s segments.

6.1. CONTEXT CALCULUS FOR UNTYPED A-CONTEXTS

The pretyping presented in this section deals with the terms and con-
texts of the untyped lambda calculus. We will first stipulate what kind
of A-contexts we are interested in, and give the definitions of hole filling
and composition accordingly. Next, we will give a translation and pre-
typing system Ac* for these contexts and state some of its properties.
Finally, we will address the adequacy of the context representation
within Ac*.

The A-contexts of this section are A-terms with n € IV holes, i.e.

M 2=z | xe.M|MN
C z|O|Ax.C | CD.

contexts.tex; 8/01/2001; 18:58; p.17

18

We consider each occurrence of O as a different hole and assume the
holes in a A-context to be ordered from left to right.

Two operations on A-contexts are considered, namely hole filling
and composition. For the purpose of preciseness, in this section we will
make a distinction between the notations of these operations (by the
function names hf and comp) and notations for their result (using []).
Hole filling, denoted by hf, is the function from A-contexts and A-terms
to A-terms which to a A-context C' with n holes and n A-terms M assigns
the A-term C[M], which is the result of replacing the i** hole in C by M;
(for 1 < i < n). Composition, denoted by comp, is a function from A-
contexts to A-contexts defined analogously. In sum, hf (C, M) = C[M]
and comp(C, D) = C[D]. Being defined as functions, hole filling and
composition may be composed in a more complex expression. However,
mixing these functions with term or context formation is not allowed.
In this connection we clarify some (ambiguous) conventional notations:
for example, Az.C[M] is either the result of Af ((Az.0O0), hf(C, M)), or
of hf (comp((Az.0), C), M).

In the sequel P, Q, R range over expressions possibly containing the
meta-operations hf and comp. Here P and @ will be used for expres-
sions resulting in A-contexts, and R for expressions resulting in A-terms.
The A-context that is the result of evaluating P is denoted by P*;
likewise for @’s and R’s.

The representation of A-terms and A-contexts within Ac is imple-
mented by the translation. Translation of the A-contexts and the con-
text-related functions to Ac requires some preprocessing, which involves
meta-level (a-sensitive) observations being made explicit. For this pur-
pose, two functions are assumed: NRH(P), which returns the number
of holes in the result of P (i.e. in P*); and BND(P,), which returns
the list of all variables such that the i** hole of P* lies in their scope
(1 < ¢ < NRH(P)). For instance, NRH(comp(Az.O, OO)) = 2 and
BND(comp(Ax.0, O00O),1) = x. Regarding BND, we assume that there
are no overshadowed binders in a A-context, as there are in Az.Az.O,
but BND (and later, the Ac-terms LFT(Q,Z)) could have be defined
otherwise to deal with overshadowed variables.

The M-terms and A-contexts are translated to Ac by the transla-
tion function T_1. The translation function behaves like the identity
function on A-terms while on A-contexts it replaces holes by ‘labeled’
hole variables and adds a preamble: if NRH(C) = n, BND(C,1) = Z,
..,BND(C,n) = ¥, then

Taml = M
[l = 6h.Clhi(B),. .., ~a ()]-

contexts.tex; 8/01/2001; 18:58; p.18

19

The translation function extends to the composed objects as: if
NRrH(P) = n, BND(P,1) = Z,...,BND(P,n) = ¢, then

Fwfp, R)1 = TPI[AZTR], ... A7.TR, T
[comp(P, Q)1 = o(TPV AZ. Ler(TQ, 1, 2),...,A7. Ler(TQ,1, 7))

where LFT lifts the holes of ;. In general LFT is defined by: if
NRH(Q;) = m, BND(Q;,1) = 7,...,BND(Q;,m) = Z, then

Let(TQi1, 2) = 65.TQi1 [AF. g1 (FD), . ., AZ. g (F2)].

In sum, translation of an expression P explicitly involves hole filling,
composition, communication and lifting of holes.

Next, we give a pretyping that matches the translations. Let the set
of base pretypes be BT = {t}. Then the pretypes p € P are defined as

pu=t | £t | [Eltx...x[E]t=1t | [£](t]t x...x [E]t = t),

where [] binds stronger than x, which in turn binds stronger than =.
The pretyping uses two bases, the basis I' containing declarations
of the form z : t, and the basis A containing declarations of the form
h : [t]t. The bases are split because the elements of T' are used as true
variables whereas the elements of A serve as markers, in the sense that
they are used for marking the beginning (abstraction) and endings (i.e.
holes) of a context. The new type constructors [] and _ X ... x _ =
are introduced for distinguishing between different constructors of Ac
(namely, [] for A and (), and _x...x_= for § and []), as will become
clear in the pretyping rules. In the pretyping rules, some vectors are
suggestively indexed by their length, and U : t denotes the pointwise
pretyping U; : t for 1 < i < |U| = |t]. Furthermore, both T and A are,
without loss of generality, assumed to contain distinct variables.

