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Abstract. In this paper I combine the dynamic epistemic logic of Gerbrandy
(1999) with the probabilistic logic of Fagin and Halpern (1994). The result is a new
probabilistic dynamic epistemic logic, a logic for reasoning about probability, infor-
mation, and information change that takes higher order information into account.
Probabilistic epistemic models are defined, and a way to build them for applications
is given. Semantics and a proof system is presented and a number of examples are
discussed, including the Monty Hall Dilemma.
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1. Introduction

Epistemic logic is a modal logic used to reason about information,
including higher order information. Dynamic epistemic logics are exten-
sions of epistemic logic which can be used to reason about information
and information change. In probability theory Bayesian updating can
be seen as a model for information change, but higher order information
is overlooked. This is a problem when one wants to formalize inferences
about changing probabilistic higher order information.

In this paper I combine probabilistic logic with dynamic epistemic
logic yielding a new logic, PDEL, that deals with changing probabilities
and takes higher order information into account. In section 3 proba-
bilistic epistemic models are introduced. The language of PDEL can be
interpreted on these models. In section 4 I give a method for making
models for specific situations and I provide a sound and complete proof
system for PDEL. Bisimulation for probabilistic epistemic models is
introduced in section 5. In section 6 some examples of application are
discussed. Finally, in section 7 some conclusions are drawn and some
directions for further research are indicated. But first I want to make
clear why I develop PDEL in the first place.

';ﬁ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.
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2. Motivation

In this section I give some of my views on (dynamic) epistemic logic
and probability theory, which will make clear why a combination of
these is worthwhile and what the scope of this paper is.

2.1. EPISTEMIC LOGIC AND DYNAMIC EPISTEMIC LOGIC

Epistemic logic was initially developed by Hintikka (1962). His main
goal was a conceptual analysis of knowledge and belief. In this paper I
take the term “epistemic” broader, applying to belief and other ways
an agent might have information as well. This concurs with much of
the literature in this area. Epistemic logic typically deals with what
an agent considers to be possible given his current information. This
information also contains information about information other agents
have, because epistemic logic is suited to deal with situations involving
more than one agent. In this way epistemic logic also deals with higher
order information, i.e. information about information.

Consider the following example from Van Ditmarsch 2000. There
are three players, 1, 2, and 3 and three cards: red, white, and blue. The
cards are distributed among the players such that red, white, and blue
are held by 1, 2, and 3 respectively. Let us assume that the players
can only see their own cards and that they all have the information
that the cards are distributed among them such that each has one
card. With the language of epistemic logic we can formalize compli-
cated statements such as ‘player 1 knows that player 2 does not know
which card player 3 has.” This kind of higher order information is dealt
with by epistemic logic. But there are even more complicated forms of
higher order information such as common knowledge. In the example
above for instance, it is common knowledge that there are exactly three
cards and it is common knowledge which these are. Epistemic logic also
provides a good conceptual analysis of common knowledge. In modern
introductions to epistemic logic such as (Fagin et al., 1995) and (Meyer
and van der Hoek, 1995) we find that epistemic logic has a very wide
range of application.

Although epistemic logic provides a good analysis of higher order
information, information change is not included into its scope. Dynamic
epistemic logics are extensions of epistemic logic that deal with infor-
mation change. On the one hand the development of these systems was
inspired by the semantics of natural language, where the meaning of a
sentence is viewed as the way it changes the information of those who
hear the sentence. On the other hand their development was inspired
by the study of games where information exchange occurs and higher
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order information plays an important role. Several systems have been
proposed over the years, notably those by Gerbrandy and Groeneveld
(1997) (which was inspired by Veltman (1996)), Baltag et al. (1998),
van Ditmarsch (2000), and Ten Cate 2002.

Let me remark beforehand that the kind of information change that
is studied in dynamic epistemic logic is not the dramatic kind that is
studied in philosophy of science where entire theories are replaced, or
the kind of information change that is studied in belief revision where
things that were not considered possible by an agent do occur and
world views are subsequently changed substantially. The focus is on
everyday calm and quiet information change, such as it is studied in
probability theory and game theory, where small pieces of information
are processed in a piecemeal fashion. The main objective is to give an
account of how an agent’s information changes due to actions, including
the change of higher order information. Therefore in many systems
change of the world itself is not studied at all.

In dynamic epistemic logic, incorporating new information is called
an update. This should not be confused with the notion of updating
as it is used in the belief revision paradigm. The simplest example of
an update is where an agent learns that a certain sentence ¢ holds. An
update with a sentence in this case means that alternatives that the
agent considers possible where ¢ does not hold are removed, yielding
a new set of alternatives. There are much more complicated forms of
updates, than just updates with sentences. In a multi-agent setting,
for example, different agents may have different access to the new
information and the information the agents have about each other also
plays a role. Consider the situation mentioned above. Suppose player 1
shows his card to player 2. Meanwhile player 3 can see that this is going
on, but she cannot see which card 1 shows. The players’ information
then changes as a result: player 2 knows which card player 1 has, player
3 knows that player 2 knows which card player 1 has, but not which one
that is, player 1 knows that player 3 knows that. See van Ditmarsch
(2000) for an extensive discussion of this example.

2.2. PROBABILITY THEORY AND PROBABILISTIC LOGIC

Probability theory is a well-studied area. It is, however, not a logic. To
me it seems important to try to make a logic out of it or to incorporate
it in a logic, because it is often presented as a theory that models
reasoning. A logical approach has much to offer if one wants to study
reasoning: a formal language with which inferences can be represented;
a clear distinction between syntax and semantics; various notions of
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validity; decision procedures, and so on. In my view logic is the best
way to study reasoning.

In the philosophy of probability, a distinction is made between objec-
tive theories of probability — probability is taken to be a part of physical
reality — and epistemic theories of probability — they see probability as
degree of belief. (See Gillies (2000) for an overview.) This distinction
seems related to a distinction made by Bacchus (1990) between statisti-
cal and propositional probabilities. A statistical probability statement
is about the proportion of individuals that have a certain property.
A propositional probability statement expresses the probability that
a certain individual has a certain property. From the viewpoint of
possible world semantics, a statistical probability is an attribute of
a possible world. The proportion of individuals with a certain property
simply s or is not a specific rational number. In that sense a statistical
probability is a part of physical reality. Propositional probability, on the
other hand, seems to be a modal notion which involves more possible
worlds. If an individual has different properties in different possible
worlds, then the probability it has some property is defined as the ratio
of the set of worlds where that individual has that property. In that
sense a propositional probability is not a part of physical reality. If
the accessibility of these possible worlds is interpreted epistemically,
then propositional probabilities express the degree of belief in that
proposition. When Kripke wrote:

‘Possible worlds’ are little more than the miniworlds of school prob-

ability blown large. (Kripke, 1980, p. 18)
clearly he had propositional (or epistemic) probabilities in mind. As this
paper is mainly concerned with epistemic concepts such as information
and information change, the focus is on propositional probability.

