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Abstract: Hintikka describes the semantical games for Independence Friendly logic (IF-logic)
in terms of the game rules. In this paper we elaborate in detail how the standard extensive
game model serves as a mathematical model for these games. We intend the game model to be a
framework in which we can reason with mathematical rigor about strategies, hence about truth
and falsity in GT'S. We discuss negation normal forms, and compare the notion of Skolem function

with the game theoretical notion of strategy.

1 IF-logic and Game Theoretical Semantics

In classical first order logic the scopes of quantifiers are always either nested
or disjoint. In IF-logic, introduced by Hintikka in [3] and by Hintikka and
Sandu in [4], other dependency patterns become possible by a slash operator.
This operator can be introduced into ordinary first order formulas to remove
quantifications and connectives from the scope of previous quantifications.’
The truth or falsity of IF-sentences is determined by Game Theoretical Se-
mantics (GTS). GTS associates with every IF-sentence ¢ and suitable model
M a semantical game Gps(p). The game is played by two players: Eloise,
who starts in the role of ‘verifier’, and Abélard, who starts in the role of
‘falsifier’. Depending on the main quantifier or connective of ¢ (one of V, 3,
A, V or ~), one of the players makes a move and the game continues with
the appropriate subformula of ¢. Moves in the game are choices for domain
elements as assignments for the variables bound by the quantifiers 3 (move
for player in the role of verifier) and V (move for the player in the role of
falsifier) and choices for ‘left’ or ‘right’, associated with the connectives V
and A (move for verifier and falsifier respectively). The negation sign ~ does
not prompt a move for one of the players, but makes the two players change
roles.

In all these cases the addition of ‘/y’, with Y a -possibly empty- set of
variables, means that the choice made by the player in question does not

Tn [3], the operator is only applied to existential quantifiers and disjunctions. Through-
out this paper we take IF-logic to be defined as in [4], where the slash is applied to universal
quantifiers and conjunctions as well.



depend on the values chosen for the variables in Y.? For example, in the
IF-formula Vy3z [z = y], the choice for the value of z by Eloise should be
the same for all values of y possibly chosen by Abélard in the previous move.
Truth and falsity of a sentence ¢ in a model M are defined as follows:

©p is true in M & there exists a winning strategy for Eloise in G (¢)

@ is false in M & there exists a winning strategy for Abélard in G /()

From this definition and the fact that the slash operator makes semantical
games into games of imperfect information, it follows that the principle of
the excluded middle does not hold for IF-logic (see e.g. [3], p. 132). We also
become aware of the importance of a thorough definition of the notion of
strategy.

Semantical games can be characterized by the following game theoretical
terms: they are 2-player, non-cooperative finite zero-sum games, in which
every run of the game is won by one of the players and lost by his opponent.
In TF-logic the games can be of imperfect information, and, as we shall see
in our discussion on Skolem functions as strategies, also of imperfect recall.
The notation of Osborne and Rubinstein [7] allows us to formalize these
games in a natural way. We can leave out the possibility of infinite courses
of the game, and the so called chance moves.

The goal of our project is to capture the concept of strategy in semantical
games and we hope to find a correspondence between the game theoretical
notion of strategy and the notion of Skolem function, which is put forward
by Hintikka as the constituting element of strategies in GTS, and the basis
for the translation of IF-logic to ¥ and back.

2 The general game model

We first give the definition of a general mathematical game model for ex-
tensive form games, based on [7], pp. 200-203. In this definition, we use
the following notation for finite sequences: let A be a set (‘the alphabet’),
A* the set of finite sequences of elements of A, a = (a1,...,ar) € A*

2Some notational issues: In the case Y is empty, we will omit the slash, and if Y is
nonempty we say that the quantifier or connective is slashed. If Yis non-empty and written
out explicitly under the slash, then we omit the braces: e.g. we write 3z, , rather than

3x/4y,23-



and a € A. Then: len(a) := k; a/m = (a1,...,an) for m < len(a);
a-a:= (ai,...,05,0); ¢ € o := Jj < len(a)[a = a;]. Finally, () denotes
the empty sequence.

