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Abstract

Propositional dynamic logic (PDL) is complete but not compact. As
a consequence, strong completeness (the property I' = ¢ = T F ¢)
does not hold for the standard finitary axiomatisation. In this pa-
per, we present an infinitary proof system of PDL and prove strong
completeness. The result is extended to epistemic logic with common
knowledge.

1 Introduction

Dynamic logic is a modal logic that was developed to reason about computer
processes. The branch of logic was started by Pratt [11]. The propositional
part of his logic (PDL) became an object of study in itself. Segerberg [12]
gave an axiomatisation of it, that is mostly used today, but the completeness
proof was not easy to find. It took some time before several proofs were
produced. The proof by Kozen and Parikh [8] is considered to be one of
the most elegant. The problem is that the canonical model method for
proving completeness cannot be applied successfully. The axiomatisation
by Segerberg is only weakly complete, because PDL is not compact (see
below). The topic of this paper is a strongly complete proof system for
propositional dynamic logic, for which the canonical model method can be
used to prove completeness.

Strong completeness (also called extended completeness) with respect to
a class of frames C is the following property of a modal logical system S:

I' =¢ ¢ implies I' g ¢, for all formulae ¢ and all sets of formulae I'.

This generalises weak completeness, where I' is empty. Observe that weak
completeness implies strong completeness whenever the logic in question is
semantically compact, i.e. when I' =¢ ¢ implies that there is a finite IV C T’

*Department of Computing Science, University of Groningen, P.O. Box 800, 9700 AV
Groningen, The Netherlands, {grl, barteld}@cs.rug.nl

tDepartment of Artificial Intelligence, University of Groningen, Grote Kruisstraat 2 /1,
9712 TS Groningen, The Netherlands, rineke@ai.rug.nl



with TV |=¢ ¢, hence =¢ AT — ¢. This is, for example, the case in modal
logics such as K and Sb.

Propositional dynamic logic is a well known example of a non-compact
logic: we have for the relevant class of frames C, that {[a"]p | n € N} =¢ [a*]p
but there is no natural number k with {[a"]p | n < k} |=¢ [a*]p- As a conse-
quence, we do not have strong completeness for any finitary axiomatisation,
a fortiori not for its usual, weakly complete proof system (see definition 3).
So strong completeness requires an infinitary proof system.

Some infinitary systems have been presented in the literature. A strongly
complete infinitary proof system for Propositional Algorithmic Logic is pre-
sented in [10]. Although propositional algorithmic logic is related to PDL,
it differs too much for these results to be applicable to PDL. In [6], an
infinitary axiomatisation of PDL is given. It contains the oco-rule from
{1 — [a*]p | i < w} infer ¢ — [a*]p. Weak completeness for this ax-
iomatisation is claimed, but we suspect that the proof is incorrect. In [7]
another proof of strong completeness is presented with respect to a specific
model. Although we think that the result holds, we have trouble with some
of the details of the paper. For example in the proof of theorem 5.10 of [7]
a reference is made to Lindenbaum’s theorem to extend a set of formulae
to a maximally consistent one. It seems to us that this technique cannot
be applied directly in the case of infinitary proof systems. In [3], Goldblatt
introduces the Omega-Iteration proof rule from {¢ — [B;a"]Y | n € w}
deduce ¢ — [B;a*]¢ in the context of first-order dynamic logic, and proves
weak completeness.

In [4, chapter 9] a general approach for infinitary proof systems for nor-
mal modal logics is given. Goldblatt shows that the addition of rules that
satisfy certain properties to a basic proof system, yields a proof system that
is strongly complete with respect to the appropriate class of models. In that
framework it is not hard to make a strongly complete proof system for PDL.
We take another approach in this paper. Goldblatt starts out by taking a
fairly strong basic proof system. Strong necessitation (SNec), and the deduc-
tion theorem (Ded) are rules in his basic system, whereas they are deduced
rules in the proof system we present in this paper: PDL,. This makes the
proofs about PDL,, easier than they would be in Goldblatt’s setting. PDL,,
is an extension of PDL with an infinitary proof system containing a variant
of the Omega-iteration proof rule. We show that it is strongly complete.
This result can be generalised to other logics, such as epistemic logic with
common knowledge.

