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Abstract

We study the dynamics of information change, using modal logic as
a vehicle. Our semantic perspective is that of a supermodel in which a
state represents some agent’s information, and the accessibility relations
are those of increasing and decreasing knowledge. We concentrate on two
specific settings in which an information state consists of all valuations that
are models for some propositional formula, or theory, respectively; treating
such a set of valuations as an epistemic S5-model, allows us to interpret
epistemic formulas in it in the standard fashion. For the validities of one
of these two supermodels we provide a Hilbert-style derivation system;
our main technical result shows this derivation system to be sound and
complete.

1 Introduction

Agents in a dynamic world have to deal with changing information. The in-
formation, or knowledge, they have about the world may change as a result
of performing observations, communication with other agents, or through non-
monotonic reasoning (where an agent makes certain plausible assumptions).
The most basic kinds of change are increase (information is added) and decrease
of knowledge (information is deleted), and in a sense all changes in information
can be seen as combinations of these basic kinds: first the old information is
thrown away and then the new information is added. In this paper, we will
study changing knowledge, and we use modal logic as a vehicle. Our perspec-
tive is semantical: we study models in which the worlds represent information
states, and in which there is one modal accessibility relation representing in-
crease of knowledge. This relation is used to interpret two modal operators <,
and <¢4. The formula <, informally means: “It is possible to increase your
knowledge to a state where ¢ holds” (update), and <40 means: “It is possible
to decrease your knowledge to a state where ¢ holds” (downdate).
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Many further choices have to be made in formalizing these intuitions, and
one of them is the nature of knowledge (or information) and of an information
state. We will take propositional logic as the basic logic in which the infor-
mation of an agent is expressed. In order to describe what the agent knows
and does not know, we add a knowledge operator K (so K means that the
agent knows — or believes — ¢). This again suggests using modal logic, and we
will use S5 for this purpose. Then, as our information states we will take what
are probably the simplest models for S5, namely, sets of valuations. Via the
standard modal semantics for epistemic logic, every such S5-model naturally
determines a collection of known facts. As we have a modal logic (with <, and
O4) defined “on top of” S5, our approach falls into the category of combining
logics (see for instance [12]).

In our “supermodels” we will group together such information states: we
want to study modal models in which the states themselves are (modal) S5-
models. The accessibility relation in such supermodels connects two states if
the agent knows more in one state than in the other. Still many choices remain:
do we use a finite (propositional) language or an infinite one, do we allow an
agent to possess an inherently infinite amount of knowledge or not, are there
further constraints on the accessibility relation, etc. It turns out that many of
these choices really affect the logic we obtain.

There is by now extensive literature on formal models of information change,
and in particular, on modal approaches to this field. For a survey, the reader
is referred to [1] or [16]; in [7], a general program of ‘dynamifying logics’ is
sketched. Our system is closely related to the update semantics of [14], which
too is concerned with information states consisting of valuations for classical
propositional logic. The aim of update semantics is to study the effect of in-
coming information (in a discourse) on the information state of an agent. The
specific piece of information that induces the change is explicitly modeled in
this framework, in contrast to our proposal, in which we only look at increases
(decreases) as such, abstracting from the kind of information leading to the
change.

Change of information over time, and applications to nonmonotonic reason-
ing, are studied in [4]. A conservative temporal epistemic model in the logic
studied there (MTEL), is in a sense a path through our supermodel, following
the accessibility relation of increasing information. Alternatively, MTEL can be
seen as a temporalization of the logic of “only knowing” of Halpern and Moses
([8]). This logic aims to answer questions like: “if I only know p, what else do I
then know, and what do I not know?” For instance, if you only know p, you do
not know ¢. A model in which the agent only knows ¢ is an S5-model satisfying
K, with as little knowledge as possible. In our “supermodels” this would be
a state in which K¢ is true, but any decrease in information leads to a state
where it is false, and we can express this in our language: Ko A O;—Kp. We
shall see that a faithful translation of their consequence relation in our logic
exists.

The problem with Halpern and Moses’ logic is that their consequence rela-
tion turns out to be hard to axiomatize directly (as yet, no-one has come up



with a direct axiomatization), as is the case for many nonmonotonic logics. Via
a translation into a (monotonic) logic with an axiomatization, proofs for this
logic can be carried out. Such an approach has been taken by Levesque ([10]),
who introduced a modal operator O, where Oy intuitively means that the agent
only knows . For our purposes, his logic has at least two disadvantages. In
the first place, for the axiomatization an extra operator IV is needed, where
Na means that “a at most is believed to be false”. The intuitive meaning
of this operator in the nested case (when it applies to a formula which itself
contains N or K-operators) is difficult to grasp. In the second place, it talks
only about only knowing, but does not say anything about increase or decrease
in information in general.

In Halpern and Moses’ logic the consequence relation is defined in terms of
a preference relation on S5-models, which prefers models with less knowledge to
models with more knowledge. Consequences of a formula ¢ are those formulas
true in all most preferred models of ¢. As such, it falls into the more gen-
eral scheme of preferential logics studied in Artificial Intelligence (see [13], [9]).
This preference relation is in fact the modal accessibility relation (of decreasing
knowledge) in our supermodels. The idea of studying (and axiomatizing) pref-
erential logics by considering the preference relation as an accessibility relation
in a large model, has been used in [3]. In that paper, Boutilier gives axioma-
tizations which are sound with respect to certain classes of preferential models
(a preferential model consists of a set of worlds, a preference relation and a
mapping that assigns a propositional valuation to each world). The difference
with our approach is twofold: in the first place, our states are not propositional
valuations, but S5-models. This reflects a difference in focus with Boutilier:
we concentrate on the dynamics of knowledge. In the second place, we are in-
terested in special kinds of preference relations, namely those that reflect an
increase or decrease in knowledge; hence, our preference relation is completely
determined by the states.

In Section 2, we will formally introduce our language and the supermodel
semantics we have in mind for it. Section 3 contains some technical results
connected with the effect of some of our choices on the logic of a supermodel.
In Section 4 we introduce a Hilbert-style proof calculus; we prove it to be
sound for one of the supermodel semantics. Section 5 is devoted to proving
completeness of this axiomatization. Conclusions and suggestions for further
research are given in Section 6.

2 The supermodels

As we already mentioned in the introduction, in our formalization of information
change we take a layered approach. On the base level, we are dealing with a
propositional logic, of ‘facts’ if one likes, in which the agent’s information is
expressed. On top of that we have an epistemic language; since we restrict
ourselves to the single agent case in this paper, we add one single knowledge
operator K to the base language. The top level language is then obtained
by adding two more operators <4 and <, to this epistemic language; we have



already seen that g () is to be read as “it is possible to decrease (increase)
your knowledge to a state where ¢ holds’.

What we still have to discuss is the ezact structure of our language. For
instance, as yet we do not want to consider the agent having information about
its possible updates; that is to say, we will not consider formulas in which one of
the diamonds is in the scope of the knowledge operator. Also, since at the top
level we are only interested in the knowledge the agent may or may not have,
and not in the “real” world, there is no need to allow formulas like ¢, (p A Kq),
as p refers to an actual world. Thus, as building blocks of the top level language
we take subjective formulas, in which every propositional formula is in the scope
of a K-operator. A more formal definition follows now.

Definition 2.1 (syntax) We fiz a set'V of propositional variables po, p1, ...,
q, T, ... . Ly is the base language of classical propositional logic; formally,
Ly denotes the set of those formulas that we can build up from V using L, A
and —. We will employ the standard defined connectives, like V and —. The
(meta-)variables a, B, 7y, ... will be used to range over formulas in this base
language.

At the intermediate level, L1 denotes the epistemic language. Formally,
L1 is defined as the smallest set of formulas containing Lo and such that Kpu,
—p and pu A v are in L1 whenever p and v are.! The connective K is called
the knowledge operator. For its dual we use the abbreviation M; that is to
say, My denotes —K—u. We use u, v, p, ... to range over elements of this
language.

