Categorial grammar and formal semantics

Michael Moortgat
11th July 2002

Abstract

This paper will appear, in a slightly shortened form, as an in-depth article (# 231) in the
Encyclopedia of Cognitive Science, Nature Publishing Group, Macmillan Publishers Ltd. For
alerts on the project’s progress, visit www.cognitivescience.net.



Encyclopedia of Cognitive Science

#231, Categorial grammar and formal semantics

Michael Moortgat

Professor of Computational Linguistics
Utrecht Institute of Linguistics, OTS
Utrecht University

Trans 10, 3512 JK Utrecht

The Netherlands

tel: +31-30-2536043
fax: +31-30-2536000
e-mail: moortgat@let.uu.nl

Keywords Categories, types, processing, parsing, deduction.

Article definition Categorial grammar: a lexicalized grammar formalism based on logical type-
theory. A categorial lexicon assigns one or more types to the atomic elements of a language; the
assembly of form and meaning is accounted for in terms of the rules of inference for these types
seen as formulas of a grammar logic. Cross-linguistic variation results from extending the invariant
core of the grammar logic with facilities for structural reasoning.

Contents

1 Introduction 3

2 Form: grammatical invariants and structural variation 3
2.1 Thebaselogic. . . . . . . . . . 3
2.2 The structural module . . . . . . . .. oL 7
2.3 Generative capacity and computational complexity . . . . ... ... ... ... .. 9
2.4 Language learning . . . . . . . ... Lo 10

3 Meaning assembly: the Curry-Howard correspondence 10
3.1 Modeltheoretic semantics, type theory and the lambda calculus . . . . . . .. ... 11
3.2 Formulas-as-types, proofs as programs . . . . . . . . . .. ... ... 12
3.3 The syntax/semantics interface . . . . . . . . ... 13
3.4 Processing iSSues . . . . . . ... 15

4 Exploration 15
4.1 Variants and alternatives . . . . . . . ... L 15
4.2 Further reading . . . . . . . . . . L 16



1 Introduction

Categorial grammar, a linguistic framework with firm roots in type theory and constructive logic,
is well represented in the logical and mathematical literature. This article puts the emphasis
more on the categorial modelling of the cognitive abilities underlying the acquisition, use and
understanding of natural language. The sections below address two central questions. First of
all, what are the invariants of grammatical composition, and how do they capture the uniformi-
ties of the form/meaning correspondence across languages? Secondly, how can we reconcile the
idea of grammatical invariants with structural variation in the realization of the form/meaning
correspondence?

The slogan ‘parsing as deduction’ concisely expresses the categorial perspective on these ques-
tions. A grammar, essentially, is given by an assignment of types to the elementary units in the
lexicon. The type-forming operations have the status of logical connectives: determining whether
an expression is well-formed amounts to presenting a derivation, or proof, in the logic for these
connectives. Natural language expressions are signs with a form and a meaning dimension. The
categorial type language, consequently, is modeltheoretically interpreted with respect to these two
dimensions, and a derivation encodes an effective procedure for building up the structural organi-
zation of an expression, and for associating this structure with a recipe for meaning assembly.

The article is organized as follows. In §2, we focus on the form dimension of expressions.
We identify the logical constants of the computational system, and study how the base logic for
these constants can be extended with facilities for structural reasoning. In §3, we see how the
logical rules of inference for the type-forming operations can be read as instructions for meaning
assembly, and how the structural rules determine which components of an expression can enter
into the assembly process. The final section provides some background information and pointers
to current areas of research.

2 Form: grammatical invariants and structural variation

2.1 The base logic

Natural language expressions are structured objects that come with a linear order and a hierar-
chical grouping. In categorial grammar, the traditional parts of speech assume the form of type
formulas. The structure of these types mirrors the composition of the expressions they categorize.
The set of type formulas Type is obtained as the closure of a small set Atom of basic types under
a number of type-forming operations. Individual categorial grammars will differ with respect to
the type-forming operations they employ. For the present purposes, the following clauses will be
representative.

(1) (ATOMS)  Atom is a subset of Type;
(UNARY) if A is a formula in Type, then ¢ A and OA are too;
(BINARY) if A and B are formulas in Type, then Ae B, A/B and A\B are too.

Basic types play a role similar to that of major constituents in phrase-structure grammar:
they categorize expressions one can think of as ‘complete’. Examples could be the type np for
proper names, s for sentences, n for common noun phrases. Languages can differ as to which
basic type distinctions they make. The unary and binary operations provide a vocabulary to
categorize expressions in terms of their constituent parts. Informally, a formula A e B categorizes
an expression that can be decomposed into a constituent of type A followed by a constituent of
type B. An expression with a fraction type A/B (or B\A) is incomplete: it combines with an
expression of type B on its right (or left, respectively) into an expression of type A. The unary
type-forming operations are more recent additions to the categorial vocabulary. They can be
thought of as features: an expression of type OA issues a request for a feature to be checked; such
an expression can be used as a regular A as soon as the O feature is eliminated. The operation <
provides the means to perform the required feature-checking.



Frame semantics. To make this informal description precise, Dosen (1992) and Kurtonina
(1995) make use of frame-based models familiar from possible-world semantics for modal logics.
For the categorial type language, a frame is a tuple (W, Ry, Rs). W is a non-empty set, the set of
expressions. R, and R, are binary and ternary relations over W, interpreting the unary and binary
type-forming operations, respectively. One can think of R, as the ‘Merge’ relation: Rexyz holds
in case x is the composition of the parts y and z. Similarly, R,zy holds if the feature-checking
relation connects y to z. One obtains a model by adding a valuation V assigning subsets of W to
the atomic formulas. For complex types, the valuation respects the conditions below.

(2) x € V(OA) iff there exists a y such that Roaxy and y € V(A)
x € V(OA) iff for all y, Reyx implies y € V(A)
x € V(AeB) iff there are y and z such that y € V(A), z € V(B) and Rexyz
xeV(C/B) iffforall y and z, if y € V(B) and Rezzy, then z € V(C)
x e V(A\C) iffforall y and z, if y € V(A) and Rezyz, then z € V(C)

Type computations, soundness and completeness. On the proof-theoretic level, we are
interested in a deductive system to perform type computations A — B (‘type B is derivable from
type A’). We want this system to be faithful to the interpretation of the type-forming operations,
in the following sense:

(3) SOUNDNESS AND COMPLETENESS
A — B is provable iff V(A) C V(B), for every frame F' and valuation V.