The rest of the paper is structured as follows. Section 2 presents the
infinitary proof system PDL,,, as well as proofs of some derived rules, which
are used in the central section 3 to prove that PDL, is strongly complete.
In this section it is also shown that the canonical model for PDL,, does not
satisfy program harmony. An analogue of the proof system for epistemic
logics with common knowledge is sketched in section 4. Finally section 5



contains a conclusion and ideas for further research.

2 The proof system PDL,

The infinitary proof system PDL,, is an extension of the usual axiom system
for PDL, with respect to the same language and the same Kripke semantics.
As a reminder, we repeat the definitions of both language and semantics (for
more information on PDL, see [5]).

Definition 1 (Language of PDL) A language Lpy of propositional dy-
namic logic PDL is based on a countable set P of atomic formulae p and a
countable set I of atomic programs a, and is given by the following rules,
defining the set of formulae Fma(P,II) and the set of programs Prog(P,1I),
respectively:

pu=Lp|-p| (@=9)] [
az=a | ;B | aUB | a | ¢7

Definition 2 (Kripke semantics of PDL) A model for ,C,P,H is a tuple
M = (W,{R, : a € I}, V) such that:

o W #0; a set of states or possible worlds;
e R,: a binary relation on W for each atomic program a;

o V:P —2W; assigns a set of states to each propositional variable.

The truth definition is as expected for normal modal logics. As a re-
minder, here follows the modal clause:

M,w = [a]p iff M,v |= ¢ for all v with wRyv
where R is extended in the following way
e Ry3 = R,o0 Rg;
e Ryug = Ro U Rg;
e R, = R}, = reflexive transitive closure of R,;
o Ryr = {(w,w) | M,w |= ¢}.

It is sometimes relevant to abstract from the valuation V and consider Kripke
frames (W, {R,, : a € II}) satisfying the conditions on W and R, above. Let
C be the class of frames corresponding to this class of models. We show that
PDL,, is complete with respect to this class of frames C:

I =¢ ¢ implies I Fpp|, ¢, for all formulae ¢ and all sets of formulae T



Below |=¢ and tppL, is abbreviated with |= and + respectively. By I' = ¢
we mean the local consequence relation, i.e. I' = ¢ iff for every model M
such that the corresponding frame is in C, M, w = 1 for every ¢ € I implies

that M, w = ¢.

Definition 3 (Axioms for PDL) Here follows the usual set of axioms for
PDL.

Taut all instantiations of propositional tautologies
Distr  [a](¢ = ¢) = ([a]e — [o]y)

PAX (@ (= )

AX e Ble < [o][Ble

UAX  [aU Ble < ([ale A [Bly)
*AX [a]e © (¢ Ala][a’]p)

In the following we extend the system PDL to an infinitary proof system
PDL, by inductively defining a derivation relation I' F ¢ (¢ a formula, T’
a set of formulae). Notice that in the following definition, the language
remains finitary and only the rule Inf* is non-standard.

Besides the usual shorthand notation I', ¢ for I' U {¢}, I, A for T U A,
F o for O+ o, and ¢1,...,0, F 1 for {p1,...,0n} F 1, we shall also write:
'FA for ThHyforall pe A
[a]l'  for {[eJp|p €T}
p—>T for {p—>9|ypeTl}

Definition 4 (Infinitary derivation relation for PDL,) ' F ¢ is de-
fined as the smallest relation closed under the following rules:

AX  F ¢ if ¢ is an axiom of PDL
MP o, =9y (

Inf* {les 8" | n € N} F [o; %] (

Nec if F ¢ then F [a]y (necessitation)
W ifT’'FpthenT, Al g (

Cut fT’FAandT,AFpthenTF g

modus ponens)

infinitary *-introduction)

weakening)

Observe the formulation of Inf*: it contains Omega-Iteration (via 7AX) ,
i.e. the version with formulae ¥ — [o; "], ¥ — [0 5*]p.

