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Abstract

Algebraic translation methods are argued for in many fields of science.
Several examples will be considered: from the field of compiler construction,
database updates, concurrent programming languages, logic, natural language
translation, and natural language semantics. Special attention will be given to
the notion ‘correctness of translation’. In all fields this notion can be defined
as the commutativity of some diagram which connects languages, translation
and meanings. For algebraically defined compilers, five different definitions
are found in the literature. We argue which of these should be considered
the ‘right’ one (it is not the standard choice). We conclude with a first step
towards a general algebraic theory of translation.

keywords Translation, correctness, compiler, embedding, view update, parsing,
natural language, commutative diagram.

1 Introduction

Translations occur in many fields of science, and between several kinds of languages.
One finds them in computer science when a computer program is compiled in a
machine code, when a view update is translated in a data base update, but also
when a natural language is translated in another one by the computer. It arises
when some logic is embedded in another logic, or when meanings are given for the
expressions of natural language by defining a translation into logic. In many of
these fields the same idea arose: use an algebraic approach. The aim of this article
(preliminary version: Janssen (1998)) is to compare the algebraic methods from
these different fields and discuss some of the fundamental issues.

Certainly not all translations are intuitively correct, and therefore in many dis-
ciplines formal correctness notions are given. Often this notion is based upon the
commutativity of some diagram, and if that was not the case, it can be brought in
that form. Surprisingly, in the field of algebraic compiler construction there is no
consensus on the notion ‘correctness’: at least five different versions occur in the
literature! A large part of this article is about this issue, and arguments in favor of
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one correctness notion will be given. It is not the correctness notion that is used
in most articles on compilers, but it is the oldest one. This notion is also found in
several other fields.

The publications on translation in the different fields discuss the same issues and
use related notions. So, there seems to be a common basis for a general algebraic
theory of translation. In the this paper a first, small step will be made.

2 Translating from programming language to pro-
gramming language

A compiler can be conceived of as a translation from a source language SL (for
instance a high level programming language) to a target language TL (for instance
some assembler language). It has been proposed by several authors to deal with
compiler design in an algebraic way. In diagram 1 the components are mentioned
that will arise in the discussion: all corners are algebras, and all arrows are homo-
morphisms. Below we consider one proposal for compiler correctness, in the next
sections four other proposals will be considered. I would like to emphazise that the
investigations are about this aspect only, and that the conclusions do not diminish
the other merits these articles have for the field of compiler construction.

The intuitive ideal about a translation is that it formulates precisely the same
information in another language. No information is added, nothing gets lost: the
meaning of the target language is, if not identical, at least isomorphic with the
meaning of the source language. This ideal is formulated in Polak (1981) who
requires Enc (encode) to be the identity, and in Mosses (1980a) who assumes Enc
and Dec (decode) to be isomorphisms. Correctness is then defined as commutativity
of diagram 1.

As we shall see in the next sections, when compiler correctness has to be proven
by describing Enc or Dec, this is never done by proving one of them to be an
isomorphism. The explanation is that the involved languages are very different and
have different meanings. In the next sections examples will be given which illustrate
this point. Therefore it is not surprising that in the final version of Mosses (1980a),
that is Mosses (1980b), a different correctness notion is used (viz. the one from
section 3). The ideal of identity or isomorphism is reached only if the situation is
designed with that aim (see section 10), or if one takes an abstract point of view (see
section 13). As far as I know, these cases do not arise in articles about compilers.

3 The correctness notion of Thatcher et al.

Certainly the most influential proposal for algebraic compiler construction is the one
of Thatcher, Wagner & Wright (1979). It defines compiler correctness as commuta-
tivity of diagram 2. The proposal of Thatcher et al. is based upon the work of Morris
(1973) and aims at correcting, refining and completing that proposal. They do not
present Morris’ original version (diagram 3); instead they say that his advise was to
use diagram 2. This is justified in a footnote where they say that ‘Morris’ diagram
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SynSL
Comp−−−−−−−−−→ SynTLyIntSL

yIntTL

SemSL

Dec←−−−−−−−−−−−−−−−−−−→
Enc

SemTL

SL source language
TL target language
SynX algebra as syntax for X,

where X=SL or X=TL

Comp compiling homomorphism
IntX interpretation hom. for X

SemX algebra of meanings for X

Dec decoding isomorphism
Enc encoding isomorphism

Diagram 1: Compiler correctness according to Polak (1981, p. 17) and Mosses
(1980a, p. 189): there are isomorphisms Dec and Enc such that the diagram com-
mutes in both directions.

had Dec:SemTL → SemSL, though in the text he uses Enc: SemSL → SemTL’.
Thus they suggest that by accident the wrong diagram was incorporated in Morris’
article. We shall return to this point in section 4.

SynSL
Comp−−−−−−−−−→ SynTLyIntSL

yIntTL

SemSL
Enc−−−−−−−−−→ SemTL

SL source language
TL target language
SynX algebra as syntax for X,

where X=SL or X=TL

Comp compiling homomorphism
IntX interpretation hom. for X

SemX algebra of meanings for X

Enc encoding homomorphism

Diagram 2: Compiler correctness according to Thatcher et al. (1979): there is a
homomorphism Enc such that the diagram is commutative

Let us now consider the example of a compiler given by Thatcher et al. The
source language is a fragment of a programming language with 18 syntactic oper-
ations (forming for instance assignments, conditionals and the while-construction).
SemSL is a kind of denotational semantics. Its primitive operations are assign and
fetch, together with general algebraic and arithmetical operations. The meanings
of the syntactic operations are described by polynomials over the primitive oper-
ations. The target language consists of flow charts, and its meanings in SemTL

are unfolded flow charts. As they say, the radical improvement in comparison with
Morris lies in this part: making flowcharts algebraic. Enc is defined as a mapping
from the carriers of SemSL into corresponding carriers in SemTL. For instance,
the functions from Environments to Environments are mapped to the functions
from 〈Stacks× Environments〉 to 〈Stacks× Environments〉 that leave the stack
unchanged. Next it is proven that Enc is a homomorphism. The proof requires
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SynSL
Comp−−−−−−−−−→ SynTLyIntSL

yIntTL

SemSL
Dec←−−−−−−−−− SemTL

SL source language
TL target language
SynX algebra as syntax for X,

where X=SL or X=TL

Comp compiling homomorphism
IntX interpretation hom. for X

SemX algebra of meanings for X

Dec decoding homomorphism

Diagram 3: Compiler correctness according to Morris (1973): there is a homomor-
phism Dec such that the diagram is commutative

the checking of the 18 syntactic operations, and uses many properties of SemSL

and SemTL. As a consequence both Enc ◦ IntSL and IntTL ◦Comp are homomor-
phisms from SynSL to SemTL. Since SynSL is an initial algebra, there is a unique
homomorphism from SynSL to SemTL, hence Enc ◦ IntSL = IntTL ◦ Comp , so
the diagram commutes.

The definition of compiler correctness as commutativity of diagram 2 is, in my
opinion, not satisfactory. In the left hand side of the diagram some programming
language is given, together with the intended meaning of this language. The right
hand side should tell a machine how to perform the actions described by the pro-
gramming language. Since a compiled program should do what it has to do ac-
cording to the semantics of the programming language, going through a compiler
should be a way to obtain the originally intended semantics. Hence the mean-
ings of the target algebra should be interpreted in the original semantic algebra
of the programming language in order to see whether the compiler yields the in-
tended results. So for a correct compilation there has to be a decoding mapping
Dec: SemTL → SemSL such that diagram 3 commutes, i.e. the diagram of Morris
gives the appropriate definition.

This argument can be illustrated by an example.

Example 1. Let SL be a programming language that has both positive and nega-
tive numbers, and has multiplication as operation. Suppose that in the interpreta-
tion of TL all information concerning signs is thrown away: SemTL operates only
with positive numbers. Of course, this is not what intuitively would be called a
correct compiler. According to the definition of Thatcher et al., this would be a
correct compiler since there is a homomorphism Enc such that diagram 2 commutes
(let the image of a number be its absolute value). Diagram 3 cannot be made com-
mutative: there exists no decoding Dec that could achieve this, because a positive
number in SemTL then should have two images in SemSL. So, according to the
definition of Morris, the proposed compiler is incorrect, and this is in accordance
with the intuition.

This example illustrates that a compiler should not throw away information that

4



is essential for the source language. What is essential, is of course formalized by
the semantic interpretation of the source language.