An axiomatization satisfying the soundness and completeness requirements starts with an
identity axiom A — A, and an inference rule allowing one to conclude A — C' from premises
A — B and B — C. Semantically, these express the reflexivity and transitivity of the derivability
relation. In addition, one has the inference rules in (4) establishing the relationship between the
interpretation of <» and O, and between e and left and right division \ and /. The patterns in
(4) turn ($,0), (e, /) and (e,\) into what are known as residuated pairs in algebra, or adjoint
functors in category theory.

(4) (RO) QA — B ifandonlyif A— OB
(Rl) AeB—(C ifandonlyif A— C/B
(R2) AeB — (C ifandonlyif B— A\C

Sample theorems. Let us look at some elementary theorems of the grammatical base logic.
From the identity axiom, one obtains the Application schemata of (5b) in one step, using the
residuation inferences in the ‘if’ direction. From Application, one derives the Lifting schemata of
(5¢), this time reasoning in the ‘only if’ direction.

(5) a. A\B— A\B  (Az) B/A—BJ/A  (Ax)
b. Ae(A\B)— B (R2<) (B/A)e A— B (Rl <)
c. A— BJ(A\B) (Rl=) A— (B/JA\B (R2=)

The Application schemata are no doubt the most familiar laws of categorial combinatorics. The
original categorial grammars of Ajdukiewicz and Bar-Hillel in fact were restricted to Application.
Using the Application schemata, one can ‘lexicalize’ the rules of a context-free phrase structure
grammar. Take the productions S — NP VP and VP — TV NP for the derivation of a
Subject-Transitive Verb-Object (SVO) pattern. In categorial terms, one types the Transitive Verb
as (np\s)/np, thus projecting the SVO pattern in two Application steps: rightward application
consumes the Object, leftward application the Subject. The auxiliary label VP disappears; the
complex type np\s expresses its combinatory role.

Instances of Lifting would be type transitions from np (the type assigned to simple proper
names) to s/(np\s) or ((np\s)/np)\(np\s). These lifted types are appropriate for noun phrases



with a distribution restricted to the subject position, in the case of s/(np\s), or the direct object
position, in the case of ((np\s)/np)\(np\s). What the derivability arrow says here is that any
expression that is assigned the type np will be able to occur in subject or object position, but that
there can be expressions with a restricted subject or object distribution, expressed through the
higher order types. One can think of case-marked pronouns, as Lambek (1958) already pointed
out. With s/(np\s) as the lexical type assignment for ‘he’/‘she’, but ((np\s)/np)/(np\s) for
‘him’/‘her’; we correctly rule out ‘him irritates she’ while allowing ‘he irritates her’.
Elementary theorems for the unary type-forming operations are established in (6).

(6) 04— 04 (Az) GA— OGA (Az)
GOA— A (RO <) A—DOOA (RO=)

An illustration of the added expressivity of the unary operators can be found in Bernardi
(2002), where they are used to control the distribution of polarity sensitive items. Consider the
contrast between ‘Nobody left yet’ with the negative polarity item ‘yet’ and ‘*Somebody left yet’.
In a type language with just the binary type-forming operations, both ‘somebody’ and ‘nobody’
would receive the subject type s/(np\s), and ‘yet’ the modifier type (np\s)\(np\s). Such type
assignment is too crude to block the ungrammatical ‘*Somebody left yet’. In the extended type
language, the negative polarity trigger ‘nobody’ can be assigned the type s/0(np\s), whereas
‘somebody’ keeps the undecorated type s/(np\s). By typing the negative polarity item ‘yet’
as (np\s)\OO(np\s) one expresses the fact that it requires a trigger such as ‘nobody’ to check
the O< decoration in its numerator subtype. For the derivation of the simple sentence ‘Nobody
left’ (with no polarity item to be checked), we rely on the fact that in the base logic, we have
s/0O(np\s) — s/(np\s), i.e. the O< decoration on argument subtypes can be simplified away,
allowing the combination (in terms of the Application schema) of ‘nobody’ with a simple verb
phrase ‘left’ of type np\s.

Monotonicity properties. Apart from these theorems, the base logic has (7) as derived rules
of inference. With respect to the derivability relation, the operations { and O are order-preserving
(isotone). The e operation is order-preserving in its two arguments; the division operations / and
\ are order-preserving in their numerator, and order-reversing (antitone) in their denominator
argument.

(7) A — B implies $A — OB and 0OA — OB
A/C — B/C  and C\A— C\B
C/B— C/A and B\C — A\C
Ae(C —-Be(C and CeA—(CeDB

From a combinatorial point of view, these rules produce an infinite number of type transfor-
mations from some small inventory of ‘primitive’ ones. Consider the Lifting schema. From it, one
obtains the transformations known as Value Raising (for example, lifting a determiner type np/n
to (s/(np\s))/n) and Argument Lowering (for example, lowering a third-order verb phrase type
(s/(np\s))\s to first-order np\s).

Alternative presentations, Natural Deduction. The categorial base logic allows many al-
ternative axiomatizations, each serving its own function. The essential point is that the different
presentations must find their justification in the modeltheoretic interpretation of the connectives,
i.e. one has to prove they are equivalent syntaxes for performing valid type computations. In the
Gentzen sequent calculus, one replaces the arrows A — B by statements I' = B (‘structure T is of
type B). The antecedent I' is built out of formulas by means of the structure-building operations
(-y and (- o), counterparts of the logical connectives < and e. The purpose of this presentation is
to show that the transitivity rule (the Cut rule) can be eliminated. Every logical rule of inference
in the Gentzen calculus introduces a connective either in the antecedent or in the succedent, so



that backward-chaining, cut-free proof search immediately yields a decision procedure for catego-
rial derivability, as shown in (Lambek 1958) for the binary and (Moortgat 1996) for the unary
connectives.

The derivational format of Combinatory Categorial Grammar (CCG, (Steedman 2000b) and
references cited there) is a Hilbert-style presentation. Functional Application here is taken as
the basic, primitive schema for type combination. To the Application schema are added extra
schemata, such as Lifting, the combinator T. The CCG format of derivations is related to the
Gentzen style as the the combinator presentation of intuitionistic logic is to its Gentzen presen-
tation. The recursive generalization of the primitive type transformations under monotonicity is
important for such ‘combinatory’ presentations of categorial derivability: without this generaliza-
tion, one loses completeness.