It is not hard to verify that these rules are sound with respect to the
semantics of PDL (i.e. I' I ¢ implies that I' = ). We shall show in sec-
tion 3.1 that the system PDL,, is also strongly complete with respect to these
semantics. For this, we shall use some derived rules that we introduce now.



The most important of these are deduction (Ded) and strong necessitation
(SNec), while the other rules are only used to prove Ded and SNec. Ded will
be used in the Lindenbaum lemma and both Ded and SNec in the Truth
lemma. We remark that the fact that SNec holds while only Nec is part of
the proof system, is essential in our proof of strong completeness.

Lemma 1 (Derived rules of PDL,) We can prove the following derived
rules:

SCut ifT'FAandI',At o then I',T'F ¢ (strong cut)

(
Det ifT'Fy— 9 thenT ok (detachment)
Cond i T'AF ¢thenT, (¢ > A)F 9 — ¢ (conditionalisation)
Ded ifT,pkF4¢ thenT'Fop— 9 (deduction)
SNec if 't ¢ then [o]T F [a]p (strong necessitation)

Proof Notice that the structure of the proof below is an infinitary induction
over derivations; this is not a problem because of the well-foundedness of
derivations.

SCut is easy to prove using W and Cut. Det is also easy, with MP and
SCut.

Cond : Proof by induction over a derivation of I', A F ¢. By W, we may
assume without loss of generality that ' A = (). The cases below are
named by the rule applied last:

AX If ¢ is an axiom, then F ¢; also F ¢ — (p — ¢) for it is a
tautology. By MP we have ¢, ¢ — (¢ — ¢) k19 — ¢. Now apply
SCut twice to obtain F 1 — .

MP There are four cases, corresponding with A equals 0, {¢1}, {1 —
w2}, or {p1,01 — @a}; they all follow via tautologies and Det.

Inf* We have to show

{las 8™ | n eI} {h = [a; 8" | n€ TP = [0 fp
for I,J with TUJ =N, I NnJ = 0. By Inf, we have
{7 8"p | neN}E[¢7 05 87p
so, by Cut and ?AX, it suffices to show
{los B0 [ n €I} {¢p = [0;8"]¢ [n € J}E
{[¥7 05 8"]¢ | n € N}

and this is correct if [o; 8" F [¢7; 058" ]p for n € I, and ¢ —
[a; B¢ F [¢7; 05 8] for n € J. Both are easily obtained using
?AX.

Nec Analogously to AX.



W Easy application of the induction hypothesis.

Cut Now there is a © with A+ © and I';A,0 + ¢. With the
induction hypothesis, we get ', - A F ¢ — © and ',y —
A,p = O F 9 — @, so with Cut we obtain I',9p — A+ — .

Ded : if ', F 4, then (by Cond) ', o — ¢ F ¢ — 1; with Cut we remove
the tautology ¢ — ¢ and obtain I' - ¢ — .

SNec : induction over a derivation of I' F ¢.

AX Easy, with Nec.
MP Take Distr and apply Det twice.

Inf* We have {[y;a;8"]¢ | n € N} F [y; a; 8*]¢; via ;AX and SCut we
obtain

[Yi{les 8% | n € N} = [y][es 870
Nec Easy, via ;AX and Cut.
W,Cut These cases follow directly by the induction hypothesis.

An immediate consequence of Ded is that if I', ¢ is PDL,-inconsistent,
then I' F —.

3 The canonical model for PDL,

In this section, we consider a fixed language Lp;. We shall prove strong
completeness of PDL,, via the Henkin construction of a canonical model in
section 3.1. There are two steps: first we show that every PDL,-consistent
set can be extended to a maximal PDL-consistent set, then we construct
a Kripke model consisting of maximal PDL,,-consistent sets. In section 3.2
we show that this model does not satisfy program harmony, by giving a
countermodel.

3.1 Strong completeness of PDL,

We recall the obvious fact that a collection of formulae I' is maximal PDL,,-
consistent iff it is PDL,-consistent (i.e. I' I/ 1) and I' contains exactly one
from ¢, —¢ for every formula ¢ in the language Lp . In the remainder of
this section, we will omit the prefix PDL,, before “consistent”.

