Formal Semantics of Natural Language

Yoad Winter

ESSLLI 2022, Galway

Class 1

Basic notions and tools

- NOTIONS

What is Semantics?

Semantics: the study of meaning
Formal Semantics: the study of the (logical) relations between form and meaning

Sad-eyed lady of the lowlands, Where the sad-eyed prophet says that no man comes

Course Topics

Classes 1-2:
Logical approach to meaning in NL
> Model-theoretic semantics in a post-PTQ fashion

Classes 3-5:
Selected problems in current research
> Plurals
> Events and modification
> Presupposition

Examples (classes 1-2)

Treat inferences using higher-order logical operators.
Sue admires herself \rightarrow Sue admires Sue
Dan is tall and thin \rightarrow Dan is thin
Some Dutch man is thin \rightarrow Some man is Dutch
Underlined words denote functions, so that sentences can be treated using simple structures.

Sue [admires herself] - (HERSELF(admire))(sue)
Dan [is [tall [and thin]] - (IS((AND(thin))(tall))(dan)
[Some [Dutch man]][is thin] -
(SOME(dutch(man)))(IS(thin))

Examples - plurals (class 3)

Find logical regularities that connect singular descriptions to plural descriptions.
[[Sue and Mary]] = sue + mary
$\left[[\right.$ the girls] $]=$ girl $_{1}+$ girl $_{2}+$ girl $_{3}+\ldots$
What is " + "? What is the structure of individuals?
Use these regularities to explain:
Sue and Mary ran \Leftrightarrow Sue ran and Mary ran
Sue and Mary met \leftrightarrow ? (\#Sue met and Mary met)
The girls and the boys were separated \leftrightarrow ? \rightarrow
The children were separated

Examples - events (class 4)

Nominal modification:
Sue's Ferrari is a beautiful car
\rightarrow Sue's Ferrari is beautiful
Verbal modification:
Sue danced beautifully $? \rightarrow$ Sue is beautiful
Sue danced beautifully \rightarrow Sue's dancing was beautiful
What kind of entity is "Sue's dancing"?

- An event!

How do events figure with verbs?

- Like other entities figure with nouns!

Examples - presuppositions (class 5)

The Russell-Strawson debate:
The king of France is bald - false or undefined?
The projection perspective on this debate:
If Sue met the Burgadan astronaut, she must be excited
\rightarrow There's a Burgadan astronaut
Is Sue met a Burgadan astronaut, she must be excited $? \rightarrow$ There's a Burgadan astronaut

Can Kleene truth tables shed light on this projection behavior?

IF	$*$	0	1
$*$	$*$	$*$	$*$
0	$*$	1	1
1	$*$	0	1

	IF	*	0	1
(1) (19) - [1]	*	*	*	1
1	0	1	1	1
Eis	1	*	0	1

Prerequisite: Naive Set Theory

- membership, equality, subset
- set specification
- empty set and set construction
- set union, intersection, complement, difference
- powersets
- ordered pairs, cartesian products
- relations, domain, range
- properties of relations: symmetry, transitivity...
- functions
- inverse functions, function composition
- injection, surjection, bijection

Exercises: Chapter 1, Winter (2016)

Class 1 - Basic notions and tools

Entailment as a core semantic intuition

Non-

The truth-conditionality criterion
Equivalence, tautology, contradiction, contingency
Comparison to philosophical and mathematical logic
Compositionality
Structural ambiguity; ambiguity vs. vagueness
Types and domains
Characteristic functions
Currying
Arbitrary, combinatorial and logical denotations
Reading: chapters 1 and 2 of [24], including exercises
Class 2 - Simple meaning composition
Using Lambda notation
Reflexive pronouns in variable-free semantics
Simple intersective modifiers
Cross-categorial coordination and negation Simple quantifiers
Word meaning and intended models
Function application
Syntax-semantics interface
Category-to-type matching
Reading: chapter 3 of [24], including exercises

Reading Material

See online materials -
Classes 1-2: chapters 1-3 from Winter (2016)
Classes 3-5: selection of review articles

Logicians on meaning

Gottlob Frege (1848-1925)

Alfred Tarski (1902-1983)

Frege: Meanings are composed to each other.
Tarski: Meanings can be described as objects in a mathematical world, external to language itself.