Definition 6. (Pretyping rules for pYa) A term U € Ac is pretypable
by p from the bases I', A, if A F U : p can be derived using the
pretyping rules displayed in Figure 1.

The pretyping rules can be explained as follows. The rules (var),
(abs) and (app) are the rules that guard the well-formedness of the
untyped A-terms. The rules (hvar) and (habs) are used in forming
representations of A-contexts. The rules (mabs), (mabs.) and (mapp)
are used for pretyping communication around holes and representations
of A-terms and A-contexts to be put into holes. The rules (fill) and
(comp) are used in pretyping when filling holes.

contexts.tex; 8/01/2001; 18:58; p.19

20

(z:t)el
(var) ————
LAFzxz:t
z:t,AFU:t
(abs)
A F Az.U:t
TLAFU:t T,AFV:t
(app)
T,AFUV:t
(h:[t]t) e A
(hvar) —————————
T,A F h:[Et
D, A Ry [Bmy)ty e e Bt [Em, Jt F Ut
(habs) - = =
LA F Sh.U:[EmyJt X .. X [Em,]t =t
Z:t,AFU:t
(mabs)
T,A F AZ.U : [Tt
LAFU:[Et T,AFV:E
(mapp) =
T,A R UW):t
O,F:t, A FU:[EnJtX...X[En,]Jt =t
(mabs.) — —
D,A R AZU : [E]([EmyJt X -2 X [Em,]t = t)
(i) DAFU:[tmltx...X[En]t =t T,A F Vi:[tn]t
Jul =
T,AFU[V]:t
DAFU:[Em]t X .o X [Em,]t =t
DA F Vit [Em ([Tt x ... x [E'j;-_]t =t)
(comp) = :
A F o(U,V):
[Ealex .o x [Jex ..o x[Eple x ... x [Ep]t =t

Figure 1. Pretyping rules for \c*

contexts.tex; 8/01/2001; 18:58; p.20

21

Definition 7. (A¢*) The terms of A¢* are the well-pretyped terms of
Ac according to Definition 6. The rewrite rules are the rules (5), (@f3),
(fill) and a version of (o) of Ac, now over well-pretyped terms:

Az.U)V =g Uz :=V]
(AG.U)(V) =g Ul :== V]
(0@.U)[V] =g Ul := V]
o((67.U), (AZ.6R.VA), . .., (AF.6k. Vi)
o Oy ... k. U[g := AZ.VA,..., gn := AT V,].

We investigate some properties of the pretyping.

Proposition 4. (Subject reduction) fT') A+ U :pand U — V, then
rLAFV:p.

Proof. The proof is a standard one and relies on the generation
lemma, which gives a correspondence between the structure of a Ac*-
term and its pretype. O

With the pretyping being a Curry-style typing, not all pretypable
Ac-terms do have a unique pretype. For example, the Ac-term dh.x
is pretypable by both [t]t = t and []t = t. Moreover, the calculus
Ac* is not strongly normalizing. For example, + (Az.zz)(A\z.2z) : t
and as we know, this term can be endlessly rewritten. However, the
context-related rewriting is weakly normalizing.

Proposition 5. (Weak normalization) The reduction generated by —.
in A\¢* is weakly normalizing.

Proof. By the leftmost-innermost strategy each Ac*-term reduces to
the normal form w.r.t. —.: let

(#(o-symbols in U), (fill-redexes in U), §(@[-redexes in U))

be the measure m(U) of an arbitrary Ac*-term U and check that m(U)
decreases by each context rewrite step in which the leftmost-innermost
redex is contracted. O

Next, we investigate some properties of representations of A-terms
and A-contexts. Translations of A-terms and A-contexts are indeed pre-
typable in A, as is stated in the next proposition.

contexts.tex; 8/01/2001; 18:58; p.21

22

Proposition 6. Let R and P be expressions resulting in a A-term and
a A-context, respectively. Then,

1.T + TRl : ¢.
2.T F TP [E]t x... x [£]t = t.

Proof. The proof is conducted by simultaneous induction on the
structure of R and P. O

The adequacy of the context representation within A¢* is the subject
of the following two propositions. The first proposition claims that the
two ways of computing I Af (P, R) 1 and T comp(P, @)1 result in the
same Ac-terms. Let U/, denote the normal form of U w.r.t. the context
rewrite rules.