Lemma 2 (Lindenbaum lemma for PDL,) Every consistent set can be
extended to a mazimal consistent set.



Proof Let A be a consistent set, i.e. A I/ L. Let {¢p, | n € N} be an
enumeration of all formulae in £ pr- We shall inductively define an increas-
ing sequence {I';, | n € N} of formula sets extending A, and show that
I' =4e U{T'» | » € N} is maximal consistent.

Lo =qet A
((TnU{en} if Ty b= on

T, U{-p,} if T'y, ¥ ¢, and ¢, is not
of the form [a; 5*]9)

T U {=¢n,[a; BF]} otherwise, where k is the
least natural number
such that T', I/ [o; B*]¢
(and ¢, is of the form

( [a; B7]4))

We observe that the k in the last case always exists: for if I', - [a; B¥]4) for
all k& € N, then (by Inf* and Cut) T',, F [a; 8*]4), contradicting T, t/ ¢,,. So
the definition of I';, is correct.

Now we claim the following for all formulae ¢, 1; from these claims, espe-
cially from (3) and (6), it follows immediately that I" is maximal consistent:

Cni1 =det  «

1. every I',, is consistent;

2. Fp=pel;

3. ¢l & —peT;

4 (p—=yP)el e (pel'=9el);
5 T'Fo=¢pel;

6. T L.

The proofs of (2), (3), (4) and (6) are as usual. We give the proofs in the
two unusual cases:

1. Induction over n. For n = 0, consistency of A is given. Now assume that
I, is consistent. If, in the definition of I',41, the first or second case
applies, it is clear that ', is consistent. If the last case applies and
['ny1 were inconsistent, then T'y, I [ 8*]% V [o; B¥]3) via Ded, so, by
using *AX k times, T';, F [o; B¥]2, contradicting the definition of k.

5. We shall prove a more general statement with induction over a derivation
of IV @: if IY CT and I F ¢, then ¢ € T.

e ¢ is an axiom: by (2).
e MP: by (4).



e Inf*: Let {[a;5"]¢ | n € N} C T'. To show that [o; %] € T,
assume using contraposition that this is not the case: then by
(3), —[a; B*]e € T. Let n be the index with ¢, = [a; 3*]p, then
T, I/ ¢, (for otherwise, by the first case in the definition of Ty, 1,
[; 8%]p € Tpy1 CT), so =[a; B € Ty C T for some k by
the last case of the definition of I',,+1. But also, by assumption,
[o; B¥lp € T, so {-[e; B, [e; BF]p} € Ty, for some m > n,
contradicting the consistency of ', (1).

e Nec: by (2).

e W: direct consequence of the induction hypothesis.

e Cut: soI"FT" and IV UT” F ¢ for some I'”. By the induction
hypothesis, we get T C T', so I UT" C T'; by applying the
induction hypothesis again we obtain ¢ € I'.

Now we can define the canonical model needed for strong completeness.

Definition 5 (Canonical model) We define the canonical Kripke model
M= (W,{R, :a €I}, V) by

o W =ger {T' | T mazimal consistent}
o Ry =qet {(T,A) € W2 | p € A for all ¢ such that [a]p € T}
o V(p) =qes {T €W |peT}

The truth lemma shows that M,I" =p < p € T extends to all formulae of
the language:

Lemma 3 (Truth lemma) For all T € W and all formulae ¢, we have
MTEepepel.

Proof Induction over ¢. The atomic and propositional cases are standard.
We will prove the case ¢ = [, by induction over «; the cases for complex
programs « of the forms x?, 8;v and B U~y are easy, so we only give the
proofs of the remaining two unusual cases. Note that the proof as a whole
has the form of an induction over a well-ordering of formulae, where [a"]¢
is considered to be a subformula of [a*]¢p.