In a third format, Natural Deduction (ND), every type-forming connective has an introduction
and an elimination rule. As a result, ND doesn’t have the pleasant proof search properties of the
Gentzen calculus, but it is a perspicuous presentation of a derivation once it has been found. For
this reason, ND is often used in linguistic discussion of categorial analyses. Also, ND is the most
transparant format to associate meaning assembly with a derivation, as we will see in §3. We
present the ND rules for the base logic below, using the Gentzen sequent style, which is explicit
about the structural configuration of the antecedent assumptions.
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Figure 1: Natural deduction. Notation: I' = A for the deduction of a conclusion A from a
configuration of assumptions I'. Axioms: A F A. Antecedent structures are built from formulas
with the structure-building operations (-) and (- o -). These are the structural counterparts of <
and e, respectively, as the {», e Introduction rules show.

Multimodal generalization. One can straightforwardly generalize the base logic to a system
where one has not just one single merge and feature checking relation, but families of them. In
modal logic terms, this means moving from a unimodal to a multimodal system, with frames
(W, {R?}ic1,{R3}jes) where the different relations are kept apart by indexing them with a com-
position mode label. Similarly, in the formula language, we index the connectives for these com-
position modes. The concept of multiple composition modes is not unfamiliar. For the binary
operations, one can think of a distinction between the structure of words (morphology) and the
structure of phrases (syntax): one can give a categorial analysis of morphology and syntax in
terms of /, e\, but still one will want to keep these grammatical levels distinct, say as e, versus
o,. For the unary connectives ¢, 0, multimodality makes it possible to distinguish a number of
named features in the grammar, so that they can play different roles in controlling composition.



The multimodal perspective turns out to be particularly useful once we move beyond the
base logic and consider its structural extensions, where one then can have interaction between
different binary composition modes (between morphology and syntax, in the case of complement
inheritance, for example), and between specific unary control features and binary composition
operations. Such interaction principles are discussed below.

2.2 The structural module

The laws of the base logic do not depend on specific structural properties of the ‘Merge’ and
feature-checking relations: the completeness theorem (3) does not impose any restrictions on the
interpretation of R, and R. In this sense, the base logic can be said to capture the invariants
of grammatical composition. Although the base logic already has a rich deductive structure, the
system also has its limitations. If an expression can occur in different structural configurations, one
would like to relate these configurations. In the base logic, this cannot be done: type assignment
is structurally rigid, in the sense that different structural environments will lead to different type
assignments. To overcome the problem of structural rigidity, one extends the base logic with
facilities for structural reasoning. Technically, such facilities have the status of non-logical axioms,
or postulates. They can be introduced in a global, or in a controlled fashion. We discuss these in
turn.

Global structural rules. The postulates in (8) create a hierarchy of categorial systems: adding
structural options, flexibility of type combination increases, but structural discrimination deteri-
orates.

(8) (AeB)eC — Ae(Be(C) A
Ae(Be()— (AeB)e(C A,
AeB — Be A C

The rebracketing postulates A; and A, added to the /,e,\ fragment of the base logic, produce
the system known as L, the associative calculus of (Lambek 1958). The /,e,\ fragment of the
base logic itself is know as NL: in (Lambek 1961) this systems was obtained by dropping the
associativity postulates from L. Characteristic theorems of L are the type transitions in (9): the
Geach laws G,, G;, and the functional composition schemata (known as combinator B in CCG) of
which B,., B; are the simplest forms.

(9) G, A/B—(A/C)/(B/C) B\A— (C\B)\(C\4) G
B, (A/B)e(B/C)— A/C (C\B)e(B\A)—C\A B,

Adding the commutativity postulate to L produces LP (Lambek calculus with permutation), a
system coinciding with the multiplicative fragment of linear logic, which has a commutative prod-
uct operation matched by a single linear implication. The distinction between left-incompleteness
and right-incompleteness collapses in the presence of C.

Extending the base logic with facilities for structural reasoning has consequences for the in-
terpretation of the type-forming operations, discussed in (DoSen 1992; Kurtonina 1995). An
interpretation with respect to arbitrary frames, obviously, is not available any more. Instead,
each postulate introduces a corresponding frame constraint restricting the interpretation of the
Merge relation R,, and completeness is stated with respect to frames respecting the relevant con-
straints. A Commutativity postulate, for example, would impose the semantic constraint that
for all z,y,z € W, Rexyz implies Rexzy. Similarly for the other postulates discussed. In the
presence of such semantic constraints, it will often be the case that one can specialize the abstract
relational interpretation to more concrete models. A good example is the system L with its asso-
ciative composition relation R,. In this case, one can read Rexyz as concatenation, i.e. x =y - 2.
Pentus (1994) proves that L indeed is complete with respect to this concatenation interpretation.



Controlled structural reasoning There are many natural language phenomena that seem to
require some of the flexibility offered by the postulates (8). Cases of non-constituent coordina-
tion can be naturally handled with the possibilities for type-combination that follow from the
rebracketing postulates. Displacement phenomena are ubiquitous in natural language, and seem
to require some form of commutativity. At the same time, it is clear that in a global form, these
structural options overgenerate. Commutativity would entail that well-formedness is preserved
under arbitrary changes in word order; free rebracketing makes constituent structure irrelevant
for determining grammaticality.

To obtain controlled structural extensions of the base logic, various strategies have been pur-
sued. In the rule-based approach of Combinatory Categorial Grammar, one augments the Ap-
plication/Lifting basis with structural combinators which, in an unconstrained form, would be
overgenerating. One then imposes type-restrictions on these extra combinators. In addition, the
set of rule schemata (combinators) is kept finite, so that one can avoid the consequences of the
recursive generalization of rules under monotonicity. The alternative is to exploit the intrinsic
logical instruments for structural resource management offered by richer type systems with unary
control features and multimodal interaction principles. To compare these two strategies, consider
the following cases of extraction.