Meanwhile in Cognitive Science

"It seems clear, then that undeniable, though only imperfect correspondences hold between formal and semantic features in language." (Syntactic Structures, 1957)

Noam Chomsky (1928)

Towards a Synthesis

Richard Montague (1930-1971)
"There is in my opinion no important theoretical difference between natural languages and the artificial languages of logicians; indeed, I consider it possible to comprehend the syntax and semantics of both kinds of language within a single natural and mathematically precise theory. On this point I differ from a number of philosophers, but agree, I believe, with Chomsky and his associates."
(Universal Grammar, 1970)

The Key to Montague's Program

Frege's Principle of Compositionality
The meaning of a compound expression is a function of the meanings of its parts, and the ways they combine with each other.

Ambiguous Expressions

I saw the man with the telescope

Syntactic Ambiguity

Syntactic Ambiguity

Syntactic-Semantic Ambiguity

Syntactic-Semantic Ambiguity

Meaning and Form

Entailment

(6) Tina is tall and thin.

From this premise, any speaker of English is able to draw the conclusion in sentence (7).
(7) Tina is thin.

We say that sentence (6) entails (7), and denote it (6) \Rightarrow (7). In this entailment, we call sentence (6) the premise, or antecedent. Sentence (7) is called the conclusion, or consequent,
(8) a. A dog entered the room \Rightarrow An animal entered the room
b. John picked a blue card from this pack \Rightarrow John picked a card from this pack
c. I met my only living grandmother yesterday \Rightarrow I met my grandmother yesterday
(9) Tina is a bird.
(10) Tina can fly.
(11) Tina is a bird, but she cannot fly, because... (she is too young to fly, a penguin, an ostrich, etc.)
(12) \#Tina is tall and thin, but she is not thin, because...

Entailment is the indefeasible relation, denoted $S_{1} \Rightarrow S_{2}$, between a premise S_{1} and a valid conclusion S_{2} expressed as natural language sentences.

Mentalist vs. Linguistic Meaning Relations

(1) a. What is common to the objects that people categorize as being red?
b. How do people react when they are addressed with the request please pick a blue card from this pack?
c. What emotions are invoked by expressions like my sweetheart, my grandmother or my boss?
(2) a. How do speakers identify relations between pairs of words like red-color, doganimal and chair-furniture?
b. What are the relations between the use of the imperative sentence please pick a blue card from this pack and the use of the similar sentence please pick a card from this pack?
c. How are the descriptions my grandmother and my only living grandmother related to each other in language use?
(3) Red is a color / ?Red is an animal
(4) The color red annoys me / ?The animal red annoys me
(5) Every red thing has a color / ?Every red thing has an animal

Models and Entailments

Let \exp be a language expression, and let M be a model. We write $[[\exp]]^{M}$ when referring to the denotation of \exp in the model M.

A semantic theory T is said to satisfy the truth-conditionality criterion (TCC) if for all sentences S_{1} and S_{2}, the following two conditions are equivalent:
I. Sentence S_{1} intuitively entails sentence S_{2}.
II. For all models M in T : $\left[\left[S_{1}\right]\right]^{M} \leq\left[\left[S_{2}\right]\right]^{M}$.

	$y=0$	$y=1$
$x=0$	yes	yes
$x=1$	no	yes

Assumptions about our models

1. In every model M, in addition to the two truth-values, we also have an arbitrary nonempty set E_{M} of entities in M, which contains the simplest objects in this model.
2. In any model M, the proper name Tina denotes an arbitrary entity in E_{M}.
3. In any model M, the adjectives tall and thin denote arbitrary sets of entities in E_{M}.

$$
\operatorname{IS}(x, A)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

$\operatorname{AND}(A, B)=A \cap B=$ the set of all members of E that are both in A and in B

Thus:

> $[$ Tina is thin $]]^{M}=\mathrm{Is}($ tina, thin $)$
> $[[\text { Tina is tall and thin }]]^{M}=\operatorname{IS}($ tina, $\operatorname{AND}($ tall, thin $))$

Convention:

Let blik be a word in a language. When the denotation $[[\mathrm{blik}]]^{M}$ of blik is arbitrary, we mark it blik, and when it is constant across models we mark it BLIK. In both notations the model M is implicit.