An epistemic formula is subjective if every propositional variable occurs in
the scope of a knowledge operator.

Finally, our top language Lo is defined as the set of formulas obtained
by closing the set of subjective formulas under the boolean connectives and the
unary modal operators (‘diamonds’) 4 and <,. We let Log denote the set
of downdate formulas; that is, Log consists of all Lo-formulas in which the
operator <y does not occur. To denote Lo-formulas we use @, ¥, X, ...

The duals of these diamonds are denoted as Oy and O,, respectively; we use
the ‘only’ operator O as the following abbreviation:

Op = ¢ A Ogmp.

On some occasions we will have reason to study fragments of a language L;
in which only a restricted set, say, X, of propositional variables may occur; to
denote this set of formulas we will use obvious notation like L;(X).

Even without having provided the precise definition of the semantics of these
languages, we can already informally discuss the meaning of its operators. For
instance, the informal reading of K« is that the agent knows «, and hence,
of Ma, that the agent considers a to be possible. The meaning of Cgp will

!There is some ambiguity in this definition; for instance, the formula p A ¢ can be read as
a conjunction in Lo or in £;. In order to disambiguate the language, one could ‘split up’ each
boolean connectives into three connectives, one for each level. We do not worry about this
ambiguity since it does not lead to any semantic confusion.



be that it is possible, by decreasing the agent’s knowledge, to reach a state
where ¢ holds; and likewise for <, ¢. Note that Cg(p A Kq) is not a well-formed
Lo-formula, since p A K¢ is not subjective.

Let us now briefly discuss the intuitive meaning of the formula OKa. It
says that the agent knows «, but in a sort of maximal sense: it no longer knows
a after losing any piece of knowledge. This indicates that the agent has no
extra knowledge that it might lose, apart from «a. In other words, the agent
only knows a. Conversely, if the agent only knows «, and it loses knowledge, it
can no longer know a. Thus we see that

OK « is our formalization of only knowing c.

We will show later that we can embed the approach of Halpern & Moses
mentioned in the introduction, in our logic.

It may seem natural to study the top level language in which both diamonds
are available, rather than the language L94 in which only the downdate diamond
can be used. However, for the definition of the ‘only knowing’ operator the
update diamond is not needed, and in the next section we will see that the
downdate fragment of Lo has some interesting properties.

Let us now turn to a formal definition of the semantics for these languages.
First we consider £y and L;.

Definition 2.2 Let V denote the set of valuations, that is, mappings from
V to {0,1}; elements of V will also be called worlds. As variables ranging
over valuations we use w, v, u, ... We assume familiarity with the classical
propositional truth definition; truth of a formula o under a valuation w (in a
set q of valuations) is denoted as w = a (q = «a, respectively). Given a set A
of propositional formulas, define Mod(A) as the set of valuations w such that
w = A.

A model is any non-empty subset of V; the set of all models is denoted by
MT. Later on, when we will view models as constituents of bigger entities, we
will also use the term information state for a model.

Truth of an epistemic formula p in a model m at a valuation w, denoted
by m,w Ik u, is recursively defined as follows:

m,w Ik« if w [ a, for propositional o
m,w Ik —pu if mywlf p

mwlFpAv if mwlEpandmwpEv
mwlk Ky if mvl=p foralvem.

Truth of an epistemic formula in a model is denoted and defined as follows:
mikp if mv b p for all v € m.

In other words, the kind of models for the epistemic language that we are
considering are the simplest S5-models.

For a propositional formula o we thus have two notions of truth in a model:
m = a and m |- a. These notions are equivalent, but in the sequel we will
make use of the notational distinction, writing ‘m |= o’ if we see m as a set of
valuations, and ‘m IF o’ if we see m as an information state in some supermodel.



Note that the notion m IF « is not two-valued: if m contains both valuations in
which « is true, and ones in which it is false, then neither m I+ «, nor m IF —a.
However, it is easy to see that for a subjective formula pu it does hold that either
ml- g or mlF —p.

We are now ready to introduce the main characters of this story, namely
the structures that we use to model the notion of information change. As we
mentioned in the introduction, our basic idea is to gather various models into
one ‘supermodel’ which also imposes an information ordering on the models.
The intuition behind this information ordering is that one model m is smaller
than a model n iff n contains more information or knowledge than m. The
underlying idea is that n contains more information than m if n consists of less
worlds than m.

Definition 2.3 Let C denote the following information ordering on models:
mCniffn Cm.
Here C denotes strict set inclusion.

The relation C is indeed an information ordering: if m C n then at n the
agent possesses at least as much information as at m, in the sense that n IF K«
whenever m |- Ka.

We are now ready to give the definition of the supermodel; in fact, we will
define three alternative options. These three different versions of the supermodel
are very similar; the only difference is the number, or more precisely, the kind
of models that we allow as information states.

Definition 2.4 A set of valuations m is called closed if m = Mod (L) for some
set T' of propositional formulas, clopen if it is of the form Mod(~y) for some
propositional formula v. The sets of closed and clopen models are denoted by
M and My, respectively. Finally, the supermodels St, S and Sy are defined
by: ST = (M*,0), S = (M,C) and S§ = (Mg, ), respectively.

Given a closed model m, we let Ay, denote the diagram of m, that is, the
set of classical formulas holding at m — this gives m = Mod(Ay,); note that
Apoary ={a | T = a}. For a clopen m, 6y denotes some (canonically chosen)
formula such that m = Mod (6y,).

Now given these models, we define the notion of truth of an Lo-formula at
an information state as follows®> (as an ezample we take S, the definition for
ST and Sy is analogous):

S,mlkp if mlkp

S,mlk—p if Ssmlfoe

SmlFpAy if SmlFg and S, mE=vy
SmlECap  if S,nlk @ for somene S withnCm
SmiECup  if S,nlk @ for somen €S with m C n.

A formula ¢ is valid in S, denoted as S Ik ¢, if S,;m |k ¢ for allm € M (and
analogously for ST and Sy).

2Recall that only subjective £;-formulas belong to L. Given our clause for negation, this
is needed to keep the definition unambiguous.



Remark 2.5 In the remainder of this section we will discuss these three dif-
ferent options (8T, & and Sy); for instance, we will see how this choice will
affect the set of valid Lo-sentences. The reader should note however, that in
fact there are many parameters that we needed to fix when setting up this
framework. For instance, we could have opted for an intuitionistic or partial
base logic; for a language with only a finite number of basic facts; and/or an
information ordering with a more complex definition. Any of such choices may
influence the resulting ‘logic of information change’.

Obviously, our terminology (of closed and clopen sets) has a topological
origin; for the interested reader we mention that we are in fact considering the
topology over the set of valuations which is induced by the Stone embedding
of the free Boolean algebra over V, into the Boolean power set of V. Although
this topological connection is not one of our main concerns in this paper, the
following facts, which all have rather straightforward proofs in this topological
context, will be put to good use later on.

Proposition 2.6

1. The collection of clopen sets is closed under taking finite intersections and
UNIONS.

2. The collection of closed sets contains all singletons, and is closed under
taking arbitrary intersections and finite unions.

PROOF. The proofs of these facts are all rather straightforward, so we restrict
ourselves to proving that the collection of closed models is closed under finite
unions. Obviously it suffices to show that if m and n are closed, then so is their
union. But mUn = Mod({aV (| a € An, S € Ay}), as a direct proof reveals.
QED

We believe the supermodels S and Sy to have some advantages over ST.
The main one is that in ST, the fact that m T n not necessarily implies that
the agent has strictly more knowledge in n than in m. Consider for instance
the case where n =V and m =V \ {w} for some valuation w. It is not difficult
to prove that for all propositional formulas a, m = « iff n = « (using the fact
that V is infinite). This gives that m Iy iff n |k g for all epistemic formulas p.
But m is properly included in n!

This problem cannot occur with closed sets: it is rather easy to show that a
model m is closed if and only if it contains all valuations w such that w = {« |
m = a}. In fact, both Sf and S behave nicely in this respect, as the following
Proposition shows (we omit its rather direct proof).