(10) a. what Alice found
b. what Alice found there

Alice found there
np (np\s)/np _ (np\s)\(np\s) B,
what s/(np\s) (np\s)/np o )
wh/(s/np) s/np '
wh

Figure 2: Wh-extraction: combinator-style derivation. The clause body ‘Alice found there’ is
assigned type s/np by means of the backwards crossed composition combinator B;,. The rule can
apply because the cancelled (np\s) satisfies the type-restriction on Bjy.

In CCG, the peripheral case of extraction (10a) are derived from an assignment wh/(s/np)
to the wh-pronoun by lifting the type for ‘Alice’ to s/(np\s) which is then composed with the
transitive verb type (np\s)/np for ‘found’ by means of B,.. To obtain the non-peripheral case of
extraction in (10b), one needs the combinator B;y, a form of composition which depends on the
commutativity postulate. To avoid collapse into LP, one imposes a side-condition on the rule,
restricting the middle term B to certain verbal categories, in this case (np\s).

(11) Bix (B/C)e(B\A) — A/C where B is a predicate category

The <, 0 connectives make it possible to avoid extra-logical type-restrictions. The postulates
P1/P2 below implement a controlled form of rebracketing and reordering for formulas carrying the
¢ control feature, as shown in (Moortgat 1999). With a lexical type assignment wh/(s/<{0Onp)
to the wh-pronoun, one obtains peripheral and medial extraction from right branches. Under
this analysis, one does not attribute any associativity/commutativity to the e operation itself;
displacement effects arise through the interaction of the Merge operation with a gap hypothesis
carrying the licensing { feature. A derivation is given in Figure 3.

(12) Pl (AeB)e{C — (AeC)eB
P2 (AeB)e{C — Ae(Be ()



found (6)
(np\s)/np  OOnp - np /E] there
Alice found o $Onp - np\s (np\s)\(np\s)
np (found o {Onp) o there - np\ s \E]
Alice o ((found o {TOnp) o there) - s
Alice o ((found o there) o $Onp) = s
what (Alice o (found o there)) o $Onp F s
wh/(s/{0np) Alice o (found o there) F s/ 0Onp
what o (Alice o (found o there)) - wh

\E]

P1]
P2
/1]
[/E

Figure 3: Wh-extraction: {» control. The type-assignment to the relativizer ‘what’ expresses the
fact that the relative clause body is a sentence built with the help of a ‘gap’ hypothesis of type
{$Onp. The feature-marked hypothesis has to be withdrawn at the right periphery, but it is not
selected in that position. It is related to the non-peripheral direct object position within the
relative clause body by virtue of the postulates P1 and P2. Once it has found the direct object
position, the licensing feature {» has done its work and can be cleaned up by the law $Onp — np.
The ‘gap’ hypothesis is then used as a regular direct object with respect to the selecting verb
‘found’.

2.3 Generative capacity and computational complexity

The modular view on grammatical invariants and structural variation invites a comparison between
the categorial landscape and the Chomsky hierarchy. For a recent survey, see (Buszkowski 1997).
The discovery in the Eighties of dependency patterns that cannot be adequately captured by
context-free grammars has led to an interest in ‘mildly context-sensitive’ formalisms, i.e. systems
with an expressivity beyond context-free, but sufficiently restricted to have polynomial parsing
algorithms. The classical Ajdukiewicz/Bar-Hillel grammars have long been known to be weakly
equivalent to context-free grammars, hence to be too poor to serve as models of Universal Gram-
mar. The same is true for the base logic described in §2.1 (?). The correctness of Chomsky’s
conjecture that context-free equivalence extends to the Lambek calculus L was finally established
in (Pentus 1993). This result does not have a direct corollary for polynomial parsability, because
the construction of a context-free grammar from an L grammar is of exponential complexity.

For the structural extensions of the base logic discussed in §2.2, the challenge is to identify ap-
propriate constraints: it is clear that arbitrary combinator extensions, or structural rule packages,
lead to excessive expressivity. But Vijay-Shanker and Weir (1994) show that an appropriately re-
stricted version of CCG is weakly equivalent to the linear indexed grammars, hence polynomially
parsable. In a similar spirit, Moot (2002) shows how with appropriate restrictions on lexical as-
signments and structural postulates, one can carve out a class of multimodal categorial grammars
equivalent with Lexicalized Tree Adjoining Grammars and inheriting the polynomial parsability
of these systems. The general theory of {, 0 as control operators has been investigated in (Kur-
tonina and Moortgat 1997). These authors establish a number of embedding theorems showing
that the full logical space between the base logic and LP can be navigated in terms of the con-
trol connectives, both in the ‘licensing’ direction illustrated above (allowing structural inferences
that would be unavailable without the control features) and in the ‘constraining’ sense (blocking
structural options that would be licit in the absence of the control features).

More important than weak generative capacity are issues of strong capacity, which in the
categorial tradition would mean the proof structures (or their lambda terms, discussed in §3) that
produce a certain string. In this area, Tiede (2001) has obtained interesting results, showing that
while the Lambek systems (N)L are weakly CF, their expressivity in terms of strong capacity
goes beyond that of CF grammars.



2.4 Language learning

Kanazawa (1998) has studied formal learning theory for categorial grammar within Gold’s paradigm
of identification in the limit on the basis of positive data. The focus is on classical categorial gram-
mars, using only the Application rules, and on combinatory extensions with extra rule schemata.
On the input side, Kanazawa considers both learning from strings, and from function-argument
structures. On the output side, the class of rigid grammars (where the grammar assigns a unique
type to each word) is compared with the class of k-valued grammars (where at most k types are
assigned to a lexical item). It is a matter of dispute whether Gold’s very abstract formulation of
the learning problem is directly relevant for first language acquisition. An alternative purely induc-
tive approach, learning a subclass of the shallow context-free languages, is presented in (Adriaans
2002).

The discussion in the previous section suggests some directions for further research in this area.
First of all, one would like to obtain learnability results for classes of Lambek-style categorial
grammars, where the learner has access to both the Elimination rules and the Introduction rules
for the type-forming operators. Secondly, one would like to go beyond systems with a hard-
wired structural component, in order to investigate the learnability effects of different choices
of structural packages, in combination with an invariant base logic. The work of Foret (2001)
is promising in this respect: she mixes unification/substitution with Lambek-style deduction,
suggesting modulation of learnability questions in terms of different structural postulates. Finally,
the role of semantic information in learning needs further investigation. The challenge here is to
find a level of informativity that would be realistic in the setting of first language acquisition.