As a matter of fact, Thatcher et al. admit that their definition is not fully
adequate. They say ‘As Barry Rosen has pointed out to us, commuting of diagram
2 is not, in itself, “compiler correctness”. SynTL and SemTL could be one-point
algebra’s and Comp, IntTL and Enc the unique homomorphisms to those one-point
algebras resulting in a commutative square. One possibility around this degenerate
case, suggested by Rosen, would be to require the encoding (Enc) to be injective
(it is in our case) and that condition is certainly sufficient. We are just not sure at
this time that it is necessary.’

Above we argued that it is necessary to require that there is a decoding Dec.
If Enc is injective (as Rosen suggested), then it indeed has an inverse Dec, and
then SemSL and SemTL are isomorphic. Should that be a general requirement for
correctness? The examples below illustrate that this certainly is not the case.

Example 2. Suppose SL has the syntactically distinct expressions −0 and +0, and
both have semantic interpretation: the number zero. Suppose moreover that they
correspond with two distinct expressions in TL (again −0 and +0), and that their
interpretation in SemTL differs as well (say a different sign bit in their representation
in the memory). Let the decoding homomorphism Dec map them to the same value
SemSL: the number zero.

This compiler would intuitively be considered as correct. Indeed, diagram 3
commutes, and the compiler is correct according the definition of Morris. There is is
no encoding homomorphism Enc that makes diagram 2 commutative, so according
to the definition of Thatcher the compiler would be incorrect. Note moreover that
there is there is no isomorphism between SemSL and SemTL.

Example 3. Compilers resembling the one in example 2 were made in the seventies,
an example is the CDC cyber. It had two representations for the number zero
(positive and negative zero). Negation of a number (a string of bits) was very
simple: replace each 1 by a 0, and each 0 by a 1. This number representation
system was called ‘one’s complement’. The main disadvantage was that arithmetical
operations yielded +0 or −0 depending on the operands. (analysis by Tanenbaum
(1975), reported by van der Meer (1994)). Later computers (e.g. the IBM 360)
used another system (‘two’s complement’) which has only one representation for
zero. The disadvantage is that the system is not symmetrical: the number of
positive numbers is not equal to the number of negative numbers (for a discussion
of the two systems, see Tanenbaum (1976)). It is clear that for the compilers with
one’s complement arithmetic, there is no encoding homomorphism Enc that makes
diagram 2 commutative.

This discussion shows that requiring Enc to be injective is not the right solution.
The notion ‘correct compiler’ is not formalized by diagram 2, but by diagram 3,
which requires a decoding homomorphism.
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4 The correctness notion of Morris

In section 3 it appeared that the definition of Morris was the correct one. But what
about the suggestion of Thatcher et. al. that the diagram in Morris’ article was
not the intended one? Indeed, all the technical work in Morris’ article is about the
encoding function Enc from source semantics to target semantics. However, he gives
explicitly his argument: ‘It proves more convenient to define an “encoding” function
Enc:SemSL → SemTL than one in the opposite direction; it will be necessary to
prove as a final step in proving the correctness to show that Enc has a decoding
inverse Dec:SemTL → SemSL [· · ·]’ (Morris 1973, p. 150, +15). Such a statement
is repeated after the definition of Enc [p. 150, -2 ]. These quotations show that
the occurrence of the decoding Dec in the diagram was on purpose, and not some
printing error. As a matter of fact, Morris could prove properties of Enc instead
of properties Dec because a situation like the one from example 2 does not arise in
his fragment.

Morris’ correctness diagram can also be found in earlier publications (Burstall
& Landin (1969) and Milner & Weyrauch (1972)) and in Chirica (1976). The
great influence of Thatcher et al. (1979) appears from the fact that their approach
is followed without discussion in almost all later publications. Significant in this
respect is the change from the definition in Mosses (1980a) to Thatcher’s definition
in Mosses (1980b). The publications which I found with a correctness diagram, have
almost all the same diagram as Thatcher. They are Polak (1981), Dybjer (1985),
Royer (1986), Tofte (1990), and Meijer (1992). The exception is T. Rus, who has
his own proposal (see section 5).

One might wonder why the original position was so easily abandoned. An ex-
planation could be the influence of category theory. By category theory one is
challenged to construct pullbacks, and the encoding homomorphism turns the dia-
gram into such one. In any case, some authors tried (in personal communication) to
explain Thatcher’s compiler definition with this category-theoretic argument. An
additional factor is probably, that the examples discussed in the articles have an
injective encoding (this is not made explicit in the articles, though). In general,
however, the encoding is no function at all, witness examples 2 and 3.

5 The correctness notion of Rus

5.1 The framework

The compiler definition of Rus can be found in several of his publications (Rus
1980, Rus 1987, Rus 1991, Rus & Halverson 1994). These articles are in two respects
of a different nature than the previously discussed ones.

Firstly, his aim is not a definition of compiler correctness, but, as the title of
Rus (1991) expresses ’the algebraic construction of compilers’. In his perspective
(pers. comm.), one should not make somehow a compiler and prove its correctness
afterwards. Therefore his definition of compiler includes correctness; there is no
separate correctness definition. In order to be consistent with the previous discus-
sion, we shall separate the two notions and consider the compiler as a translation,
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where the commutativity of a diagram expresses its correctness. Since Rus’ aim is
to construct compilers in an algebraic way, there is a lot attention for (algebraic)
tools, such as tools for parsing. Especially Rus & Halverson (1994) and Rus (1995)
are devoted such issues.

Secondly, Rus has a fundamentally different perspective on the relation between
syntax and semantics. In his view, meaning is primary: one knows what one intends
to say, and then one finds a syntactic expression for formulating it. This view is
introduced in Rus (1980), and worked out in Rus (1991). It is the motivation for
the introduction of a partial learning function Lrn: Sem → Syn. That is a user-
dependent function that is defined for the semantic objects the user has learned to
express in the language. The partiality may formalize the situation that learning is
not completed, but also that for some elements of the semantic domain there is no
syntactic expression available.

This view causes a difference in the kind of diagram that defines compiler cor-
rectness, see diagram 4. The left hand side of the diagram is intended to express the
consistency of the communicator’s interaction with his universe of discourse, and
the right hand side the consistency of the interaction among communicators (more
explanation is not provided). Correctness requires that there is a pair consisting of
homomorphisms Enc and Comp such the diagram commutes.

SemSL
LrnSL−−−−−−−−−→ SynSL

IntSL−−−−−−−−−→ SemSLyEnc

yComp

yEnc

SemTL
IntTL←−−−−−−−−− SynTL

LrnTL←−−−−−−−−− SemTL

SL source language
TL target language
SynX algebra as syntax for X,

where X=SL or X=TL

Comp compiling homomorphism
IntX interpretation hom. for X

LrnX learning function for X

Enc encoding homomorphism

Diagram 4: Compiler correctness according to Rus (1991): there has to be a pair
〈Enc,Comp〉 such that the diagram commutes

5.2 Discussion

Several questions arise concerning the learning function Lrn.

∗ The partial learning function suggests that expressions (in their relation with
concepts) can be learned one by one, and that the learned expressions form
some arbitrary subset of the language. Such a way of learning cannot explain
how a language user can express programs she has created just before and
has never seen expressed. In philosophy of language a related issue arises.
A classical quotation is the following; it is from ’Compound thoughts’ (Frege
1923), in the translation of Geach & Stoothoff:
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’It is astonishing what language can do. With a few syllables it can
express an incalculable number of thoughts, so that even a thought
grasped by a terrestrial being for the very first time can be put into
a form of words which will be understood by someone to whom the
thought is entirely new. This would be impossible, were we not able
to distinguish parts in the thoughts corresponding to the parts of a
sentence, so that the structure of the sentence serves as the image
of the structure of the thoughts.’

Formulated for the present situation, it means that one learns what the basic
concepts of the programming language are (meaning and form), and how
these can be combined to larger expressions. So one learns a semantic and a
syntactic algebra. Basic parts in the semantics correspond with basic parts in
the syntax, and the same for ways of combine parts. So Lrn is not an arbitrary
function from semantics to syntax, but a homomorphism. The aspect of
partiality can be accounted for by the assumption that one learns a subalgebra
of all possible meanings and a subalgebra of the expressions. As a matter of
fact, in an earlier paper (Rus 1987) Lrn is defined as a homomorphism, but
this is not repeated later.