An extensive form game of imperfect information is defined to be a
5-tuple I' = (H,n, P,U,r), where

e H is a set of finite sequences that satisfies the following conditions:

— () is a member of H;
— H is prefix closed: if « € H and m < len(w), then a|m € H.

Notation: A := (J,cyiala € h} (thus: H C A*). Define for h € H:
A(h) == {a € Alh-a € H}. Let Z := {h € H|A(h) = 0}, and
X =H\Z.

H is the set of histories. Z is the set of terminal histories; X is the
set of non-terminal histories or decision points. A terminal history
describes a course of the game. A(h) is the set of allowed actions from
history h.

e n €N, notation: N ={1,...,n}.
n is the number of players. We identify N with the set of players.

e P:X — N. Notation: for i € N we write P; := P~1({i}).

P is the player function: it determines for each decision point whose
turn it is. Note that one or more of the P; might be empty.

U = (U1,Us,...,U,), where for every i € N, U; is a partition of P;
such that for all u € U; the so-called consistency condition is satisfied:
if h, ' € u then A(h) = A(h'). Hence we can define A[u] := A(h) (any
h € u). Notation: U := (J;c n Us-

Elements of U are called information sets; Alu] is the set of allowed
actions from information set u.

r: 7 — RY: a payoff function®, giving for every terminal history the
respective gain of each player in that situation.

3We prefer to define the last component as a function (like e.g. in [10]), rather than as
tuple of preference relations like in [7].



A strategy for .player i in the game I' is a function F* : U; — A s.t. for
every u € U; : F*(u) € Alu).

The information partition U makes this a model for imperfect information
games: the intended interpretation of the information sets u in U; is that
player ¢ knows the actual history A must be one of the elements of u, but
is not able to determine which one when choosing an action (an element of
A(h) = A[u]) to continue the game. Hence, this choice is uniform over the
set of histories u. If all information sets are singletons, I' models a game of
perfect information.

In the next section, we will specify semantical games in terms of this stan-
dard game model.

3 A game model for semantical games in IF-logic

In section 1, we described semantical games for IF-first order sentences in
terms of the game rules, as is done in [3]. This type of description is not very
mathematical of nature, and hence does not facilitate mathematical proofs
over semantical games.

We specialize the general game model of the previous section to describe
semantical games as extensive form games.? A semantical game G /() is
a 2-player game with two parameters: an IF-sentence ¢ and a model M
suitable for the language of ¢. With these parameters, we can define a set
of histories H, a player function P, the set of information sets U, and an
outcome function 7.

First we fix some notations that we will use in the definitions. For a given
IF-sentence ¢ and a suitable model M, we determine:

1. the set Sub(p) of subformulas of ¢, that contains all different occur-
rences of syntactically identical subformulas as distinct elements. (For
example: in a formula of the form %V ~1, we want to distinguish
between both occurrences of (the subformulas of) 1.) Mostly, we will
need the set S, := {[¢]"|¢p € Sub(p)}, where we write [1)]" for the

formula resulting from v after removing initial negation signs.

2. for each ¢ € S, the set Dy, of all variables in ¢ under whose scope
1) occurs. Note that this set contains but is not necessarily equal to

“In [8] and [9], Sandu and Pietarinen follow a similar approach.



the set of free variables of v, and that unbound variables under the
slashes also count as free variables.

3. for every 1 € S, the set V;; of all valuations in Dom (M) with domain
Dy. Furthermore: for ¢p € S, that are non-atomic, let Yy, be the -
possibly empty- sequence of variables o&curring under the slash of the
main connective or quantifier of 1, and V', the set of of valuations with
domain Dy := Dy \ Yy. Let V:= Uyeg, Vo, and V:=Uyeg, V-

We are now ready to define the components of the game model: T'ps(¢p).

the set of histories H

To define the set of histories for a semantical game, we first introduce for
every ¢ € S, a set of finite sequences Hy,. Note that we do this by induction
on the structure of ¢ —from outside to inside- in a way that keeps us within
Sp: the induction ‘skips’ the negation signs. It terminates at the atomic
formulas.

o H+:={0h
e Let ¢ € Sy, Hy already defined. Then there are three cases:

1. % is atomic: induction stops;

2. 1 is of the form 11 V y1Pa or b1 A y1pa: then Hpy 1+ == {h-1|h €
H¢} and H[¢2]+ = {h . I'|h € H¢}.