TCC - example

Expression	Cat.	Type	Abstract denotation	Denotations in example models with $E=\{a, b, c, d\}$		
				M_{1}	M_{2}	M_{3}
Tina	PN	entity	tina	a	b	b
tall	A	set of entities	tall	$\{b, c\}$	$\{b, d\}$	$\{a, b, d\}$
thin	A	set of entities	thin	$\{a, b, c\}$	$\{b, c\}$	$\{a, c, d\}$
tall and thin	AP	set of entities	$\operatorname{AND}($ tall, thin)	$\{b, c\}$	$\{b\}$	$\{a, d\}$
Tina is thin	S	truth-value	is(tina, thin)	1	1	0
Tina is tall and thin	S	truth-value	is(tina, $\operatorname{AND}($ tall, thin $)$)	0	1	0

Categories: $\mathrm{PN}=$ proper name; $\mathrm{A}=$ adjective; $\mathrm{AP}=$ adjective phrase; $\mathrm{S}=$ sentence
Table 2.2: Denotations for expressions in the entailment (6) \Rightarrow (7)

Compositionality

(15) a. All pianists are composers, and Tina is a pianist.
b. All composers are pianists, and Tina is a pianist.

Compositionality: The denotation of a complex expression is determined by the denotations of its immediate parts and the ways they combine with each other.

Figure 2.2: compositional derivation of denotations

Structural ambiguity (1)

(16) Tina is not tall and thin.

(18) $\mathrm{AP} \longrightarrow$ tall, thin, \ldots
$\mathrm{AP} \longrightarrow \mathrm{AP}$ and AP
$\mathrm{AP} \longrightarrow \operatorname{not} \mathrm{AP}$

Figure 2.3: structural ambiguity

Structural ambiguity (2)

$\operatorname{Not}(A)=\bar{A}=E \backslash A=$ the set of all the members of E that are not in A

Figure 2.4: compositionality and ambiguity
(19) a. $\operatorname{IS}($ tina, $\operatorname{AND}(\operatorname{NOT}($ tall $)$, thin $))=1$ iff tina $\in \overline{\operatorname{tall}} \cap$ thin b. Is $($ tina, $\operatorname{NOT}(\operatorname{AND}($ tall, thin $)))=1$ iff tina $\in \overline{\operatorname{tall} \cap \text { thin }}$

Note: Ambiguity vs. vagueness

Class 1 (cont.)

Basic notions and tools

- NOTIONS
- TOOLS

Functions

Given two sets A and B, a function from A to B is a rule or procedure that "inputs" elements of A and "outputs" elements of B.

Notation:

$$
f: A \rightarrow B
$$

Every element $a \in A$ gets "sent to" some element of B which is called $f(a)$.

Functions are also called mappings.
A is called the domain of f, and B the codomain or range.

Sets of functions

For any two sets A and B, the set of all functions from A to B is denoted

$$
B^{A} \quad \text { alternatively, } A \rightarrow B
$$

Example: $\quad\{a, b, c\}^{\{1,2\}}=$ the following functions:

$$
\begin{array}{ll}
1 \mapsto a & 2 \mapsto a \\
1 \mapsto a & 2 \mapsto b \\
1 \mapsto a & 2 \mapsto c \\
1 \mapsto b & 2 \mapsto a \\
1 \mapsto b & 2 \mapsto b \\
1 \mapsto b & 2 \mapsto c \\
1 \mapsto c & 2 \mapsto a \\
1 \mapsto c & 2 \mapsto b \\
1 \mapsto c & 2 \mapsto c
\end{array}
$$

Basic/Complex Types and Domains

A type is a label for part of a model that is called a domain.

Basic types and domains:
$\begin{array}{lllll}e & \vdots & D_{e}-\text { arbitrary } & \text { - of entities } \\ t & : & D_{t}=\{0,1\} & \text { - of truth-values }\end{array}$
Complex types and domains: defined inductively from basic types and domains.

Example

$E=D_{e}=$ the set of entities $\{t, j, m\}$
[[thin]] = T = \{t,j\}
We can also define T as a function from D_{e} to
D_{t} :

$$
\begin{aligned}
& t \rightarrow 1 \\
& j \rightarrow 1 \\
& \mathrm{~m} \rightarrow 0
\end{aligned}
$$

This function characterizes T in $\mathrm{E}=\mathrm{D}_{\mathrm{e}}$.
$\mathrm{D}_{\text {et }}$ of the complex type $\boldsymbol{e t}$ is the domain of such functions.