∗ The direction of the learning function is remarkable: from meanings to ex-
pressions; usually meaning are assigned to expressions. The motivation (that
meanings are primary) is appealing, and may be in a some sense correct. But
this is, at least in the present context, not properly formalized by the intro-
duction of Lrn. If there is such a function it means that no two expressions
have the same meaning (if they are in the range of Lrn). However, such a
situation is not uncommon (e.g. 7 and 007 have the same meaning). So here
the framework is too restrictive.

As a matter of fact, in the technical analysis given below, it will turn out that
the situation that the language has synonyms is not excluded. Then a switch
is made to a quotient algebra of the syntax. But that is a remarkable theory
of learning, because it formalizes that a set of synonyms is learned in one step.

∗ It will be difficult to present such a function Lrn without relying on a given
language. Suppose the semantic domain is introduced with a general con-
struction, e.g. all functions from numbers to numbers. How could one specify
the ones which have been learned? It cannot be all functions, because their
cardinality is uncountable, whereas languages usually have denumerable ex-
pressions. The functions themselves have no structure and thus do not give
information on how to express them. Hence it seems that some language is
needed to select the relevant functions in the semantic domain. But then we
are back in the situation that language is the primary object.

For these reasons, some examples of learning functions would be helpful. But
Rus does not present such examples. The reason is: ‘Since only the syntac-
tic representations of the communication messages between communicators
speaking languages SL and TL are actually handled during their communica-
tion, only the syntax map Comp is actually performed by the compiler’ (Rus
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1991, p. 298). Also in other contexts, neither in computer science, nor in
natural language theory, I have seen mappings from Sem to Syn which are
defined without first giving a language with a meaning assignment.

For these reasons, I disagree with the framework of Rus, and reject his definition of
compiler correctness.

5.3 Technical aspects

Below, we shall investigate some technical aspects of Rus’ proposal. It will turn out
that in fact his correctness notion is a variant of the one proposed by Thatcher, and
that related counterexamples can be given. So not only the fundamental objections
from section 5.2, but also technical points argue against Rus’ correctness notion.

Rus’ definition of a programming language is

Definition 4. A programming language is a triple:
PL = 〈Sem, Syn, Lrn: Sem → Syn〉, where

∗ Sem is a universal algebra, the semantics

∗ Syn is a term algebra of the same signature as Sem

∗ Lrn is a partial mapping, called learning function, such that there is a ho-
momorphism Int:Syn → Sem such that for all m in Sem for which Lrn is
defined, holds that Int(Lrn(m)) = m.

Besides this definition, more is said about the relation between Lrn and Int.
Suppose that two elements a1 and a2 of Syn have the same meaning: Int(a1) =
Int(a2). Then a quotient algebra of the syntax is used (induced by the congru-
ence relation ‘have the same values under Int’). So, without loss of generality, it
can be assumed that two distinct elements have distinct meanings (Rus 1991, pp.
281 - 282). Hence the homomorphism Int from Syn to Sem is a monomorphism,
and the image of Int is a subalgebra of Sem which is isomorphic with Syn. The
learning function Lrn is a partially defined inverse of Int, hence a partially defined
homomorphism.

With this information we can reconsider the compiler definition of diagram 4.
For the commutativity requirement only the domain and range of Lrn play a role
(both for SL and TL). Let Sem′ be the domain of Lrn, and Syn′ its range. Let
Int′ be the restriction of Int to Syn′; so Int′ is the inverse of Lrn. Note that Sem′

and Syn′ are sets, which, due to the partiality of Lrn, need not be algebras. The
requirement of commutativity of the diagram 4 means that its two subdiagrams
have to commute. Hence the compiler definition of diagram 4 can be represented
as in diagram 5.

Since Int′SL is the inverse of LrnSL the left hand side of diagram 5 commutes
only if the left hand side of 6 commutes, and the same for the commutativity of
their right hand-sides. One recognizes the left hand side of diagram 6 as diagram
2, but clockwise rotated; and the right hand side of diagram 6 as its mirror image.
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Sem′
SL

LrnSL−−−−−−−−−→ Syn′SL Syn′SL
Int′SL−−−−−−−−−→ Sem′

SLyEnc

yComp

yComp

yEnc

Sem′
TL

Int′TL←−−−−−−−−− Syn′TL Syn′TL
LrnTL←−−−−−−−−− Sem′

TL

Diagram 5: Reformulation of diagram 4: the two diagrams have to be commutative.
Due to the partiality of Lrn, the corners are sets, and not necessarily algebras.
Sem′

X = dom(LrnX), Syn′X = range(LrnX), Int′X = Intdrange(LrnX)

This shows that the correctness notion of Rus is essentially the correctness notion
of Thatcher et al. (1979). The differences are that in Rus (1991) IntX is injective,
and that the corners of the commutative diagram need not be algebras.

Sem′
SL

Int′SL←−−−−−−−−− Syn′SL Syn′SL
Int′SL−−−−−−−−−→ Sem′

SLyEnc

yComp

yComp

yEnc

Sem′
TL

Int′TL←−−−−−−−−− Syn′TL Syn′TL
Int′TL−−−−−−−−−→ Sem′

TL

Diagram 6: The two (identical!) commutative diagrams obtained from diagram 5,
using Int′X = LrnX

−1

Since the correctness notion of Rus turns out to be essentially the correctness
notion of Thatcher et al., the same objection applies. The commutativity may
be trivial because the target language has a trivial semantics (because it is a one-
element algebra), or less dramatic, because important information is lost. An exam-
ple is given below; it is a variant of example 2. That could not be used unchanged,
because Int in that example is not injective. As a matter of fact, this counterex-
ample could also be given for the original diagram 4, so without the investigations
concerning Lrn and Int. But then the comparison with the other proposals could
not have been made.

Example 5. Suppose SynSL and SemSL have positive and negative numbers, and
suppose that by the compilation Comp in the signs disappear. So both in SynTL

and in SemTL the numbers have no sign. Such a compiler is intuitively incorrect
because it identifies numbers which, according to the semantics of TL, should be
different. But diagram 4 and the two diagrams in 5 and 6 are commutative. So
according to Rus’ definition, the compiler would be correct.
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6 The correctness notion of Chirica

Chirica (1976, chapter 7) argues for a variant of the definition of Morris, viz. one in
which the decoding is a weak homomorphism, (a relation) instead of a homomor-
phism see diagram 7. The relevant definition is:

Definition 6. R:X → Y is a weak homomorphism if R is a subalgebra of X × Y

SynSL
Comp−−−−−−−−−→ SynTLyIntSL

yIntTL

MSL
Dec←−−−−−−−−− MTL

SL source language
TL target language
SynX algebra as syntax for X,
Comp compiling homomorphism
IntX interpretation hom. for X
MX set of meanings for X
Dec decoding weak-homomorphism

Diagram 7: Compiler correctness according to Chirica (1976): the diagram has to
be commutative

In Chirica’s approach, the interpretations of programs in the source language
are input-output functions. The target language semantics are state transformers.
A state is defined as s = 〈i,m, o, l〉. It gives the current values of the input/output
files i and o, the current contents of the memory m, and the current index of the
top of the stack.

Chirica provides two arguments for the introduction of weak homomorphisms.
The first argument has to do with ‘side effects’. Intermediate results of calcula-

tions may be left in the memory, above the current top. For all those (irrelevant)
differences in state, separate homomorphisms have to be defined. Chirica argues
that it is easier to use weak homomorphisms. This argument will not be considered
because it is for convenience only.

The second argument is of a more principled nature. The source language mean-
ing has to be obtained from the state transformers by a homomorphism. An option
is to assume that the execution of a program starts in a state where all memory loca-
tions contain the value undefined, the output file is empty, and the stack index is 0.
Then the homomorphism from target language meanings to source language mean-
ings can be defined by D(f) = λi.outputfile(f(i, undefined, 〈〉, 0)) However, then
only a limited proof of the correctness is obtained: no correctness is guaranteed if
the machine starts in a different state. For correctness, a family of homomorphisms
is to be considered, viz. a homomorphism for each combination of a memory con-
tents and stack index. And Chirica argues that it is easier to give up functionality,
and use a relation approach.