Proposition 7. Let P be an expression resulting in a A-term or a
A-context. Then IP*1 =TpPl|

Proof. The proof is conducted by induction to P. O

The second proposition states that in Ac¢* hole filling may be post-
poned. More precisely, it states that [-steps can be performed in the
representation of a A-context within Ac* before hole filling. Recall that
in lambda calculus, G-steps may be performed in a A-context only after
filling the holes of the A-context.

Proposition 8. Let P be an expression resulting in a A-context with
n holes and R be n expressions resulting in A-terms. Let BND(P, 1) =
Z,...,BND(P,n) = §. Suppose I Pl —#5 V. Then there is a A\-term N
such that P*[R*] —5 N and VAZ.[R{1,... A§.TR,1] —. N.

Proof. The proof is illustrated in Figure 2. Technically, for the la-
beling of the converging reductions the commutation property of —g
and —. (see the concluding remark of Section 5) is used. O

6.2. CONTEXT CALCULUS FOR SIMPLY TYPED A-CALCULUS

The pretyped calculus Ac¢™ given in this section describes the simply
typed lambda calculus with A-contexts (i) with many holes, which may
occur manifold, (ii) where holes are filled sequentially, (iéi) including
composition and (iv) including context variables and functions over

contexts.tex; 8/01/2001; 18:58; p.22

23

— TPIAZ. TR, . A7.TR,]

N

A-term P*[R*] VIAZ. TR, .. A7 TR,]
; \ /
¥
N = INT = A-term

Figure 2. Hole filling can be postponed

(representations of) A-contexts. The representation of A-contexts fol-
lows the description given in the introduction. The pretyping rules
of A¢™ for the most part follow the typing rules of the calculus of
M. Hashimoto and A. Ohori (cf. [8]). In this section, we will first define
the pretypes, the pretyping rules and the calculus Ac~. Then, we will
summarize some properties of Ac” and briefly compare Ac” to the
calculus of M. Hashimoto and A. Ohori [8]. Finally, we will name a
variation of this pretyping.

Let BT denote the set of base types with a € BT. The 7-pretypes
(7 € T) and the p-pretypes (p € P) are defined as

Te=a |77 | [flr=7 and pu=71 | [T

Here, — associates to the right, — binds stronger than [] and [] binds
stronger than =-. The 7-pretypes are used for pretyping representations
of A\-terms and A-contexts, and the p-pretypes are also used for pretyp-
ing communicating objects and holes. The pretyping uses two bases,
the basis I' containing declarations of the form z : 7, and the basis
A containing declarations of the form h : [7]7. Similarly to the case
in A\c*, the new type constructors [] and = are introduced for better
correspondence with the constructors of Ac (namely, [] for A and (),
and = for § and [|).

contexts.tex; 8/01/2001; 18:58; p.23

24

In the remainder, the following notation will be used: 7,0,7/,7... €
T, p,p) € P, and U : 7 denotes the pointwise pretyping U; : 7; for
1<i<|7l.

Definition 8. (Pretyping rules for A\c”) A term U € Ac is pretypable
by p from the bases I', A, if I)A F U : p can be derived using the
pretyping rules displayed in Figure 3. The set of well-pretyped Ac-terms
will be denoted by Ac™

We briefly comment on the pretyping rules. The rules (var), (abs)
and (app) are the familiar Church-style typing rules for A, now rang-
ing also over (representations of) A-contexts. The rules (hvar), (habs)
and (fill) are their respective counterparts dealing with hole variables.
The rules (mabs) and (mapp) are used for pretyping communication,
where the components (variables in the abstraction and arguments in
the application) are all of T-pretypes. Note that only the ‘unary’ hole
abstractor ¢ and the binary hole filler [] are employed.

Figure 4 is an example of pretyping in Ac™

Definition 9. (Ac¢™) The terms of A¢™ are the well-pretyped terms of
Ac according to Definition 8. The rewrite rules are the rules (3), (@/0)
and (fill) of Ac, now over well-pretyped terms:

Az :7.U)V = Uz :=V]
(AZ: 7. U (V) —gas UlE := V]
(6h : [F]7.U)[V] = Uh := V].

Note that there is no composition in Ac¢~. This is because com-
position is definable: for every (context) U of pretype [7]r = 7/ and
every (communicating context) V' of pretype [T]([F]o = 7) the follow-
ing closed pretypable Ac-term can act as a composition constructor in
comp UV,

comp = Ac: [T]T = 1'.4d:

[7]
([7)r =) = (7)([@

Consequently, the composition constructor, pretyping rule and rewrite
rule are omitted.

(5 Glo = 1).dg: [dlo. c[AT: 7. (d(Z))[g]]

o=71)=([¢lo = 1)).