Proposition 2.7 1. Ifm is closed, then m I+ Ko iff Ay F «.
2. If m is clopen, then m I Ko iff 6y F .
3. For closed models m and n, m C n iff Ay C Ay,

4. For clopen models m and n, m C n 4ff F &, = 0 and I 6y — 6n.



It follows immediately from Proposition 2.7 that a clopen model m is the
only state in the clopen supermodel where the formula OKé,, holds. From this
perspective we can say that every state of the clopen model has a name.

Corollary 2.8 For any propositional formula o and m € My it holds that
Sp,m - OKoa iff m = Mod(a).

This observation constitutes a difference between & and Sy that we will
make good use of in the completeness proof later on, but its importance seems
to be only of a technical nature. The motivation for choosing either S or Sy
will come from the intuitions concerning knowledge that one wants to model.
It might be more realistic to allow only information states in which the agent
has a (unbounded) finite amount of knowledge; in that case, Sy seems to be
the natural choice. If one finds it more natural to allow the agent to possess an
(inherently) infinite amount of knowledge, one should obviously opt for S.

Perhaps surprisingly, the difference between the models S and &y is not
reflected in the logic, at least, not if we restrict ourselves to downdate-formulas.
Note that this implies that the behaviour of only knowing does not depend on
a choice between S and & as our supermodel. This matter will be dealt with
in the next section.

Finally, we believe it is simply very interesting to see how these choices affect
the properties of the models, and in particular, the properties of the induced
logics. As an example, we consider the nature of the ordering relation; recall
that an ordering < is dense if Vzy (z < y — Jz(z < z < y)), and discrete if
Vey(z<y— Jz(z<z<yA-Ju(r<u<z))).

Proposition 2.9 On the three supermodels the ordering behaves as follows:
1. C and 3 are discrete on St
2. C is dense on Sy (and, therefore, so is 1)

3. 1 s discrete on S, but C is not.

In fact, there is far more to say about these orderings. For instance, we have
already mentioned the connection between M and the free Boolean algebra
over countably many generators; C is in fact the naturally induced ordering
on this algebra (with the bottom element taken out). We do not pursue such
investigations since they are not of interest for the main line of the paper.

PRrROOF. PART 1. The discreteness of 71 and [ follows immediately from the fact
that M is the full power set (except for the empty set) of the set V. Adding
or taking away singleton valuations to a model provides immediate successors
(predecessors, respectively).

PARrT 2. Consider two clopen models m and n such that m 3 n. It follows
from Proposition 2.7.4 that §, — 6, and ¥ 6, — dn. Now let ¢ be some
propositional variable that does not occur in §y, or é,, and consider the formula
a:= 0y V(g Aby). It is easy to prove that - §y — a and F o — &,, while
/o = 6y and I/ 6, — «. But then m I Mod(«) 1 n.



PArT 3. The proof that 1 is discrete on S, is similar to the proof given in
part 1 — we need the fact that singletons are closed and that the collection of
closed sets is closed under taking finite unions.

In order to show that [ is not discrete, consider the model m = Mod(«) for
some satisfiable propositional formula «. In order to arrive at a contradiction,
assume that m has an immediate successor n (i.e., a closed model n such that
m C n while there is no model properly between m and n). It follows from
part 2 that n cannot be clopen; hence, there is no finite part A of A, such that
AF A,

Since n C m and m E «, we have n = « and hence, S,n I+ Ka. By
Proposition 2.7.1, we obtain A, F a. By compactness, there is some finite set
Ag C A, such that Ay F a. Now consider any finite subset ' of A, such that
I'+ Ap, while I' ¥ A, and Ag /T'; such a set must exist by the finiteness of Ag
and the non-‘finiteness’ of A, mentioned earlier on. We leave it to the reader
to verify that this gives n 1 Mod(I") O m. QED

In the introduction, we mentioned the fact that all changes in information
can be seen as a combination of decrease (throw away the old information)
and increase (add the new information). In our supermodels (taking Sy as an
example), this is indeed the case: if u is a subjective epistemic (£1) formula
that is S5-satisfiable, then from any state we can reach a state where p is the
case by (possibly) performing a downdate, (possibly) followed by an update.
The reader can check that Sy IF p VvV Ogu VvV Ouu V O30y pu. The proof system
we will give later on, axiomatizes validity in Sy, which means that we have a
proof system for non-validity in S5: Fgs p iff F —p vV Ogp vV Oupu vV O gy
(where F is provability of the system we will give in Section 4). The restriction
to subjective formulas is not severe, since a (possibly not subjective) formula u
is S5-satisfiable if and only if My is satisfiable.

In the remainder of this section, we will briefly consider the relation between
our approach and two others, and we start with the logic of only knowing of
Halpern & Moses ([8]). Let p be an S5-formula. A model m is a mazimal model
of p if m IF 4 and there exists no model n with m C n and n Ik g. A formula p
is called honest if it possesses a unique maximal model. For an honest u, define
p b v if v is true in the unique maximal model of . We have the following
result.

Proposition 2.10 Let p be an honest formula, and v any S5-formula. Then
phviff SglFOKpy — Ky

PROOF. Suppose p v v. Let m € My, and suppose that Sy, m IF OKu. Then m
is a maximal model of p: it satisfies K, and if there were a larger model of u,
then it can be shown that there is also a larger clopen model of u (we leave this
to the reader), which would contradict the O;— Ky part of OK u. But then we
have m I v, which implies Sy, m |- Kv. We have proved that Sy IF OKpy — K.

For the other direction, suppose Sy IF OKu — Kv. Let m be the unique
maximal model of . Then Sy,m IF OKpu: it is obvious that m IF Ky, and
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if there is a n € My with n C m and S¢,n IF Ky, then n O m, contradicting
the assumption that m is a maximal model of . But then Sy, m I Kv, so m
satisfies v, which gives us the desired conclusion, u  v. QED

Also, we can characterize honesty in Sy.

Proposition 2.11 Let u € L4, then the following statements are equivalent.
1. p s honest.

2. For any ¢ € Ly (or even ¢ € L), either Sy IF OKp — ¢, or Sf |-
OKpu — —p.

3. There exists an o € Ly such that Sy IF OKp <> OKa.

PROOF. First, suppose p is honest. Then, there is a unique maximal model
m of u, so we have that Sy,n |- OKp iff n = m. But this means for any ¢, if
Sy,m I ¢, then S¢ IF OKpu — ¢, and if Sp,m |- =, then Sy IF OKp — —.
For the other direction, it is easy to show that for any two different states
m,n € My, there is an epistemic formula ¢ true in m but not in n. If there are
two different states m,n in M/ for which Sy, m |- OKp and Sy, n - OKp, then
for an epistemic formula ¢ differentiating between m and n as described above,
neither Sy IF OKpu — ¢, nor S¢ I OKp — —.

The third statement expresses the fact that there is exactly one state (named
‘OK¢’) in which OKp holds. Its equivalence to the first statement can be
proved straightforwardly. QED

Proposition 2.10 means we can use the proof system for Sy of Section 4
to prove all entailments in Halpern & Moses’ logic. But this is not a new
accomplishment. In [10], Levesque introduces a modal logic with an operator
O, where Oa means the agent only knows a. An axiom system for this logic
is given, which can be used to prove entailments in the logic of Halpern and
Moses. We will briefly review Levesque’s logic.

Levesque’s logic has a Kripke semantics. The models he considers are closed
sets of valuations, so they are just the elements of our M. A modal operator
B has the same semantics as our K operator, i.e. W,w |- Ba iff V' € W :
W, w" Ik . The difference with our approach is that the current world (w) need
not be an element of W, and that W may be empty. This means that the B
operator has the K45 (or ‘weak S5’) axioms, instead of the S5 axioms. There
is a second modal operator, NV, where N« intuitively means that “a at most is
believed to be false” (dual to the intuition that Ba means that “o is at least
believed to be true”). The formal semantics of the NV operator is given by the

clause
W,wlk Na iff Vw': (Wuw'lf a=w' eW)

it Vw' ¢W :Wu'lka
Finally, O« is defined as Ba A N-a.