The fundamental issue raised here is what the meaning of a program is. Is it
the interpretation in one model or in a class of models? This is a fundamental
change of view, and not just a matter of convenience. This becomes evident if one
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considers translations between logics, where the interpretation in a class of models
is the notion one really is interested in. If interpretation is with respect to one
model, then Dec is a homomorphism, and if it is with respect to class of models,
it is a family of homomorphisms. Now a family of such homomorphisms can be
seen as a single homomorphism defined (elementwise) on a set of states, and ‘weak
homomorphism’ is in fact such a homomorphism. So the correctness notion of
Chirica is the same as the one by Morris, but for a fundamentally different meaning
concept.

7 Translating from view language to database lan-
guage

In this section we consider a translation problem that arises in connection with
databases. Usually individual users of a data base are not allowed to see all the
data, let it be the full structure of the data base. They have only access to their own
view, which gives a restricted, and maybe modified, perspective. The view facility
allows each user to see the database in its own way. The relation with the original
data base is given in the view definition, which maps a state of the database into a
view state. Instructions which the user performs on his view have to be translated
into instructions of the database itself. For queries this goes without complications.
For updates this raises problems because there can be several data base updates
that correspond to a given view update. Furthermore, the update has to be done in
such a way that also after further updates the data base remains in correspondence
with the view.

Bancilhon & Spyratos (1981) study the problems mentioned above, and investi-
gate which translations are allowed. Their first step is to formulate the requirements:
updates can be undone, the composition of two updates is an update again, and
the translation is a homomorphism. These properties are not formulated with com-
mutative diagrams, but their proposal (their section 3) becomes more transparent
if we do so.

Definition 7. Let U be an algebra of view updates, where U is closed under the
operations composition (;) and right-inverse (−1). Let 1DB be the identity on
the data base. A correct translation is a homomorphism with the following two
properties:

1. T (u; u−1) = 1DB

2. Diagram 8 commutes.

The solution of Bancilhon and Spyratos consists of a characterization of the
situations in which a correct translation is possible. Generally, in such a situation
several choices for a translation are possible, and each choice can be seen as an
update strategy. Their solution (paraphrased in theorem 13 below) is simplified by
a reformulation in a more abstract algebraic terminology.
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U
T−−−−−−−−−→ LDByIntU

yIntDB

V
fV←−−−−−−−−− SDB

U view language algebra,
with operations ; and −1

T translation homomorphism
LDB database update language

(restructured as image of U)
IntU interpretation of U in the view
IntDB interpretation of LDB in the

data base
V the views with update operations
fV view definition
SDB data base states with state trans-

formations

Diagram 8: T is a correct translation of view updates if the diagram commutes
(algebraic reformulation of Bancilhon & Spyratos (1981, section 3) )

Definition 8. [B.&C. p.559] A view definition consists of

1. a set of relational variables

2. a view defining function fV from data base states to view states

An immediate consequence is:

Fact 9. Let S be a set of data base states on which fV defines view V . Then S/fV

is a partition of S.

Definition 10. Vs is the partition element of S/fV that contains s.

Definition 11. [algebraic paraphrase of B.&C., def 4.4]
W is a complementary view of V if for all v ∈ S/fV

and for all w ∈ S/fW
holds

|v ∩ w| = 1.

Since each pair (view,complementairy view) determines a unique element of S, we
have

Fact 12. Let W be a complementary view of V . Then S is isomorphic with S/fV ×
S/fW

.

Now it can be proven that

Theorem 13. [algebraic paraphrase of the main result: B.&C., th. 7.1]
Let U be an algebra of updates of view V . There exists a correct translation of U
in the data base if an only if there exists a complementary view W of V such that
for all updates u ∈ U holds [T (u)](s) = u(Vs)Ws.

.
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8 Translating from concurrent language to concur-
rent language

Shapiro (1991) presents a general method to compare languages and his partic-
ular aim is to compare concurrent programming languages. Such languages are
difficult to compare because they use different notions of communication and syn-
chronization and different models, and therefore their semantic models are often
irreconcilable. The method Shapiro presents, is based on algebraic embeddings.

The central notion in his approach is ‘observable behavior’: which in the present
context means ‘state transitions’. In another paper (Moscowitz & Shapiro 1993) he
applied the method to compare languages defined by machines (Turing machines
and finite automata). Here the behavior of concurrent programming languages
with respect to their parallel composition operator is the theme. The relation ‘have
the same observable behavior’ defines an equivalence relation on the programming
obtained, and this relation can be characterized as the kernel of interpretation
function Ob . These behaviors can be compared, and thus give a comparison of
the languages. His key definition is given below; he calls ‘sound’, what we called
‘correct’, otherwise it is identical to his proposal.

Definition 14. A translation homomorphism Tr is correct if there is a Dec such
that diagram 9 commutes.

L1
Tr−−−−−−−−−→ L2yOb1

yOb2

O1
Dec←−−−−−−−−− O2

L1 algebra defining concurrent language L1

Tr translation function
L2 algebra defining concurrent language L1

Ob1 mapping with observable behaviors as
kernel

Ob2 mapping with observable behaviors as
kernel

O1 set of observable behaviors
Dec decoding function
O2 set of observable behaviors

Diagram 9: Correct translation of concurrent languages (Shapiro 1991, p. 200)

A stronger notion is what he calls faithful : when Dec has an inverse. The
meaning assignment Ob is compositional if that mapping defines a congruence re-
lation. For these notions he proves some theorems, e.g. conditions when a correct
translation is also faithful.

His main theorems state of two properties of concurrent languages that they
are preserved under correct translations: ‘interference freedom’ and ‘connection
hiding’. For several programming languages it is proven either that they have such
a property, or that they do not. Thus this method of comparison primarily yields
many negative results: concurrent languages for which no embedding is possible.
Positive results are more difficult to obtain because then details of the concurrent
behavior have to be considered. That is done for some languages in Shapiro (1992).
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Together with embeddings from the literature, it gives a catalogue in which 22
concurrent languages are compared.

Note the resemblance of Shapiro’s work with the translations used in logic (sec-
tion 9). Both aim at comparing the relative strength of languages, are interested
in comparing only one central notion (observable behavior, respectively truth in
models), and in the interpretation all other aspects are neglected.

9 Translating from logic to logic

There are many logical languages, and between several of them translations have
been defined. The purpose of such translations is to investigate the relation between
the logics, for instance their relative strength or their relative consistency. If one
considers the method behind such translations, it turns out that (almost) always the
algebraic method is used. We shall consider a famous example: Gödel’s translation
(denoted Gt) of intuitionistic propositional logic into modal logic (e.g. van Dalen
(1986), Epstein (1990)).

In intuitionistic logic connectives have a constructive interpretation. For in-
stance φ → ψ could be read as ‘given a proof for φ, it can be transformed into
a proof for ψ’. The disjunction φ ∨ ψ is read as ‘a proof for φ is available or a
proof for ψ is available’. Since it may be the case that neither a proof for φ nor
for ¬φ is available, it is explained why φ ∨ ¬φ is not a tautology in intuitionistic
logic . This explanation has a modal flavor, made explicit in the translation Gt
into modal logic S4. In the clauses of the translation the negation does not occur
because in intuitionistic logic ¬φ is defined as an abbreviation for φ → ⊥, where ⊥
is ‘absurdum’.

1. Gt(p) = p, for p an atom

2. Gt(φ ∨ ψ) = Gt(φ) ∨Gt(ψ)

3. Gt(φ ∧ ψ) = Gt(φ) ∧Gt(ψ)

4. Gt(⊥) = ⊥
5. Gt(φ → ψ) = [Gt(φ) → Gt(ψ)]

Note that the translation of p ∨ ¬p is p ∨ ¬ p (which is not a tautology in
modal logic).

It is straightforward to formulate this translation in an explicit algebraic for-
mat. Then the intensional logic operator IL∨ (which puts ∨ between its two input
arguments) corresponds with ML∨. And IL→ corresponds with the polynomial
operator ML (ML→(X, Y )). So the translation is, algebraically spoken, not in
IL, but in a from IL polynomially derived algebra.

Logics are usually defined by a proof system, and the traditional notion related
with translations is ‘interpretation in another logic’: a translation interprets a logic
if every formula provable in the original logic is provable in the translation. If it
also is vice versa, it is called ‘faithful’.
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Definition 15. A translation Tr from logic L1 in logic L2 is called an interpreta-
tion of L1 in L2 if:

`L1 φ =⇒ `L2 Tr(φ)

A translation is called a faithful interpretation if

`L1 φ ⇐⇒ `L2 Tr(φ)

In case the (proof systems of the) logics are sound and complete with respect to
a class of models, the interpretations defined before can be described semantically:
the translations of valid formulas in the one logic should be valid in the other logic
and vice versa (valid = true in all models). This is not the traditional perspective
on translation, but it is not difficult to formulate corresponding semantic notions.