Characteristic functions over $\{\mathrm{t}, \mathrm{j}, \mathrm{m}\}$

Subset of $D_{e} \quad$ Function in $D_{e t}$

\varnothing	$f_{1}:$	$\mathrm{t} \mapsto 0$	$\mathrm{j} \mapsto 0$	$\mathrm{~m} \mapsto 0$
$\{\mathrm{~m}\}$	$f_{2}:$	$\mathrm{t} \mapsto 0$	$\mathrm{j} \mapsto 0$	$\mathrm{~m} \mapsto 1$
$\{\mathrm{j}\}$	$f_{3}:$	$\mathrm{t} \mapsto 0$	$\mathrm{j} \mapsto 1$	$\mathrm{~m} \mapsto 0$
$\{\mathrm{j}, \mathrm{m}\}$	$f_{4}:$	$\mathrm{t} \mapsto 0$	$\mathrm{j} \mapsto 1$	$\mathrm{~m} \mapsto 1$
$\{\mathrm{t}\}$	$f_{5}:$	$\mathrm{t} \mapsto 1$	$\mathrm{j} \mapsto 0$	$\mathrm{~m} \mapsto 0$
$\{\mathrm{t}, \mathrm{m}\}$	$f_{6}:$	$\mathrm{t} \mapsto 1$	$\mathrm{j} \mapsto 0$	$\mathrm{~m} \mapsto 1$
$\{\mathrm{t}, \mathrm{j}\}$	$f_{7}:$	$\mathrm{t} \mapsto 1$	$\mathrm{j} \mapsto 1$	$\mathrm{~m} \mapsto 0$
$\{\mathrm{t}, \mathrm{j}, \mathrm{m}\}$	$f_{8}:$	$\mathrm{t} \mapsto 1$	$\mathrm{j} \mapsto 1$	$\mathrm{~m} \mapsto 1$

Table 2.1: Subsets of D_{e} and their characteristic functions in $D_{e t}$

Characteristic Functions

Let X be any set.
Every subset $A \subseteq X$ gives us a function $f_{A}: X \rightarrow\{0,1\}$ called the characteristic function of A.

It is defined as follows:

$$
f_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

Example: $X=\{a, b, c, d\}, A=\{a, c\}$

Here are some examples of how this function f_{A} works:

- $f_{A}(a)=1$.
- $f_{A}(b)=0$.
- $f_{A}(c)=1$.
- $f_{A}(d)=0$.

Definition: Types and domains

Definition 1. The set of types over the basic types e and t is the smallest set \mathcal{T} that satisfies:
(i) $\{e, t\} \subseteq \mathcal{T}$
(ii) If τ and σ are types in \mathcal{T} then $(\tau \sigma)$ is also a type in \mathcal{T}.

$$
\begin{gathered}
e, t \\
e e, t t, e t, t e \\
e(e e), e(t t), e(e t), e(t e), t(e e), t(t t), t(e t), t(t e), \\
(e e) e,(t t) e,(e t) e,(t e) e,(e e) t,(t t) t,(e t) t,(t e) t \\
(e e)(e e),(e e)(t t),(e e)(e t),(e e)(t e),(t t)(e e),(t t)(t t),(t t)(e t),(t t)(t e)
\end{gathered}
$$

Definition 2. For all types τ and σ in \mathcal{T}, the domain $D_{\tau \sigma}$ of the type $(\tau \sigma)$ is the set $D_{\sigma}^{D_{\tau}}$ - the functions from D_{τ} to D_{σ}.

Intransitive verbs

Tina smiled.

```
smile}\mp@subsup{e}{et}{(tina}\mp@subsup{\mp@code{E}}{e}{}
```


Function Application

From types e and $e t$, FA gives t (as we have seen above).
From types $(e(e t))(e t)$ and $e(e t)$, FA gives et.
Types $(e(e t))(e t)$ and et cannot combine using FA: neither of these types is a prefix of the other.