1. @ = a, atomic. Using the definition of the truth relation and the
induction hypothesis M, A =9 < ¢ € A for all A € W, we see that
M,T k= [a]y is equivalent to

for all A € W(for all x([a]x eT'= x € A) =9 € A) (A)



It is evident (A) follows from [a]i) € T'. To see that (A) implies [a]yp € T’
as well, we argue via contraposition. So assume [a]y) ¢ T, i.e. (by max-
imal consistency) —[a]ip € I'. We shall show that there is a maximal
consistent A with 6 € A for all € such that [a]@ € T, and -9 € A. By
the Lindenbaum lemma, it suffices to show that {x | [a]x € T} U {-v}
is consistent. Assume it is not, i.e. {x | [a]x € T} U{—¢} F L, then
{x | [a]x € T'} I ¢ via Ded. Thus, with SNec: {[a]x | [a]x € T'} F [a]®.
Hence a fortiori T+ [a]y and [a]yp € T, contradicting the assumption
al ¢T.

2.a=p% M\I' E[f*lY & forallmn € N M,T = "¢ & ([B"|¢ €
[ for alln € N) < [B*]¢ € T, using the induction hypothesis in the
second step, and *AX, Inf* in the last step.

Note that in the truth lemma, we do not prove the dual property for
programs 'R, A iff ¢ € A for all ¢ such that [a]p € T' (it holds by defini-
tion for atomic programs a). In section 3.2 we elaborate on this lack of “full
harmony”.

Theorem 1 (Strong completeness of PDL,) Let C be the class of all
Kripke frames for the language EP,H. Then for all formulae ¢ and all sets
of formulae ®, ® =¢c ¢ implies ® + .

Proof By contraposition. Suppose @ I/ ¢, then ® U {-¢p} is consistent. By
lemma 2, ® U {—¢p} is extended to a maximal consistent set I' with - € T'.
Now by lemma 3, we conclude that in the canonical Kripke model, M, T" |~ ¢,
as desired.

Note that the completeness proof immediately gives a canonical standard
model, contrary to the early proofs of weak completeness for PDL as they
appear in [8, 5], which use nonstandard models.

3.2 Program disharmony

Somewhat surprisingly, the formula harmony property M,\I' = p < ¢ € T
proved in lemma 3 for the canonical model, is not matched by program
harmony, i.e. the property

TRAA S {p|la)JpeTl} CA (2)

for all programs a and all maximal consistent sets I'y A. For atomic pro-
grams, this holds by definition. The program constructors (;,U) preserve
(2), and it also holds for test programs. It fails, however, for programs with
iterations. In [8], program disharmony (i.e. failure of program harmony) for
finite canonical models for PDL was claimed without proof.

We shall sketch a counterexample for (2) with the program b*. The max-
imal consistent sets will be defined by I' = {¢ | M,n = ¢}, A ={¢ | M,w
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Figure 1: A picture of the countermodel M. The solid lines indicate the
accessibility relation of the atomic program a, the dashed lines for b.

¢}, where w,n are two worlds in some model M to be constructed. More
precisely, we shall show

Vo(M,n = [ble = M,w = ) (3)

Now (3) immediately implies {¢ | [b*]¢ € T'} C A, and (4) implies not
'Ry« A, where Ry~ = (Rp)* is given by the canonical model (see definition 5).

We define M in two steps: first we study the model N = (N, >), then we
extend N to M. In N, we start with interpreting only the language Ly , (no
propositional atoms besides L, and a as the only atomic program); when
going to M, we add the atomic program b. The extension of R, is the strict
order relation > on N. We write [¢] for {n € N | N,n |= ¢}, and [o] for
R, C N2%. See Figure 1.

We say that X C N is representable iff X = [¢] for some ¢. The crucial
property of N is

for every ¢ in Ly 4, [¢] is finite or cofinite (5)

(X C N is cofinite iff N — X is finite). So there is no formula ¢ with
e.g. [¢] = {2z | z € N}. The hard part in proving (5) lies in finding the
corresponding property for programs: which relations on N are representable
as [a], for some program a in Lj,? We shall define this property using
ST(n), the collection of n-stable subsets of N:

X €ST(n) iff Vp>n(p e X = [p,w) C X)

10



It is rather obvious that ST(n) is closed under U and N. More surprising is
that ST(n) is closed under infinite conjunctions. This is a consequence of the
fact that D (strict inclusion) is a wellordering on ST(n), hence every infinite
conjunction J;.; X; of n-stable sets is equal to some finite subconjunction
X, U...UX;,.