From the lambda calculus viewpoint, the Ac-terms of a 7-pretype
without free hole variables are representations of A-terms, A-contexts,
functions over these elements. The other Ac-terms are intermediate
representations of A-contexts and communicating objects.

We have the following results.

contexts.tex; 8/01/2001; 18:58; p.24

25

(var)

(abs)

(app)

(hvar)

(habs)

(mabs)

(mapp)

(fill)

NLAvrz:7

(z:7)€el

Lz:1, A U:7

LA XMN:7.U:7— 17

TLAFU:7—=7 T,AFV:T

rLLA+RUV:

(h:[T]T) € A

LA & b [7r

T,Ah:[Flr H U7

LA & 6h: [F]r.U: [T]r =7/

rz:.7,ArU:r

LA R AZ:7.U : [T]7

LAFU:[flr T,AFV:7

—

CLLAFUWV): T

TLLARFU:[flr=7 T,AFV:[7r

TLLARU[V]: 7

Figure 3. Pretyping rules for A\¢™

Proposition 9. (Uniqueness of pretypes) U T, A F U :pyand A
U : pg then p; = po.

Proposition 10. (Subject reduction) f T, A F U : p and U —» V,
then A F V:p.

The proofs of these two propositions are the standard ones, as in
the case of A™ d la Church. The proof of the second proposition uses

contexts.tex; 8/01/2001; 18:58; p.25

26

(h:[a]a) € {h:[a]a} (x:a)e{z:a,z:a}
z:a,z:a;h:[ala bk h:[aJa z:a,x:a;h:[ala b z:a
z:a,z:a;h:[ala F h{z):a

z:a;h:[ala b Az:a.h(z):a—>a

(h:[a]a) € {h:[a]a} (2:a) e {z:a}
z:a,z:a;h:[alatk h:[ala z:a,z:a;h:[alat 2:a
z:a;h:[ala F h(z):a
z:a;h:[ala F (Az: ah(V) (h{z)) : a
z:a F Ah:[a]a.(Az : a.h(z)) (h{2)) : [a]a:> a

Figure 4. An example of pretyping in A¢™

counterparts of the generation lemma and the substitution lemma. The
substitution lemma treats a multiple substitution saying that, if I, i :
0, AFU:pand T'A F Vo pthen I)A F Ul :=V] : p,WthhlS
proved by induction to U. Using the substitution lemma one can prove
that the left-hand sides of the rewrite rules have the same type as the
corresponding right-hand sides. Hence, reduction preserves pretypes in
Ac™

Furthermore, reduction in A¢™ is strongly normalizing. The proof of
strong normalization can be done via the natural translation * of Ac™
into A7

Definition 10. (Translation of A¢™ to A7)
i) Define 1. P — 7, as a function that translates the pretypes
to simple types:

[al = a
"—T — 7"-" = "—T-ﬂ — "—TI-H
[7] 1 SR P R T e P

"—[7—-']7- = 7"-" = ’|—7'1-’| — ... "—Tn-ﬂ — "—7'-") -7
i) Define IM: Ac™ — A as

M —

z:7.U1 = Az: 711yl
U, U, 1 = Iy, 1y,l

Faz: 701 = xg: 1711yl
Tu(U)1 = Iyliy,1.. . Ty,
[sh . [7]T Ul = M7 TUT
FU, (U] 1 = Ty 1 Ty,l.

¥ From the translation of Ac™ into A™, the natural translation of Ac into A (see
the concluding sentences in Section 1.2 and the concluding remark in Section 4) can
be defined by dropping the (pre)types and considering d, and [] for any n.

contexts.tex; 8/01/2001; 18:58; p.26

27
iii) Let ¥ be a base. Then 21 = {(u: Tpl) | (u: p) € T}.
Proposition 11. f T, Ay, U : p then ITTUTAT -y Tyl - Tpl,

Proof. By induction to the length of I'; A). U : p. Check the
pretyping rules of Ac: from the translations of the preconditions, the
translations of the postconditions can be derived in A™. Then each
derivation step in I'; A). U : p can be translated to one or more
derivation steps in A™". O

Proposition 12. If T, A Fy. U : p and U — V in the simply typed
context calculus, then TUT — TV1 in the simply typed lambda calculus.

Proof. In general, the Ac-rewrite steps are translated to many (-
steps, with one exception: a @p-step where the multiple abstraction
and the multiple application are empty, that is (A.U) () —@p U, which

in translation results in an empty G-step: [(A.U) ()1 =U =TUl. O

Proposition 13. (Strong normalization) Reduction in A\c¢ ™ is strongly
normalizing.