3. ¢ is of the form 3z /y1p’ or Vz,y1)": then Hyn+ = {h-ala €
Dom(M),h € Hy};

Let H := Uwesp Hy, then H is the set of histories for T'ar(p). If h € Hy,
we say that h leads to the subformula 1. For h € H, we write 1, for the
unique 1 € S, such that h € Hy,.

We see that the set of actions is A = Dom(M) U {1,r}, and for every
h € X: either A(h) = Dom(M) (if v, prompts a choice for a quantifier) or
A(h) = {1,r} (if ¢, prompts a choice for a connective).

Note that S, = {¢4|h € H}. Let X and Z be defined as the sets of non-
terminal and terminal histories respectively (cf. the general case in section 2).
Now define Sx := {¢p|h € X} and Sz := {¢y|h € Z}, then Sx is the set of
subformulas for which the game rules of section 1 prescribe a choice by one
of the players, and Sz is the set of atomic formulas.

Every history h € H ‘contains’ a valuation v, € V,, for the formula 1)p:



o v =0;

e if v, has been defined and vy, = 11 Vv P2 or Y = 1 Ay 12, then
Up1l = Upor := Up;

o if v, has been defined and 9y, = Iz ,y4', or b, = V¢’ then for every
a € Dom(M): vp.q := v U{(z,a)};?

In fact, the mapping h — (1)p, vp) is a one-one correspondence of the set of
histories H with the set [y g {(¥,v)|v € V4 }, consisting of pairs of subfor-
mulas and valuations.

the set of players N

Semantical games are two-person games by definition, so n = 2. The play-
ers are usually called Abélard and Eloise, hence we choose as set of players
N = {A,E} rather than {1, 2}.

Before we define the player function P and the outcome function R, we
define for ¢ € S, its polarity in ¢: ¢ is positive in ¢ if it occurs in the
scope of an even number of negation signs in ¢, and negative if it occurs
in the scope of an odd number of negation signs in ¢.

the player function P
The player function P : X — N is determined for each h € X by the main
‘constructor’ (quantifier or connective) of ¥y, € Sx, and its polarity in :

P(h) =E if either:
p, is positive and of the form 11 V )y 1hp or 3z )34,
or:
n, is negative and of the form 1 Ay 19 or Yz y4);
P(h) = A in the other cases

Thus P is constant on each Hy, ¢ € Sx. If Hy, C P;, we say that subformula
1) is assigned to player .

the outcome function r
In win/loss games like the semantical games of GTS, we can simplify the
payoff function of section 2. We will define r as what could be called an

SThroughout this paper we assume: if Qz1) is a subformula of ¢, then 1 does not
contain a second quantification binding . We do not consider this to be a restriction. By
this assumption, v,., as defined here is well defined as a function.



outcome function: r assigns to each terminal history h € Z a winner in N.
This outcome is fixed by the polarity of 1, in ¢, and the truth value of ¥y,
in (M, vp):

r(h) =E if either: 1)y, is positive and (M, vp) = 9y
or: 9y, is negative and (M, vg) & ¥p
r(h) = A in the other cases

the information partition U = (U, Ug)

The information sets in the game model for semantical games are induced by
the slash notation in IF-logic: it is the slash notation that makes semantical
games for IF-formulas into games of imperfect information. Informally, the
effect of a slash at a quantifier or connective in a sentence ¢, is that the
player making the choice associated with it, cannot base it on the values
chosen for the variables under the slash. In other words: the player has to
make the same choice if other values had been chosen for those variables.

We define the information sets formally using the following equivalence re-
lation on valuations for a subformula 1) € Sx: let v,v" € Vj, then:

v~y v & v'(z) = v(z) for all z € Dy,

In other words: v' ~y v if and only if v and v’ coincide outside the values
they assign to the variables in Y.

