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1 Introduction
In this paper we have brought together several results on the proof theory
of the existence predicate in intuitionistic logic. This predicate, E, denotes
whether a term exists or not: Et is read as t exists. Such a predicate was first
introduced by Dana Scott in [20] in 1979. In this paper the author, in his one
words, advocates in a mild way an extension of intuitionistic logic allowing
reference to partial terms. One example from the paper pointing out, if
not the necessity, at least the usefulness of having an existence predicate
available is the following. In the context of rings the statement

∀xϕ(x) ⇒ ϕ(0)

is unconditionally true, since 0 is an element of all rings. In contrast to this,
however,

∀xϕ(x) ⇒ ϕ(1/x)

is not generally true as not every element in a ring has an inverse. One
could of course turn the latter into a conditional statement by formulating
it as

∀xϕ(x) ⇒ ∀ y
(
x · y = 1 ⇒ ϕ(y)

)
.

Now, still following Scott in [20], using the existence predicate one could
express this more succinctly and directly as

∀xϕ(x) ∧ E(1/x) ⇒ ϕ(1/x).

In classical logic there is less need for this as one can always split definitions,
theorems and proof in cases: either the object exists and then ...., or it does
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not exist. It is shown in [20] that in the presence of equality one can define
the existence predicate via

Et ⇔ ∃ y (t = y),

for y not free in t. But still, not only allows the existence predicate for more
elegant and direct formulations, also when equality is not there it can be
interpreted in a meaningful way. The latter is in accordance with the fact
that existence comes for equality. For example, in term rewriting systems
equality presupposes existence:

t = s ⇒ t↓ ∧ s↓ .

In this paper we study the existence predicate on this basic level. We
consider intuitionistic logic IQC without equality and extended with the
existence predicate, i.e. we add E to the language of predicate logic and
extend IQC by certain axioms capturing the notion of existence.

What caused the renewed interest in the existence predicate is that re-
cently the predicate was put to use in intuitionistic logic by providing satis-
fying answers to various problems that did not seem solvable in the setting
of intuitionistic logic pure. The two main examples of this, one in the con-
text of Skolemization, the other in the context of truth-value logics, will be
discussed below.

This paper is meant as a survey of recent results on the proof theory of
E. No results included here are new. The survey contains the introduc-
tion of various sequent calculi capturing the notion of existence, and the
proofs that they all satisfy a form of cut-elimination, interpolation and the
Beth definability property. Furthermore it introduces a semantics based on
Kripke models but with a slightly different forcing relation, together with
the proofs that this semantics is sound and complete for the calculi.

Our systems diverge slightly from other approaches in the literature in
that we mostly consider mixed systems. By this we mean that we consider
languages L ⊆ L′ and for terms in L assume that they exist, but for terms
in L′\L we do not assume this. The systems consist of a basic Gentzen
calculus LJE to which we add axioms of the form Et for all t in L. This
allows us to consider various other systems in the literature as subsystems of
our systems, depending on how we choose L. Also the applications discussed
at the end of the paper show why allowing such a mixture is desirable.

1.1 Brouwer and Kant
On a more philosophical level there might be a reason that the existence
predicate has not played an important role in the context of intuitionistic
logic up till now, relating to Kant’s view on existence.
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We quote below from Kritik der reinen Vernunft , B626–B628. The pre-
cise passage was pointed out to us by Mark van Atten. The context of the
quotation are the proofs of God’s existence, according to which the concept
God includes all perfections of realities, and that it is more perfect of more
real to have the existence property than to have it not. In contrast to this,
Kant claims that existence is no predicate and therefore cannot be part of
the concept God. Kant writes:

“Sein ist offenbar kein reales Prädicat, d. i. ein Begriff von irgend etwas,
was zu dem Begriffe eines Dinges hinzukommen könne. Es ist bloß die
Position eines Dinges oder gewisser Bestimmungen an sich selbst.

Im logischen Gebrauche ist es lediglich die Copula eines Urtheils. Der
Satz: Gott ist allmächtig, enthält zwei Begriffe, die ihre Objecte haben:
Gott und Allmacht; das Wörtchen: ist, ist noch nicht ein Prädicat obenein,
sondern nur das, was das Prädicat beziehungsweise aufs Subject setzt. Nehme
ich nun das Subject (Gott) mit allen seinen Prädicaten (worunter auch die
Allmacht gehört) zusammen und sage: Gott ist, oder es ist ein Gott, so
setze ich kein neues Prädicat zum Begriffe von Gott, sondern nur das Sub-
ject an sich selbst mit allen seinen Prädicaten und zwar den Gegenstand in
Beziehung auf meinen Begriff. Beide müssen genau einerlei enthalten, und
es kann daher zu dem Begriffe, der bloß die Möglichkeit ausdrückt, darum
daß ich dessen Gegenstand als schlechthin gegeben (durch den Ausdruck:
er ist) denke, nichts weiter hinzukommen.