The B operator corresponds to our K operator, but what about the N
operator, can we express it in our logic? First of all, we will see that nesting
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of modal operators inside the scope of N can be avoided. Every formula in
Levesque’s logic is equivalent to a conjunction of disjunctions of the form a Vv
B, where « is propositional and § is a disjunction of formulas of the form
Ng,- Ny, Bp and =By. The N operator is a normal operator, so N(p A1) =
Np A Nvy. But it is also straightforward to prove that for a disjunction o V 3
as described above, N(a V ) = Na V NS (this is also the case for the S5
operator K). Furthermore, the N distributes over the disjunction of g3, and
can then be eliminated, since NNy = Ny, N- Ny = =Ny, NByp = By, and
N-Byp = ~By. This means that the only remaining question is whether we
can express a formula N«, where « is propositional.

Suppose we have a closed state W, then it is easy to see that W, w IF Na is
independent of w. Thus it holds that

Wik Na iff Mod(—a) CW if S;W IF OK-a V ¢, (0K-a)
So we can indeed express the N operator. Finally, we can see that
Oa = OKa.
For, Oa = Ba AN—-a = KaA (OK——aV <¢,(0K-—a) = OKa V (Cu(Ka A

O4-Ka) AN Ka) = OKa.

3 Equivalence of downdate formulas

This section is devoted to the proof of the following proposition stating that
the difference between the models S and Sy is not reflected in the logic if we
restrict ourselves to downdate-formulas.

Proposition 3.1 Let ¢ be a formula in Log. Then

1. For any clopen state n:

Sl iff Syl o.

Sk iff S;lF .

The key step of the proof of Proposition 3.1 concerns a lemma stating that a
certain rather naturally defined relation on closed models is some sort of bisim-
ulation between & and S;. This lemma seems to be of independent interest;
it, and some related results, are also used later on, and therefore these results
are stated and proved separately. First we introduce some useful concepts,
including the definition of the relation mentioned above.

Definition 3.2 Let X C V be a set of propositional variables. We say that
two valuations w and v agree on X, notation: w ~x v, if for all p € X,
w(p) = v(p). The equivalence class of w under this relation is denoted by [w]x.



12

A set q of valuations is called X-empty on an ~x-equivalence class W if
gNW = &, X-full on W f W C q. Two sets of valuations q and vy are
equally X-full on W if they are either both X-empty or both not X-empty,
and also either both X-full or both not X-full. Finally, we say that two models
m and n are X-alike, notation: m =x n, if they are equally X-full for each
~x-equivalence class W.

X V\ X X V\X

Figure 1: Two X-alike models

Figure 1 gives a graphic representation of two X-alike models. The half-open
rectangles represent equivalence classes. Each of the valuations in such a class
has the same (initial) X-part, but differs on the V \ X-part. Both m and n are
X-full on the first (top) class, and they are both X-empty on the third class.
On the second class, they are both neither X-full nor X-empty. Observe that
m and n do not (necessarily) contain the same valuations from the second class
(as long as they contain some, but not all of them).

For finite IF, there are only finitely many equivalence classes under ~p, each
of which corresponds to a formula in Lo(F).

Lemma 3.3 A model m is clopen iff for some finite set F of variables, m is a
finite union of ~r-equivalence classes.

PROOF. Assume that F C V is finite. With each valuation w on F we will
associate an Ly(F)-formula 6,, as follows:

Op = /\ p A /\ -p. (1)

pEFw(p)=1 pEF,w(p)=0
We leave it to the reader to verify that for each equivalence class [w]r,
[wlF = Mod(6,,),

showing that indeed, [w]p is clopen. This shows the direction from right to left.
The other direction is left to the reader. QED
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As we mentioned before, for any finite F, =p is some sort of bisimulation
between § and Sy. First we show that this holds on S.

Lemma 3.4 For every finite set ¥, the relation =y is a J-bisimulation on S.
That 1is, for all closed information states m, n and wm’':

m’ =p m O n only if for some closed state n': m' I 1’ =p n.

PROOF. Let m, m’ and n be closed information states such that m’ =p m 1 n.
We have to define a closed model n’ such that m’ O n’ = n. We will treat each
~p-equivalence class separately; that is, for each equivalence class W, we will
define a set ny, which is to be the ‘W-part of n'’; finally, n’ is defined as the
union of the (finitely many) nj;,. Hence, let W be some equivalence class under
~p. Distinguish the following cases:

1. If n is F-empty on W, define nj;, := @.
2. If nis F-full on W, define nj, := W.
3. Otherwise, make a further case distinction:
(a) f WnNm =W Nn (that is, if n is not bigger than m on W), put
ny =m' NW.
(b) Finally, the case where WNm C WnNn (that is, where n is bigger than
m on W), is the most interesting one. It follows from our case and
subcase assumptions that m is not full on W; but then by m =p m/,

the same applies to m’. Hence, it is possible to find a valuation w’
in W\ m'. Define n};, := (W nw') U{w'}.

n = U nfw]F

wey

Finally, define

This is a finite union since there are only finitely many equivalence classes.
We will prove the following five claims concerning this n’.

Claim 1 ' is closed.

PROOF OF CrAM We already saw in Lemma 3.3, that each ~p-equivalence
class is clopen. But then an inspection of the definition of nj;,, taken together
with the fact that the collection of closed sets of valuations is closed under
taking intersections, reveals that for each equivalence class W, nj; is closed.
Hence, n' itself, being a finite union of closed sets, must be closed. <

Claim 2 For each equivalence class W, ' N W = nj,,.

PROOF OF CLAIM It is obvious from the definition that n’W C W for each W.
From this and the definition of n’, the claim is immediate. |

In the remainder of the proof, claim 2 will be used without notice.
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Claim 3 For each equivalence class W, (mN'W C nn W) if and only if
m'NW C o' 'nW).

PROOF OF CLAIM Let W be an ~p-equivalence class. The equivalence stated
in the claim is proved according to the case distinction used in the definition
of nj;,. Note that by the assumption of the Lemma we have that W C m iff
W Cm'and that WNnm=g it WnNm' = 2.

In case 1, we cannot have m N W C n N W. But since ny, = &, neither can
it be the case that m' "W Cn' NW.

Now suppose that we are in case 2. Since nj, is defined as W, we have
mNW C oy if M NW C W. Since m =f m', we have m' N W C W
if mNW C W. Finally, our case assumption (nN W = W) tells us that
mNW CW ifmNW CnnW. Taking all this together, we have that indeed
m'NW C v 'NW)ifand only if (mNW C nNW).

Finally, the definition in case 3 is tailored towards making this claim hold.
<

Claim 4 m'/ O n'.

PROOF OF CLAIM It is is rather straightforward to check, by an inspection
of the definition, that m’ C n’/. In order to check that the inclusion is strict,
observe that m C niff mNW C nN W for some equivalence class W, and
likewise for m’ and n’. But then the Claim is immediate by Claim 3. <

Claim 5 n=pn'.

PROOF OF CrLAIM We will prove that for each equivalence class W, n is full
(empty) on W iff n’ is full (empty, respectively) on W. For the cases 1, 2 and 3a,
this is immediate by definition and by Claim 2.

The interesting situation occurs in case 3b; in this case n is neither full nor
empty on W, so we have to prove that the same applies to n'.