3 Meaning assembly: the Curry-Howard correspondence

Categorial grammar adheres to the truth-conditional theory of semantics: the interpretation pro-
cess establishes a systematic relationship between linguistic expressions and states of affairs in the
world in such a way that specifying the meaning of a sentence comes down to giving its truth
conditions. As in the previous section, model theory provides the tools to carry out this program.
For semantic interpretation this involves the construction of a set-theoretic model of ‘the world’
in terms of objects and configurations of such objects; these set-theoretic constructs then serve as
the semantic values of natural language expressions.

The integrated treatment of syntax and semantics, which is now seen as the most attractive
aspect of categorial grammar, is of relatively recent origin. The original Lambek systems (Lambek
1958; Lambek 1961) were presented as syntactic type calculi. About the same time, Curry (1961)
was advocating the use of purely semantic types in natural language analysis. Curry in fact crit-
icized Lambek for the admixture of syntactic considerations in his category concept, coining the
famous distinction between tectogrammatic and phenogrammatic organization. The tectogram-
matic level, in Curry’s view, provides the appropriate information for meaning composition; the
phenogrammatic pertains to the way this abstract grammatical structure is represented in terms of
surface expressions. About the actual mapping between the two levels, Curry provides no specific
information.

The design of the syntax-semantics interface becomes of central importance in Richard Mon-
tague’s work. The cornerstone of his Universal Grammar programme is a precise implementation
of Frege’s Compositionality Principle. Informally, this fundamental principle in natural language
semantics requires that the meaning of a complex expression be given as a function of the mean-
ing of its constituent parts, and the way they are put together. In Montague’s algebraic setup,
compositionality takes the form of a homomorphism, that is, a structure-preserving mapping,
between a syntactic and a semantic algebra. Ironically, when van Benthem (1987) reintroduced
semantic interpretation in the discussion of Lambek’s syntactic calculi, it was by establishing the
connection between categorial derivations and Curry’s own ‘formulas-as-types’ program which we
describe below. For expository purposes, the discussion below is restricted to functional types;
the full Curry-Howard interpretation involves extension to the other type-forming operations.
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3.1 Modeltheoretic semantics, type theory and the lambda calculus

For semantic interpretation, we associate every type A with a semantic domain D 4. Expressions
of type A find their denotations in D 4. Semantic domains can be set up in two ways: directly
on the basis of the types as discussed in the previous section, or indirectly, via a mapping from
syntactic to semantic types. The indirect option is attractive for a number of reasons. On the level
of atomic types, one may want to make different basic distinctions depending on whether one uses
syntactic or semantic criteria. For complex types, a map from syntactic to semantic types makes
it possible to forget information that is relevant only for the way expressions are to be configured
in the form dimension. Finally, the semantic type system naturally fits the language of the typed
lambda calculus, which we can then use, together with its standard interpretation, to specify the
instructions for meaning assembly.

Semantic and syntactic types. For a simple extensional interpretation, the set of atomic
semantic types SemAtom could consist of types e and ¢, with D, the domain of discourse (a
non-empty set of entities, objects), and D; = {0,1}, the set of truth values. The full set of
semantic types SemType is then obtained by closing SemAtom under the rule that if A and B are
in SemType, then A — B is also. D _. g, the semantic domain for a functional type A — B, is the
set of functions from D4 to Dp. The mapping from syntactic to semantic types (-)* could now
stipulate for basic syntactic types that np* = e, s* =t, and n* = (e — t). Sentences, in this way,
denote truth values; (proper) noun phrases individuals; common nouns functions from individuals
to truth values. For complex syntactic types, we set (A/B)* = (B\A)* = B* — A*. On the
level of semantic types, the directionality of the slash connective is no longer taken into account.
The distinction between numerator and denominator — domain and range of the interpreting
functions — is kept. Notice that both verb phrases with syntactic type np\s and common nouns
are mapped to the semantic type e — t.

The language of the simply typed lambda calculus. In §3.2, we will present a procedure
to associate a derivation Ay,..., A, F B with a term ¢ of type B representing a recipe for meaning
assembly with parameters xi,...,x, for the lexical assumptions Aq,...,A,. To prepare the
ground, we build up the set of meaningful expressions (terms) of semantic type A, starting from
a denumerably infinite set of variables for each type. For each expression ¢ of type A, we specify
its interpretation [[¢]9 relative to an assignment function g which assigns to each variable of type
A a member of Dy.

Variables Let z be a variable of type A. Then z is a term of type A. Interpretation: [z]9 = g(x).

Application Let ¢ and u be terms of type A — B and A respectively. Then (¢ u) is a term of
type B. Interpretation: [(t u)]9 = [t]? ([u]9), i.e. the value one obtains when applying the
function [t]? to [u]9.

Abstraction Let x be a variable of type A and t a term of type B. Then Ax.t is a term of type
A — B. Interpretation: [Az.t]¢ is that function h from D4 into D such that for all objects
k€ Dy, h(k) = [t], where ¢’ is the assignment that is exactly like g except for the possible
difference that it assigns the object k to the variable x.

Given this interpretation, certain equalities hold between terms. One can see them as syn-
tactic simplifications, replacing a more complex term (the redex) by a simpler one with the same
interpretation (the contractum).

(13) (Axt) u ~p tlu/z] provided w is free for x in ¢
Ax.(tx) ~op 8 provided x is not free in ¢
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3.2 Formulas-as-types, proofs as programs

Curry’s basic insight was that one can see the functional types of type theory as logical implications,
giving rise to a one-to-one correspondence between typed lambda terms and natural deduction
proofs in positive intuitionistic logic. A natural deduction presentation for — starts from identity
axioms A - A and has the introduction and elimination rules below, where I', A represent finite
lists of formulas, and where I' — A results from dropping, some or all occurrences of A from T.

TFA-B AEB L. I'+-B
(14) I,AFB " T _AFASB

Let us write I'(t) for the string of types of free occurrences of variables in a term ¢. Each term
t of type A now encodes a natural deduction proof of the sequent I'(t) H A. The Variable clause
in the definition of well-formed terms corresponds to the axiom sequent, the Application clause to
— Elimination, and the Abstraction clause to — Introduction, where the dropped A assumption
corresponds to the variable bound by the lambda abstractor. In the opposite direction, every
natural deduction proof is encoded by a lambda term. The normalization of natural deduction
proofs corresponds to the /7 reductions of terms.