We extend stability to relations: STR(n) is defined by

R € STR(n) iff Vzy(zRy - y <z Ay <nA{z|zRy} € ST(n))

and claim: STR(n) is closed under finite conjunctions and arbitrary disjunc-
tions, and under o (composition).

Now we can characterise the representable relations: R = [«] for some
program « in Ly, iff R = Ry U Ry U R3 where, for some n, Ry = () or
Ry ={(z,z) |z >n}, Ro=0o0r Ry ={(z,y) | m <z,n <y < z—k} for
some k, and R3 € STR(n). The ‘only if’ part is proved together with (5) in
simultaneous induction over ¢ and «a.

We extend N to M = (M, R,, Rp), where

M = NU{w,ntU{(z,y) e NXN|0<y<z}

R, = {(z,y) eN*|z>y}U{(w,2) |z €N}

Ry = {(n0)}U{(n(z,1)),({z,2),z) [z €N-{0}}
U{({z,9),{z,y+1)) 2,y €N,0 <y <z}

See Figure 1. Observe that R, N N? = {(z,y) | z > y}, the extension of R,
in N. We claim: for all ¢ in Ly,

M,w |= ¢ iff [¢] is cofinite. (6)

(recall that [-] denotes interpretation in N; we shall use R, to denote the
interpretation of o in M). This is proved via simultaneous induction over ¢
and « in Ly 4, together with the statements (w,z) € Ry < {y | (y,z) € []}
cofinite, and (w,w) € Ry < {(z,2) | (z,z) € [a]} cofinite.

Also, for all z € N:

M,:v|:<,0<:>M,:1:\:<p*b(:)N,$|:<pfb (7)

where ¢~ is defined as ¢ with all occurrences of b replaced by L?. The first

equivalence in (7) also holds for z = w.
As a consequence of (6) and (7), we have, for all ¢ in Ly,

M,wEp< 3z eNVy e N(M,y = p)

and this entails (3): for if M,n = [b*]¢, then M,z = ¢ for every z € N,
hence M,z |= ¢ for every z € N, so M,w = ¢~% and M,w = ¢. In
order to verify (4), we put ¢, =gef [@"T1]L: then Vz € N(M,z &= ¢, &
N,z = ¢, © z < n) and Vz,y((z,y) € M = M,(z,y) F ¢,), so indeed
M,n = [b"]¢n and M,w = -, (using (6)). Therefore both (3) and (4)
hold, and program disharmony is demonstrated.

11



4 Epistemic logics with common knowledge

In this section, we extend the strong completeness result for PDL,, to epis-
temic logic with common knowledge. First we repeat the definitions lan-
guage and semantics. (For more on epistemic logic, see [9, 2]; we loosely
base the axioms below on the version of [2].).

Definition 6 (Language of epistemic logic) A language Lp, of epis-
temic logic is based on a countable set P of atomic formulae p and a finite
set A of agents a, and is given by the following rule:

pu=p | o | (eAY) | Oap | Ep | Cp

Definition 7 (Kripke semantics for epistemic logic) A Kripke model
for Lp 4 is a pair (M,w) such that M = (W,{R, : a € A},V) and:

o W #£0; a set of states or possible worlds;
o R, CW x W; an accessibility relation, for each agent a;

o V:P — 2W: assigns a set of states to each propositional variable.

The truth definition is as usual; we only give the clauses for the modal
operators.

(M,w) =0y iff (M,v
(M,w) =Ep iff (M,v
(M) = Cp it (Mo

from

) = ¢ for all v such that wR,v

) = ¢ for all v such that wR,v for any a
) = @ for all v such that v is reachable
w

?

Here, “v is reachable from w” iff there is a path of length > 1 in the Kripke
model from w to v along accessibility arrows R, associated with members a
of A.