It is immediate by the definition that n’ is not empty on W. Now, in order
to derive a contradiction, assume that n’ is full on W. From the definition of
n’ in case 3b, we may infer that W Nm' = W\ {w'} for some valuation w'. But
this contradicts the fact that m’, and hence, W Nm’ is closed. |

It follows from Claim 5 that n’ is not empty, so by Claim 1, it is a closed
model. Finally, it follows immediately from Claim 4 and 5 that n’ has the
required properties. QED

Lemma 3.5 For every finite set F, the relation =p N (M x My) is a 3-
bisimulation between S and Sy. That is, for all closed m and clopen w' satisfying
m=p m':

1. For all closed n such that m 1 n there is a clopen v’ such that m’ O3 n' =p n.

2. For all clopen n' such that m' O n' there is a closed n such that m I n =p

n'.
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PROOF. By an argument which is similar to, but slightly more sophisticated
than the one used in the proof of Lemma 3.4. To start with, note that part 2 of
the Lemma is an immediate consequence of Lemma 3.4; hence, we may confine
ourselves to the proof of part 1.

Assume that m and n are closed models such that n C m; that m’ is clopen
and that m =p m’. It follows from Lemma 3.4 that there is a closed n’ such
that m’ O n' = n, but we need a clopen n’ with this property — this is why we
have to take a bit more care.

As before, we define sets nj;, for each ~p-equivalence class W, and n’ is to
be the finite union of these sets. The case distinction is the same as before, and
so is the definition of nj;, in the cases 1, 2 and 3a. Note that in each of these
cases, nj; is clopen.

The difference lies in the definition of nj, in case 3b; recall that this is the
case where n is neither full nor empty on W, while mNW is properly contained
in nN W. Take some propositional variable ¢ € F which does not occur in 4y,
and define

nyy = W N Mod (6 V q)-

Then nj;, is clopen, being the intersection of two clopen sets. Hence nj;, properly
contains W Nm = W N Mod(6y,) since g does not occur in é,, and ¢ € F. Apart
from this point, the proof is completely analogous to the proof of Lemma 3.4.
QED

PROOF OF PROPOSITION 3.1. Fix a formula ¢, and let F be the set of propo-
sitional variables occurring in ¢. Recall that thus, L£94(F) denotes the set of
formulas in which only propositional variables may occur that occur in .

We will show that ¢ is satisfiable in & iff it is satisfiable in Sy. First we
prove the following claim, according to which F-alike states agree on the truth
of F-formulas. Note that part 1 of the Proposition is immediate by this claim
and the observation that n =p n for any state n.

Claim 1 Let ¢ be a formula in L£o4(F). Then for all closed m and clopen m'’
such that m = m':
S,m Ik 1 iff Sp,m’ I 1p.

ProoOF OF CLAIM First we prove a preliminary fact concerning the truth of
epistemic formulas. Let g be some formula in £;(F), then

ifm=pm, and w € m, w’ € m’ are such that w ~p v/,
e 2)
then m,w IF g iff m’;w" IF p.
We prove (2) by induction on the complexity of u.
For the atomic case, where y is some classical formula, we need the following
result which holds for any a € Ly(F):

if w ~p w', then w E a iff W' | a. (3)

The proof of (3), which goes by a straightforward induction on «, is left to the
reader. The base case of (2) is an immediate consequence of (3).
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For the induction step of (2), we omit the trivial boolean cases, and con-
centrate on the case where u = Kv.

Assume that m,w IF Kv, and let w' € m’ be such that w ~p w'. In order to
show that m’,w’ IF Kv, let v’ be an arbitrary valuation in m’. We have to show
that m, v’ IF v.

It follows rather easily from the definition of = that for all closed n, n':

n =g 1’ only if for all u € n there is a u’ € n’ such that u ~p u'. (4)

Hence, there must be a v € m such that v ~p v'. By the clause for K in the
truth definition, we obtain m,v I v, so by the inductive hypothesis, m’, v’ I v,
as required. The other direction, i.e., the proof that m’,w’ I Kv only if m,w I-
K, is of course completely symmetric. This proves (2).

Now the proof of Claim 1 is by a straightforward induction on the complexity
of 1. The base case, where 1 is a subjective formula, follows from (2) and (4).
the induction step is completely trivial for each of the boolean connectives, and
the case where 1 is of the form ©g4x follows by Lemma 3.5 and the induction
hypothesis. |

Now we turn to the proof of part 2 of the Proposition. First assume that
¢ is satisfiable in Sy, say Sy,m Ik ¢. It is obvious that = is reflexive, and
since clopen sets are closed, it follows from Claim 1 that S, m I ¢. Hence, ¢ is
satisfiable in S.

For the other direction, we need the following claim.

Claim 2 For every closed m there is a clopen n such that m =y n.

PrROOF oF CLAIM We will transform m into a clopen n such that m =p n. As
in the proof of Lemma 3.4, we will treat each ~p-equivalence class separately.
Let p be some propositional variable not in F.

Define, for an arbitrary ~p-equivalence class W:

(] if m is empty on W,
ny = W if m is full on W,
W N Mod(p) otherwise,

and put

n:= U ‘rl[w]IF

weY

We leave it to the reader to verify that ny is clopen for each W (use the
fact that W itself is clopen), and that nN W = ny. Now assume, for arbitrary
W, that m is full on W. Then by the definition of ny, njy = W; in other words,
n is full on W. For the other direction, assume that n is full on W this gives
ny = W, which can only happen if m is full on W. We leave it to the reader to
verify that m is empty on W iff n is empty on W. But by definition this means
that m = n. |
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In order to finish the proof of part 2 of the Proposition, assume that ¢ is
satisfied in S, say, at the closed information state m. By Claim 2, there is a
clopen model m’ such that m =r m'. It follows from Claim 1 that Sy, m’ I .
Hence, ¢ is satisfiable in S only if it is satisfiable in Sy. QED

We have shown that the difference between the supermodels Sy and S is
not reflected in the downdate fragment of our logic. It is reflected, however, in
the full language £,. Consider, for example, the formula <, T (where T is —L)
of Lo, expressing the fact that we can always increase our knowledge. It is not
valid in S: take any valuation w, and consider the model {w}. As singletons
are closed, we have {w} € M and S,{w} If ¢, T. On the other hand, it is
valid in Sy. Let m € M; be arbitrary, and suppose m = Mod(dy,). Define
n = Mod(dm A p), where p is a propositional variable not occurring in dy,. Since
dm must be consistent (m # &), dm A p is consistent so n # &. Thus we have
that n € My and n J m, from which it follows that Sy, m |- &, T.

From these observations it follows that = does not imply modal equivalence
between closed states in S and clopen ones in Sy. But if we confine ourselves
to Sy, the relation =p 4s a bisimulation with respect to both 1 and C.

Proposition 3.6 For every finite set of variables T, the relation =p N (M X
My) is a 1, C-bisimulation on Sy. That is, for all clopen m,m’ satisfying m =g

m':

1. For all clopen n with m O n there is a clopen n' such that m’ I n' =p n.

2. For all clopen n with m C n there is a clopen n' such that m' C n' =p n.

PROOF. Part 1 follows from part 1 of Lemma 3.5. For part 2, we have a similar
proof of which we only give a sketch here.

Let m,m’ and n be as in the formulation of part 2 of this Proposition. As
before, we find n’ as the finite union of sets nj;, which are defined as follows.

& if n is empty on W,
w if n is full on W,
ny = m'NW ifWnNnm=Wnn,

Mod(bm Aq)NW HfWNnCWnNm
(where g € F does not occur in §y,).

We leave it to the reader to verify that this definition indeed gives the required

n' QED

As a corollary, we have the following.

Proposition 3.7 Let IF be a finite set of variables, and m and m' clopen states
such that m =p w'. Then for every Lo(F)-formula 1:

Sp,mlby < Spm’ -

Proor. Completely analogous to the proof of Claim 1 in the proof of Propo-
sition 3.1. QED
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As a final remark, remember that the ordering 7 is dense on S;. Hence,
we have that Sy validates the density axiom: Sy IF G0 — $gOqgyp for any .
From Proposition 3.1 it follows that S IF Oz — <304, even though 1 is not
dense on S.
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4 A proof system

In this section, we will present a Hilbert-style proof system for validities of Sy.
Since the logic is built ‘on top of’ S5, the proof system contains S5-axioms.
Furthermore, there are axioms about the properties of the accessibility relation
C. As this relation is completely fixed (our class of models contains just one
element, Sy), there are axioms describing the fact that C is the superset relation
on S5-models.