Note that in this paper I am interested in logics that deal with
probabilities explicitly, i.e. one can express statements involving prob-
ability in the language of the logic. This is quite different from logics
that use probabilistic semantics to investigate non-monotonic inference
relations (see Kyburg (1994)). This paper is concerned with reasoning
about uncertainty rather than uncertain reasoning.

For my purposes, the logic developed by Fagin and Halpern (1994) is
particularly promising. For it is not only a logic of propositional prob-
ability, but an epistemic logic as well: there are probability operators
and epistemic operators in the language. In this paper I will call this
logic PEL for probabilistic epistemic logic. The benefit is that in PEL
one can distinguish an event that is highly unlikely in the sense that its
probability is zero from an event that is epistemically impossible. For
example, when a coin is flipped repeatedly until heads comes up, the
infinite sequence of tails has probability zero, but it is possible. This
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is quite different from the coin landing heads and tails simultaneously,
which is impossible and also has probability zero.

Another feature of PEL is that it is also able to model a form of
uncertainty that is non-probabilistic. Suppose that an agent knows a
coin lands heads in one third of the cases or is fair, but she does not
know which of these is the case. This ignorance can be modeled as such.
There need not be a probability distribution for the coin being fair or
not. See Fagin and Halpern (1994) for more discussion about why this
is a desirable feature.

Just as in the case of epistemic logic, in probability theory the matter
of incorporating newly acquired information has been investigated. In
probability theory this is done by taking posterior probabilities instead
of prior probabilities, i.e. the conditional probabilities given the new
information, which is also called Bayesian updating. Posterior proba-
bilities can be calculated using Kolmogorov’s definition (Kolmogorov,
1956):

P(XNY)

P(Y)

The idea is that this rule gives one the probability of X after one gets
the information that Y is the case. So posterior probability can be used
to model information change.

P(X|Y) = if P(Y) >0

2.3. A COMBINATION

Although the distinction between improbable and impossible events
and ignorance about probabilities make PEL an appealing system for
reasoning about probability, the main motivation for using PEL as the
basis for PDEL is that probabilistic higher order information can be
studied in PEL, and by making a dynamic version of PEL we can study
probabilistic higher order information change. It is interesting to note
that both in dynamic epistemic logic and in probability theory, the
incorporation of new information is studied. But they seem to come up
with different answers to how this is properly done. The difference is
that in dynamic epistemic logic more kinds of information change are
distinguished that explicitly take higher order information into account.
The intriguing question that pops up is what these two fields could learn
from each other with respect to information change.

Fortunately a formal connection between the two areas has been
established (see Bacchus (1990) and Halpern (1991) for details), where
we can see that probabilistic logic can be seen as an extension of (non-
dynamic) epistemic logic. The language of epistemic logic can be seen
as a fragment of the language of probabilistic logic. This is done by
relating belief and certainty. Standard probability theory can be seen
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as an extension of KD45. Now let us focus on certainty and conditional
certainty: P(¢) = 1, which is abbreviated by cert(¢) and P(¢ | ¥) = 1,
which is abbreviated by cert(y | 1). We get the following sentence for
conditional certainty:

P(¢) > 0 — (cert(p | ¥) <> cert(v — ¢))

The consequent of this implication is very much like the Knowledge-
Update axiom (also called the generalized Ramsey axiom) of dynamic
epistemic logic (see figure 2 on page 16).

[¥]0p < O — [$]e)

The only difference, apart from notation (see section 3 for the defini-
tions), is that instead of ¥y — ¢ in the case of probabilistic logic, we
have 9 — [¢]p in dynamic epistemic logic. This crucial difference is
due to a difference in perspective on information change: in dynamic
epistemic logic learning that 1 can change the truth value of ¢. In
probabilistic logic this is assumed not to be the case. This difference
in perspective only becomes apparent when one is interested in higher
order information. Assuming that learning something does not change
facts (i.e. truth values of propositional variables), the truth value of
@ can only change if an agent learns that v, if ¢ somehow involves a
statement about the information the agent has. In this paper I develop
a probabilistic dynamic epistemic logic that does take into account that
the truth value of sentences can change due to information change. To
keep this paper simple I limit updates to public announcements, i.e.
all agents simultaneously get the same information and it is common
knowledge that they receive it. This simple dynamic epistemic logic is
introduced by Plaza (1989). I use the version introduced by Gerbrandy
and Groeneveld (1997) and I will call it DEL in this paper. I think that
probability theory could greatly benefit from the theory of information
change provided by dynamic epistemic logic.

3. Probabilistic Epistemic Models

The standard models in the semantics of epistemic logic are multi-agent
Kripke models: models with accessibility relations for all agents being
considered. The accessibility relations can be interpreted epistemically;
a world is accessible to an agent iff the state of affairs in that world is
consistent with the information the agent has. The question is how to
add probability to these models. Fagin and Halpern define probabilistic
epistemic models. For those readers familiar with probability theory, in

versievanapril.tex; 1/04/2003; 17:49; p.6



Probabilistic Dynamic Epistemic Logic 7

their probabilistic epistemic models a probability space is assigned to
each agent in each world. In this paper I limit this to models, where the
o-algebra of measurable sets is always the powerset of the sample space.
Therefore the definition is a bit simpler. Most of the results in this
paper however equally apply to the more general notion of probabilistic
epistemic models.

DEFINITION 1. (Probabilistic epistemic models). Let a countable set
of propositional variables P and a finite set of agents A be given. A
probabilistic epistemic model M is a quadruple (W, R,V, P) such that:

1.W # 0; a set of possible worlds;

2.R: A— 2V*W. assigns an accessibility relation to each agent;
3.V :P — 2W ; assigns a set of worlds to each propositional variable;
4.P: (AxW)— (W —[0,1]); such that

Va € AVw e W Z P(a,w)(v) =1
ve€dom(P(a,w))

assigns a probability function to each agent at each world such that
its domain is a non-empty subset of the set of possible worlds. (—
means that it is a partial function; some worlds may not be in the
domain of the function.)

Below we often use the notion of a pointed model (M,w). This is a
model with a designated world, called its point, which is taken to be
the actual world. We also want to generalize the probability function to
sets of worlds. If E is a subset of dom(P(a,w)), then P(a,w)(E) =

2 wer Pla, w)(v).

The advantages of having separate probability functions and accessibil-
ity relations are, as one noted earlier, that one can distinguish events
with probability zero from events that are impossible. Moreover one
can have ignorance about probabilities, not just ignorance in terms of
probabilities. All this becomes clear in the examples. There are restric-
tions that can be imposed on the probability function. For example
one might want the domain of the probability function assigned to
a world to be a subset of the set of accessible worlds. Restrictions,
such as probabilistic versions of positive and negative introspection,
are discussed extensively by Fagin and Halpern (1994). In this paper
there are no restrictions on probability functions.

We can interpret the language of PEL, which is introduced in Fagin
and Halpern (1994), on these models. Here, we extend this language
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with update operators from DEL, thus obtaining a new language for
reasoning about probability and information change.