Und so enthält das Wirkliche nichts mehr als das bloß Mögliche. Hundert
wirkliche Thaler enthalten nicht das Mindeste mehr, als hundert mögliche.
Denn da diese den Begriff, jene aber den Gegenstand und dessen Position an
sich selbst bedeuten, so würde, im Fall dieser mehr enthielte als jener, mein
Begriff nicht den ganzen Gegenstand ausdrücken und also auch nicht der
angemessene Begriff von ihm sein. Aber in meinem Vermögenszustande ist
mehr bei hundert wirklichen Thalern, als bei dem bloßen Begriffe derselben
(d. i. ihrer Möglichkeit). Denn der Gegenstand ist bei der Wirklichkeit nicht
bloß in meinem Begriffe analytisch enthalten, sondern kommt zu meinem Be-
griffe (der eine Bestimmung meines Zustandes ist) synthetisch hinzu, ohne
daß durch dieses Sein außerhalb meinem Begriffe diese gedachte hundert
Thaler selbst im mindesten vermehrt werden.

Wenn ich also ein Ding, durch welche und wie viel Prädicate ich will,
(selbst in der durchgängigen Bestimmung) denke, so kommt dadurch, da ich
noch hinzusetze: dieses Ding ist, nicht das mindeste zu dem Dinge hinzu.”

In the english translation1: “Being is evidently not a real predicate, that
is, a conception of something which is added to the conception of some other
thing. It is merely the positing of a thing, or of certain determinations in

1Translation by J.M.D. Meicklejohn 1969.
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it. Logically, it is merely the copula of a judgement. The proposition, God
is omnipotent, contains two conceptions, which have a certain object or
content; the word is, is no additional predicate - it merely indicates the
relation of the predicate to the subject. Now, if I take the subject (God)
with all its predicates (omnipotence being one), and say: God is, or, There
is a God, I add no new predicate to the conception of God, I merely posit
or affirm the existence of the subject with all its predicates - I posit the
object in relation to my conception. The content of both is the same; and
there is no addition made to the conception, which expresses merely the
possibility of the object, by my cogitating the object - in the expression,
it is - as absolutely given or existing. Thus the real contains no more
than the possible. A hundred real dollars contain no more than a hundred
possible dollars. For, as the latter indicate the conception, and the former
the object, on the supposition that the content of the former was greater
than that of the latter, my conception would not be an expression of the
whole object, and would consequently be an inadequate conception of it.
But in reckoning my wealth there may be said to be more in a hundred real
dollars than in a hundred possible dollars - that is, in the mere conception
of them. For the real object - the dollars - is not analytically contained in
my conception, but forms a synthetical addition to my conception (which is
merely a determination of my mental state), although this objective reality
- this existence - apart from my conceptions, does not in the least degree
increase the aforesaid hundred dollars.

By whatever and by whatever number of predicates - even to the complete
determination of it - I may cogitate a thing, I do not in the least augment
the object of my conception by the addition of the statement: This thing
exists.”

As was pointed out to us by Mark van Atten, Brouwer certainly knew
the passage above, as in a letter2 to his PhD supervisor he mentions having
read Kritik der reinen Vernunft very thoroughly.

The above expressed viewpoint however overlooks the fact, that (condi-
tions of) existence can be described in various sometimes surprising ways
and the corresponding concepts can be interrelated via intuitionistic logic.
It is the same story as with termination, another manifestation of existence:
termination of a computable function with respect to a given input is a mere
fact independent of the logical viewpoint. To analyze however the notion
of termination itself logical frameworks are needed to represent (conditions
of) termination in a general setting: this step is necessary even to state the
totality of a program, i.e. the termination with respect to all potential input
values.

2A letter from 5.11.1906 to Diederik Korteweg



The existence predicate 5

1.2 Section contents
The paper is build up as follows. In Section 2 the main proof system is in-
troduced. In Section 3 it is proved that to have a form of cut-elimination, in
Section 5 it is shown that it satisfies interpolation and the Beth definability
property. Section 4 discusses the relation of our Gentzen calculi to systems
capturing E that have been considered before. In Section 6 semantics are
introduced which in Section 7 are proved to be sound and complete with
respect to the calculi. Section 8 contains the applications to Skolemization
and truth-value logics mentioned above.

Acknowledgement We thank Mark van Atten for pointing out to us
the particular passage of Kritik der reinen Vernunft quoted above and for
the remarks on Brouwer.

2 A Gentzen calculus

In this section we define the Gentzen calculus LJE, an extension of LJ for in-
tuitionistic predicate logic extended by the existence predicate, that covers
the intuition that Et means t exists . Hilbert type systems for the existence
predicate were first introduced by D. Scott in [20]. Natural deduction for-
mulations were given by M. Unterhalt in [30]. The Gentzen calculi given
below were first introduced by the authors in [2]. The relation between
these systems will be discussed in Section 4.

2.1 Preliminaries
Given an existence predicate, terms, including variables, typically range
over existing as well as non-existing objects, while the quantifiers range
over existing objects only. Proofs are assumed to be trees.