Proof. Let Uy € Ac™ and suppose 7 is an infinite rewrite sequence
in Ac¢:
T Uy—>U = Uy — ... Q.
Note indeed that if Uy is a Ac”-term, then so are all its reducts. Then,

the translation of U’s to the simply typed lambda calculus results in a
rewrite sequence I in the simply typed lambda calculus:

I Tyl = Tol - Tyl » L .

Because there are no infinite rewrite sequences in A7, the tail of [l
must eventually be empty, i.e. [U,] = WUTH_J| = These steps can
only be translations of ‘empty’ @ [-steps, ie.
Un = C[(A.U)()] 2@p ClU] = Uny1.... However, since Ac-terms
are finite, there cannot be infinitely many such steps starting from U,,.

O

The example described in this section extends the work of
M. Hashimoto and A. Ohori [8] in the following sense. It includes
multiple occurrences of a hole and drops their condition on the (-
rule, by which S-reduction is not allowed within (representations of)
A-contexts. Moreover, Ac¢™ allows composition, which is not present in
their system.

contexts.tex; 8/01/2001; 18:58; p.27

28

We conclude by mentioning a simple variation of this example of
pretyping.

Untyped A-contexts. Let BT contain only one pretype constant t,
consider 7-pretypes modulo t 2 t — t, and add a pretyping rule by
which if ;A F U :pthen T,A F U : p' for p 2 p’. Such a pretyping
describes the untyped lambda calculus with the same kind of A-contexts
as A¢~’, which again has the subject reduction property (the uniqueness
of pretyping and strong normalization are lost, as expected). For exam-
ple, according to this pretyping, z: t = dh : [t] t.(Az : t.h(z))(h(2)) :
[t]t = t and F (Az:t.zz)(Az: t.zz) : t. This pretyping essentially
has the effect of well-formedness rules on the untyped A-terms and of
typing rules on the contexts and holes, by ignoring the type constructor
—. Such a pretyping describes the minimal conditions which guarantee
the well-pretypedness of the context machinery and do not take the
types of A-terms into consideration.

6.3. A PRETYPING FOR DE BRUIJN’S SEGMENTS

In this section a pretyping is given for a simply typed lambda calcu-
lus with segments. Segments are comparable, in our terminology, to
contexts with the hole on the spine (i.e. at the leftmost position in
the tree representation), like in Az.A\y.O, Oyz and (Az.O)y. Segments
were introduced by N.G. de Bruijn in [6], in order to facilitate the use of
abbreviations for segments of formulas in the family of proof checkers
Automath. In this section, we will first focus on the original calculus
and segments in general. Then we will describe the calculus A¢® and
state some of its properties.

The original calculus is an extension of a name-free untyped lambda
calculus. Among the added features are: a symbol for denoting a hole,
segment variables (i.e. variables over contexts of a special form), func-
tions over segments and terms, and renamings for adjusting indices
(called reference transforming mappings). Each hole is labeled with
variables that can bind in the term to be put into the hole. The (-
reduction is defined stepwise, as it has become a tradition in explicit
substitution calculi (see [1]), where the pair (Az._)t¢ traverses through
the term or segment s in the redex (Az.s)t. In the case that s is a
segment and x is in the label of its hole, the traversing pauses at the
hole until eventually the hole is filled. The simply typed version of the
calculus is a confluent system and has the subject reduction property
(see [2] and [3]).

As a whole, the original calculus reflects the very ‘Automath-ed’,
implementation-oriented fashion of the object processing: the objects

contexts.tex; 8/01/2001; 18:58; p.28

29

are represented as strings of characters and the transformations are
implemented by cutting the strings, duplicating parts of the strings,
inserting new characters and gluing these parts together again. More-
over, with segment variables and functions over segments, and with
(B-reduction defined on both terms and segments, this calculus is a true
context calculus over contexts of a special form.

An important issue in a lambda calculus with segments in general,
is that the specific structure of contexts is preserved under transforma-
tions. The preservation of the segment structure means in particular
that if a segment is involved in a transformation, the hole on the spine
cannot be multiplied nor deleted within (the boundaries of) the seg-
ment. The preservation of the segment structure under substitution,
hole filling, composition and a-reduction, if applicable, can easily be
verified. The preservation under (-reduction will now be explained in
some detail. Consider a segment C' and a f-redex (Az.s)t and distin-
guish the relative position of C with respect to the redex in a g-step. If
the segment C' is subsumed by the redex, then the segment can only be
manipulated as a whole (in a structure preserving way). If the segment
C subsumes the redex, then the hole is either at the spine of the redex
or disjoint from the redex. In all these cases the hole is left intact under
the contraction of the redex. This is due to the peculiar position of the
hole in a segment and it is in general not the case with contexts with
one hole at an arbitrary position: if (Az.yzz)0O is a A-context, then it
reduces to the A-context yO0O, which has two holes.