The information sets in the semantical game for ¢ can now be defined as
the equivalence classes u[h] of the following equivalence relation on X:

B o~y b S gy =y and: vy ~y, v,

In words: two non-terminal histories are considered to be indistinguishable
for the player assigned to them, if they lead to the same subformula 1 of ¢
and if the associated valuations assign the same values to the variables in
Dy.

Remark: if 4 is not slashed, meaning that Yy is empty, then Dy = Ew, and
hence all histories leading to v are distinguishable. In the special case that
@ is a classical first order formula, all information sets u[h| as defined above
are singletons. Semantical games for classical first order formulas are hence
games of perfect information.

Concluding, we define U to be {u[h]|h € H}, and U; := {u[h]|h € P;.
(Note that the U; are well defined, because for 1 € N: if h € P;, then



u[h] C Hy, C P;.)

In analogy to the correspondence we had between histories h and pairs
(vn, vp), we can characterize the information sets u[h] by the pairs (1, vp),
where v}, € th is the restriction of vy, to E,ph. This is then a one-one cor-
respondence of the set U of information sets with the set: |J,,cq, {(¥, 7)) €

V)

strategies and strategy functions

We claim that the 5-tuple I'ys(¢) = (H, N, P,r,U), as defined above, cap-
tures the semantical game G /() as described by the game rules in section 1.
But the central issue was the formalization of the concept of strategy. We
conclude this section describing the notion of strategy following the game
theoretical definition of section 2. In the next section, this notion will be
compared with the approach of regarding Skolem-functions as strategies.

Following the definition of section 2, a strategy for a player ¢ in game T', is a
function F* assigning to each information set u € U; an action a € A[u]. For
semantical games, it is more natural to see a strategy as a set of strategy
functions ffp : Vw — Ay, one for each subformula of ¢ that is assigned
to player i. Here Ay, is either Dom (M) or {1,r}, depending on the kind of
move prompted by the structure of 1.

Due to the correspondence between U and pairs (1, v) with ¢ € Sx,v € Vd,
(see the previous subsection), both approaches can be seen to be equivalent:

o If F' : U; — Ais a strategy for player i we can define the corresponding
strategy functions f, : Vi — A (1 assigned to player 4) by

(@) := F'(u),
where u is the information set corresponding to the pair (1, 7).

o If {fé,hp € Sx, 1 assigned to player i} is a set of strategy functions,
we can form the strategy F* : U; — A by defining for each h € P;:

Fi(u[h)) = £, (7).

We choose to describe strategies as sets of strategy functions. Informally, a
strategy function ffp gives us a choice for player 7 at formula 1 on the basis

of the values previously chosen for the variables in Ew.



4 Discussion of the model

Semantical games defined for sentences only:

Note that our approach is non-compositional. All the building blocks are
defined in the context of a sentence ¢. Open formulas occur in the context
of an IF-sentence ¢ only. It is much more complicated to give a sensible
game theoretical interpretation of open IF-formulas. The papers [5], [1] and
[6] show alternative systems that allow for quantifier independences by the
same syntactical construction, but do give interpretations to open formulas.

Invariance of the game model for negation normal form:

In the definition of GTS in game rules (see section 1), negation appears
to be a dynamic element in the game: during the game, the roles of the
two players are reversed. But in fact, the ‘meaning’ of the negation signs
is completely covered in both the player function and the payoff function.
This is reflected by the following claim:

Let ¢ be an IF-first order sentence. If a formula ¢’ results from sentence ¢
by application of either De Morgan’s Laws or cancelling of double negation,
then in every model M: T'j;(¢) and T'pz(¢") have the same set of histories
H, information partition U, player function P and outcome function r.
This implies that ¢ and ¢’ cannot be distinguished game theoretically, and
hence are (strongly) equivalent in GTS in the sense that for both players
holds: there exists a winning strategy for that player in "y () iff there exists
a winning strategy for that player in T'p/(¢’). Even stronger: a winning
strategy for a player in T'j;(p) is a winning strategy in T'p;(¢’), and vice
versa.5

It follows that every sentence ¢ has a strongly equivalent negation normal
form ¢'. Hence, Hintikka’s claim that we may assume IF-formulas to be in
negation normal form ([3], p. 52) is justified by our model.”