We consider languages L ⊆ L′ for intuitionistic predicate logic plus the
existence predicate E, without equality. E ∈ L and L′

− denotes L′ without
E. For convenience we assume that L contains at least one constant and
no variables, and that L′ contains infinitely many variables. The reason for
requiring that L contains at least one constant is given in Remark 2. We
assume that the variables belong only to the bigger language because in our
main system we will assume terms in L to exist, and assuming variables
to exist would block the free substitution of terms for variables. Moreover,
we think it the more natural approach to let free variables be as free as
possible, no restrictions put on them. More on this in Section 4.

The languages contain ⊥, and ¬A is defined as A → ⊥. A, B, C, D, E, ..
range over formulas in L′, s, t, .. over terms in L′. Γ, ∆, Π range over multi-
sets of formulas in L′. Sequents are expressions of the form Γ ⇒ C, where
Γ is a finite multiset. A sequent is in L if all its formulas are in L. And
similarly for L′. A formula is closed when it does not contain free variables.
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A sequent Γ ⇒ C is closed if C and all formulas in Γ are closed. We often
write Ax for A(x).

In the final proof system (⇒ Et ) will hold for the terms in L, but not
necessarily for the terms in L′\L. TL denotes the set of terms in L, FL

denotes the set of formulas in L, SL denotes the set of sequents in L, and
similarly for L′.

2.2 The system LJE

Ax Γ, P ⇒ P (P atomic) L⊥ Γ,⊥ ⇒ C

Γ, A, B ⇒ C
L∧ Γ, A ∧ B ⇒ C

Γ ⇒ A Γ ⇒ BR∧ Γ ⇒ A ∧ B

Γ, A ⇒ C Γ, B ⇒ C
L∨ Γ, A ∨ B ⇒ C

Γ ⇒ AiR∨ i = 0, 1
Γ ⇒ A0 ∨ A1

Γ, A → B ⇒ A Γ, B ⇒ C
L→ Γ, A → B ⇒ C

Γ, A ⇒ B
R→ Γ ⇒ A → B

Γ, ∀xAx, At ⇒ C Γ, ∀xAx ⇒ Et
L∀ Γ, ∀xAx ⇒ C

Γ, Ey ⇒ Ay
R∀ ∗

Γ ⇒ ∀xA[x/y]

Γ, Ay, Ey ⇒ C
L∃ ∗

Γ, ∃xAx ⇒ C
Γ ⇒ At Γ ⇒ EtR∃ Γ ⇒ ∃xA[x/t]

Γ ⇒ A Γ, A ⇒ C
Cut Γ ⇒ C

Where (∗) denotes the condition that y does not occur free in Γ and C.
We write LJE - S if the sequent S is derivable in LJE. For a set of

sequents S and a sequent S, we say that S is derivable from S in LJE, and
write S -LJE S, if S is derivable in LJE extended by axioms S . We define

LJE(S) ≡def {S ∈ SL′ | S -LJE S}.

In the system LJE no existence of any term is assumed. This implies e.g.
that we cannot derive ⇒ ∃xEx. And we cannot derive ∀xPx ⇒ Pt either,
but only ∀xPx, Et ⇒ Pt. Note however that the former is derivable in LJE
from (⇒ Et). This is the reason why we consider derivations from extra
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axioms, especially axioms of the form (⇒ Et). Therefore, we define the
following sets of sequents

ΣL ≡def {Γ ⇒ Et | t ∈ TL, Γ a multiset}.

Note that for all sequents Γ ⇒ Et in ΣL, t is a closed term, and that
because of the assumptions on L, ΣL contains at least one sequent. Given
two languages L ⊆ L′, we write

LJE(ΣL) ≡def {S ∈ SL′ | ΣL -LJE⇒ S}.

The L′ is not denoted in LJE(ΣL), but most of the time it is clear what
‘bigger’ language L′ of which L is a subset is.

We often write -L for -LJE(ΣL).

EXAMPLE 1.
/-LJE⇒ ∃xEx -LJE⇒ ∀xEx.

-LJE(ΣL)⇒ ∃xEx ∧ ∀xEx.

In Proposition 8 the relation between LJ and LJE is explained.

REMARK 2. The requirement that L contains at least one constant is
needed to make the construction of the reduction trees work: see Defini-
tion 18, the remark at the case R∀ .

2.3 Uniqueness
Observe that given another predicate E′ that satisfies the same rules of LJE
as E′, it follows that

-L Et ⇒ E′t and -L E′t ⇒ Et.

We namely have that -L (⇒ ∀xEx ∧ ∀xE′x), and also -L (∀xEx, E′t ⇒
Et) and -L (∀xE′x, Et ⇒ E′t). Finally, two cuts do the trick. This shows
that the existence predicate E is unique up to provable equivalence.

3 Cut elimination
We assume eigenvariables, free and bound variables to be three distinct sets
of variables. The variable y in L∃ and R∀ is called an eigenvariable. The
depth of a sequent in a proof is inductively defined as the sum of the depths
of its upper sequents plus 1. Thus axioms have depth 1. The complexity
|C| of a formula is the number of occurrences of connectives and quantifiers
in C. The rank of a cut is 1 + the complexity of the cut formula. The level
of a cut is the sum of the depths of its two hypotheses. The cutrank cr(P)
of a proof P is the maximal rank of cuts in P . The depth of a proof, dp(P),
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is the depth of its endsequent. We write LJE -d S when S has a proof
of depth ≤ d in LJE, We write LJE -c S when S has a proof of cutrank
≤ c. Similarly for LJE(ΣL). For a proof P , P [t/y] denotes the result of
substituting t for y everywhere in P .

