
Uitwerking van opgaven in Sipser

Opgave 4.10

Laat zien dat

INFINITEPDA = {〈M〉 |M is een PDA en L(M) is oneindig }

beslisbaar is.
De volgende TM beslist INFINITEPDA:
Op input 〈M〉 waarbij M een PDA is,

1. Converteer M naar een equivalente CFG, en noem die G (dit is duidelijk
een berekenbare functie/transformatie).

2. Laat n het maximum aantal symbolen aan de rechter kant van een regel
in G zijn en stel dat b het aantal variabelen in G is, en laat m = bn + 1.

3. Zij L de reguliere taal bestaande uit alle woorden van lengte ≥ m.

4. Construeer een CFG H voor de taal L∩L(M) (dit kan omdat de doorsnede
van een reguliere en een context vrije taal weer context vrij is, opgave 2.18).

5. Test of H in ECFG zit (dit een beslisbare taal). Zo ja, reject, zo nee,
accept.

We bewijzen dat dit algoritme INFINITEPDA beslist: als 〈M〉 ∈ INFINITEPDA,
dan is er een woord s van lengte ≥ m in L(M). Omdat m de pomplengte is
kunnen we s pompen volgens het pomplemma voor CFG’s. Dus bevat L(M)
oneindig veel woorden. Omgekeerd, als L(M) oneindig veel woorden bevat,
moet het oneindig veel woorden van lengte ≥ m bevatten (het bevat natuurlijk
oneindig veel woorden van lengte ≥ k voor elke k). Dus is L(H) niet leeg, en
dus is H niet in ECFG, en dus accepteert het algoritme 〈M〉.

Opgave 4.12

Laat zien dat

INCREG = {〈R,S〉 | R en S zijn reguliere expressies en L(R) ⊆ L(S) }

beslisbaar is.
De volgende TM beslist INCREG:
Op input 〈R,S〉 waarbij R en S reguliere expressies zijn:

1. Converteer R naar de DFA M .

2. Construeer een DFA N voor het complement van L(S) (dit kan omdat het
complement van een reguliere taal weer regulier is).

1

3. Construeer een DFA K voor L(M) ∩ L(N).

4. Test of K in EDFA zit (dit een beslisbare taal). Zo ja, accept, zo nee,
reject.

Het is duidelijk dat dit algoritme INCREG beslist.

Exercise 5.1

Show that EQCFG is undecidable. Observe that indeed we cannot copy the
proof that EQDFA is decidable as the the CFL’s are not closed under comple-
ment, while the regular languages are. We show that EQCFG is undecidable by
showing that if it would be decidable, then so would ALLCFG, which is not true
(Theorem 5.13). And thus we have derived a contradiction.
So suppose EQCFG is decidable and let M be the decider. First we observe that
there is a CFG which language is Σ∗, For example (in the case that Σ = {0, 1}),
the CFG consisting of the rules S → ε | 0S | 1S does the trick. Let us call this
CFG H, thus L(H) = Σ∗. The following N is a decider for ALLCFG:
On input 〈G〉, where G is a CFG:
Run M on 〈G,H〉, if it accepts, accept, otherwise, reject.
If is not difficult to see that N is a decider, and indeeds decides ALLCFG. As
this language is undecidable we have reached a contradiction, and whence must
conclude that EQCFG is undecidable.

Exercise 7.19

If PATH would be NP-complete, this would, by definition, imply that for all
L ∈NP, L ≤P PATH. But this again implies that for all L in NP, L is in P. Thus
P = NP would follow, which we (except maybe some cranks) believe is not true.
We show that proving that PATH is not NP-complete implies that NP6=P. We
show this by contraposition: we assume P=NP and then show that PATH is
NP-complete: so assume P=NP. Using exercise 7.17 it then follows that PATH
is NP-complete. Thus if PATH is not NP-complete, it should be the case that
NP6=P, which is what we wanted to prove.

Exercise 7.20 (b)

The proof that LPATH is in NP we leave to the reader. We show that

UHAMPATH ≤P LPATH.

From the fact that LPATH is in NP, and the definition of ≤P it then follows
that LPATH is NP-complete, as UHAMPATH is NP-complete.
Our reduction takes the form

f(〈G, a, b〉) = 〈G, a, b, |G| − 1〉.