DEFINITION 2. (Language of PDEL). Let a countable set of proposi-
tional variables P and a finite set of agents A be given. The language
of PDEL Eg% is given by the following rule in extended Backus-Naur
form :

wu=p| @i Apa | Oap | [e1]e2 | iPa(er) + - + @Paln) > ¢

where p € P, a € A and q1,...,q and g are rationals. Besides the
usual abbreviations, we have the following.

S aiPalei) > g : qPa(er) + -+ @Palen) > ¢

@1Pu(p) > @Pu(¥) : @1Pu(p) — @Pu()) 20

Y im14iPa(wi) < q Yimy — 4iPalpi) > —q

Yic1aiPalpi) <q ¢ (307 10iPa(wi)

> i16iPa(0i) > q (X2 1@iPa(pi) <
(pi) =4 <

> i 19iPa(pi (>t 19 Pa(pi) (™ qiPa(0i) > q)

The language of PEL ,CgA consists of those sentences of Eg% in which

no update operators occur.

A sentence of the form O,p is to be read as ‘a believes that ¢’. A
sentence of the form P,(¢) > ¢ can be read as ‘the probability a assigns
to ¢ is greater than or equal to b’. Note that in this language higher
order probability statements can be expressed, such as P,(Py(¢) >
q1) > g2. This expresses that the probability a assigns to the sentence
that the probability b assigns to ¢ is greater or equal to gi, is greater
or equal to go. This is higher order in the sense that it expresses what
information an agent has about the information of an(other) agent,
completely analogous to the case in epistemic logic where sentences
such as O,0;p express that a has information about b’s information.

A sentence of the form [p]i can be read as ‘¢ is the case, after
everyone simultaneously and commonly learns that ¢ is the case’. In
order to interpret this language we have to give two definitions simul-
taneously, i.e. a truth-definition and a definition of updated models.
These definitions are interdependent, but not circular.
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DEFINITION 3. (Semantics for Li%). Let a probabilistic epistemic model
= (W,R,V,P) and a world w € W be given.

(M,w) Fp iff weV(p)

(M,w) E (¢ AY) iff (M,w) = ¢ and (M,w) 9

(M,w) = Ogp iff (M,v) = for all v such that wR(a)v
(M, w) &= [pl¢ iff (My,w,) =1 (see definition 4)

(M, w) =Y 1aiPalpi) > q iff Y5, ¢iP(a, w)(pi) > q

where P(a,w)(y;) = P(a,w)({v € dom(P(a,w)) | (M,v) E ¢i}).

DEFINITION 4. (Semantics for updates). Let a probabilistic epistemic
model M = (W, R,V,P) and a world w € W be given. The updated
model M, = (WW,RW,VWP(;,) is defined as follows.

W, =
Ry(a) = { ,0) | (u,0) € R(a) and (M,v) = ¢}
Vo =V
om(P if P(a,u)(p) =0

dom(Py(a,u)) = { {ve dom ,u)) | (M,v) = ¢} otherwise ’

(v) zf P( ,u)(p) =0
R

otherwise

)(e)

For a pointed model (M w) the updated model is (M, w) (i.e. wy, = w).

Announcing ¢ yields an updated model which is a copy of the original
model. It is not an identical copy of the original model, for the ac-
cessibility relations and the probability functions differ. Worlds where
¢ does not hold are no longer accessible to any of the agents. The
probability functions are treated similarly to accessibility relations.
Worlds where ¢ does not hold are no longer in the domain of the
function. Note that the announcement of ¢ does not presume that ¢ is
actually true. Consequently an update can always be executed!, i.e. it
holds in general that () T.

However an update only changes the probability functions of those
agents who assign non-zero probability to ¢. There are some approaches
in probability theory for updating with sentences that have probability
zero. The most common one is to leave it undefined. If we would take
this approach in case of probabilistic logic, there would be truth value

! There are other dynamic epistemic logics which limit public announcements to
truthful public announcements where only true announcements can be made.
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gaps, which would make it very difficult to give a complete proof sys-
tem. Another approach is to assign probability zero to everything after
an update with a sentence that has probability zero. This approach is
found in Bacchus (1990), but also in probability theory, for example in
Prohorov and Rozanov (1969). This would seem to go against the laws
of modal logic; after learning a sentence with probability zero, even
the truth would be assigned probability zero. By analogy to ez falso
sequitur quodlibet it would be more appropriate to assign probability
one to everything in that case. This on the other hand would go against
the laws of probability theory. So both choices would make it difficult to
provide a complete proof system. There are more advanced approaches
to updating with sentences with probability zero (see Halpern (2001)
for an overview of the different approaches and references). All these
approaches handle updating with sentences that have a non-empty set
of worlds where that sentence holds. However updating with a sen-
tence that does not hold in any world such as the absurdity remains a
problem, and would still result in truth value gaps.

Dynamic epistemic logic cannot deal well with updates with incon-
sistent information as well. Typically, the accessibility relation become
empty after an inconsistent update. A method of revision such as it is
studied in belief revision is not available here. In PDEL too, we must also
deal with updates with information that has probability zero in a way
that is not intuitively appealing. The approach given in definition 4
is simply to ignore the information. This is to ensure that one does
not divide by zero. There is no compelling philosophical reason for
this choice, except maybe that the agent would just not believe the
information received, and would therefore leave things as they were.
This makes the proof system relatively simple.

LEMMA 1. If(M,w) is a probabilistic epistemic model, then (M, w,,)
18 a probabilistic epistemic model too.

Proof. The only difficulty lies in whether P, assigns a probability
function to each agent in each world. Take a world v and an agent a. If
P(a,u)(p) =0, then P,(a,u) = P(a,u) and therefore it is a probability
function. If P(a,u)(¢) # 0, then the domain of P,(a,u) is exactly the
set of worlds in the original domain where ¢ holds, therefore:

ZvEdom(Pg, (a,u)) PQD (a’ u) (U)

={definition of the domain}

Zvedom(]’(a,u)) and (M,v)=e PSO (a” u’) (U)
={definition of the probability}
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P(a,u)(v)
Zvedom(P(a,u)) and (Mw)=¢ P(a,u)(p)

={algebra}

> vedom(P(au)) and (M) =p L (@ %)(v)
P(a,u)(p)

={definition P(a,u)(p)}

P(a,u)(p)

P(a,u)(p)

={P(a,u)(y) # 0}

1

Moreover P(a,u)(v) € [0,1] for all v € dom(P,(a,u)) and P(a,u)(v) <
P(a,u)(p). Therefore Py(a,u)(v) € [0,1].