3.1 Substitution, Weakening and Contraction
We start with the substitution lemma.

LEMMA 3. For L ∈ {LJE(ΣL), LJE}:
If P is a proof in L of a sequent S in L′ in which y occurs free, and if t is
a term in L′ that does not contain eigenvariables or bound variables of P ,
then P [t/y] is a proof of S[t/y] in L. Moreover, cr(P [t/y]) ≤ cr(P) and
dp(P [t/y]) ≤ dp(P).

Proof. We treat the case L = LJE(ΣL). We use induction to the depth d of
P . Let P ′ = P [t/y], S′ = S[t/y]. First d = 1, the case that P is an instance
of an axiom. The axioms Ax, L⊥ in P are replaced by instances of the same
axioms in P ′, so these will not be violated under the transformation. For
axioms Π ⇒ Es in ΣL it follows that s is a closed term in L. Hence the
sequent that results from the substitution, (Π[t/y] ⇒ Es), belongs to ΣL

too. This completes the case d = 1.
Suppose d > 1. First note that because eigenvariables are distinct from

free variables in a proof, y cannot be an eigenvariable in P . We distinguish
by cases according to the last rule in P . The connective rules and cuts in
P are replaced by instances of the same rules in P ′, so these will not be
violated under the transformation. Thus the quantifier rules remain.

Suppose the last inference in P is a quantifier rule. In the case of L∀
and R∃ there are no side conditions, whence these rules will not be violated
in going from P to P ′. We treat R∀ , the case L∃ is similar. Consider an
application of R∀ in P :

P1

Π, Ez ⇒ Bz
Π ⇒ ∀uBu

Thus z is not free in Π, and z /= y and u /= y, since y is no eigenvariable
or bound variable. By assumption on t, u does not occur in t. Under the
transformation this will become

P1[t/y]
Π[t/y], Ez ⇒ Bz[t/y]
Π[t/y] ⇒ ∀uBu[t/y]
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To see that this a valid application of R∀ , it suffices to see that z is not free
in Π[t/y], which is clear from the assumption on t.

To check that cr(P ′) ≤ cr(P ) and dp(P ′) ≤ dp(P ) is left to the reader.
!

LEMMA 4. For L ∈ {LJE(ΣL), LJE}: L -c
d Γ ⇒ C implies L -c

d Γ, A ⇒ C.

Proof. Left to the reader. For the quantifier rules, use Lemma 3 to repair
variable clashes. !

LEMMA 5. For L ∈ {LJE(ΣL), LJE}: L has contraction. In fact:

L -c
d Γ, A, A ⇒ C implies L -c

d Γ, A ⇒ C (1)

Proof. To show that the system has contraction we need the following
claim.
CLAIM. For d > 0, it holds that

L -c
d Γ, A ∧ B ⇒ C implies L -c

d Γ, A, B ⇒ C
L -c

d Γ, A ∨ B ⇒ C implies L -c
d Γ, A ⇒ C and L -d Γ, B ⇒ C

L -c
d Γ ⇒ A → B implies L -c

d Γ, A ⇒ B
L -c

d Γ, ∃xAx ⇒ C implies L -c
d Γ, Ey, Ay ⇒ C, for all y.

Proof of Claim. The only detail here is the possibility of variable clashes.
We only treat the case of the existential quantifier, with induction to d. If
Γ, ∃xAx ⇒ C is an axiom, then so is Γ, Ey, Ay ⇒ C. Suppose it it not
an axiom. If in the last inference in the proof of Γ, ∃xAx ⇒ C, ∃xAx is
not principal, then the induction hypothesis applies: for the rules without
eigenvariables this is immediate. For the rules with eigenvariables, if the
eigenvariable is y, we just replace it by a fresh eigenvariable not occurring
in the proof, and then using the induction hypothesis we obtain a proof of
Γ, Ey, Ay ⇒ C of same rank and depth. If ∃xAx is principal in the last
rule, the result follows immediately. This proofs the claim.

Using this claim we prove (1) with induction to the depth d of the proof
of Γ, A, A ⇒ C in L. If d = 1, the sequent is an axiom, and so Γ, A ⇒ C
clearly is an axiom too (also in the case of ΣL). Consider the case d + 1.
If the last rule in the proof is a right rule or the principal formula is in Γ,
then the induction hypothesis applies. Therefore, suppose it is a left rule
and the principal formula is not in Γ. We distinguish by cases. We treat
L∧ and leave the other cases to the reader. In this case the last part of the
proof then looks as follows.
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...
Γ, A ∧ B, A, B ⇒ C

Γ, A ∧ B, A ∧ B ⇒ C

Assume the cutrank of the proof is n. Let P be the proof of Γ, A∧B, A, B ⇒
C. Note that P has depth d. Thus we can apply the claim and obtain a
proof of Γ, A, B, A, B ⇒ C of depth ≤ d and cutrank ≤ n. Then we apply
the induction hypothesis, first to A and then to B, and obtain a proof of
Γ, A, B ⇒ C of depth ≤ d and cutrank ≤ n. An application of L∧ provides
a proof of Γ, A ∧ B ⇒ C of depth ≤ d + 1 and cutrank ≤ n, as desired. !