The similarity between PDL and epistemic logic with common knowledge
has long been noted. In fact, strong completeness of the latter immediately
reduces to the former by the following embedding /. Suppose the set of
agents A = {a1,...,a,}, and define:

(Oo; ) =der  [ai]¢’
(Ep)!  =get [a1U...Uay)y
(C(p)' =gt [(@1U...U an)*](pl

However, we can prove something stronger if we take a direct approach.
It turns out that the Henkin method can, in addition to K, also be used for
systems like T, S4 and S5 with common knowledge. In order to give the
direct proof, we fix the axioms and give an infinitary derivation relation.

12



Definition 8 (Axioms for KECpy ) The aziom system for basic epistemic
logic with common knowledge KECp 4 contains the following azioms:

Taut all instantiations of propositional tautologies
Distr Og(p — %) = (e — Ou9)
EAX Ep < N Oup

acA
Mix Cy <> E(pACyp)

Definition 9 (Axioms for TECpy, S4ECp 4, and S5ECp4 ) The axiom sys-

tems for stronger epistemic logics with common knowledge TECp 4, S4ECp 4
and SS5ECp 4 contain the azioms of KECp4. In addition, TECp4 contains
A3; S4ECp 4 contains A3 and A4; SS5ECp 4 contains A3, A4, and A5, as
defined below:

A3 Oy — o knowledge
Ad Oy — O,0,0 positive introspection
A5 —Oge — 0O,-0ap negative introspection

We extend all four axiom systems to infinitary proof systems KECp 4,
TECpa,, S4ECp 4., and S5ECp 4, by adding a fixed set of derivation rules.
We first introduce some notation in order to describe the infinitary intro-
duction rule for C. We want this rule to contain all instances of the form

{(p1 — Da((p2 — Db( — Enlﬁ)) | n e N,n > 1} F
w1 = a2 = Op(... = Cv)),

where E™i) is the obvious abbreviation defined inductively by E%) = 1)
and E"t'4y) = EE™). The neat way to formulate the infinitary rule is to
introduce finite sequences © = (71, ..., m,) where the 7 are either formulae
or modalities (0, for a € A, with

Oe =def ®
(s =aer P — (M)
(Qa;m)e  =det Oal((m)p)

The infinitary rule may then be formulated as {(7)E"¢ | n € N,n > 1}
(m)C¢. We give the derivation rules for the infinitary systems.

Definition 10 (Infinitary derivation relations) LetS be any of KECp 4,
TECp 4w, SAECp 4y, and SS5ECp 4. T' s @ is defined as the smallest relation
closed under the following rules:
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AX kg ¢ if ¢ is an axiom of S

MP  o,¢o =49 ks

InfC  {(m)E™p |n € N,n > 1} ks (7)Coyp
Nec if kg ¢ then Fg Oy

w ifI'Fs pthen ', Atg

Cut ifT'FsAandT',Als ¢ thenI'Fg ¢

modus ponens)
infinitary C-introduction)

necessitation)

~ o~ o~ o~

weakening)

Now the reader may check that for these systems, the derived rules SCut,
Det, Cond, and Ded of lemma 1 can be proved, as well as the following ana-
logue of strong necessitation SNec:

SNecK if I' kg ¢ then O,I' Fs O, (strong necessitation for knowledge)
It is immediate that all four systems are sound with respect to the appro-
priate semantics: KECp 4, for all Kripke frames, TECp 4, for reflexive ones,
S4ECp 4, for reflexive transitive ones, and S5ECp 4, for equivalence rela-
tions.

Theorem 2 Let S be any of the systems KECp 4, TECp4y,, SAECp 4., and
S5ECp.4,. Then S is strongly complete with respect to the appropriate set of
frames.