As one can see this notion of updating is quite similar to Bayesian
updating. In fact for many sentences it holds that

Po(ply) = q iff [Y]Pu(p) = ¢

Here notation is abused by adding conditional probabilities to the lan-

guage, where conditional probability is defined as P,(¢|9)) = P%%;/Q.
a

The equivalence holds if the truth value of ¢ is not changed by learn-
ing that 1. However the equivalence above does not hold in general.
An example of this failure is in the case of an unsuccessful update. A
successful update with ¢ will result in a state where the agents believe
that ¢. But for example when you get the information that ‘you do
not know that it is raining and it is raining’, afterwards you will not
believe that you do not know that it is raining?. In Gerbrandy (1999)
this topic is discussed more extensively, including the muddy children
puzzle, where an interesting example of unsuccessful updating occurs.
The probabilistic version of this is quite similar. Suppose I flip a fair
coin, such that you cannot see the outcome, but I can. Then I tell
you that the probability you assign to heads is not zero and that the
outcome is tails. After that update you do assign probability zero to
the outcome being heads.

[P, (heads) > 0 A tails|P, (P, (heads) > 0 A tails) = 0

2 Some people argue that the occurrence of unsuccessful updates is due to the
fact that these sentences are not properly labeled with time indices. In that case
propositions can never change in truth value. In the context of dynamic logic however
it seems more useful to have a notion of propositions that can change truth values.
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However
P,(P,(heads) > 0 A tails|P,(heads) > 0 A tails) =1

This is due to the difference of perspective on information change in
probability theory and dynamic epistemic logic as was explained in
the introduction. Although after a public announcement it is common
knowledge that ¢ is true at the time of the announcement, it need not
be common knowledge that ¢ after the announcement, because ¢ may
involve statements about information.

One of remaining open question about DEL is to give a syntactic
characterization of those sentences which may lead to an unsuccessful
update. This is also unsolved for PDEL. Some progress has been made
for a syntactic characterization of those sentences which always lead to
successful updates by van Benthem (2002b).

Although acquiring new information can now be modeled in a way
that takes higher order information into account, the language is not
very sophisticated yet with regard to how an update came about. When
one models games, public announcements are made by the players using
some sort of strategy. Perhaps they do not reveal all they know, or
perhaps their actions depend on very complex protocols. For the kind of
updates we are considering we have to assume that “the announcement
that ¢” came about by some process of which the result was either an
announcement of ¢ or an announcement of —p. For example when it is
an answer to a question regarding ¢. Consider the following example by
(Albers, 2003, chapter 1). A fair die is thrown and one agent a can see
the outcome, whereas b cannot. Now b can inform a about the outcome
by saying either that the outcome is odd, or that the outcome is even,
or that it is a multiple of three. Now if b truthfully states that the
outcome is even, what is the probability that the outcome is 67 The
answer depends on b’s strategy or protocol. This kind of update cannot
be dealt with in PDEL. For more sophisticated extensions of PDEL see
section 7.

4. Reasoning about probability

In probability theory, inferences are often justified by making a model of
the situation that is being investigated. Then the relevant propositions
are analyzed in that model. In logic, inferences are usually shown to be
valid by translating them into a formal language and showing that the
conclusion can be deduced from the premises in a formal proof system.
In this section I provide a way to make models of particular situations
and a formal proof system for probabilistic dynamic epistemic logic.
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In section 6 an example of application of each of these approaches is
given.

4.1. BUILDING A MODEL

Although T introduced probabilistic epistemic models in section 3, it
is still not immediately clear how one can model a specific situation.
In Halpern and Tuttle (1993) an approach for this is given. In this
section I give a similar approach, which differs from the approach in
Halpern and Tuttle (1993) in the sense that I introduce purely prob-
abilistic models. From that perspective one could say that in Halpern
and Tuttle (1993) only purely probabilistic models are considered that
are S5 and connected. The interesting feature that these models have
is that the agents have a common prior, which means that if they
were to forget everything they have learned, then they would agree on
all the probabilities. It is still an open question whether this class of
models can be characterized by a sentence in the language of PDEL.
The importance of having a common prior is that it is often assumed
in game theory (Aumann, 1976).

As before, suppose an agent knows that a coin lands heads in one
third of the cases or is fair, but she does not know which of these is the
case. It is not easy to make a model of this at once. In this section I show
how to construct a probabilistic epistemic model from two models: one
for the non-probabilistic information (i.e. propositional and epistemic
information) and another for the probabilistic information. It is often
easier to think about these domains of information separately. The idea
is to multiply an epistemic model with what I call a purely probabilistic
model.

DEFINITION 5. (Purely probabilistic models). Let a nonempty set E
and a finite set of agents A be given. A purely probabilistic epistemic
model M is a triple (W, R, P) such that:

W #0
—R: A 2WXW
—P :W — {P | P is a probability functions with domain E

Thus a probability function is assigned to each world and the domain of
all of these is E. I call these models purely probabilistic, because there
are no propositional variables in them, but probability functions have a
similar role. Nevertheless the accessibility relations will be interpreted
epistemically.
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Given an epistemic model M and a purely probabilistic model M
we can make a probabilistic epistemic model 9. Both models must be
defined with respect to the same agents, and the set of possible worlds
W of the epistemic model must be the domain of all probability spaces
in the range of P (i.e. E = W). Worlds in the purely probabilistic
model provide prior probability distributions over the set of worlds of
the epistemic model. The probability an agent assigns to a set of worlds
is its prior probability conditionalized on the agent’s knowledge.

DEFINITION 6. (Multiplication). Given an epistemic model M and
a purely probabilistic model M, such that M = (W,R,V) and M =
(W,R,P)

MeM=9M=(2,R,0,P)

iff
P = W xW
R(a) = {((w,w), (v,v)) | wR(a)v AWR(a)v}
B(p) = V(p) xW

dom (B (a, (w,w))) = {v | wR(a)v} x {w}

o M) — P(w)(v)
m( ’( ’ ))( ’ ) Z(u,w)edom(‘ﬁ(a,(wvw))) P(W)(U)

The domain of the probability function that is assigned to an agent at
a pair (w,w) contains those pairs (v, w) such that v is accessible to the
agent in the epistemic model from w. So the domain is a probabilistic
copy of the set of worlds accessible to the agent in the epistemic model.
The probability assigned to a world by an agent is its conditional
probability given that it is in the domain of the agent’s probability
function (disregarding the second element of the pair).

Now we can deal with the initial example: a coin is tossed and an
agent a does not know the outcome. So she cannot distinguish worlds
where the outcome is heads from worlds where it is tails. She knows
the coin is fair or that it lands heads one third of the times, but she
does not know which is the case. Hence she cannot distinguish worlds
where the probability of heads is % from worlds where it is % I can
make an epistemic model for a’s information about the outcome and
a purely probabilistic model for a’s information about the coin. These
two models and the result of multiplying these models are shown in
figure 1. Now we can see that a sentence P,(¢) > ¢ should not be read
as ‘the probability a assigns to ¢ is greater than or equal to ¢,” because
there need not be a unique probability g assigns to . In the example a
cannot distinguish two probability distributions. P,(¢) > ¢ should be
read as ‘the probability a should assign to ¢ is greater than or equal to
g, given the “actual” probability distribution over the worlds and given

versievanapril.tex; 1/04/2003; 17:49; p.14



Probabilistic Dynamic Epistemic Logic 15

N[
e --
o=

o) ©® =

o=
o1

Figure 1. An example of multiplication. The epistemic model is on the left, the
purely probabilistic model is in the middle, and the probabilistic epistemic model
is on the right. In the probabilistic epistemic models the solid nodes indicate that
the outcome is heads, and an open node indicates the outcome is tails. The dashed
boxes indicate the domains of the probability functions.

a’s other information.” Hence we should be interested in sentences of the
form O4(P,(¢) > q). Such a sentence holds iff a knows the probability
she should assign to ¢ is greater than or equal to gq.