3.2 Restriction to Ecuts

THEOREM 6. For L ∈ {LJE(ΣL), LJE}:
Every sequent in L′ provable in L has a proof in L in which the only cuts
are instances of the ECut rule:

Γ ⇒ Et ∈ ΣL Γ, Et ⇒ C
ECut: Γ ⇒ C

In particular, LJE has cut-elimination.

Proof. For a smooth induction it is convenient to replace the Cut rule in
LJE by the following generalization of it, the so-called Mix rule:

Γ ⇒ A Γ′, A ⇒ C
Mix ΓΓ′ ⇒ C

In the Mix rule A is called the cutformula. When we speak about cuts in
a proof, we refer to instances of the Cut or the Mix rule. The notions of
cutrank are extended to proofs with the Mix rule in the obvious way. To
prove the theorem we then show that applications of Mix can be removed
from a proof, unless they are instances of EMix, which is

Γ ⇒ Et ∈ ΣL Γ′, Et ⇒ C
EMix: ΓΓ′ ⇒ C

Note that this indeed implies that all provable sequents have a proof in which
the only cuts are instances of ECut: Γ ⇒ Et ∈ ΣL implies Γ′ ⇒ Et ∈ ΣL

for all Γ′, and thus the conclusion of the EMix as above can be obtained
also via the ECut

ΓΓ′ ⇒ Et ∈ ΣL ΓΓ′, Et ⇒ C

ΓΓ′ ⇒ C
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For now, we call a proof ecutfree if all applications of Mix are instances of
EMix, and we call it cutfree when it contains no cuts at all. Recall that the
cutrank cr(P) of a proof P is 1 + the maximal complexity of cutformulas
in P .

The proof of the theorem consists of two claims. The first shows how to
remove cuts of rank > 1 from a proof, and the second shows how cuts of
rank 1 that are not instances of EMix can be removed from a proof. These
two claims together imply the theorem.
CLAIM. For L ∈ {LJE(ΣL), LJE}: Every sequent in L′ provable in L has a
proof in L in which all cuts have rank 1.
Proof of Claim. We treat the case LJE(ΣL), the case LJE is similar. It
suffices to show that a proof P ending in a cut

P1

Γ ⇒ A

P2

Γ′, A ⇒ C

ΓΓ′ ⇒ C

with |A| > 0 and with cr(P1 ), cr(P2 ) ≤ |A|, can be transformed into a proof
P ′ of ΓΓ′ ⇒ C such that cr(P ′) < cr(P). Note that cr(P) = |A| + 1 > 1.
We prove this by induction on the cutrank of P with a sub induction to the
level of the lowest cut of maximal rank in P (the level of a cut is the sum
of the depths of its two hypotheses). We call Γ ⇒ A and Γ′, A ⇒ C the
hypotheses of the cut and ΓΓ′ ⇒ C the conclusion. Since |A| > 0, A cannot
be principal in an axiom, including ΣL. Note also that A cannot be of the
form Et. Therefore, we only have to distinguish the following two cases:
(a) the cutformula is not principal in one of the hypotheses,
(b) cutformula is principal in both hypotheses, which are not axioms.

(a) Suppose the cut formula is not principal in one of the hypotheses. If
this hypothesis is an instance of axioms Ax or L⊥, then so is the conclusion
of the cut, and whence we have a cutfree proof of it. If this hypothesis is an
instance of an axiom Γ ⇒ Et in ΣL, then since |A| > 0 it has to be the right
hypothesis. Observe that (Γ ⇒ Et) ∈ ΣL, implies that (Π ⇒ Et) ∈ ΣL for
all Π. Hence the conclusion of the cut is a sequent in ΣL, in which case we
have a cutfree proof of it.

Next suppose that the hypothesis in which A is not principal is the lower
sequent of an application of one of the rules. In this case we can cut higher
up. That is, suppose the cutformula is not principal in the left hypothesis,
and assume this is a two hypotheses rule R, say R∨. Then P looks as
follows.
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P1

Γ1 ⇒ A
P2

Γ2 ⇒ A
R∨ Γ ⇒ A

P3

Γ′, A ⇒ C

ΓΓ′ ⇒ C

Note that by assumption cr(Pi) < cr(P) for i = 1, 2, 3. Then we transform
the proof into a proof P ′ as follows.