Translating Curry’s ‘formulas-as-types’ idea to the categorial type logics we are discussing, we
have to take the differences between intuitionistic logic and the grammatical resource logic into
account. Below we repeat the natural deduction presentation of the base logic, now taking term-
decorated formulas as basic declarative units. Judgements take the form of sequents I' - ¢ : A.

— Intro

The antecedent I' is a structure with leafs 1 : Ay,...,z, : A,. The x; are unique variables of
type A, where (-)* is the mapping from syntactic to semantic types. The succedent is a term ¢
of type A* with exactly the free variables x1,...,z,, representing a program which given inputs

k1, ...k, produces [t] under the assignment that maps the variables x; to the objects k;. The x;
in other words are the parameters of the meaning assembly procedure. A derivation starts from
axioms x : A+ x : A. The Elimination and Introduction rules have a version for the right and
the left implication. On the meaning assembly level, this syntactic difference is ironed out, as we
already saw that (A/B)* = (B\A)*. As a consequence, we don’t have the isomorphic (one-to-one)
correspondence between terms and proofs of Curry’s original program. But we do read off meaning
assembly from the categorial derivation.

[/I}Fox:Bl—t:A '+t:A/B A}—u:B[/E]
'k Azt:A/B ToAF (tu):A

[\I}x:BoFI—t:A 'u:B AFt:B\A N\E]
'k Az.t: B\A ToAF (tu): A

Figure 4: Natural Deduction rules: term labeling.

A second difference between the programs/computations that can be obtained in intuitionistic
implicational logic, and the recipes for meaning assembly associated with categorial derivations
has to do with the resource management of assumptions in a derivation. The formulation of
the — introduction rule makes it clear that in intuitionistic logic, the number of occurrences of
assumptions (the ‘multiplicity’ of the logical resources) is not critical. One can make this style
of resource management explicit in the form of structural rules of Contraction and Weakening,
allowing for the duplication and waste of resources.

NAJAF B o '+B
(15) A B I'A+B
In contrast, the categorial type logics are resource sensitive systems where each assumption

has to be used exactly once. At the level of LP, we have the following correspondence between
resource constraints and restrictions on the lambda terms coding derivations:

w
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1. no empty antecedents: each subterm contains a free variable;
2. no Weakening: each \ operator binds a variable free in its scope;

3. no Contraction: each A operator binds at most one occurrence of a variable in its scope.

Moving from LP to the grammatical base logic imposes even tighter restrictions on binding:
in the absense of Associativity and Commutativity, the slash introduction rules responsible for the
A operator can only reach the immediate daughters of a structural domain.

3.3 The syntax/semantics interface

Applied to the composition of natural language meaning, the ‘proofs-as-programs’ approach has
some interesting consequences for the syntax/semantics interface.

A first point to notice is the strictly modular treatment of derivational versus lexical semantics.
The proof term that is read off a derivation is a uniform instruction for meaning assembly that
fully abstracts from the contribution of the particular lexical items on which it is built. As a
result, no assumptions about lexical semantics can be built into the meaning assembly process as
represented by a derivation. We illustrate the interplay between lexical and derivational semantics
in Figures 5 and 6. Whereas the proof term in Fig 5 is a faithful encoding of the derivation
(modulo directionality and structural operations), the term one obtains in Fig 6 after substitution
of lexical meaning programs and [ simplification has lost the transparency with respect to the
derivation.

B X
Subj Y2 (np\s)/np [npt yi:np
ﬁ TVonpt (y2 y1):np\s [\Eg/E]
Subjo (TVonp) F ((y2 y1) x2) : s P2
that (Subjo TV) o (o ) 7) 5|
Noun 7L (\n)/ (/) Subjo TV (g o) ) 5/p )
Zo:m that o (Subjo TV) F (21 Ay1.((y2 y1) z2)) : n\n \E]
Noun o (that o (Subjo TV)) F ((x1 Ay1.((y2 y1) z2)) 20) : 1

Figure 5: Computation of the proof term for the pattern ‘Noun that Subj Transitive-Verb’. Leafs
are labeled with variables. The derivation produces a meaning recipe with parameters for the
lexical meaning programs. The recipe can be applied to any particular choice of lexical items
fitting the type requirements: ‘biscuit that Alice ate’, ‘book that Carroll wrote’, etc.

The second feature is the limited semantic expressivity of a structure-sensitive type logic: many
forms of meaning assembly that can be straightforwardly expressed in the language of the lambda
calculus cannot be obtained as Curry-Howard images of the Introduction/Elimination inferences
of the categorial base logic.

To resolve the tension between structure-sensitivity and semantic expressivity, categorial gram-
mars can exploit a combination of two strategies. Structural reasoning (in terms of combinators
or structural postulates) makes it possible to explicitly determine which positions are accessible
for semantic manipulation (binding). The example of controlled wh-extraction in Figure 3 is an
illustration. Secondly, lexical meaning programs do not have to obey the resource constraints
of the derivational semantics. Specifically, we do not impose the single-bind condition on lexical
meanings (although the ban on vacuous abstraction does make sense, also in the lexicon.) An
example of multiple binding is the lexical lambda term for the relative pronoun ‘that’ in Figure 6,
a program which computes property intersection. Another example would be a reflexive pronoun
like ‘himself’. With a type ((np\s)/np)\(np\s), it consumes its transitive verb argument in a
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1. biscuit : n — biscuit Lex

2. that : (n\n)/(s/np) — Az15.Ax16.\y16-((215 Y16) A (T16 Y16)) Lex

3. alice:np—a Lezx

4. ate: (np\s)/np — eat Lex

5. |np:np—u Hyp

6. |ateonp:np\s— (eat y;) /E (4,5)

7. |aliceo (ateonp) : s — ((eat y1) a) \E (3,6)

8. |(aliceo ate) onp: s — ((eat y1) a) P2 (7)

9. aliceo ate: s/np — \y;.((eat y;) a) /I (5,8)
10. that o (alice o ate) : n\n - )\xlﬁ.)\ym.(((eat y16) a) A (Ilﬁ ylG)) /E (27 9)
11.  biscuit o (that o (alice o ate)) : n — Ay16.(((eat y16) a) A (biscuit y16)) \E (1,10)

Figure 6: Substitution of lexical semantics in the pattern ‘Noun that Subj Transitive-Verb’. Bold-
face for non-logical constants. In steps 10 and 11, 8 conversion is applied on the fly to the
application terms obtained from the slash elimination rules. The derivation is presented in the
linear or Fitch style Natural Deduction format.

resource-sensitive way. The identification of subject and object arguments of the verb is realized
through its lexical lambda term Az\y.((x y) y).