Definition 16. A translation Tr from L1 in L2 is called a semantic interpretation
of L1 in L2 if:

|=L1 φ =⇒ |=L2 Tr(φ)

A translation Tr from L1 in L2 is called a semantic faithful interpretation of L1 in
L2 if:

|=L1 φ ⇐⇒ |=L2 Tr(φ)

We might try to formulate an algebraic correctness definition resembling the ones
used in the other sections. There are however complications, which are mentioned
below.

Definition 17. A translation Tr from L1 to L2 is correct if there is a mapping m
such that diagram 10 commutes.

L1
Tr−−−−−−−−−→ L2yIntL1

yIntL2

ML1

m←−−−−−−−−− ML2

L1 algebra of formulas of L1

Tr translating homomorphism
L2 derived algebra of formulas of L2

IntL1 φ 7→ {M ∈ML1 |M |= φ}
IntL2 ψ 7→ {K ∈ML2 |K |= ψ}
ML1 sets of models for L1

ML2 sets of models for L2

m maps sets of L2 models
to sets L1 models

Diagram 10: Tr is correct if the diagram commutes (Suggestion)
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There are constructions which transform models of intensional logic into S4
models and vice versa (Epstein 1990)[p. 308]), hence: Gt is a correct translation of
intuitionistic logic in modal logic.

Definition (16) is not equivalent with the definition (17). Firstly, (17) requires
that m is defined for all sets of models that may arise for a formula, whereas (16)
only speaks about the valid formulas. Secondly, (17) leaves the possibility open that
the embedding of L1 in L2 is done in another way than by means of translating
valid formulas to valid formulas. Finally, it is not clear whether the interpretation
functions can be homomorphism.

These points require further investigations. The work on institutions probably is
relevant. Institutions constitute an abstract framework for the study of the relation
between specification languages (or programming languages) and their interpreta-
tions, and then a diagram like 10 arises, see e.g. Goguen & Burstall (1992).

The method of translating exemplified by Gt, viz. the algebraic method, is the
standard method in the field of logic: the definition of translation follows the clauses
of the grammar of the source language logic, and for each clause the translation is
given by a (possible compound) expression in the target logic. A large number of
translations between logics is collected in Epstein (1990, Chapter 10: ‘Translations
between Logic’. pp. 289-314). Almost all of them are homomorphisms (there
they are called ‘grammatical translations’), and the few that are not, are also in
other respects deviant [p. 313]. It would be interesting to investigate the semantic
(model-theoretic) counterparts of such non homomorphic translations.

10 Translating from natural language to natural
language

Many methods have been proposed for translating from one natural language to
another. The Rosetta project of the Philips Research laboratories (Eindhoven, the
Netherlands) has used one that is in that field very special: an algebraic method.
The syntax of the source language is organized as an algebra, the syntax of the target
algebra is a similar algebra, and translating is an isomorphism. Their approach is
illustrated by the following simplified example.

Consider sentence (1), which has (2) as translation in Dutch.

(1) Peter does not sing.

(2) Peter zingt niet.

The sentences have different syntactic structures: in English there is an auxiliary
verb (do) that has no counterpart in the Dutch sentence. If one would design for
each language separately context free rules producing the respective sentences, then
the grammars would not be isomorphic. Nevertheless, in Rosetta the sentences are
generated by isomorphic algebras.

The generators of an algebra E for this fragment of English are Peter and to sing.
For Dutch the corresponding generators are Peter and zingen. E has an operator
RE,1 that produces from the two generators sentence (3), and RD,1 produces likewise
(4).
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(3) Peter sings.

(4) Peter zingt.

Furthermore there is an operator RE,2 that takes as input a sentence and yields its
negation. This is not a straightforward rule because the rule has to find the finite
verb, move it to another position, and insert does and not. The Dutch rule RD,2 is
simpler. So we have:

(5) RE,2(RE,1(Peter, to sing)) = Peter does not sing.

(6) RD,2(RD,1(Peter, zingen)) = Peter zingt niet.

The left hand sides of (5) and (6) describe how the sentence is formed. In (5) it says
that RE,1 is applied to two generators (Peter, to sing), and next RE,2 is applied to
the result. In algebra the left hand side of (5) is called a ‘term’, so a term represents
a derivation of an expression. The terms corresponding with an algebra A form an
algebra themselves, called the term algebra, denoted as TA.

As one sees, the terms (derivations) in (5) and (6) are isomorphic. This is also
the case for the (large) fragments described in the Rosetta system. The isomorphism
became possible by adopting the following points of view:

∗ The algebras are designed, and not discovered as (innate) properties of the
mind. The latter is the opinion of a prominent tradition in linguistics.

∗ The design is guided by semantic insights: a syntactic operator corresponds
with a meaning operation. This aspect constitutes a difference with many
grammatical models in the linguistic tradition or in computational linguis-
tics. In section 11 more information will be given about meanings for natural
languages.

∗ Operators are powerful, they do more than just concatenation. They do not
necessarily correspond with context free rules, so they differ from the operators
used in computer science (see section 12).

∗ Algebras for different languages are tuned. The algebra for a language is
not necessarily the algebra that would be designed for the language when
considered in isolation: sometimes a decision for one language is influenced
by phenomena in the other language.

There are some properties of natural languages that cause differences in algebraic
respects with the framework defined in other sections.

1. Natural languages are ambiguous.
Not all expressions of natural language have a unique meaning, and therefore
expressions often do not have a unique translation. The algebra for a language
is designed in such a way that an expression which has two different meanings,
can be formed in different ways. It may be formed from different generators,
or using different operators (or both). So, in algebraic terminology, two dif-
ferent terms may represent the same expression of the language. Hence the
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algebra for the source language is not an initial algebra. Since differences
in the way of formation of an expression may correspond with differences in
translation, the translation homomorphism is not based on the algebra for the
source language, but on the term algebra that corresponds with that syntac-
tic algebra. This is by its nature an initial algebra. For the target language
the same argumentation applies, so the range of the translation is the term
algebra which corresponds with the algebra for the target language.

2. Natural languages are not context free.
Traditionally it is claimed that natural languages are not context free. Most
of the arguments are shown to be incorrect in Pullum & Gazdar (1982), and
only in some cases the non context freeness holds (see some contributions
in Savitch, Bach, Marsh & Safran-Naveh (1987)). But although very large
fragments of natural language (when considered as strings) are context free,
several grammatical theories use non context free rules in order to express
regularities in natural language. And also the algebra for Rosetta has (in-
fluenced by semantic considerations) operators which have much more power
than context free (see section 12).

3. Natural languages have synonymous expressions.
One expression may have several equivalent translations. Rosetta aims at
obtaining all possible translations and (distinctly from most translation sys-
tems) does not select, by some criterion, one of those. This situation does not
only arise for words, but also for operators: one construction in the source
language can sometimes be translated by several constructions in the target
language. Furthermore, different expressions may have the same translation.
So there is a many-many correspondence between source and target language.
For these reasons, the translation is defined between sets of expressions. In
algebraic terminology the situation is as follows. The relation ‘are translation
equivalent’ is in the system a congruence relation on (sub)expressions. This
congruence induces a quotient algebra for each of the term algebras, and the
translation is defined between these quotient algebras. Due to this quotient
construction, the translation homomorphism becomes an isomorphism. That
the translation relation is a congruence relation is partially due to translation
properties of natural language, but also due to the design of the algebra.

These three points give rise to suggestions that might be useful for algebraic compiler
construction:

1. Programs and statements in programs are not ambiguous, but subexpressions
of them are. For instance, if x and y are integers, an expression like x + y
denotes an integer value, but in case it is argument of an operator which
asks for a real number as input it is considered to denote a real number. So
the context disambiguates. Such coercions are usually not considered in the
examples presented in articles on algebraic compiler construction. In order to
apply the algebraic method to ambiguous expressions, it would be useful to
use the term algebra as domain for the compilation homomorphism. Already
Knuth (1968) mentions the possibility to use term algebras. Chirica (1976)
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deals with a realistic fragment of a programming language and explicitly takes
the term algebra as domain for the translation.