P1

Γ1 ⇒ A

P3

Γ′, A ⇒ C

Γ1Γ′ ⇒ C

P2

Γ2 ⇒ A

P3

Γ′, A ⇒ C

Γ2Γ′ ⇒ C
R ΓΓ′ ⇒ C

Now we have two cuts on A, but the level of the lowest cut of maximal
rank in P ′ is one of these cuts. Thus cr(P ′) = cr(P), but the level of the
lowest cut of maximal rank in P ′ is smaller than the level of the lowest cut
of maximal rank in P . Therefore, we can apply the induction hypothesis
and are done. The other cases are similar. Note that in the case that R is
a cut, it is by assumption a cut of rank < |A| + 1. Hence also in this case
the induction hypothesis applies to P ′.

(b) In this case the cut is principal in both hypotheses, and both hy-
potheses are not axioms. We distinguish by cases according to the outer-
most logical symbol in A: the cases ∧, ∨, → are treated in the same way as
in the case of LJ, see e.g. [29]. We treat the quantifiers.

∀ : then P looks as follows:

P1

Γ, Ey ⇒ Ay
d1Γ ⇒ ∀xAx

P2

Γ′, ∀xAx, At ⇒ C

P3

Γ′, ∀xAx ⇒ Et
d2

Γ′, ∀xAx ⇒ C

ΓΓ′ ⇒ C

Note that y is not free in Γ because of the conditions on R∀ , and y is not
free in Γ′, C and t because of the conditions on eigenvariables in a proof. By
assmptions on variables, t does not contain eigenvariables or bound variables
in P .

We can transform the above proof into the following proof P ′:

P1

Γ, Ey ⇒ Ay
Γ ⇒ ∀xAx

P3

Γ′, ∀xAx ⇒ Et

ΓΓ′ ⇒ Et

P1[t/y]
Γ, Et ⇒ At

ΓΓΓ′ ⇒ At

P1

Γ, Ey ⇒ Ay
Γ ⇒ ∀xAx

P2

Γ′, ∀xAx, At ⇒ C

ΓΓ′, At ⇒ C

ΓΓΓΓ′Γ′ ⇒ C
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Note that the endsequent of P1[t/y] indeed is Γ, Et ⇒ At as y is not free
Γ. By Lemma 3, P1[t/y] is a proof of (Γ, Et ⇒ At) in LJE(ΣL) such that
cr(P1 [t/y]) ≤ cr(P1 ) < cr(P). The cuts on ∀xAx both have a lower level
and the same rank as in P . Therefore, we can apply the induction hypoth-
esis and obtain proofs of their conclusions of cutrank < cr(P). Whence
there is a proof of ΓΓΓΓ′Γ′ ⇒ C of cutrank < cr(P). Application of some
contractions, Lemma 5, gives a proof of ΓΓ′ ⇒ C of cutrank < cr(P). This
proves the case ∀ .

∃ : Similar. Here P looks as follows:

P1

Γ ⇒ At

P2

Γ ⇒ Et
Γ ⇒ ∃xAx

P3

Γ′, Ey, Ay ⇒ C

Γ′, ∃xAx ⇒ C

ΓΓ′ ⇒ C

Because of the side condition that y is not free in Γ′ and C we can transform
this proof into the following proof P ′:

P1

Γ ⇒ At

P2

Γ ⇒ Et

P3[t/y]
Γ′, Et, At ⇒ C

ΓΓ′, At ⇒ C

ΓΓΓ′ ⇒ C

By Lemma 3, cr(P3 [t/y]) ≤ cr(P3 ). Thus cr(P ′) < cr(P). This completes
(b) and thereby the proof of the claim.
CLAIM. For L ∈ {LJE(ΣL), LJE}: Every sequent in L′ that has a proof in
L of cutrank 1, has a proof in L in which all cuts are instances of EMix.
Proof of Claim. We treat the case LJE(ΣL). We use induction to the
depth d of a proof P of cutrank ≤ 1 of a sequent S. The case d = 1 is
trivial, as then P consists of an axiom only. Suppose d > 1. If the last
inference in P is not a cut or it is an application of EMix, we can apply
the induction hypothesis and are done. Therefore, suppose P ends in a cut
that is not an instance of EMix:

P1

Γ ⇒ A

P2

Γ′, A ⇒ C
dΓΓ′ ⇒ C

Thus by the induction hypothesis P1 and P2 are ecutfree, i.e. all cuts they
contain are instances of EMix. And as P has cutrank ≤ 1, A is atomic or
⊥ or of the form Et. Denote ΓΓ′ ⇒ C by S. We distinguish the following
cases:
(c) the cutformula is principal in the rigth hypothesis,
(d) the cutformula is not principal in the right hypothesis.
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(c) Assume the cutformula is principal in the right hypothesis. The form
of A implies that whence the right hypothesis Γ′, A ⇒ C has to be an axiom.
Since A is principal in it, C = A or A = ⊥. In the former case we can obtain
a ecutfree proof of S by weakening the sequent Γ ⇒ A. If A = ⊥, then it
follows that either ⊥ ∈ Γ or A is not principal in the left hypothesis. In
the former case S is an instance of L⊥ and we are done. In the latter case,
since A is not principal in it, Γ ⇒ ⊥ is the conclusion of a rule R in which
⊥ is not principal. In this case one can cut higher up, like in case (b) in the
proof of the first claim: we treat the case that R is an EMix, and leave the
other cases to the reader. In this case P looks as follows.