There is one requirement the underlying models should meet for
multiplication to work: the sets of worlds accessible to the agents should
have non-zero probabilities. This ensures that the probability functions
are well-defined, because it ensures that the set of worlds accessible to
an agent is not empty and that no division by zero occurs.

4.2. PROOF SYSTEM, SOUNDNESS AND COMPLETENESS

The proof system PDEL provided in this section is based on the proof
system DEL in Gerbrandy (1999) for dynamic epistemic logic, and the
proof system AXp;pas in Fagin and Halpern (1994) for probabilistic
epistemic logic. These systems two systems joined with the axioms
Probability-Update 1 and Probability-Update 2 constitute the proof
system for probabilistic dynamic epistemic logic.

DEFINITION 7. (Proof System). The proof system of probabilistic dy-
namic epistemic logic, PDEL, is provided in Figure 2.

Let us call the axioms and rules for propositional logic, epistemic logic
and update logic without the Probability-Update axioms DEL and the
axioms and rules for propositional logic, epistemic logic, linear inequali-
ties and probability logic PEL. In Gerbrandy and Groeneveld (1997) the
soundness and completeness of DEL is proved, although it is proved with
respect to non-well-founded objects, the correspondence between these
and epistemic models implies it is also sound and complete for epistemic
models. In Fagin and Halpern (1994) the soundness and completeness
of PEL is proved. Although it is proved for a more general class of
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Propositional Logic

PC

Epistemic Logic
O,-distribution
O,-necessitation
Update Logic
[]-distribution
Functionality
Atomic Permanence
Knowledge-Update
Probability-Update 1

Probability-Update 2

[p]-necessitation

Linear Inequalities
0 terms

Permutation
Addition

Multiplication

Dichotomy
Monotonicity

Probability Logic
Nonnegativity
Probability of truth
Additivity
Equivalence

F ¢ where @ is an instance of a propositional
tautology

FOu(p = 9) = (Oap = Og9)
From F ¢, infer - Oy

F el = x) = ([plv = [v]x)

F =l < (gl

Fp < [elp

F@]0at < Ou(p = [¢]9)

FPu(p) > 0= (([¢]X i1 ¢:Pa(wi) > q) &
(i 1aiPale Alplei) > qPa()))

FPu(p) = 0= (([p]2i16:Pa(wi) > q) ©

O aiPa(elei) > )
From + 4, infer F [p]v

F Z?:1qua(<pz') >q

(i1 4iPalpi)) + 0Pu (pr41) > ¢
F 3 im1@iPalpi) > g = 351,45 Palpsi) > g
where j1,...,jr is a permutation of 1...k&
F Y i1 @iPales) > g A YL qiPa(0i) > ¢ —

Y (@ + a)Palpi) > (g + )

F (Z?:1%Pa(90i) Z q) < (E?:ldqipa(SOi) Z
db)
where d > 0
Fit>qVv(t<q)
F(t>q) = (t>q') where g > ¢

FPu(p) >0

FP,(T)=1

F Pa(@ A ¢) + Pa((P A _'¢) = Pa((p)
From F ¢ < v, infer F P,(p) = P, ()

Figure 2. The proof system PDEL for probabilistic dynamic epistemic logic

models than the models of definition 1, the models of definition 1 form a
subclass, therefore PEL is still sound. Furthermore, in the completeness
proof, the countermodels are probabilistic epistemic models in the sense
of definition 1 (their system has the finite model property). Therefore
this logic is also complete for these models.
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The axiom Probability-Update 1 clarifies the relationship between
conditional probability and the notion of updating probabilities in this
paper. The relationship is best captured by the following equivalence,
which was pointed out to me by Johan van Benthem:

[$](Palp) =q) i Pa([dle|4) =q

Note that it is not a normal modal logic, because we do not have uni-
versal substitution. This is due to the existence of unsuccessful updates.
For example, - [p|0,p is a theorem, but - [-O,pAp|0,(—04pAp) is not,
although it is a substitution instance. There are more principles in dy-
namic epistemic logics which are valid but not derivable schematically
(see (van Benthem, 2002b)).

THEOREM 1. (Soundness). IfF ¢ then = ¢.

Proof. The soundness of the axioms of DEL and PEL I do not prove.
The proof of their soundness can be found in Gerbrandy (1999) or
Gerbrandy and Groeneveld (1997), and Fagin and Halpern (1994).

For Probability-Update 1, first of all note that

{v]| (M,v) = [¢]¥ A p and v € dom(P(a,w))}

= (1)
{v | (My,vy) =9 and v, € dom(Py(a,wy))}

Suppose (M, w) = P,(¢) > 0. Now the following equivalences hold:
(M, w) = [¢]32i219iPa(pi) > g)

= {truth definition}

(My,wp) = 3 2516iPal(i) > q)

= {truth definition}

Zf:1 qiPpla,wy)(pi) > q

= {By (1), the definition of updates, and (M, w) = P,(¢) > 0}

y g P@neeing o

29 Pa,w)(p)

= {algebra}

S¥ 1 a:P(a, w)([)ei A ¢) > qP(a, w)(p)
= {truth definition}

(M, w) | 3 10iPa([plwi A @) > qPa(yp))

The soundness of probability-update 2 is immediate from the defi-
nition of update, because if ¢ has probability zero, nothing happens to
the domain of the probability function after updating with ¢.

To prove completeness I provide a translation of the sentences of prob-

abilistic dynamic epistemic logic to the sentences of probabilistic epis-
temic logic. Given that PEL is complete for probabilistic epistemic

versievanapril.tex; 1/04/2003; 17:49; p.17



18 Barteld P. Kooi

logic, it then suffices to show that a sentence is provably equivalent
in PDEL to its translation. This is the same proof method as is used in
(Gerbrandy, 1999). One uses the axioms of the proof system to translate
the language to another language for which a complete proof system is
available.

DEFINITION 8. (Translation from Egg to LF 4). The translation t :
Egﬂ — £7I;A is defined as follows:
1t(p) =p

2.t(—~p) = —t(p)
3t(p Np) =t(p) NE(9)

4-t(ap) = Ogt(p)

54(3011aiPa(i) > b) = (3071 14iPa(t(1)) > q)
6.t([elp) =
74([] ) —t([¢])
8-t([el(¥ A x)) = t([e]y) At([e]x)
9:4([¢]0at) = Da(t(e) — t([¢]¥))

10.t([p) (7 1aiPalpi) > q)) =

(Pa(t(0)) > 0 A (35511 0:Pa(t() A t([el i) = qPa(t(e))))
v

(Pa(t(9)) = 0 AT 1 aiPa(t(]e) > )

Note that although the update operator has an infinitary character (it
has effects for the entire model), when evaluating a sentence the effect
only needs to be given for the finite intention depth (the number of
stacked modal operators).