2. Synonyms arise in programming languages as well. The example of 7 and
007 is already mentioned in section 5, where also the quotient construction
was used. Another example is that + and plus may denote the same oper-
ation. But the situation that two operations have the same meaning (and
compilation) is mostly avoided in programming languages.

3. The algebraic approach turned out to be applicable to non-context free lan-
guages. That fact is relevant for algebraic compiler construction and will be
discussed in section 12.

A translation from one natural language into another should to be correct. And
by correctness is of course understood that the original and the translation have
the same meaning. Since natural languages have an infinite number of sentences,
correctness of translation is a property on an infinite set. The algebraic method
reduces this to a finite property: if the translations of generators and of operators
are correct the correctness for all sentences follows. Of the Rosetta system it is
assumed, based on intuitions about translations, that the generators and operators
are translated correctly. From that, the correctness of the whole system follows.
This guarantee is something that other translation systems do not have, and is one
of the advantages of the algebraic method. In proving compiler correctness the same
situation arises, and the same guarantee can be given.

The algebraic structure of Rosetta is described extensively in chapter 19 of
Rosetta (1994). It is summarized in diagram (11).

TE/≡
Tr−−−−−−−−−→ TD/≡yIntE

yIntD

SemE

id←−−−−−−−−−−−−−−−−−−→
id

SemD

TX term algebra for X, where
X=E(nglish) or X=D(utch)

Tr translation isomorphism
≡ congruence relation ‘transla-

tion equivalent’
IntX interpretation for X
SemX meanings for X ;

so SemE = SemD

Diagram 11: The algebraic structure of Rosetta for translating from English to
Dutch. The translation is correct if the diagram commutes in both directions (cf.
Rosetta (1994, ch. 19))

11 Translating from natural language to logic

11.1 Montague grammar

Semantics of natural language is traditionally studied in the field of philosophy of
language. Often meanings of natural language expressions are represented in some
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logic. For long, say until 1975, in all articles it was more or less stipulated which for-
mula was the correct meaning representation of a given sentence (its ‘logical form’).
This situation has been characterized as: it seemed that a ‘bilingual logician’, who
knew logic and who knew natural language, had provided the formula. An opinion
often heard (the ‘misleading form thesis’) was that there exists a great difference
between the sentence and its logical representation. Therefore it was proposed to
design for certain purposes a ’purified natural’ language. So natural language and
logical languages were two worlds, with only loose connections.

A radical change in this situation was brought by Richard Montague, a math-
ematical logician. He developed a method to relate natural language and logic in
a systematic way. Montague (1973) presented a semantical interesting fragment of
English and provided it with a model-theoretic interpretation through a system-
atically translation into logic. It became, for the first time in history, possible to
calculate which meaning is associated with a given sentence, and to make predictions
concerning meanings of sentences.

His method was presented in Montague (1970), and it is the same algebraic
method followed in the other sections of this paper. The syntax of the natural lan-
guage is a many sorted algebra, and meaning assignment is a homomorphic transla-
tion into a logical language. The domain of this homomorphism is not the syntactic
algebra itself, but the corresponding term algebra (the algebra of derivations). That
makes it possible to account for ambiguities that arise in natural languages, e.g. the
scope ambiguity of Every man loves a woman, see section 12. Different readings
correspond with different ways of production, so with different terms.

The method of Montague grammar is illustrated by the simplified treatment of
sentence (7).

(7) John and Mary walk

The syntactic algebra has three generators: John and Mary of sort PN (Proper
Name), and walk of sort V (verb). Other sorts are NP (Noun Phrase) and S (Sen-
tence). The operators are (for R1 and R2, see section 10):

1. R1:NP × V → S, where R1(α, β) = α β

2. R3:PN × PN → NP , where R3(α, β) = α and β

So the production of (7) is described by the term:

(8) R1(R3(John, Mary), walk)

In Montague’s original paper, sentences are translated into intensional logic.
That is a higher order modal logic with lambda abstraction. For simplicity, we
translate here into extensional predicate logic, enriched with lambda abstraction.
The logic has one predicate: WALK , and two constants: j and m. The proper
names translate into the corresponding constants, and the verb in the corresponding
predicate. So the translation Tr of the generators is:

Tr(John) = j, T r(Mary) = m, and Tr(walk) = WALK

The operators corresponding with R1 and R3 are respectively:
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1. T1: BoolPred × Pred → Bool, where T1(γ, δ) = γ(δ)

2. T3: Indiv × Indiv → BoolPred, where T3(α, β) = λP [P (α) ∧ P (β)]

So the translation of John and Mary is:

(9) λP [P (j) ∧ P (m)]

And of the sentence John and Mary walk:

(10) λP [P (j) ∧ P (m)](WALK )

This can be reduced (by lambda conversion) to:

(11) WALK (j) ∧WALK (m)

A significant point in the above example is the translation of PN -conjunction
(R3): it is an operator (T3) that is defined by means of a polynomial expression.
In larger fragments that situation would arise frequently: logic has few operators
and constants, whereas natural language needs a lot. So the algebra NL for natural
language is not similar with the algebra L for logic. New operators and constants are
defined by means of polynomial expressions, and thus within L a reconstruction L′

is made of TNL. So TNL is translated onto a polynomially derived algebra L′. Then
the interpretation of L determines a unique interpretation of L′. This expressed in:

Theorem 18. (Montague 1970, p. 225) Let L be an algebra (for logic), I a ho-
momorphism from L to some algebra M, and let L′ be an algebra obtained from
L by replacing its operations by polynomially defined operations. Then there is a
unique algebra M′ such that there is a homomorphism I ′ from L′ to M′, where
I ′(a) =I(a) whenever I ′(a) is defined.

This theorem is the background of the following definition of a Montague gram-
mar. The algebraic structure of a Montague grammar is presented in diagram (12).

Definition 19. A Montague grammar consists of a syntactic algebra NL, a logical
algebra L, a polynomial derivor δ and a homomorphism from TNL to δ(L).

11.2 Correctness

Of course, the meaning assignment is not an arbitrarily chosen one: it has to yield
the ‘correct’ meaning. One might expect that this means that a meaning assignment
has to capture our intuitions concerning meanings of phrases. Indeed, this was
the case for the meaning assigned to John and Mary walk. For certain types of
expressions, and for simple sentences, one might base formal meanings directly on
intuitions, but in many cases it becomes problematic. The intuition may point in the
wrong direction, or there might be no intuition at all, especially for subexpressions
of sentences. For instance, the meaning of only cannot be something like ‘there is
precisely one’, because it does not only occur in phrases like only John but also in
only John and Mary and only man.

The solution is to require meanings to formalize intuitions about entailment
relations between sentences. A classical case from Montague (1973) is: sentence
(12) entails (14), whereas (13) does not entail (14).
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TNL
Tr−−−−−−−−−→ δ(L) δ← . . . . . . . . . . . LyIntNL

yIntδ(L)

yIntL

µ(M) id←−−−−−−−−− µ(M)
µ← . . . . . . . . . . . M

NL algebra for Natural Language
TNL terms over the algebra NL
Tr translation homomorphism
L algebra of logic
δ derivor which restructures L
δ(L) derived logical algebra

IntX interpretation of X
µ model-theoretic counterpart

of δ
M model for L
µ(M) induced model for δ(L)
id identity mapping

Diagram 12: The algebraic structure of Montague grammar (cf. Montague (1970)
section 5, and Janssen (1986))

(12) John finds a unicorn

(13) John seeks a unicorn

(14) There exists a unicorn

A newer, intricate example is from Groenendijk & Stokhof (1982): from sentences
(15) and (16) it follows that (17).

(15) John knows whether Mary comes.

(16) Mary does not come.

(17) John knows that Mary does not come.

This example illustrates again that intuitions concerning meanings of natural lan-
guage expressions are not always available: what would be the intuition about
whether Mary comes, or about that Mary comes? Based upon intuitions concerning
meaning entailments, model-theoretic interpretations are defined that can account
for the semantic relation between (15), (16) and (17).

The principle behind this heuristics is expressed in a famous quotation from
Lewis (1970):

In order to say what a meaning is, we may first ask what a meaning
does, and then find something that does that.