Γ ⇒ Et ∈ ΣL

P1

Γ′, Et ⇒ ⊥
ΓΓ′ ⇒ ⊥ Γ′′,⊥ ⇒ C

ΓΓ′Γ′′ ⇒ C

We transform this proof into the proof P ′:

Γ ⇒ Et ∈ ΣL

P1

Γ′, Et ⇒ ⊥ Γ′′,⊥ ⇒ C

Γ′Γ′′, Et ⇒ ⊥
ΓΓ′Γ′′ ⇒ ⊥

We apply the induction hypothesis to P ′ and are done.
(d) Assume the cutformula is not principal in the right hypothesis. If

Γ′, A ⇒ C is an axiom, then ⊥ ∈ Γ′, C ∈ Γ′ or C = Et for some t ∈ TL. In
all cases S is an instance of the same axiom. If the right hypothesis is an
application of a rule R we proceed as follows. We treat the cases that R is
a two hypothesis rule that is not a cut, and the case that it is a cut, and
leave the other cases to the reader. First, suppose R is not a cut. Then P
looks as follows.

P1

Γ ⇒ A

P2

Γ1, A ⇒ C1

P3

Γ2, A ⇒ C2 RΓ′, A ⇒ C

ΓΓ′ ⇒ C

Note that by the induction hypothesis the Pi are ecutfree. Then we trans-
form the proof into a proof P ′ as follows.

P1

Γ ⇒ A
P2

Γ1, A ⇒ C1

ΓΓ1 ⇒ C1

P1

Γ ⇒ A
P3

Γ2, A ⇒ C2

Γ, Γ2 ⇒ C2 RΓΓ′ ⇒ C
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Since R is not a cut we can apply the induction hypothesis to P ′ and are
done.

Finally, we treat the case that R is a cut. By the induction hypothesis it
is an instance of EMix. Hence P looks like this:

P1

Γ ⇒ A

Γ′, A ⇒ Et ∈ ΣL

P2

Γ′′, Et, A ⇒ C

Γ′Γ′′, A ⇒ C

ΓΓ′Γ′′ ⇒ C

Then we transform the proof into a proof P ′ as follows:

Γ′ ⇒ Et ∈ ΣL

P1

Γ ⇒ A

P2

Γ′′, Et, A ⇒ C

ΓΓ′′, Et ⇒ C

ΓΓ′Γ′′ ⇒ C

To see that this is indeed a proof, note that (Γ′, A ⇒ Et) ∈ ΣL implies
t ∈ TL, which implies (Γ′ ⇒ Et) ∈ ΣL. Now the induction hypothesis
applies to P ′, and we are done. This proves the second claim.

As explained above, the two claims imply the theorem. !
COROLLARY 7. LJE(ΣL) is consistent.

The cut elimination theorem allows us to proof the following correspon-
dence between LJ and LJE(ΣL), one direction of which has already been
proved above.

PROPOSITION 8. For every sequent S in L not containing E:

LJ - S if and only if LJE(ΣL) - S.

Proof. The direction from right to left: show with induction to the depth
of the proof that for Γ and A not containing E, if Et1, . . . , Etn, Γ ⇒ A is
derivable in LJE(ΣL) by a proof in which all cuts are instances of ECut,
then Γ ⇒ A is derivable in LJ. We leave the other direction to the reader.

!
PROPOSITION 9. For quantifier free closed sequents the relations -LJE and
-L are decidable.

Proof. Show, using the theorem on ECuts above, that when t is a term that
does not occur in a quantifier free sequent Γ ⇒ C, not even as a subterm,
then

-L Γ, Et ⇒ C implies -L Γ ⇒ C,

and similarly for LJE. !
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4 IQCE and IQCE+

As remarked above, given an existence predicate, closed terms typically
range over existing as well as non-existing elements, while quantifiers range
over existing objects only. As to the choice of the domain for the variables,
there have been different approaches. Scott in [20] introduces a system IQCE
for the predicate language with the distinguished predicate E, in which
variables range over all objects, like in LJE and LJE(ΣL). On the other
hand, Beeson in [6] discusses a system in which variables range over existing
objects only.

The formulation of the system IQCE in [20], where logic with an existence
predicate was first introduced was in Hilbert style, where the axioms and
rules for the quantifiers were the following:

∀xAx ∧ Et → At

...
B ∧ Ey → Ay

*
B → ∀xAx

...
Ay ∧ Ey → B

*∃xAx → B

At ∧ Et → ∃xAx

Here ∗ are the usual side conditions on the eigenvariable y.
The following formulation of IQCE in natural deduction style was first

given in [30]. We recall the system as given in [28]. We call the system NDE
(Natural Deduction Existence). It consists of the axioms and quantifier
rules of the standard natural deduction formulation of IQC (as e.g. given in
[28]), where the quantifier rules are replaced by the following rules:

[Ey]
...

Ay
∀ I *∀xAx

...
∀xAx

...
Et∀E

At

...
At

...
Et∃ I ∃xAx

...
∃xAx

[Ay][Ey]
...
C∃E *C

Again, the ∗ are the usual side conditions on the eigenvariable y. It is easy
to see that the following holds.
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FACT 10. ∀A ∈ FL′ : -IQCE A if and only if -NDE A if and only if -LJE⇒ A.