In this section we give a pretyping for a name-carrying simply typed
lambda calculus with segments Ac®. The main consequence of having
name-carrying variables is that there is no need for a stepwise (-
reduction, as there is in the case of name-free variables: the substitution
[z := t] that arises from a (-step in (Az.s)t is applied immediately to
s.

The representation of the lambda calculus with segments mainly
follows the line described in Section 3. In particular, in Ac® segments
are represented as abstractions over precisely one hole variable, which
occurs at the leftmost position 5. For instance, the segment (\z.0)y
is represented as d0h.(Az.h(z))y. The pretypes and pretyping rules
resemble the pretypes and pretyping rules of Ac¢”. The pretypes of
Ac® are the 7- and p-pretypes of Ac¢™, with the same conventions and
intentions. In Ac®, the T-pretypes correspond to the frame types of the

§ The definition of tree representation of Ac-terms is a naive extension of the tree
representation of A-terms, where § is treated as A, hole filling as application, A as a
flattened version of a sequence of \’s and () as a flattened version of a sequence of
applications.

contexts.tex; 8/01/2001; 18:58; p.29

30

simply typed version of the original calculus (cf. [2], [6]) and as such
they are pretypes of the first class objects of the original calculus. In
the pretyping rules there are two bases involved, I' containing variables
over T-pretypes, and A containing at most one declaration over hole
variables (which is of the form h : [7]7).

The pretyping system is given next.

Definition 11. (Pretyping rules for \c°) A term U € Ac is prety-
pable by p from the bases I') A, if ' A = U : p can be derived using
the pretyping rules displayed in Figure 5.

We comment on the pretyping rules briefly. The rules (var), (abs)
and (app) are the rules comparable to the same rules in the simply
typed lambda calculus, but in this pretyping they also range over seg-
ments. The rules (hvar) and (habs) pertain to pretyping hole variables
and abstractions over hole variables. The rules (mabs) and (mapp)
are used for pretyping communication. The rules (fill) and (comp) are
used for pretyping hole filling and composition. Note that after the rule
(hvar), which gives a pretype to a hole variable, the only applicable rule
is (mapp), by which the hole variable is immediately provided with
communication (i.e. the hole variables are labeled). Note also that,
similarly to the previous example of pretyping, only the ‘unary’ §, and
the binary [| and o are used.

In all rules, the basis I' is used like a basis in the simply typed
lambda calculus. This is not the case with A, which strictly follows
the hole variable: the basis A changes only by the rules (hvar) and
(habs), where the hole variable is introduced or abstracted; it is empty
in rules (fill), (comp), where ‘completed’ representations of segments
are manipulated; and, it is intact in the rest of the rules, where it follows
only the left branch of the term when represented as a tree.

Using this pretyping, the straightforward composition comp of the
concluding remark in Section 4 is not pretypable: in the Ac-term
Ac.dd.dg.c[Ad. (d(@))[g]] the variables d and g, which should have
pretypes of the form [T]7 (i.e. pretypes of hole variables), are not on
the spine of a context. Therefore, the composition constructor and
pretyping rule (and rewrite rule) are present in the calculus.

Definition 12. (Segment calculus A\¢®) The segment calculus is de-
fined as a subsystem of Ac on pretypable terms with the following
rules:

A :7.U)V =5 Ulu:=V]
(AL : 7.U)(V) =g Ul := V]

contexts.tex; 8/01/2001; 18:58; p.30

31

(u:T)€el
(var) ———
F'Fu:r
Du:T, AR U:7
(abs)
LAFMN:7.U:7— 17
TLAFU:7>7 THEV:T
(app)
LARUV: 7
{(h:[7]7)} = A
(hvar)
LA F h:[77
Coh:[flr H U: 7
(habs)
' 6hU:[Tlr=>1
Tr-U:[flr=7 TkFV:[Ar
(s :
Cr-UV]:T
Na: 7, A+ U:T
(mabs)
AR AG:7.U : [T]7
TLAFU:[flr TFHV:T
(mapp) -
AR U(V):7
THU:[flr=71 T+ V:[7Flo=r1)
(comp)
F'FUoV:[Flo=17

Figure 5. Pretyping rules for Ac®

contexts.tex; 8/01/2001; 18:58; p.31

32

(5U :[fﬂT.[]) ‘/1 —fill [f[u = ‘/ﬂ
(6h : [T]T.U) o (AU : T.0g : [F]0.V) =, g : [Flo.U[h := AT : 7. V].

The main results are the following.

Proposition 14. (Uniqueness of pretypes) IfT,AF U : p; and
A F U : pg then p; = po.