Before we present the axioms and rules, we first need to distinguish a special
class of formulas. Remember that My is an abbreviation of =~ K—pu.

Definition 4.1 Define the class of downward persistent formulas, DP, as fol-
lows:
DP ::= M(«) | DP VDP | DP A DP | M (DP)

where « 45 any propositional formula.

These formulas only express ignorance of the agent, and it should be ex-
pected that whenever m |-y for a downward persistent formula, it also holds
that n Ik g if n C m, since the state n holds less information than m. This is in-
deed the case, and in [4] it is proved that these formulas are the only subjective
formulas, up to S5-equivalence, for which this is always the case.

Proposition 4.2 Let i be a subjective S5-formula, then the following are equiv-
alent.

1. For allm,n € §;:
nCm&mlFu=nlpu

2. There is a formula v € DP which is S5-equivalent to .

We are now ready to give the proof system. The expression -¢7 a denotes
the fact that « is provable in classical propositional logic.

Definition 4.3 The proof system IC (for information change) consists of the
following azioms:
CT all instances of classical tautologies
DB K(u—v)— (Kuy— Kv)
Oa(p = ¥) = (Oap = Day))
Du((p — "p) — (DU(P — DMP)
Al Kupu—pu
A2 Kupu— KKy
A3 —-Kpu— K-Kpu
CV - 0,040

¢ = OgOup
DP pu— Ogu whenever u is 1 DP
SF (KaAKp)— Oq4(KaA-Kpj) provided that /o, o — 3
OD (KaAh<gzKa) — ©40Ka
OU (OKpA-Ka)— <©,0Ka whenever Fcp a — 3

4 CaCap = Ogp



20

and the following derivation rules:

MP Modus Ponens (for both sorts)

=P ®
(0
N Necessitation for K, Oy and O,

I b
Kp Ogp Oup

OE O FElimination
{OKa = ¢ |a€ Ly(V, U{p})}

P

Here o ranges over the ‘finite’ set of classical formulas that can be built
using the propositional variables in @ and one new letter p.

The condition of OE may require some explanation: although there are in-
finitely many formulas in £o(V, U {p}}, one needs to prove OKa — ¢ only for
mutually inequivalent formulas . There are only finitely many of these.

The axioms SF and OU depend on propositional provability. Since this is
decidable, the set of axioms of IC is recursive.

Given the system IC, the notions of proof, theorem, consistency and maximal
consistent set are standard:

Definition 4.4 A derivation in |C is a finite sequence p1, ..., pn of formulas
such that for everyi € {1,...,n}, @i is either an aziom, or the result of applying
a rule to a subset of the formulas {p1,...,pi-1}. A formula ¢ is a theorem
of 1C, denoted Fic @, if there is a derivation 1, ...,y such that ¢, = p. A
formula ¢ is provable in IC from a set of formulas A, denoted A bFic o, if
there are @1,...pn € A such that Fic (p1 A...Apn) = @. A set of formulas A
is consistent in I1C if AV\c L. A formula ¢ is consistent if {p} is. A set of
formulas A is a maximally consistent set (MCS) if it is consistent, and any
proper superset is inconsistent.

The system |C axiomatizes validity in Sy.
Theorem 4.5 (Soundness and Completeness) For every Lo-formula o:
S f [+ p <= l—|c ®.

We will proceed with an informal discussion of the axioms and rules and
their soundness. The completeness of IC is the subject of the next section.

The axioms CT (‘classical tautologies’), DB (‘distribution’) for K, Al
through A3 and the rules N and MP form a standard proof system for S5,
sound and complete with respect to the semantics of Definition 2.2 (see [11]
for a proof). As we are only considering subjective formulas, one could replace
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Al by the axiom —K 1 (the resulting system is often called KD45, which is
also sound and complete with respect to our semantics — with the restriction
to subjective formulas —). The DB axioms and the rules Modus Ponens and
Necessitation are sound in any Kripke semantics. The C'V axioms (‘converse’)
express the fact that C and 1 are each other’s converses. The soundness of the
axiom DP (‘downward persistence’) forms part of Proposition 4.2. Axiom 4 is
sound when the accessibility relation is transitive, which C obviously is. The
other axioms and rules are much less standard, and we will treat them in more
detail.

The axiom SF (‘selective forgetting’) states that when the agent knows
something (), then it can perform a downdate to forget it. Any knowledge it
previously held (@) can be retained, provided it does not imply 5. An important
instance of this rule is the following theorem (taking a = T): K3 — <$q(—Kf)
provided that I/¢r §: the agent may forget any non-tautological information.

For a proof of the soundness of this rule, suppose m IF Ka A K. Define n =
Mod(a), then we have m C Mod(a A 3) C Mod(«), where the last inclusion is
strict since /¢, @ = 8. Thenn C mand nlF KaA-Kfsom Ik Og(KaA-Kf).

The axiom OD (‘O-down’) expresses the fact that when K« holds in a state,
it is either a maximal model of Ka (OKa holds in it), or such a state can be
reached by a downdate. So suppose m IF Ka A 04K a. Then m C Mod(a), and
by Corollary 2.8 Mod(a) IF OKa whence m IF ©40K a.

Now let us consider axiom OU (‘O-up’). If k¢, o — 3, then « contains
more information than #. If an agent only knows 4 (and not «; this is the
case whenever (¢, B — ), then it may perform an update to a state where
all it knows is a. As for the soundness, suppose m IF OK3 A =Ka. Then by
Corollary 2.8 it follows that m = Mod(8). As F¢r a — 3, we have Mod(a) C
Mod(3); this inclusion is strict since m |- =K a. But since Mod(a) IF OKa, we
have m IF ¢, 0K a.

The last rule, OE is perhaps the most complicated. It states that in order
to prove a formula ¢, it is sufficient to prove that ¢ is true in a number of
named states. These states differ in the knowledge they have about the propo-
sitional variables mentioned in ¢, but also with respect to any extra knowledge.
This ‘extra’ knowledge only requires mentioning one propositional variable not
occurring in . The soundness of this rule requires a bit more of explanation.

Proposition 4.6 The rule OFE is sound: if Sy I OKa — ¢ for all non-
equivalent formulas o in Lo(V,U{p}) (with p not occurring in @), then Sy I .

Proor. We will prove the contraposition. Suppose Sy I ¢, then there is an
m € My such that Sy,m IF —p. Let F = V,. As in the second claim of the
proof of Proposition 3.1, we define, for any ~p-equivalence class W:

1%} fmnNnW =0
nw:=<K W ifWcm
W N Mod(p) otherwise,

n:= U n[w]F

weY

and put



22

Now set @ = /{0y | [wlr C m}VV{0uAp | m neither F-full nor F-empty on [w]p}.
It is straightforward to prove that n = Mod(«), which implies that S¢,n I-
OKa, with a € Ly(V, U{p}). As n =p m, using Proposition 3.7 we have that
Sy, n - =p. But this means that Sy If OKa — . QED

As an example of the use of this proof system, we will sketch the derivation
of the formula ¢, T we discussed earlier. Using OE, it is sufficient to prove the
following four formulas:

OK1l -, T OKT =<, T OKp—<,T OK—-p—<,T

The first of these is easy, since Fic OKL - K1 — 1 — &, T.

For the second, Fic OKT — —Kp: by axiom SF, we have Fc KT A
Kp — O4(KT A-Kp) (as o T — p). Also, Fic Ca(KT A-Kp) = O4KT.
Obviously, O4K T contradicts OK T. Furthermore, by OU we may conclude
Fic OKT A=Kp — ©,0Kp (as k¢ p — T). Combining these derivations, we
get Fic OKT — (OKT A—=Kp) = O,0Kp — O, T.