LEMMA 2. For every sentence ¢ of PDEL, the translation of that
sentence t(p) is a sentence in probabilistic epistemic logic to which it
18 provably equivalent in PDEL.

THEOREM 2. (Completeness). If |= ¢, then - ¢.

Proof. The axiom system PEL is complete with respect to the se-
mantics of Eg 4~ Therefore the proof of any sentence ¢ € [,71; 4 can be
obtained by only using axioms and rules of the axiom system PEL. From
lemma 2 we get that every sentence ¢ € L, [] is provably equivalent
in PDEL to a sentence in t(¢) € L5 ,. Therefore the axiom system is
complete for probabilistic dynamic epistemic logic.
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COROLLARY 1. The language of probabilistic dynamic epistemic logic
is just as expressive as the language of probabilistic epistemic logic.

COROLLARY 2. The validity problem for probabilistic dynamic epis-
temic logic is decidable.

Proof. This follows directly from the decidability result in Fagin and
Halpern (1994).

As complexity is concerned, the validity problem for probabilistic epis-
temic logic is complete for polynomial space. However the translation
from definition 8 is exponential in space in the depth of probabilistic
operators after an update, i.e. sentences of the form [¢]|(P,(Py(...))).
We can of course conclude that polynomial space is a lower bound on
complexity and exponential space is an upper bound on complexity.
The complexity problem is also still open for DEL, because the size of
the translation is also exponential in space in the depth of sequences
of knowledge operators after update operators.

5. Bisimulation for probabilistic dynamic epistemic logic

Bisimulation is a useful notion in modal logic. It generally holds that
if two structures are bisimilar, then they are behaviorally indistin-
guishable. In the case of probabilistic epistemic models, behaviorally
indistinguishable means satisfying the same sentences. A well-known
result in modal logic is that if two pointed models are bisimilar, then
they satisfy the same sentences (see for example Blackburn et al. (2001)
for a textbook explanation of this notion.) In this section I show that
such a result holds for probabilistic dynamic epistemic logic as well.

DEFINITION 9. (Bisimulation). I use the following abbreviations.

forth(E, E') := Vz € E3y € E'(zBy)
back(E,E') := Vy € E'3z € E(zBy)

Let two probabilistic epistemic models M and M' be given. A relation
B C W xW' is a bisimulation iff for allw € W and w' € W', if wBw’,
then for all n € A the following hold:

atoms w € V(p) iff w' € V'(p)) for everyp € P
forth forth({v | wR(a)v},{v' | w'R/(a)v'})
back back({v | wR(a)v},{v' | w'R'(a)v'})
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pforthFor every E C dom(P(a,w)) there is an E' C dom(P'(a,w"))
such that

P(a,w)(E) < P'(a,w')(E") and back(E, E")

pbackFor every E' C dom(P'(a,w')) there is an E C dom(P(a,w))
such that

P'(a,w")(E") < P(a,w)(E) and forth(E, E)

I write (M, w)&(M',w"), if there is a bisimulation between M and M’
linking w and w'.

Atoms, forth and back are the usual conditions for bisimulation.
I added pforth and pback to accommodate probabilistic sentences.
For those readers familiar with probability theory, this definition can
easily be extended to the more general notion of probabilistic epistemic
models given in Fagin and Halpern (1994) with probability spaces,
where one takes the inner measure instead of the probability function
in pforth and pback. The theorem below also holds for these models.

THEOREM 3. For all models (M,w) and (M',w') and for all sen-
tences o, if (M, w)& (M, w'), then (M, w) = ¢ iff (M',u) = ¢
Proof. By induction on ¢. Suppose (M, w)< (M’ w'). The base case
and cases for conjunction, negation and individual epistemic operators
O, are straightforward. By lemma 2, we get the case for updates for
free.
Suppose uBu' and (M, u) = > 1¢;Pa(;) > g. Let

E; = {v € dom(P(a,u)) | (M,v) = ¢i}

and
Bl = {v' € dom(P'(a,u)) | (M',0) |= ;)

If we show that P(a,u)(E;) < P'(a,u')(E!) we are done. From uBu/
and pforth it follows that there is an S’ C dom(P'(a,w")) such that

P(a,w)(E;) < P'(a,w")(S") and back(E;, S")

The induction hypothesis together with back(E;, S’) imply that (M', ") =
@; for every v' € S'. Therefore S’ C E! and therefore P'(a,u’)(S’) <
P'(a,u')(E;). Now we conclude that

P(a,u)(E;) < P'(a,w')(S") < P'(a,u)(E;)

The case for right to left is analogous. Which gives as an additional
result that P(a,u)(E;) = P'(a,u’)(E}).
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Therefore for all models (M, w) and (M',w'), if (M,w)&(M',w'),
then for all sentences ¢: (M, w) = ¢ iff (M',w') E ¢

The converse of theorem 3 also holds when the models are finite or
when one uses an infinitary language which allows conjunctions over
arbitrary sets of sentences.

The notion of bisimulation presented in this paper can also be ap-
plied to probability spaces, which can be seen as special cases of proba-
bilistic epistemic Kripke models, and therefore it is also interesting for
probability theory, to see whether two models of the same experiment
are equivalent. It would be worthwhile to investigate the mathematics
of this further.

There are richer languages for reasoning about probability which
are able to distinguish bisimilar models. Dependent upon the language
which is used in reasoning about probability, one might wonder whether
there is information being modeled which is not needed. This leads to
the question whether one can define minimal models. In modal logic
one can define a minimal model with respect to an arbitrary Kripke
model by identifying all bisimilar worlds. The result for modal logic
seems to be folklore. This can also be done for probabilistic epistemic
models.

DEFINITION 10. (Minimal models). Let a probabilistic epistemic model
M = (W,R,V,P) be given. The minimal model associated with M is
the model M' = (W', R, V', P"), where:

—W'={E CW | for all w,v € E : (M, w)&(M,v)}

—R'(a) = {(E,E") C (W' x W') | there is aw € E and av € E'
such that wR(a)v}

—V'(p) = {E | there is a w € E such that w € V(p)}

—dom(P'(a,E)) = {E' C W' | thereisaw € F andav € FE'
such that v € dom(P(a,w))}

—P'(a,E)(E') = sup{q € R | there is aw € E such that ¢ =
P(a,w)(E" Ndom(P(a,w)))}
where in the last clause E' € dom(P'(a, E)).
LEMMA 3. Ewvery model M is bisimilar to the minimal model M’
associated with it.
Proof. Let M = (W,R,V,P) and M' = (W', R, V', P') as in def-

inition 10. Now we will show that the € relation on W x W' is a
bisimulation. The case for atoms, forth, and back are straightforward.
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For the case for pforth assume that w € E, where E' € W’. Suppose
S C dom(P(a,w)). Now we have to show that there is a subset S of the
domain of P’(a, E) such that the probability assigned to it is greater
or equal to the probability assigned to S and back(S,S). Let S =

{E' € W'| there is a v € S such that v € E'}

From the definition of dom(P'(a, E)) it follows that S C dom(P'(a, E)).
It is also easily seen that back(S,S). From the definition of P'(a, E)
it follows that P(a,w)(E' N dom(P(a,w))) < P'(a, E)(E'), for every
E' € S. Therefore P(a,w)(S) < P'(a, E)(S).