Proposition 15. (Substitution Lemma)

i) IfI‘,a':':’T",AI—U:pandFI—V:i"thenf,Al—U[[a‘:’::V]]:p.

it) UL,h:[Tlr F U:pandDT F V:[F]r thenT + U[h:=V]:p.

i) If Tyh : [f]r U : p and TI,g : [dlc B V : [f]T then
L,g:[0)loc - Ulh:=V]:p.

Proposition 16. (Subject reduction) f T, A - U : pand U — V,
then ')A F V : p.

Proposition 17. (Strong normalization) Reduction in A¢® is strongly
normalizing.

The proofs of the unicity of pretyping, subject reduction and strong
normalization are conducted in a standard way, resembling the proofs
in Ac”. Only in the case of substitution, care has to be taken when
dealing with A, especially in the third case.

Note that the subject reduction property implies not only the prety-
pablity of the reduct but also the preservation of the segment structure.
That is, one can prove that in the Ac°-terms of pretype [7]r = 7'
(i.e. representations of segments) the hole occurs at the leftmost posi-
tion. Then, the preservation of pretyping under reduction implies the
preservation of the structure of segment representation.

A variation of this pretyping is a pretyping of untyped lambda cal-
culus with segments, which can be accomplished by allowing pretypes
over only one constant t and considering the pretypes modulo equality
t 2t — t, like in the previous example of pretyping.

Digression. The distinguished position of the hole in a segment has
an interesting consequence on the type of a segment in a typed version
of the calculus. Because the hole is positioned at the end of the spine,
these contexts have a polymorphic type in the following sense. In gen-
eral, the form of a context C restricts the type of terms ¢ that may be
placed into the hole, but the type of C[t] eventually depends on the type
of t. Take, for example, the A\-context C = Az : 7.0z z. If a A-term ¢ is
to be placed into the hole, its type should be an arrow type 7 = 7 — «,

contexts.tex; 8/01/2001; 18:58; p.32

33

where « denotes an arbitrary type, and the type of the result C[¢] is then
7 — «. Furthermore, this context can bind a variable of type 7 in the
term placed into the hole, because the hole is in the scope of (Ax : 7)-
binder. Then, the type of C is [r](T = 7 = a) = (7 — «), for an
arbitrary type a. However, for the sake of simplicity of the example, we
treated here only a restricted version of this pretyping where holes have
a fixed pretype. A polymorphic pretyping of a calculus with segments
is given in [5].

7. Conclusion and future work

This paper presents a uniform framework, the context calculus A¢, for
representing multiform lambda calculus contexts. The context calculus
can be enhanced with pretypings, which restrict the form of Ac-terms.
Three examples of pretyping have been given. It has been indicated
that the context calculus satisfies the confluence property and that all
three pretypings satisfy the subject reduction property.

Our plans for future work encompass the following.

First, we intend to design a context calculus parametrized over the
object-language, that is, a context calculus parametrized over an arbi-
trary signature and additional rewrite rules over the signature. In the
case of Ac, the object-language is the lambda calculus and the meta-
language is the rest of Ac: the context-related constructors (A, (), 4, []
and o) and the context rewrite rules (Definition 2 (i7)). We consider Ac
to be a good case study for designing such a general context calculus,
since we believe the meta-language of Ac can be reused in combination
with an arbitrary object-language.

Second, we plan to add labels to our communication mechanism in
order to avoid the ordering of arguments, that is to allow accessing
the arguments by a label as in (AzS',...,z% . U)(VP,..., Vi) where
bi...b, is a permutation of aq ... ay,.

Next, we intend to explore the possibility of using pretyped segment-
like contexts in automated reasoning for representing mathematical
structures, like relations, monoids, groups etc. Loosely speaking, a
mathematical structure can be represented as a context where the
‘body’ is a sequence of abstractions. This is illustrated by the example
of reflexive binary relations, which we treated in Section 2.2:

AA: Set AR : (A — A — Set). Arfl : (Vz : A.Rzx).00

Such a representation could for example be used to support internal
definitions of subtyping.

contexts.tex; 8/01/2001; 18:58; p.33

34

Acknowledgements

We would like to thank Vincent van Oostrom for suggesting several
improvements.

10.

11.

12.

13.

14.

15.

References

Abadi, M., L. Cardelli, P.-L. Curien, and J.-J. Lévy: 1991, ‘Explicit Substitu-
tions’. Journal of Functional Programming 1(4), 375-416.

Balsters, H.: 1987, ‘Lambda calculus extended with segments’. In: Mathemati-
cal logic and theoretical computer science (College Park, Md., 1984—1985). New
York: Dekker, pp. 15-27.