The third and fourth formula have the same proof modulo exchanging —p for
p, so we will only treat the third. As for this formula, we want to find a formula
we do not know when we only know p, and we can take p A ¢ for this purpose.
Then Fic K(pAq) = (Kp A Kq) = Og(Kp A —Kq) - O4Kp — -OKp, where
the use of axiom SF needs l/¢r, p — ¢. This means that -ic OKp — =K (pAq).
Then we can use axiom OU: Fic OKp A —-K(p A q) = <©,0K(p A q) (where
Feor (pAg) — p). Concluding, this means that Fic OKp — (OKpA—K (pAq)) —
CuOK (p A g) = Oy,

Rule OE now allows us to conclude that Fic <, T.
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5 Completeness

This section is devoted to the completeness proof for IC with respect to Sy; that
is to say, we will prove that all Sy-validities are derivable in IC.

As usual, we will prove our completeness result via contraposition, showing
that any |C-consistent formula £ can be satisfied in Sy. Usually in modal com-
pleteness proofs, the key idea is to build a satisfying model in which the states
are MCss and the accessibility relation between MCss is defined according to the
internal structure of these sets of formulas. Our set-up is basically the same,
with some twists that we will discuss further on.

We will first take care of the epistemic part of the language.

Definition 5.1 For any MCS @, we let @ denote the set of epistemic formulas
m @; formally,
Qg :=dNL;.

The following result will simplify some of the proofs.

Lemma 5.2 Every S5-formula is (provably) equivalent to a disjunction \/"_; pi,
where each p; is of the form

KaN-KB i AN...N=KB N~

where each of the formulas o, B1,...,0k and -y is propositional. In case i s
subjective, each conjunct can be taken in such a way that no -y is present.

PROOF. For the first part of the lemma, see [11], which contains a procedure for
rewriting a formula into such a normal form. By inspection of this procedure, it
is straightforward to see that the normal form of a subjective formula contains
no purely propositional parts. QED

Lemma 5.3 For each MCS ® there is a unique closed model m such that for
all subjective epistemic formulas p:

mlkpy <= pe Pg. (5)

PROOF. Define m := Mod({a € Ly | Ka € ®}), which is closed by definition.
The set of formulas true in m on the one hand, and the set of epistemic formulas
in ® on the other hand, are closed under S5-provability. For the former, this
follows from soundness of the S5-axioms. For the latter, MCSs are closed under
provability of k¢ (which includes axioms for S5). Furthermore, as is always the
case for MCss, we have yAv e P if ye Pandv e ®, uvvediff y € @ or
ved and ~pu € @ iff p € . Using Lemma 5.2, it is sufficient to prove the
statement of the lemma for formulas of the form Ka with o € Ly. The right
to left direction is true by definition of m. For the other direction, suppose
mlF Ko, then {8 € Ly | Kf € ®} F¢r . This in turn implies that Ka € ®.
The uniqueness of m follows from the fact that a closed model is uniquely
determined by the formulas K« it validates (Proposition 2.7), which, in this
case, are those contained in . QED
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Definition 5.4 Given an MCs @, we let pge denote the unique model satisfying

(5)-

Now we know that MCSs determine information states, it is good to see how
the information ordering between these information states can be traced back
to the content of the MCSs involved.

Definition 5.5 Define the binary relation R on MCSs as follows:
ROV < O, 0 C P and {Ka € P} C{Ka € Uk}

Here &, ¥ is defined as the set {Oup | ¢ € U}

The relation R is not the same as the ‘canonical’ accessibility relation be-
tween MCSs known from standard modal completeness proofs — that relation
only uses the clause ‘O, ¥ C ®’. We have to add the second clause in order to
ensure irreflexivity.

Lemma 5.6 For any pair of MCSs ® and V: ROV only if ps C pu.

PROOF. Suppose ROV, then by definition we have Ka € ® only if Ka € U,
for all a. From the proof of Lemma 5.3, we know that pe = Mod({a € Ly |
Kae ®}) = Mod({a € Ly | Ka € Pk}). It follows that py C ps, or pe T puw.
QED

Since we want to prove completeness for Sy, we are more interested in clopen
models than in arbitrary closed ones. Fortunately, there is a simple criterion
on MCSs ensuring clopenness of the induced model.

Definition 5.7 An MCs @ is called witnessing if there is an Ly-formula o
such that OKa € ®.

Lemma 5.8 An MCs @ is witnessing only if ps is clopen.
PROOF. Assume that the formula OKa belongs to ®. We will show that
pe = Mod(a).

For the inclusion from left to right, let w € V be a member of pg. Since Ka € P,
we have w = a by definition of pg, so w € Mod(a).

For the other direction, suppose that w is a valuation such that w = a while
w & pe. From the latter fact we infer that w |= = for some S with K3 € ®.
But then w = a implies that /¢ o — 3. By axiom SF this gives

Fic (Ka AKB) = Og(Ka A —=Kp).

But this would imply that 4K a € @, which clearly gives a contradiction with
the assumption that OKa € ®. QED

Lemma 5.9 There is a set W of witnessing MCSs satisfying the following con-
ditions:
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1. for each consistent formula ¢ there is a ® € W with ¢ € ®,

2. for each ® € W and each formula Oy € @, there is a W € W such that
ROV and p € U,

3. for each ® € W and each formula $gqp € @, there is a U € W such that
RU® and p € V.

PROOF. The proof of this lemma is rather involved, and since it is a special
case of a more general method, we will only give a brief outline here, referring
the reader to [15] or [5] for more details.

For a fixed consistent formula ¢, we want to find a set W, of witnessing
MCSs satisfying the conditions 2 and 3 and such that ¢ € ® for some ® € W,.
Then the union (J{W,, | ¢ consistent } is easily shown to meet the requirements
of the Lemma.

The basic idea of the proof is to define W, step by step, in a sort of parallel
Lindenbaum construction on graphs. During the construction we are dealing
with finite approximations of W; at each stage, one of the shortcomings of the
current approximations is taken care of; this can be done in such a way that
the limit of the construction has no shortcomings at all.

Let us give a bit more detail; a finite approximation of W, consists of a finite,
directed graph together with a labeling which assigns a finite set of formulas to
each vertex of the graph. We associate an Lo-formula with each of these finite
labeled graphs, and require that this corresponding formula is consistent for
each of the approximations. The first graph has no edges, and just one point of
which the label set is the singleton {¢}. The construction is such that the graph
is growing in the sense that edges may be added to the graph, and formulas to
the label sets. All this is done to ensure that in the limit we are dealing with a
possibly infinite labeled graph meeting the requirements that (1) the label set
of each point is a MCS, (2) each label set contains a witness and (3) if a formula
of the form ¢y (Cg1p) belongs to the label set of some vertex, then there is
an edge leading from this vertex to another one (or conversely, in the case of
Oqtp) containing v in its label set. Finally, Wi, is defined as the range of this
infinite labeling function. QED

Now we are ready for the final part of the completeness proof. In it, we will
heavily use the fact that formulas of the form OKa name states in the clopen
model; that is Mod(a) is the unique clopen state where OKa holds. Another
use of this fact is that for all formulas v

Spym -1 iff Sp - OK 6y — ¢, (6)

since m is the unique state where the formula OKd,, holds. In the theory of
modal logic, formalisms that have the expressive power to name points, often
display some special behaviour — like the fact that special rules are needed in
their axiomatization. For details concerning modal logic with names we refer to
(2, 6].

The usual procedure in a modal completeness proof is a lemma stating that
for any formula ¢ and any MCS @, ¢ is true at the possible world determined by
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® if and only if ¢ is a member of ®. Such a truth lemma is proved by induction
on . Here, we will use a similar lemma, but in order to prove it, we need
to strengthen the inductive hypothesis. In particular, in order to prove that
Sf,pa IF @ only if p € @ (for every ® € W), we need that (6) holds for all
formulas v that are ‘simpler’ than ¢. Now since the formula OKd,, — ¥ need
not be a subformula of ¢, we need a more complex inductive hypothesis. This
explains the following definition and the precise set-up of the completeness proof
where completeness itself and the truth lemma are proved in a simultaneous
induction.