The interplay between these two strategies in current research is nicely illustrated by the con-
strual of quantifier scope ambiguities and antecedent-anaphor dependencies. Generalized quantifier
expressions like ‘everyone’; ‘someone’, ‘nobody’, require an interpretation as sets of properties, i.e.
they find a denotation in D(._)_;. A syntactic type compatible with such denotations would be
s/(np\s). But there are two problems with such a type. First of all, it is restricted to subject
position, and one wouldn’t like to resort to multiple type assignments for non-subject occurrences.
Secondly, it doesn’t allow non-local scope readings, as in (16¢) below, where the embedded quan-
tifier takes scope at the main clause level.

(16) Alice thinks someone left.
((think (3 Az.(leave x))) a)
(3 Az.((think (leave z)) a))
Alice thinks she dreams
((think (dream a)) a)

® an o8

The construal of antecedent-anaphora relations, like that of quantifier scope, involves non-
local dependencies beyond the reach of the grammatical base logic, as in (16d), where the anaphor
in the subordinate clause can pick up its antecedent in the main clause. In addition, meaning
composition for anaphora resolution involves a duplication of resources, in the sense that one
would like to make the pronoun ‘she’ in the example above responsible for the copying of the
antecedent meaning.

Proposals for dealing with these problems rely either on combinator-style type-shifting rule
schemata or on structural extensions of the Lambek calculus. For quantifier scope construal,
these options are discussed in depth in Carpenter (1998). For anaphora resolution, Jéger (2001)
offers a comparison of the CCG approach of (Jacobson 1999) with a type-logical treatment based
on identity semantics for anaphora, in combination with a restricted copying rule in syntax, in
the form of a controlled structural rule of Contraction. An alternative perspective on scope and
anaphora, more in the spirit of Curry’s tectogrammatic programme, simplifies the categorial type
theory to a non-directional LP system, and enforces structural control by introducing lambda term
labeling also for the form dimension of grammatical signs. Oehrle (1994) is an early formulation
of this approach, which has recently found new advocates.
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3.4 Processing issues

The interpretation procedure discussed above is essentially dynamic: interpretations are assembled
‘on line’ in the course of the derivation process, rather than being computed post hoc from a given
static structure. This has led to a distinctly ‘categorial’ view on processing issues.

Incrementality, information structure. The flexible notion of derivational constituency en-
gendered by type-changing principles makes left-to-right parsing directly compatible with incre-
mental interpretation. The resulting categorial modeling of natural language processing has been
worked out in (Steedman 2000a). This work shows that derivational constituency is guided by
prosodic articulation (intonation contour). To do justice to this dimension of grammatical organi-
zation, one needs a richer notion of semantic interpretation, accommodating notions of focus and
information structure. Steedman’s proposals are formulated in the CCG style; Hendriks (1999)
analyses information packaging and intonation contour in multimodal type-logical terms.

Proof nets. A novel computational view on natural language processing derives from the proof
net approach. Proof nets were originally developed in the context of Linear Logic, where they
elegantly capture the essence of resource-sensitive derivations in graph-theoretical terms. Moot
and Puite (2002) refine the proof net techniques for use with the grammatical type logics discussed
in this article, where apart from resource multiplicity also structural patterns have to be taken
into account.

Johnson (1998) and Morrill (2000) have pointed out that proof nets offer an attractive per-
spective on performance phenomena. A net can be built in a left-to-right incremental fashion by
establishing possible linkings between the input/output connectors of lexical items as they are
presented in real time. This suggests a simple complexity measure on a traversal, given by the
number of unresolved dependencies between literals. This complexity measure on incremental
proof net construction makes the right predictions about a number of well-known processing is-
sues, such as the difficulty of center embedding, garden path effects, attachment preferences, and
preferred scope construals in ambiguous constructions. An illustration is presented in Figure 7.

Insert Fig 7 here

4 Exploration

4.1 Variants and alternatives

Pregroup grammars. An interesting variation on the categorial theme has been developed by
Jim Lambek in a number of recent papers (Lambek 1999; Lambek 2001). The approach makes use
of pregroups, algebraic structures closely related to the residuation-based models for the categorial
type systems discussed here. A pregroup is a partially ordered monoid in which each element a
has a left and a right adjoint, a!,a”, satisfying a'a — 1 — aa! and aa”™ — 1 — a”a, respectively.
Type assignment takes the form of associating a word with one or more elements from the free
pregroup generated by a partially ordered set of basic types. For the connection with categorial
type formulas, one can use the translations a/b = ab’ and b\a = b"a. Parsing, in the pregroup
setting, is extremely straightforward. Lambek (1999) proves that one only has to perform the
contractions replacing a'a and a'a by the multiplicative unit 1. This is essentially a check for
well-bracketing — an operation that can be entrusted to a pushdown automaton. The expansions
1 — aa' and 1 — a"a are needed to prove equations like (ab)! = b'al. We have used the latter to
obtain the pregroup version of the higher-order relative pronoun type (n\n)/(s/np) in the example
below.

(17) book that Carroll wrote
CATEGORIAL TYPES: n  (n\n)/(s/np) np  (np\s)/np
PREGROUP ASSIGNMENT : 71 n" nnp' st np np" snpt  —n
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Comparing the pregroup approach with the original categorial type system, one notices that
the pregroup notation has associativity built in. This has pleasant consequences. In the standard
Lambek calculus, the choice between (np\s)/np and np\(s/np) as the lexical type assignment for a
transitive verb is in a certain sense arbitrary, given the fact that the associativity postulates make
these types interderivable. The pregroup category format removes this notational overspecification:
the two types translate to np” snp!. In general, every sequent derivable in the Lambek calculus
will be derivable in the corresponding pregroup. The converse is not true: the pregroup image of
the types (a @ b)/c and a e (b/c), for example, is abc!, but these two types are not interderivable
in L.