2

It is clear that f is a polynomial time function. To see that it is a reduction it
remains to show that

〈G, a, b〉 ∈ UHAMPATH⇔ 〈G, a, b, |G| − 1〉 ∈ LPATH.

⇒: If G has a Hamilton path from a to b, that path visits every node ex-
actly once. Since G has |G| many nodes, this path has length |G| − 1. Hence
〈G, a, b, |G| − 1〉 is in LPATH.
⇐: If G has a simple path from a to b from length at least |G|−1, the simplicity
of the path (visiting a node at most once) implies that that path has to visit
every node, and thus it must be a Hamilton path.

Exercise 7.21

Show that

DOUBLESAT = {〈ϕ〉 | ϕ has at least two satisfying assigments}

is NP-complete.
The proof that DOUBLESAT is in NP we leave to the reader.
We prove the theorem by giving a polynomial time reduction from 3SAT to
DOUBLESAT. Given a formula ϕ, define f(〈ϕ〉) = ϕ ∨ x, where x is a variable
not occurring in ϕ. it is not difficult to see that f is a polynomial time reduction
from 3SAT to DOUBLESAT.
In the same way one can prove that

nSAT = {〈ϕ〉 | ϕ has at least n satisfying assigments}

is NP-complete.

Exercise 7.23

Let

CNFk = {〈ϕ〉 | ϕ is a satisfiable cnf-formula where each variable
appears in at most k places}.

(a) Show that CNF2 ∈ P .
(b) Show that CNF3 is NP-complete.
(a) We give an informal description of a polynomial time decider M for CNF2.
On input ϕ M does the following:

1. Consider the first clause of ϕ. If it is of the form x, and there is a clause
¬x in ϕ, reject,

2. otherwise the first clause is of the form x∨A. If x does not appear negated
in the other clauses, remove every clause of the form x ∨B of ϕ, and call
the result ϕ, if there remain no clauses in ϕ, accept,

3

3. if there are two clauses x ∨A and ¬x ∨B in ϕ, remove them from ϕ and
add A ∨B to ϕ and call the result ϕ, and go to 1.

It is clear that M is a decider. We leave it to the reader to show that its running
time is polynomial and that it decides CNF2.
(b) We leave it to the reader to show that CNF3 is in NP. We show that
3SAT ≤P CNF3.
First an example: ϕ = (p∨ q)∧ (p∨ r)∧ (¬p∨ s)∧ (p∨ t). This formula is not in
3nmf, but the general case will be treated below. This formula is replaced by

ψ = (p∨q)∧(¬p∨p1)∧(p1∨r)∧(¬p1∨p2)∧(¬p2∨s)∧(¬p2∨p3)∧(p3∨t)∧(¬p3∨p).

Note that the (¬p ∨ p1), (¬p1 ∨ p2), (¬p2 ∨ p3), (¬p3 ∨ p) are expressing that
p → p1, p1 → p2, p2 → p3, p3 → p, that is, the p, p1, p2, p3 are all equivalent.
Hence in this formula (p1 ∨ r) expresses the same as (p ∨ r), etc. And thus ϕ is
satisfiable when ψ is, but in ψ every variable occurs at most 3 times.
The general case. We define a reduction f from 3SAT to CNF3 as follows.
f(〈ϕ〉) is the formula that is the result of the following procedure:
1. pick the first propositional variable (reading from left to right) in ϕ that
occurs more than 3 times in the formula, suppose it is p, and suppose it occurs
at n places: (x1 ∨ A1), . . . , (xn ∨ An), where the xi are p or ¬p. If no variable
occurs more than 3 times, output ϕ.
2. Choose fresh variables p1, . . . , pn, remove the conjuncts (xi ∨ Ai) from the
formula and add as a conjunct the formula

(p1 ∨A1) ∧ (¬p1 ∨ p2) ∧ (p2 ∨A2) ∧ (¬p2 ∨ p3) . . . (pn ∨An) ∧ (¬pn ∨ p1).

3. Call the new formula ϕ and go to 1.
Clearly, f(〈ϕ〉) is a formula in which every variable occurs at most three times.
Also clear:

〈ϕ〉 satisfiable iff f(〈ϕ〉) satisfiable,

and f is a polynomial function. Done!