Montague grammar traditionally is a form of possible world semantics. Sentences
are interpreted as sets of possible worlds (with the moments of time as parameter),
and entailment between two sentences corresponds with set inclusion (for the same
parameter value). For instance, for every moment of time, the set of worlds in which
(12) is true, forms a subset of the set for which (14) is true. This is not the case for
(13) and (14). The examples with know require a formalization of the entailment
relation that is more complex.
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The entailment perspective on correctness is known in Montague grammar, but
its formalization, as the commutative diagram (13) is new.

TNL
n Tr−−−−−−−−−→ LnyEnt

yIntL

{ent, nent} Incl←−−−−−−−−− Wn

TNL
n n-tuples of terms for natural

language
Tr translation homomorphism
Ln n-tuples of formulas from

logic
Ent intuitions concerning en-

tailment (ent) and non-
entailment (nent)

IntL interpretation of L
Wn n-tuples of meanings: func-

tions from time points to
sets of possible worlds

Incl model-theoretic formaliza-
tion of entailment (for n = 2
this is ⊆)

Diagram 13: Tr gives a correct translation of natural language sentences into logic
if the diagram commutes.

12 Algebra’s and context-free grammars

12.1 Traditional view

Several authors in the field of computer science assume that algebras can only be
used for context-free languages; for instance, Chirica (1976, p. 10), Rus (1991, p.
295), Tofte (1990) and Rus (1976)(entitled: ‘Context-free algebras [. . .]’). In one
of the first journal articles on the algebraic approach to programming languages,
many sorted algebra’s and context-free grammars are connected as follows (Goguen,
Thatcher, Wagner & Wright 1977):

Definition 20. Let G be a context free grammar with VN as non terminal and
VT as terminal symbols. Hence the context free rules are of the form: A →
w1B1w2B2 · · ·Bnwn+1, where A, B1, B2, · · ·Bn ∈ VN and w1, w2, · · ·wn+1 ∈ V ∗

T .
Then G is made into a VN -sorted algebra by introducing for each rule an operator
R of type 〈B1B2, · · ·Bn, A〉, where R(α1, α2, · · ·αn) = w1α1w2α2 · · ·αnwn+1.

The converse construction gives a context free grammar for a many sorted algebra.
Goguen et. al. call context free grammars the most important and general example
of their approach. It is remarkable that they allow VN , VT and the set of rules to
be infinite; usually context free grammars are finite. Rus (1991, p. 295) character-
izes the relation between context free grammars and algebras more restrictively by
adding finiteness conditions to the above definition.
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Programming languages have some context dependent features; a well known
example is that every identifier has to be declared before its use. In semantical
studies such properties often are assumed to be specified in the syntax. In an alge-
braic approach this is not desirable, as was pointed out by Chirica (1976). In such
a situation meanings are only assigned to full programs, and not to their subpro-
grams because these may contain undeclared identifiers. In this way the meaning
assignment is not a homomorphism any more, and the power of structural induc-
tion is lost. Chirica considers this issue as a fundamental challenge of the algebraic
approach, and therefore aims at solving it. Because the method of inherited and
synthesized attributes (Knuth68) is the most successful method to deal semantically
with context dependency, Chirica develops a (rather complicated) algebraic version
of attribute grammar. Also the fragment of Rus (1995) contains context dependent
properties, such as scope. His solution is much simpler than the one by Chirica. Rus
deals with them [p. 22] by means of attributes in a special store, hence separated
from the algebra.

12.2 Beyond context-free

All points in the above discussion are based upon the assumption that the con-
nection between an algebraic operator and a rule of the grammar is as defined
in definition (20). An application of the algebraic approach to natural languages,
however, would be very difficult, if not impossible, if that indeed were the case. In
algebraic treatments of natural language frequently non context-free operators are
used, for instance in the translation system Rosetta, and in Montague grammar. A
classical example from Montague (1973) is:

Example 21. Consider the sentence:

(18) Every man loves a woman.

This sentence has two readings:

(19) ∀x[man(x) → ∃y[woman(y) ∧ love(x, y)]]

(20) ∃y[woman(y) ∧ ∀x[man(x) → love(x, y)]]

Sentence (18) is the result of two applications of a substitution operator to:

(21) He1 loves him2.

The operator substitutes an NP (a Noun Phrase such as a man or every woman)
for a syntactic variable (he1 or him2) in an S (Sentence). Differences in the order
of substitution determine difference in meaning. The operator reads:

S14,i: NP× S → S,
where S14,i(α, β) is obtained by substitution of α for the first occurrence
of hei or of himi in β, and by substitution of an appropriate pronoun
(gender, case) for all other occurrences.

So S14,2(a woman, He1 loves him2) = He1 loves a woman.
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Operator S14,i illustrates two features which each cause the power of the alge-
braic approach to be beyond that of context free grammars:

1. It is an infinite scheme: for each i it defines an operator.

2. The operators perform a substitution somewhere in one of the arguments. So
they are operators with more power than context-free rules.

Using the power of replacement, an algebra can simulate a Turing Machine, which
proves (for details see Janssen (1997), or Rosetta (1994, chapter 19)):

Theorem 22. For every recursively enumerable language L there is a many sorted
algebra such that it generates L.

In the example below an infinite number of sorts and operators is used to take
care of the context sensitive property of programming languages that ‘all identifiers
must be declared before they can be used’.

Example 23. Define an algebra as follows

∗ Sorts

– For each X ⊂ {x|x is an identifier } there is a sort 〈P, X〉, viz. of
programs with X as set of undeclared identifiers

– For each identifier x there is a sort 〈D, x〉 of declarations of identifier x
(e.g. real y is of sort 〈D, y〉).

∗ Operators

– An infinite collection of operators defined by the following scheme:
RDecl〈X,x〉: 〈D, x〉×〈P, X〉 → 〈P, X\x〉, where RDecl〈X,x〉(α, β) = α; β,
i.e. the declaration and the program are concatenated with ; as glue.

– One rule yielding full programs, viz. a rule in which the set of identifiers
is empty:
RFP : 〈D, 〉 → FP, where RFP (α) = begin α end.

12.3 Parsing

We have seen in the previous sections that in applications to natural language,
algebras are used with an infinite number of powerful operators. That raises the
question how to find for a given expression the term which describes its generation.
The machine translation project Rosetta would not have been possible without an
algorithm for this. Finding the terms which describe the generation of an expression
will be called ‘parsing’.

Since each recursively enumerable language can be generated by an algebra,
restrictions have to be imposed, in order to reduce the generative power from re-
cursively enumerable (theorem 22) to recursive languages (or less). The restrictions
on the algebras are as follows:
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1. Reversibility condition
For each operator R of the algebra A there exists a reverse operator R−1.
This reverse operator is not an operator of the algebra, but defined on some
superset containing all strings we might wish to parse (including strings that
do not belong to A). This operator has the following properties:

(a) If 〈x1, x2, . . . , xn〉 ∈ R−1(y) then y = R(x1, x2, . . . , xn). Here R1(y)
consists of n-tuples of elements from the superset, and includes all ex-
pressions from A from which y could be formed by one application of
R.

(b) For all y the set R−1(y) is finite.

2. Measure condition
There is a computable function µ hat assigns to each expression its measure;
its position in some well founded ordering (usually the natural numbers).
Generators are assigned minimal measure. Furthermore:
If y = R(x1, x2, ...xn), then µ(y) > max(µ(x1), µ(x2, ), . . . , µ(xn))

3. Finiteness condition
In order to decide whether a given expression is element of the algebra, only a
finite number of inverse operators have to be tried in order to find the relevant
parses.

A parsing algorithm can be based upon these three properties. Condition 1
makes it possible to find, given the output of an operator, a finite set of possible
inputs for the operator. Condition 3 assures that only a finite number of operators
have to be tried. Together they define for a given expression a search space of finite
size. The process is applied again to each expression in this search space. Condition
2 guarantees termination of this recursive process.

The basic ideas for the parsing algorithm originate from Landsbergen (1981).
More information about the algorithm is given in Rosetta (1994): about the im-
plementation in chapters 17 and 18 (by Landsbergen, Leermakers and Rous), and
about the algebraic aspects in chapter 19 (by Janssen).

Let us investigate the conditions for the two previous examples:

Example 24. Examples (21) and (23) continued
The three conditions are satisfied:

1. RDecl〈X,x〉 satisfies the reversibility condition: the inverse operator has to split
its input in a two parts after the last declaration. The operator RFP

−1 has
to strip off the added elements. And S−1

14,i has to de-substitute.