With respect to generative capacity, Buszkowski (2001) shows that the pregroup grammars
are equivalent to context-free grammars. They share, in other words, the expressive limitations of
the original categorial grammars. To overcome these limitations in the analyses of German word
order and Romance clitics referred to above, the authors rely on a combination of metarules and
derivational constraints.

Minimalist grammars. Whereas the Chomskyan tradition of generative grammar and the
categorial tradition have been moving in separate orbits for a long time, there are surprising
convergences between resource-sensitive logics and Chomksy’s recent ‘Minimalist Program’ when
this is made mathematically precise, as in the algebraic formulation of (Stabler 1997; Stabler 1999).
A minimalist grammar, in this format, consists of a lexicon of type assignments, closed under the
structure-building operations Merge and Move. Type declarations are built up out of two sets
of features with matching input/output polarities: category features and control features. The
former govern the Merge operation, in which one easily recognizes the Modus Ponens/Application
rule of categorial deduction. The control features explicitly license structural reasoning (Move),
much like the unary multiplicatives {», 0. The Stabler grammars have been shown to be weakly
equivalent to Multiple Context Free Grammars, hence to fall within the class of mildy context-
sensitive formalisms.

Comparing them with categorial logics, one notices that the minimalist category concept is
essentially first-order: no use is made of hypothetical reasoning with respect to Merge. The
restriction to Modus Ponens doesn’t seem to be an essential limitation of the minimalist design,
however. It would be interesting to extend minimalist grammars with facilities for hypothetical
reasoning, which, as we have seen above, plays such a central role in the meaning assembly process.

4.2 Further reading

The Supplementary References provide material for further exploration. We present brief guide-
lines below.

The history of categorial grammar is generally traced back to the work of Ajdukiewicz in
the Thirties (Ajdukiewicz 1935), which was later taken up by Bar-Hillel in the Fifties (Bar-Hillel
1953). Jim Lambek’s early papers (Lambek 1958; Lambek 1961), virtually unnoticed at the time,
have proved to be of central importance for the development of the field. In these papers, the
type-forming operations are for the first time treated as logical connectives; logical proof theory
takes the place of the stipulated rule schemata of the earlier systems. The seminal 1958 paper is
available electronically through JSTOR, and reprinted in (Buszkowski et al. 1998), a collection
which contains more of the early papers.

In the Eighties, the shift towards ‘lexicalized’ grammar formalisms brings a revival of interest
in categorial grammar, which is recognized as the lexicalized framework par excellence. The
proceedings of the 1985 Tucson conference (Ochrle et al. 1988) give a good picture of the types
of categorial research in this period, both within the rule-based and within the logical traditions.
Van Benthem’s contribution to this volume has been instrumental in introducing Lambek’s logical
approach to the linguistic community.

The advent of linear logic (Girard 1987), and the wave of research on ‘substructural’ styles of
inference with controlled options for resource management rather than hard-wired global choices,
have been important factors for the recent development of categorial grammar. Language in
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Action (van Benthem 1995) is a detailed study of the relations between categorial derivations,
type theory and lambda calculus, and of the place of categorial grammars within the general
landscape of resource-sensitive logics. Substructural Logics (Restall 2000) is an accessible textbook
on this subject, doing justice both to Linear Logic and to its many predecessors in modal logic.
The connections between linear logic, categorial grammar, and computational formulations of
minimalist grammars are explored in a special issue of Language and Computation (Retoré and
Stabler 2002). Proofs and types (Girard, Lafont, and Taylor 1988) is a good source for the Curry-
Howard interpretation.

Apart from the chapter on categorial type logics (Moortgat 1997), which is the primary source
for this article, the Handbook of Logic and Language (van Benthem and ter Meulen 1997) contains
a number of further in-depth chapters that can be consulted for the connections between categorial
type systems and mathematical linguistics and proof theory, formal learning theory, type theory,
and Montague Grammar.

There is a choice of monographs and collections illustrating the different styles of current cate-
gorial research. Steedman’s recent books Surface Structure and Interpretation and The Syntactic
Process (Steedman 1996; Steedman 2000b) well represent the agenda of Combinatory Categorial
Grammar. For the deductive approach, the reader can turn to Type Logical Grammar (Morrill
1994), which offers a rich fragment of syntactic and semantic phenomena in the grammar of En-
glish, using a variety of type-forming operations (Boolean, quantificational) in addition to the
composition operators discussed here. Type Logical Semantics (Carpenter 1998) is a general intro-
duction to natural language semantics studied from the type-logical perspective; this book includes
a detailed discussion of quantifier scope ambiguities as a case study. The collection (Kruijff and
Oechrle 2002) reflects current categorial views on anaphora and binding.

A versatile computational tool for categorial exploration is Richard Moot’s grammar devel-
opment environment GRAIL The kernel of this system is a general type-logical theorem prover
based on proof nets and structural graph rewriting. The user interacts with the kernel via a
graphical user interface, which provides control over the lexicon and the structural module, and
which gives access to a full-fledged proofnet based debugger. The system is publicly available at
http://www.let.uu.nl/"Richard.Moot/personal/grail.html. A number of sample fragments
can be accessed online at http://www.grail.let.uu.nl/tour.pdf.
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s s/(np\s) (np\s)/np (s/np)\s

(Goal) everyone loves somebody

Subject wide scope: V (Az 3 (A\y ((love y) x)))

s
S S
s s/(np\s) (np\s)/np (s/np)\s
(Goal) everyone loves somebody

Object wide scope: 3 (Ay V (A\z ((love y) z)))

Figure 7: A proof net for the sentence ‘everyone loves somebody’. Formula decomposition trees
with polarized vertices (black: input; white: output). Solid (dotted) edges for input (output)
slashes. A linking of leafs with opposite polarities is well-formed if it produces a graph which
is connected, acyclic (for each removal of a dotted egde from a pair), and planar. The net is
constructed in a left-to-right incremental fashion. Processing complexity is measured in terms
of the number of unresolved dependencies. The subject wide-scope reading for ‘everyone loves
somebody’ (maximum of unresolved dependencies: 3) is preferred over the object wide-scope
reading (maximum of unresolved dependencies: 4). Sources: Johnson (1998), Morrill (2000).
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