Definition 5.10 We define the c-depth of a formula as follows:

c(u) 0

c(-p) = c(p)
c(pAY) = max(c(p),c(¥))
c(Cap) = c(p)+1
c(Cup) = c(p)+2

PROOF OF COMPLETENESS. Fix a set W of witnessing MCss satisfying the
conditions of Lemma 5.9. We will prove that for any Lo-formula ¢, the following
two claims hold

for every @ € W: p € @ <= Sy,ps IF o, (7)

and
¢ is consistent only if ¢ is satisfiable in Sy. (8)

The proof of (7) and (8) is by induction on the c-depth of . Note that for
any @, (8) follows from (7) and part 1 of Lemma 5.9. Hence, we will confine
ourselves to proving (7); we will use the inductive hypothesis of (8), however.

CASE c(¢) = 0 In this case we are dealing with a subjective epistemic formula.
Hence, part 7 follows from Lemma, 5.3.

CASE c(¢) = 1 Now ¢ must be a boolean combination of epistemic formulas
and formulas of the form <$gu, with pu epistemic. We leave it to the reader to
verify that the boolean connectives do not cause any problem. That is, we only
treat the case where ¢ is of the form <4pu.

First assume that Ogu € ®. The conditions of Lemma 5.9 imply that there
isa¥ e W with RU® and 4 € V. By Lemma 5.6 and the inductive hypothesis,
this implies pe J pw and Sy, py IF u. But then by the truth definition, we have
that Sf,pcp - g

For the other direction, without loss of generality (see Lemma 5.2) we may
assume that p is a disjunction of formulas of the following form: KaA—-Kp; A
...AN=Kf,, and since <4 distributes over disjunctions, we may actually assume
that

p is of the form Ka A—-KG A ... \N—=K[,.

Now assume that pg IF Ogu. Then there is a clopen m D pg such that Sy, m I+
Ka A \,~Kf;. This implies that pe IF Ka and for some v, pe IF Ky while
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m If Kv. From ps I Ka A Ky we may infer (by the previous case) that
KaANKvy e ®. Also, from m IF KaA—-KyA\; ~Kp; it follows that o, o — 7y
and VoL a — G; (all 7).

Claim 1 If /¢, @ = v and Heor a — G; (all i), then

Fc (KaAKy) = Og(KaA-Kyn \ -Kpg).
0<i<n

PROOF OF CLAIM We prove this claim by induction on n. In the base step (n =
0), it is immediate that /¢, o — 7 implies Fic (Ka A Kvy) = Og(Ka A -Kvy):
we are simply dealing with an instance of axiom SF.

For the induction step, assume that «, v and B, ..., B, are such that
VoL o — v and Yo o — f; (all 4). For succinctness, abbreviate v := =Ky A
No<icn K B;; then our inductive hypothesis is that

e (Ka A K7) = Ou(KaAv),
from which it is easily inferred that
Fic (KaAKy) = (Ca(KaAvANKB,)VOiKaNvA-Kf,)). (9)
Also, axiom SF and the fact that /¢ a — B, ensure that
e (KaAKBa) - (Oa(KaA—Kf,),

while axiom DP gives
|_IC v — Ogv.

Bringing these two observations together we readily obtain
Fic (KaAvAKS,) — Cq(KaAvA-KpBy),
so using the transitivity axiom, we find
Fic Ca(KaAvAKS,) = Ca(KaAvA-KS,).
But then (9) gives
Fic (KaAKy) = Oq(KanvA-KpSy)),
which is precisely what we were after. |

From the claim and the fact that Ka A K~ € ® it follows that the formula
Ce(Ka A=Ky AN-Kp N...\NKf,) and hence Oy(KaA—-KpB A... AN Kfy)
belongs to ®. But the latter formula is simply the formula ¢, so we have proved
(7) for the case c(p) = 1.

CASE c(p) > 1 Again, we proceed by an induction on the structure of ¢ and
again, we leave the boolean cases to the reader. This leaves the following two
subcases.
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SUBCASE ¢ is of the form <410, where we may apply the inductive hypothesis
to 1 since c(v¥) < c(p).

We omit the proof that Cg1p € ® implies Sy, po IF Cg1p, since it is similar
to proofs we have seen before.

For the other direction, assume that Sy, ps IF Cg1p. By definition this means
that Sy,m IF ¢ for some clopen m with pe C m. From Sy,m I ¢ it follows
that Sy IF OKdy — 1; here we use the fact that m is the only state where
OKéy holds. By the inductive hypothesis (note: part 8!) we may infer that
Fic OKéym — %. From this it is immediate that

l_IC OdOKdm — <>d’l/) (10)

We now claim that
C40Kby € O. (11)

For, since pp C m, we have pp IF Koy A OgKdn. Hence, by the inductive
hypothesis (part 7), the formula Kdy A $CgKdym belongs to ®. But then by
axiom OD, ©40Kéy, € ®. This proves (11).

But from (10) and (11) it is immediate that ¢ € @.

SUBCASE ¢ is of the form <y, where we may apply the inductive hypothesis
to 1 since c(¢) < c(¢p).

The direction from left to right, being as in the previous subcase, is omitted.
For the other direction, assume that Sf,pe = Ou1p. By definition this means
that Sy, m |- ¢ for some m with m C pe. From Sy,m Ik o) it follows that
Sy IF OK 6y — 1, from which it is immediate that

Fic OuOK by — Outb. (12)
This is all analogous to the previous subcase, and so is the next claim:
OuOK oy € O, (13)

but the remainder of the proof is different. Let v be the formula such that
OK~ € ®. Then by the inductive hypothesis, Sy, ps IF OK~. Hence, it follows
from m C pg that pe IF OKvy A = Kéy, and also that ¢ dy — v (this is by
Proposition 2.7). But from this and axiom OU it follows that

Fic (OKy A =Kdy) — OyuOK by,

But we may use the induction hypothesis to show that OK~y A =K, belongs
to @, so it follows from the properties of MCss that ©,0Kd,, € ®. This proves
(13).

And as in the previous subcase, from (12) and (13) it is immediate that
Oyt € ®. This finishes the proof for the case where c(p) > 1.

Finally, it is easy to see that the completeness of IC follows immediately
from (8). QED
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6 Conclusions

We studied the dynamics of information change by proposing a modal logic of
increasing and decreasing information; this logic is the logic of a specific ‘super
model’ in which the states themselves are models of an epistemic language. In
defining this particular set-up there were a lot of different choices to be made,
in many different aspects. A few of these choices and the influence they have
on the emerging set of validities, have been discussed in some detail. One of
these choices is whether we opt for closed or finite-knowledge states.

Our approach, in which a modal logic (of increasing and decreasing infor-
mation) is placed ‘on top of” another modal logic (S5), fits in the recent trend of
‘combining logics’. Combinations of logics are often almost orthogonal, in the
sense that there is limited interaction between the two logics (this is the case in
for instance [4]). In our logic, however, the two logics are very strongly tied; in
fact, our logic is based on a single modal model (S¢), in which the accessibility
relation of increasing information is completely determined by the states, which
are themselves S5-models.

It was shown that the logic of only knowing of Halpern and Moses ([8]) can
be embedded in our logic, which means we can use our proof system to derive
validities of their logic. The preference ordering of Halpern and Moses is the
modal accessibility relation in our logic (a similar idea is used in [3]). There are
strong connections between our system and the one of Levesque ([10]), a logic
which also embeds the logic of only knowing.

For one particular kind of super model we have defined a proof system, and
this system was proved to be sound and complete. In order to prove this result
we used special techniques from modal logic, including non-standard derivation
rules and the ability of our language to name points.

One of our future interests concerns the logic MTEL ([4]), which can be seen
as a temporalization of Halpern and Moses’ logic. Entailment of both default
logic and autoepistemic logic can be embedded in MTEL. A proof system for
MTEL would thus give a system in which both derivations for default logic and
for autoepistemic logic could be carried out. We hope to be able to apply similar
methods (viewing the preference relation of MTEL as a modal accessibility
relation) to arrive at such a proof system.
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