For the case of pback assume that w € E, where E € W'. Suppose
S C dom(P'(a, E)). Now we have to show that there is a subset S, of
the domain of P(a,w) such that the probability assigned to it is greater
or equal to the probability assigned to S and forth(S,S). Let S,, =

{v | there is an E' € S’ such that v € E' and v € dom(P(a,w))}

It is obviously the case that S,, C dom(P(a,w)) and forth(S,,,S). Sup-
pose that P'(a, E)(S) > P(a,w)(Sy). Therefore there is a u € E such
that for the set S, =

{v | there is an E' € S’ such that v € E' and v € dom(P(a,v))}

P(a,u)(Sy) > P(a,w)(Syw)- But because both w and v are in E they

must be bisimilar. From pback it follows that for S, there is a set S C

dom(P(a,w)) such that P(a,u)(S,) < P(a,w)(S) and forth(S,S,).

Therefore S C S,,. But this leads to a contradiction, because it now

follows that P(a,w)(S) < P(a,w)(Sw) < P(a,u)(Sy) < P(a,w)(S).
Therefore M M'.

In the literature on probabilistic transition systems, notions of prob-
abilistic bisimulation have also been put forward: notably those by
Larsen and Skou (1991), who introduce a notion of bisimulation for
discrete systems, and de Vink and Rutten (1999), which is a general-
ization of Larsen en Skou’s approach to general probabilistic transition
systems. There are some small differences between these notions of
probabilistic bisimulation and the notion presented in this paper, and
the question whether the notions coincide, or one is more general than
the other requires further investigation. However as far as I know, the
result that bisimilarity of two probabilistic epistemic models implies
that they have the same probabilistic dynamic epistemic theory is new,
as well as the result about minimal models are new.
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6. Examples

In this section two examples are given that apply the theory presented
in this paper. Section 6.1 links up with the approach of building models
of section 4.1. It shows that when higher order information is involved
it can be useful to formalize the inferences that are involved in the
example with the language introduced in this paper. Section 6.2 shows
how the Monty Hall Dilemma can be formalized. Here a syntactical
approach to the problem is given instead of the usual semantic ap-
proach. It shows how PDEL can be used to do the usual reasoning
about conditional probabilities in a rather elegant way.

6.1. COINS

Let us look at the following game, which is based on an example by
Van Rooy 2003, which is in turn based on an example by (Hirshleifer
and Riley, 1992, p. 220). Suppose two players, a and b, are playing
the following game. A coin is tossed and the players have to guess
the outcome. Player b guesses first, and after hearing player b’s guess
player a guesses the outcome. If they guess the same outcome both
players receive a payoff of 12 euros regardless of the outcome, otherwise,
when the guesses differs, the player who guessed the outcome correctly
receives 30 euros.

Suppose that it is not known to player a whether the coin is fair, or
whether the coin lands heads with probability one third, but player b
does know, and this is common knowledge. Consequently player a does
not really know which game she is playing: it is a game of incom-
plete information (see Binmore, 1992, chapter 11). One can construct a
probabilistic epistemic model for this situation in the way described in
section 4.1 (see Figure 3). A game theoretical analysis of this situation
tells us that when the coin is fair and player a is risk neutral, the best
strategy for a is to guess the opposite of player b’s guess. The expected
payoff is 15 euros. But when the coin is not fair and player a is risk
neutral, the best strategy for player a is to guess the same outcome as
player b. This strategy guarantees an outcome of 12 euros. If player a
would guess differently, the expected outcome is only 10 euros, because
player b’s best strategy is to guess the outcome that is most likely (in

this case tails). In that the probability that player a wins 30 euros is
1

g.

Now suppose a public announcement is made as to which proba-
bilities player b assigns to the outcome tails. Afterwards player a will
know what strategy to follow. Note that the announcement does not

say anything about what the actual outcome is. Player a only learns
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Figure 3. The construction of a probabilistic epistemic model for the situation
where player a does not know whether the coin is fair or not, but player b does.
In the (probabilistic) epistemic models the solid nodes indicate that the outcome is
heads, and an open node indicates the outcome is tails. The solid lines represent the
accessibility relation of player a, the dashed lines represent the accessibility relation
of player b. The dashed boxes indicate the domains of the probability functions.

about the probabilities player b assigns to the outcomes. This higher
order information determines what the best strategy is.

6.2. THE MoONTY HALL DILEMMA

In this section I discuss a puzzle that often leads to furious discussions.
It received worldwide attention after Marilyn vos Savant discussed it
in her column ‘Ask Marilyn’ in Parade Magazine (Vos Savant, 1990),
where she answers questions sent in by the readers.

Suppose you're on a game show, and you’re given the choice of three
doors. Behind one door is a car, behind the others, goats. You pick
a door, say number 1, and the host, who knows what’s behind the
doors, opens another door, say number 3, which has a goat. He
says to you, “Do you want to pick door number 27” Is it to your

advantage to switch your choice of doors?
Craig. F. Whitaker

Columbia, MD

This is the Monty Hall Dilemma. It got its name from the American
game show host Monty Hall (see Selvin (1975)). Vos Savant, who,
reportedly, is listed in the Guinness Book of World Records for the
highest 1Q, argued that it is to your advantage to switch. If you switch,
you get a goat in one third of the cases and win the car in two third of
the cases. This could be argued as follows. Suppose you initially pick
the door with the car, then you should not switch. This happens in one
third of the cases. Suppose on the other hand you initially pick a door
that contains a goat, which happens in two third of the cases. Monty
Hall cannot open the door with the car and he cannot open the door
you picked. He has to open the other door with a goat. So, if you pick
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a door with a goat, Monty Hall only has one option. After he opens
that door, the remaining unopened door you did not pick must contain
the car. Therefore, if you initially pick a door with a goat, switching
will guarantee that you win the car. You pick such a door in two third
of the cases. Hence by switching you lose in one third of the cases and
you win in two third of the cases.

The Monty Hall Dilemma, is a puzzle for which intuitions fail many
people. The best way to show that the counterintuitive results are
correct is to use some formal method. PDEL provides such a method.
(A comparison to other methods is given in section 7.) In fact it is quite
easy to represent the inference in the language of probabilistic dynamic
epistemic logic.

In the following analysis I show what happens to the contestant’s
information, by formalizing the information changes that occur. I prove
that Vos Savant’s inference is valid by giving a formal proof.