Function Application (FA):

(ab) +
 a $=\mathbf{b}$
 f +
 $\mathbf{x} \quad=\mathbf{f}(\mathbf{x})$

Intransitive and Transitive verbs

Tina smiled.
Tina [praised Mary].
$\operatorname{smile}_{e t}\left(\right.$ tina $\left._{e}\right)$
$\left(\right.$ praise $\left._{e(e t)}\left(\operatorname{mary}_{e}\right)\right)\left(\right.$ tina $\left._{e}\right)$
or
praise(mary)(tina)

"Curried" Relations

$$
\begin{aligned}
& U=\{\langle\mathrm{t}, \mathrm{~m}\rangle,\langle\mathrm{m}, \mathrm{t}\rangle,\langle\mathrm{m}, \mathrm{j}\rangle,\langle\mathrm{m}, \mathrm{~m}\rangle\} \\
& f_{U}: \quad \mathrm{t} \quad \mapsto \quad\left[\begin{array}{llll}
\mathrm{t} \mapsto 0 & \mathrm{j} \mapsto 0 & \mathrm{~m} \mapsto 1
\end{array}\right] \\
& j \quad \mapsto \quad\left[\begin{array}{llll}
\mathrm{t} \mapsto 0 & \mathrm{j} \mapsto 0 & \mathrm{~m} \mapsto 1
\end{array}\right] \\
& \mathrm{m} \mapsto\left[\begin{array}{lll}
\mathrm{t} \mapsto 1 & \mathrm{j} \mapsto 0 & \mathrm{~m} \mapsto 1
\end{array}\right]
\end{aligned}
$$

$-f_{U}$ maps the entity t to the function characterizing the set $\{\mathrm{m}\}$.
$-f_{U}$ maps the entity j to the function characterizing the same set, $\{\mathrm{m}\}$.
$-f_{U}$ maps the entity m to the function characterizing the set $\{\mathrm{t}, \mathrm{m}\}$.
When the function f_{U} is the denotation of the verb praise, and the entities t, j and m are the denotations of the respective names, this is the situation where:

- Mary is the only one who praised Tina.
- Mary is the only one who praised John.
- Tina and Mary, but not John, praised Mary.

Currying

F: $(\mathrm{M} \times \mathrm{W}) \rightarrow[0,1]$
F gives any pair of man and woman (m, w) a score $\mathrm{F}(m, w)$ indicating matching

$\mathrm{G}: \mathrm{M} \rightarrow(\mathrm{W} \rightarrow[0,1])$

G gives any man m a function $\mathrm{G}(m)$ mapping any woman w to a score $(G(m))(w)$.

Thus, we can define: $(G(m))(w)=F(m, w)$
We say that G is the Curried version of F, and that F is the deCurried version of G.

Use of Currying for compositional interpretation of binary structures

Modifiers

Mary [walked quickly]
\rightarrow
Mary walked

Non-arbitrary Denotations: IS

For every function f in $D_{e t}:$ is $(f)=f$.

Alternative structures - alternative types?

Non-arbitrary Denotations: AND

For every two functions f_{A} and f_{B} in $D_{e t}$, characterizing the subsets A and B of D_{e} : $\left(\operatorname{AND}\left(f_{A}\right)\right)\left(f_{B}\right)$ is defined as the function $f_{A \cap B}$, characterizing the intersection of A and B.

Explain:

Tina is tall and thin ==> Tina is thin
$(\operatorname{AND}($ thin $)($ tall $))($ tina $)$

Types?

Summary of useful types

t
e
et
$e(e t)$
(et) t
(et)e
$(e t)((e t) t)$
$\tau \tau$
$\tau(\tau \tau)$

sentences

proper names, referential noun phrases
intransitive verbs and common nouns
transitive verbs
quantificational noun phrases
articles (the, a)
determiners (some, every)
modifiers (adjectives, adverbs, prepositional phrases, negation, relative clauses)
coordinators (conjunction, disjunction, restrictive relative pronouns)

Function Application and constituency

What would be the type of IS with the follow (infelicitous) structure?
[Tina is] tall
a.

b.
$\operatorname{tall}^{\prime}\left(\mathbf{i s}^{\prime}\left(\operatorname{tina}^{\prime}\right)\right): t$

is'(tina') $^{\prime} e \quad$ tall': et

Exercise

give types to words the following sentences
Mary [walked [in Utrecht]]
[Walk -ing] [is fun]
[[Walk -ing] [in Utrecht]] [is fun]
[The man] smiled
[The [tall man]] smiled
[If [you smile]] [you win]
There [is [trouble [in Paradise]]]
I [[love it] [when [you smile]]]