Exercise 7.14

Show that P is closed under ∗.
Let L ∈ P . We show that L∗ ∈ P . Let Σ be the alfabet of L. We use
dynamic programming (see page 267). The idea of the lagorithm is that on
input w = w1 . . . wn we make a n× n grid (step 2.) and put a 1 in cell (i, j) if
wi . . . wj ∈ L∗ and a 0 otherwise.
Now we fill the grid step by step. First we fill in the diagonals (i, i): a 1 if
wi ∈ L (and thus in L∗) and a 0 otherwise (step 3.). Then we fill in the cells
(i, i+ 1), then the cells (i, i+ 2), etc.
Here follows the algortihm. On input w = w1 . . . wn

4

1. If w = ε, accept.

2. Make a n× n grid.

3. For every wi test of wi ∈ L, if so, put a 1 in (i, i) and a 0 otherwise.

4. For l = 2 to n,

(a) For i = 1 to n− l + 1, let j = i+ l − 1,

(b) For k = i to j − 1,
(c) if (i, i+ k) and (i+ k + 1, j) contain a 1, put a 1 in (i, j).

5. If (1, n) contains a 1, accept, anders reject.

Clearly, this algorithm decides L∗. To see that it runs in polynomial time, first
observe that step 3. runs in polynomial time because L is in P , say in time
O(nk). Step 4, (a), and (b) are repeated O(n) times. Step 2. takes O(n2) time.
Thus the whole algortithm takes O(nk + n3 + n2) time. Thus O(nk) time if
k > 3 and O(n3) if k ≤ 3.

A very simple reduction

We show that

TUTQBF = 〈ϕ〉 | ϕ is a true QBF that contains at least two universal quantfiers}

is PSPACE-complete.
The proof that TUTQBF is in PSPACE we leave to the reader. To show that
it is PSPACE-complete it then suffices to show that TQBF≤P TUTQBF. The
following reduction shows this:

f(〈ϕ〉) = 〈ϕ ∧ ∀p(p ∨ ¬p) ∧ ∀q(q ∨ ¬q)〉.

(There are many possible reductions: ∀a∀bϕ, for fresh a and b is ok too.) It
is not difficult to see that f is a polynomial time function. Thus it remains to
show that

〈ϕ〉 ∈ TQBF⇔ 〈ϕ ∧ ∀p(p ∨ ¬p) ∧ ∀q(q ∨ ¬q)〉 ∈ TUTQBF.

⇒: If 〈ϕ〉 is in TQBF, the formula is true. But then so is 〈ϕ∧∀p(p∨¬p)∧∀q(q∨
¬q)〉. Since this formula contains at least to universal quantifiers it follows that
it is in TUTQBF.
⇐: 〈ϕ∧∀p(p∨¬p)∧∀q(q ∨¬q)〉 is in TUTQBF, it follows that it is true. Then
ϕ is true as well. Thus 〈ϕ〉 is in TQBF.

5

Twee CLIQUE opgaven

Define
CLIQUEk = {〈G〉 | G has a k-clique}.

1. Show for every k that CLIQUEk is in P .
The following polynomial time algorithm M decides CLIQUEk.
M : On input 〈G〉:

1. For every subset X of G of size k,

(a) check wether it is a clique, if so, accept.

2. If not accepted, reject.

Clearly, step (a), and 2. are in O(n) time. Step (a) is at most as many times
repeated as there are subsets of G of size k. There are O(nk) such sets. Since k
is no part of the input this is polynomial in the input, namely in the size of G.
Thus M is a polynomial time TM, which proves that CLIQUEk ∈ P .
The intuition behind this is that for this problem k is no part of the input.Thus
we have proved something for infinitely many sets, for CLIQUE1, CLIQUE2,
CLIQUE3, In CLIQUEk, thus for a fixed k, if G becomes very big, nk will
be more or less n. In the CLIQUE problem, below, k is part of the input, which
changes the situation accordingly:
2. Show that CLIQUE is in NP .
The following polynomial time non-deterministic TM M decides CLIQUE.
M : On input 〈G〉:

1. Guess a subset X of G is size k,

2. check wether it is a clique, if so, accept, otherwise reject.

This clearly is a polynomial time non-deterministic TM, as every branch runs
in O(n) time.

6