Proof sketch By a Henkin construction of a canonical model, analogously
as in section 3.1. The presence of the appropriate axioms from A3, A4,
and A5 in the maximal consistent sets induces the appropriate properties
of the accessibility relations in the canonical model. In the analogue of
the Lindenbaum lemma, the last clause for I';,;; should be “I'y 11 =gef
T U {=¢y,, ~(7)E¥4} otherwise, where k is the least natural number > 1
such that T, I/ (7)E*4 (and ¢, is of the form (7)C1)”. The definition of
the canonical model is as usual for epistemic logics. The main difference
from the proof of the Truth lemma 3 is the induction step for operator C,
which works very smoothly: M,I' = Cy < forallm € Nyn > 1 M,T |
E") < (E™p € Tforalln € Nyn > 1) & Cv € T, using the induction
hypothesis in the second step, and Mix, InfC in the last step.

It is clear from the proof sketch that all four epistemic logics with com-
mon knowledge are canonical: on their canonical frames, all their axioms
are valid [1].

Example To show that the infinitary proof systems are stronger than the
usual weakly complete ones, let us look at the well-known example of the
Byzantine generals. “Consider a situation of two army regiments on two
hills on both sides of a valley, in which a hostile army is situated. If the
two regiments attack simultaneously, they will conquer the enemy. If only
one of the regiments attacks, it will be defeated by the enemy. There is no
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initial battle plan available which the two regiments agree upon. Neither
general of the regiments would decide to attack without knowing for sure
that the other one will also attack” (from [9]). “The commanding general of
the first division wishes to coordinate a simultaneous attack (at some time
the next day). The generals can communicate only by means of messengers.
Normally, it takes a messenger one hour to get from one encampment to the
other. However, it is possible that he will get lost in the dark, or worse yet,
be captured by the enemy. Fortunately, on this particular night, everything
goes smoothly. How long will it take them to coordinate an attack?” (from
[2]). Unfortunately, it turns out that normally, common knowledge among
the two generals cannot be reached in this way: at each point in time, only
E"p for some n € N,n > 1 is achieved, where ¢ is “at least one message was
delivered”. (See [2, 13] for explanations of this and similar phenomena).

We have a suggestion for the unfortunate generals. It follows immedi-
ately by InfC that {E"¢ | n € N,n > 1} ks Cy for any of the four infinitary
epistemic proof systems S (unlike for the usual finitary proof systems). Now
the generals only need to hire a messenger who runs twice as fast on every
new round as on the previous one; the first round takes 2 hours, the second
round 1 hour, and so on, ad infinitum. Summing the series, after 4 hours all
the {E"¢ | n € N,n > 1} are achieved, whereby C¢ holds. We admit that
the suggestion cannot be modeled as a multi-agent system according to [2]
because the time steps are not structured as the natural numbers w but as
w + 1. Moreover, some practical problems still need to be solved, which we
leave to physicists.

5 Conclusion

In this paper we have presented a proof system for propositional dynamic
logic which is strongly complete. It can also be applied to epistemic logic
with common knowledge.

We suspect that the reason that the canonical model method works
for this axiomatisation, is that the infinitary *-introduction rule is much
closer to the semantics than the usual induction axiom or rule. The latter
links up with the idea of the Kleene star as a fixed point, whereas our rule
links up with the idea that it is an infinitary conjunction. However, as
we showed in section 3.2, there is no complete harmony between the proof
system and the semantics. The countermodel used in the completeness proof
has formula harmony. This is shown in the truth lemma. Program harmony
is unattainable. To our surprise it was not needed for the completeness
proof. To our astonishment it was not even true. Although we came up
with a countermodel rather quickly, the subtlety of the arguments involved,
was also unexpected. It would be interesting to try to construct a fully
harmonious model for PDL,,. As of yet we did not find one in the literature.
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There still remain some issues that need to be investigated further.
Propositional dynamic logic and epistemic logic with common knowledge
are examples where the introduction of an infinitary rule can be used to at-
tain strong completeness, although the logics are not semantically compact.
It should be investigated how to characterise the class of non-compact logics
where the introduction of such an infinitary rule can also lead to a strong
completeness result. The general approach of Goldblatt [4] seems to be a
good starting point.

Another interesting issue is whether the relation I' - ¢ between recur-
sively enumerable sets of formulae I" and formulae ¢ is decidable.
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