Independence vs uniformity: Skolem functions as strategy func-
tions?

Perfect recall is informally the property that at every decision point for a
player, he knows what he has known and done previously. For a formal
definition: see [7], p. 203. It is quite usual to presuppose perfect recall (see

5In the light of the discussion of the next paragraph, we note that this holds for any
notion of strategy defined in terms of I'zs(¢p).

"For the strong equivalence however, we need the applicability of the slash operator to
universal quantifiers and conjunctions as well as to existential quantifiers and disjunctions.
In [3] Hintikka restricts IF-logic to the latter, but in [4] both are allowed.



also [10], p. 104). However, the following example proposed by Hodges in [5]
(p- 548), shows that this presupposition conflicts with Hintikka’s intended
semantics:

Vo3zJy gz = y]

For the standard game theoretical definition of strategy described at the end
of the previous section, Eloise (E) has a winning strategy: the uniformity
restrictions on strategy functions do not forbid her to choose the value for
z equal to the value assigned to z, and then choose the value for y equal to
the value assigned to z. The semantics of both [5] and [1] correspond with
this, and make this formula true.

The following citation ([3], p. 63) shows that the uniformity restriction on
strategies does not satisfy Hintikka’s goal to formalize independence:® “At
this point, it is in order to look back at the precise way the information sets of
different moves are determined in semantical games with IF-sentences. The
small extra specification that is needed, is that moves connected with exis-
tential quantifiers are always independent of earlier moves with existential
quantifiers. [...] The reason for this provision is that otherwise “forbid-
den” dependencies of existential quantifiers on universal quantifiers could
be created through the mediation of intervening existential quantifiers.”
We follow Janssen ([6], which paper proposes alternative semantics specifi-
cally designed to formalize independent choices) in referring to this ‘specifi-
cation’ as the ‘slashing convention’.

Note that Hintikka discusses choices for Eloise in a game G /(y), where ¢ is
assumed to be in negation normal form. In this situation, Skolem functions
can be conceived as strategy functions. Examples throughout [3] show that
Skolem functions are the strategy functions intended by Hintikka.’

We can let our model comply to the ‘slashing convention’ for an arbitrary
IF-formula ¢, so that Skolem functions come out as strategy functions, by
the following simple procedure: first, rewrite ¢ in negation normal form
(which is no problem, by the previous subsection), and subsequently: for all
subformulas 1) of the form Ehp’/y or ¥1V ye, add the existentially quantified
variables in Dy to Y. Finally, build the model T's/(¢') for the resulting
formula ¢'.

8The start of this quote is remarkable, because generally Hintikka seems to carefully
avoid terminology from extensive game models.

9This use of Skolem functions seems to originate from the interpretation of infinitistic
and branching quantifier-formulas: see Henkin [2], p. 179.
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5 Conclusions and further work

Hintikka’s work on IF-logic and Game Theoretical Semantics, contains few
mathematically exact definitions and theorems. This makes it hard to check
claims made by Hintikka, or prove intuitions one has.

Therefore we found it useful to elaborate in this paper a mathematical, game
theoretical model for the semantical games in IF-logic. This model made it
possible to verify the claim that IF-sentences can be written in a (strongly)
equivalent IF-formula in NNF, but it also made clear that the the game
theoretical notion of strategy leads to different semantics than Hintikka's
strategies built from Skolem functions.

Interesting questions and challenges that come to mind are to try include a
game theoretical treatment of implication, to investigate results on exten-
sive games for their applicability in GTS, e.g. to relate game equivalence to
logical equivalence. Also, one could try to relate constraints on information
sets (as for example the Von Neumann condition) to syntactical restrictions
on IF-formulas. Finally, would it make sense to formalize a strategic form
game model for semantical games?

Acknowledgments: I would like to thank the two anonymous referees for
their useful comments on the first version of this paper.
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