2. For RDecl〈X,x〉 the measure can be the length of the string. For S14,i an
abstract measure is required, taking the number of occurrences of the syntactic
variable hei’s into account.

3. For parsing a full program, only R−1
FP has to be tried. Also for parsing an

expression of the sort 〈P, X〉 only one rule has to be tried, the choice is
determined by the first declaration. For S14,i the situation is different, because
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a given string can be produced by any out of an infinite set of substitution
rules. Here a standardization of the use of indices is required (e.g. only the
least unused index has to be tried).

For the rules in example (23) the algorithm seems efficient. But there are sorts of
operators which may cause a combinatorial explosion: the reverse rule of a simple
concatenation operation may yield all possible ways to split a rule in two parts.
So further restrictions are needed in order to guarantee efficiency of the parsing
algorithm.

The discussion in this section has shown that the traditional opinion that the
algebraic approach only works for context free languages is incorrect, and that
the incorporation of a new formalism for synthesized or derived attributes is not
necessary.

13 Towards a general theory of translation

In previous sections it was shown that translations arise between several kinds of
languages. We have seen that in most fields the algebraic method was put forward,
often independently of the proposals in other fields. The publications in the different
fields discuss the same issues and use related notions. So, there seems to be a
common basis for a general theory of translation. Below a first, small step will be
made.

We may start with a principle for translating that can be seen as the philosoph-
ical background for the algebraic approach:

The principle of compositionality of translation
The translation of a compound expression is a function of the transla-
tions of its parts and of the rule by which the parts are combined.

The first formulation of this principle was in a publication concerning the machine
translation project Eurotra, but the idea behind the principle can be found in older
publications. A stronger (symmetric) form of the principle is the leading principle
of the machine translation project Rosetta (Rosetta 1994). The principle is inspired
by Frege’s well known principle of compositionality of meaning. The formulation
given above mirrors the formulation of Frege’s principle in Partee, ter Meulen &
Wall (1990, p. 318).

The principle of compositionality of translation can be formalized by requiring
that source and target language are algebras SL and TL respectively, and that
translating is a homomorphism between the term algebras TSL to TTL. However, for
a practical reason, the definition below has more components. When two languages
are given, they usually have their own internal structure and differ that much, that
they do not have a similar syntax. Therefore the range of the translation function
has to be an algebra that is constructed by means of polynomial operators available
in the target algebra. This leads to the following definition.
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Definition 25. Let the source language be defined by the algebra SL , and the
target language by an algebra TL. Let δ be a polynomial derivor that transforms TL
in an algebra similar to SL. Then a compositional translation from source language
to target language is a homomorphism from the term algebra TSL to the term
algebra Tδ(TL). The translation is correct if there is a mapping Decode:SemTL →
SemSL such that the restriction Dec of Decode to Semδ(TL) is a homomorphism
that makes the leftmost square in diagram (14) commute.

TSL
Tr−−−−−−−−−→ Tδ(TL)

δ← . . . . . . . . . . . SynTLyIntSL

yIntδ(TL)

yIntTL

SemSL
Dec←−−−−−−−−− Semδ(TL)

δ← . . . . . . . . . . . SemTL

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Decode

Diagram 14: A general framework for compositional translation

Below we consider the components of this diagram and their relation with the
articles we have discussed before.

∗ TSL

The source language is an algebra SL. If the expressions of the source language
are ambiguous, SL is not suitable as domain of the translation homomor-
phism. Therefore the term algebra TSL is used as domain for the translation
homomorphism. Such ambiguities arise for natural languages (see sections 10
and 11). Ambiguities also arise for subexpressions of programming languages
(see section 10). If the (sub)expressions of a fragment are not ambiguous, then
the term algebra is isomorphic with the original algebra, and the original one
can be used. This situation arises for logic, and for the examples used in
articles about compiler construction. Therefore most authors use the original
algebra as domain of the translation, and not the term algebra.

∗ Tδ(TL) and Semδ(TL)

The image of the translation homomorphism has to be an algebra similar
to the source language algebra (otherwise it cannot be a homomorphism).
Therefore a reconstruction of TSL has to be made. The term ’embedding’
from logic reflects this aspect, and the term ‘reconstruction’ is used frequently
in Rus (1995). Related diagrams with derivors can be found in Tofte (1990).
Other authors on algebraic compiler construction do not mention this aspect
explicitly, although they proceed in the same way.

∗ δ
The new operators needed to form a reconstruction of TL are obtained by
polynomials. In the field of natural language this idea is introduced by Mon-
tague (1973). The role of polynomials is mostly not explicit in the field of
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compiler construction, but polynomials are frequently used there. In transla-
tions of logics, polynomial translations are standard, but also non-polynomial
translations are used sometimes, see section 9. In Rosetta there is, due to the
design of the algebras, a direct correspondence of operators; but if one inves-
tigates the details of the operators, it is possible to view them as polynomials
as well.

∗ Dec and Decode
If Dec exists, then it is unique, because TSL is an initial algebra and the di-
agram has to commute. Then the image of x ∈ Semδ(TL) can be defined as
X = IntSL(Tr−1(IntTL

−1(x))); it only has to be checked that X is a single-
ton. However, in general, it is difficult to say what X is, because Semδ(TL) is
not independently given, but defined indirectly (viz. by means of the trans-
lation and interpretation). Therefore, there is no information whether for
x ∈ SemTL also x ∈ Semδ(TL). This explains why usually not Dec is de-
fined, but Decode; a function with the original meanings as domain; Dec is
then its restriction to Semδ(TL). The ideal that there is an isomorphism be-
tween source meanings and target meanings (see section 2) can be reached by
switching to a quotient algebra: Semδ(TL)/Ker(Dec). Without this abstraction
Dec will be an isomorphism only the exceptional case where the algebras are
designed with this purpose ( Rosetta, section 10).

Definition (25), the structure in diagram (14) and the comments given above,
are just the first steps toward a general framework for translating. The following
points require further research, and probably other issues as well.

1. Other translations
Although this study brings together a lot of algebraic translations, there cer-
tainly are more (for instance, from programming language to logic). The work
on ‘institutions’ (connections between specification formalisms) deals with a
related subject (Goguen & Burstall 1992). A further comparison may give
rise to other questions and answers concerning algebraic translation.

2. Algebra
In all publications concerning programming languages many sorted algebras
are used. For Rosetta a one sorted algebra is used, and this also is the case in
Montague grammar (see Janssen (1986) for a many sorted version). However,
for applications to natural language order sorted algebras seem most appro-
priate, and maybe this is also the case for programming languages (Goguen
& Malcolm 1996).

3. Homomorphism
Most publications follow the standard definition of a homomorphism for many
sorted algebras. Rus (1991) argues for generalized homomorphisms: mappings
which may change the signature (the sort structure). Rosetta (1994, p. 393)
gives another generalization: homomorphisms which have not only elements
in their range, but also operators. These homomorphisms may not only map
two elements to one image, but also two operators.
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4. Tools
In projects which deal with larger fragments of language, tools are needed in
order to perform all the tasks in an algebraic way. Some of the publications
mentioned in this article describe such projects which have developed tools:
(Rosetta 1994, Rus 1995, Tofte 1990), another is Müller-Olm (1997).

5. Meanings
In the examples we have considered the semantic models are used in two
distinct ways. One is that the whole set of models is essential, the other that
the interpretation is with respect to an intended model (not necessarily a fixed
one). Logic and natural language are of the first kind, compiler construction
is mostly of the other kind. The relation between the two uses of models needs
clarification (see section 9 and 6).

6. Properties
Some of the papers discussed here, are of a theoretical nature, and prove
properties about the framework, e.g. Shapiro (1991) and Rosetta (1994, ch.
19). These results might find their place in a coherent framework.

14 Conclusion

In this article we have seen many examples of translations, and sketched a common,
algebraic, framework. Even the notion ‘correct translation’ turned out to be closely
related in all fields. Inspired by this unity, I would like to conclude with a quotation
from ‘Universal Grammar’ (Montague (1970, p. 313), reprinted in Thomason (1974,
p. 222)), in which I made two adaptations (indicated in italics):

There is in my opinion no important theoretical difference between nat-
ural languages and the artificial languages of logicians and computer
scientists; indeed I consider it possible to comprehend all these kinds of
languages within a single natural and precise mathematical theory.
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