I take the set of agents to be A = {¢,m} (the contestant and Monty
Hall). The set of propositional variables P is the union of the three sets
A ={A;, Ay, A3} (where A; means that the car is behind door number
i), C = {C1,C3,C3} (where C; means that the contestant initially
chooses door number i), and O = {O1, 02,03}, (where O; means that
door number i is opened by Monty Hall).

Now I characterize the rules of the game. One of the rules is that
there is only one car behind the doors, the contestant may only choose
one door, and Monty Hall may only open one door.

onecar = A
onechoice = @C
oneopen = PO

Where €@ means exclusive or. I assume that the contestant should
assign a probability of % to the car being behind a particular door.
This is an assumption that has to be made to get Vos Savant’s answer.
Moreover I assume the contestant does not learn anything about the
location of the car by picking a door. Therefore the contestant should
still assign a probability of % after picking a door: the contestant’s
choice is independent of where the car is.

equal = /\ Pc(Ai):%
i€{1,2,3}

independentAC = /\  [Cjlequal
je{1,2,3}

This is a nice way of expressing independence. This assumption remains
implicit in most other analyses I found of the Monty Hall Dilemma. The
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crucial part of the analysis of the Monty Hall Dilemma is to see under
what conditions Monty Hall opens a door. He opens exactly one door
such that the contestant did not pick it and the car is not behind it.

conditions = /\ [Cz](O] < (‘!Aj A —|Cj A /\ =0%))
,j={1,2,3} ke{1,2,3},k#j

Let us use initial as an abbreviation for the conjunction of onecar,
onechoice, oneopen, equal, independentAC, and conditions.
The question is whether the contestant should switch or not:

switch = [Cl][03]PC(A1) < PC(AQ)

If this sentence is true, then the chances that the contestant wins the
car do not decrease by switching. It turns out that initial is not enough
to deduce this result. What is needed is that the contestant is informed
about the game: P,(initial) = 1. We also need two other very natural
assumptions, namely that the probability that the contestant chooses
door number one is greater than zero according to the contestant:
P.(C1) > 0, and that after the contestant chooses door number one
the probability that Monty Hall opens door number three is greater
that zero according to the contestant: [C;|P.(O3) > 0. This suffices to
deduce switch.

The independentAC assumption implies that [C1]P.(41) = %, and
therefore:

[C1]P(O3 A A1) < 3

By conditions and onechoice we get [C1]P.(A2 — O3) = 1. Some proba-
bilistic reasoning gives us that [C;|P.(O3AAs) = P:(As2). This, together
with [C1]P.(As2) = % (from independentAC), allows us to infer that
[C1]P:(O3 A A3) = %, which yields

[C1]P:(O3 A A1) < Pe(O3 A A)
By atomic permanence we get
[C1]P:(O3 A [O3]A1) < P(O3 A [O3]A2)
Then by probability update 1, 0-terms and [C1]P.(O3) > 0 we have:
[C1][O3]Pc(A1) < Pe(A2)

Thus far we have made no assumptions about the strategy used by
the contestant or Monty Hall. We do not need this to deduce switch, but
we do need to assume something about the strategy of Monty Hall if we
want to deduce that the probability that the contestant wins the car
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by switching equals one third. Then we need to assume that if Monty
Hall can choose between opening two doors (if the door the contestant
picked is the same as where the car is), then the probability he opens
one door is the same as the probability he opens the other door. This
boils down to:

equalopen = N\ [CiP.(O)) = P(Ok)
{i,5,k}={1,2,3}

With this we can deduce:

[C1][03]Pe(A1) = § AP(Ag) = 2

7. Conclusion and further research

In this paper I presented a probabilistic dynamic epistemic logic, which
can be used to reason about probability, information, and information
change. The difference between information change as it is modeled in
this logic and as it is modeled in probability theory is that higher order
information is taken into account. Besides semantics I have provided
a method to build models and a sound and complete proof system.
Moreover the notion of bisimulation has also been defined for this logic.
It can be applied to game situations such as card games with public
announcements and the Monty Hall Dilemma.

The principal advantage PDEL has with respect to probability the-
ory is that it can be used to formalize inferences into a formal language,
such that standard logical tools can be used to see whether it is a
good inference. Therefore it is very suitable to model reasoning. In
probability theory probabilities are assigned to sets of worlds. These
sets appear in the ‘language’ of probability theory, which means one is
always working with a specific model. This makes it difficult to assess
whether inferences hold in all models, which is exactly what logic pro-
vides. Moreover, by having a language PDEL can explicitly deal with
higher order information.

Concerning information change, PDEL provides a novel approach to
probabilistic updating. Updating in probability theory and PDEL are
very similar. In probability theory new information is usually repre-
sented as a set of possible worlds. One learns that the actual world is
an element of that set. In PDEL new information is represented as a
sentence. By definition 3 every sentence is associated with a set of
possible worlds. One learns that the actual world is an element of
that set, just as in probability theory. But by having this linguistic
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component that can express higher order information, we can take into
account that the truth value of sentences can change due to an update.
Updating with the same sentence twice may yield different results than
updating once. Updating with one sentence and then another may be
different from updating the other way around. These phenomena are
not taken into account in probability theory, where receiving the same
information twice is always the same as receiving it once, and the order
in which information is received does not matter.

Now let us turn our attention to further research. Publicly learning
a sentence is not the only way one can acquire new information. There
are changes in information that cannot be modeled with PDEL. In the
future we want to model game actions such as: one player showing
another player a card, while a third player can see this is going on,
but cannot see which card is being shown. To be able to handle these
kinds of actions, we need to bring more of dynamic epistemic logic into
PDEL, by making the dynamic operators more program-like (in the
style of PDL, see Harel et al. (2000)). An extension with test, non-
deterministic choice, sequential composition, and subgroup updates
does not involve many difficulties. Subgroup updates are updates where
some agents get new information, whereas the other agents do not get
that information. The same proof technique, i.e. by a translation, for
completeness applies.

There are more phenomena we would like to capture such as com-
mon knowledge, because common knowledge plays an important role in
many game situations. This poses some problems on the proof system.
In Baltag et al. (1998) a complete proof system for dynamic epistemic
logic with common knowledge is provided, which gives good hopes that
it can also be added to PDEL.

Another direction for further research is to develop a logic along the
lines of Baltag (2000), where epistemic actions are viewed as epistemic
action models that can be multiplied with epistemic models, yielding
the result of executing the action. All these models could be made into
probabilistic models. A step in this direction is made in van Benthem
(2002a).

In probability theory there are other, more complex ways of incorpo-
rating new information, such as Jeffrey’s rule of conditioning (Jeffrey,
1983), Dempster’s rule of combination (Dempster, 1967), and cross
entropy (Kullback and Leibler, 1951). All these ideas were born out
of different kinds of dissatisfaction with conditional probability as a
model for incorporating new information. It would also be interesting
to investigate to what kinds of dynamic epistemic updates these kinds
of information change correspond.
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This paper is a first step in combining epistemic logic with proba-
bility theory and there are many more steps to make.
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