Balsters, H.: 1994, ‘Lambda calculus extended with segments: Chapter 1,
Sections 1.1 and 1.2 (Introduction)’. 1In: R. P. Nederpelt, J. H. Geu-
vers, and R. C. d. Vrijer (eds.): Selected papers on Automath. Amsterdam:
North-Holland, pp. 339-367.

Barendregt, H.: 1984, The Lambda Calculus, its Syntar and Semantics, Vol.
103 of Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Company, revised edition. (Second printing 1985).

Bognar, M. and R. d. Vrijer: 1999, ‘Segments in the context of contexts’.
Preprint, Vrije Universiteit Amsterdam.

Bruijn, N. d.: 1978, ‘A namefree lambda calculus with facilities for inter-
nal definition of expressions and segments’. Technical Report 78-WSK-03,
Technological University Eindhoven.

Despeyroux, J., F. Pfenning, and C. Schiirmann: 1997, ‘Primitive recursion
for higher-order abstract syntax’. In: Typed lambda calculi and applications
(Nancy, 1997). Berlin: Springer, pp. 147-163.

Hashimoto, M. and A. Ohori: 1998, ‘A typed context calculus’.
Sarikaisekikenkyusho Kokyaroku 1023, 76-91. Type theory and its application
to computer systems (Japanese) (Kyoto, 1997).

Kahrs, S.: 1993, ‘Context rewriting’. In: Conditional term rewriting systems
(Pont-a-Mousson, 1992). Berlin: Springer, pp. 21-35.

Klop, J.: 1980, Combinatory Reduction Systems, Mathematical Centre Tracts
Nr. 127. Amsterdam: CWI. PhD Thesis.

Kohlhase, M., S. Kuschert, and M. Miiller: 1999, ‘Dynamic lambda calculus’.
Preprint, available at http://www.ags.uni-sb.de/ kohlhase.

Lee, S.-D. and D. Friedman: 1996, ‘Enriching the lambda calculus with
contexts: Toward a theory of incremental program construction’. In: Pro-
ceedings of the 1996 ACM SIGPLAN International Conference on Functional
Programming. pp. 239-250.

Magnusson, L.: 1996, ‘An algorithm for checking incomplete proof objects in
type theory with localization and unification’. In: Types for proofs and programs
(Torino, 1995). Berlin: Springer, pp. 183-200.

Mason, 1. A.: 1999, ‘Computing with Contexts’. Higher-Order and Symbolic
Computation 12, 171-201.

Muiioz, C.: 1997, ‘Dependent Types with Explicit Substitutions: A meta-
theoretical development’. In: Proceedings of the International Workshop
TYPES ‘96.

contexts.tex; 8/01/2001; 18:58; p.34

16.

17.

18.

19.

20.

21.

22.

23.

35

Nederpelt, R. P.; J. H. Geuvers, and R. C. d. Vrijer: 1994, Selected Papers on
Automath, Vol. 133 of Studies in Logic and the Foundations of Mathematics.
Amsterdam: North-Holland.

Nipkow, T.: 1993, ‘Orthogonal Higher-Order Rewrite Systems are Confluent’.
In: Proceedings of the International Conference on Typed Lambda Calculi and
Application. pp. 306-317.

Oostrom, V. v.: 1995, ‘Development Closed Critical Pairs’. In: Proceedings
of the 2nd International Workshop on Higher-Order Algebra, Logic, and Term
Rewriting (HOA’95), Vol. 1074 of Lecture Notes in Computer Science. Springer,
pp. 185-200.

Oostrom, V. v. and F. v. Raamsdonk: 1993, ‘Comparing Combinatory Reduc-
tion Systems and Higher-order Rewrite Systems’. Technical Report CS-R9361,
CWI. Extended abstract in Proceedings of HOA’93.

Pfenning, F. and C. Elliott: 1988, ‘Higher-order abstract syntax’. In: Proceed-
ings of the SIGPLAN’88 Conference on Programming Language Design and
Implementation. pp. 199-208.

Sands, D.: 1998, ‘Computing with contexts, a simple approach’. FElectronic
Notes in Theoretical Computer Science 10.

Sato, M., T. Sakurai, and R. Burstall: 1999, ‘Explicit environments’. In: J.-Y.
Girard (ed.): Proceedings of the 4th International Conference on Typed Lambda
Calculi and Application. pp. 340-354.

Talcott, C. L.: 1991, ‘Binding Structures’. In: V. Lifschitz (ed.): Artificial
Intelligence and Mathematical Theory of Computation.

Address for Offprints:

Vrije Universiteit

Department of Theoretical Computer Science
de Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

contexts.tex; 8/01/2001; 18:58; p.35

contexts.tex; 8/01/2001; 18:58; p.36