Existence logic in which terms range over all object while quantifiers and
variables only range over existing objects is denoted by IQCE+ and has e.g.
been used by M. Beeson in [6]. The logic is the result of leaving out Ey in the
two rules for the quantifiers in IQCE given above and adding Ex as axioms
for all variables x. A formulation in natural deduction style is obtained
from NDE by replacing the ∀ I and ∃E by their standard formulations for
IQC and adding Ex as axioms for all variables x. We call the system NDE+.
There are some details concerning substitutions for these systems, but we
will not discuss them here, but only remark in how far these systems are
equivalent:

FACT 11. ∀A ∈ FL:
-IQCE+ A iff -NDE+ A iff {Γ ⇒ Ex | x a variable, Γ a multiset} -LJE(ΣL)⇒
A.

M. Unterhalt in [30] thoroughly studied the Kripke semantics of these
logics and proved respectively completeness and strong completeness for
the systems IQCE and IQCE+. Section 6 discusses his and our completeness
results.

5 Interpolation
Recall that we say that a single conclusion Gentzen calculus L has interpola-
tion if whenever L - Γ1, Γ2 ⇒ C, there exists an I in the common language
of Γ1 and Γ2 ∪ {C} such that

Γ1 -L I and I, Γ2 -L C.

In the context of existence logics, the common language of two multisets Γ1

and Γ2, denoted by L(Γ1, Γ2), consists of all variables, 2, ⊥ and E, and all
predicates and non-variable terms that occur both in Γ1 and Γ2.

We say that a Gentzen calculus L satisfies the Beth definability property if
whenever A(R) is a formula with R an n-ary relation symbol in a language
L, and R′, R′′ are two relation symbols not in L such that

L - A(R′) ∧ A(R′′) ⇒ ∀ x̄(R′x̄ ↔ R′′x̄),

then there is a formula S in L such that

L -⇒ ∀ x̄(Sx̄ ↔ R′x̄).

In this section we prove that the calculus LJE and LJE(ΣL) have inter-
polation. To this end we use a calculus LJE′ that is equivalent to LJE but
in which the structural rules are not hidden.
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The system LJE′

Ax Γ, P ⇒ P (P atomic) L⊥ Γ,⊥ ⇒ C

Γ ⇒ CLW Γ, A ⇒ C
Γ, A, A ⇒ C

LC Γ, A ⇒ C

Γ, A, B ⇒ C
L∧ Γ, A ∧ B ⇒ C

Γ ⇒ A Γ ⇒ BR∧ Γ ⇒ A ∧ B

Γ, A ⇒ C Γ, B ⇒ C
L∨ Γ, A ∨ B ⇒ C

Γ ⇒ AiR∨ i = 0, 1
Γ ⇒ A0 ∨ A1

Γ ⇒ A Γ, B ⇒ C
L→ Γ, A → B ⇒ C

Γ, A ⇒ B
R→ Γ ⇒ A → B

Γ, At ⇒ C Γ ⇒ Et
L∀ Γ, ∀xAx ⇒ C

Γ, Ey ⇒ Ay
R∀ ∗

Γ ⇒ ∀xA[x/y]

Γ, Ay, Ey ⇒ C
L∃ ∗

Γ, ∃xA[x/y] ⇒ C
Γ ⇒ At Γ ⇒ EtR∃ Γ ⇒ ∃xAx

Γ ⇒ Et ∈ ΣL Γ, Et ⇒ C
ECut: Γ ⇒ C

The calculus LJE′(ΣL) is the system LJE′ extended by the axioms ΣL

(Section 2).

LEMMA 12. For al formulas A in L′:

LJE - A ⇔ LJE′ - A LJE(ΣL) - A ⇔ LJE′(ΣL) - A.

Proof. Use Theorem 6 and Lemma’s 4 and 5. !

Recall that we write L(Γ1, Γ2) for the common language of Γ1 and Γ2,
i.e. the language consisting of the predicates and non-variable terms that
occur both in Γ1 and Γ2, plus 2, ⊥ and E and the variables.

THEOREM 13. LJE′ and LJE′(ΣL) have interpolation.
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Proof. We first prove the theorem for LJE′ and then for LJE′(ΣL) by
showing how this case can be reduced to the LJE′ case. We write - for
-LJE′ in this proof. Assume - Γ1, Γ2 ⇒ C. We look for a formula I in the
common language L(Γ1, Γ2 ∪ {C}) of Γ1 and Γ2 ∪ {C} such that

(2) - Γ1 ⇒ I - I, Γ2 ⇒ C.

We prove the theorem with induction to the depth d of P . Recall that the
depth of a sequent in a proof is inductively defined as the sum of the depths
of its upper sequents plus 1. Thus axioms have depth 1. The depth of a
proof is the depth of its endsequent.

d = 1: P is an instance of an axiom. When the axiom is Ax we have
Γ1Γ2, Q ⇒ Q, where Q is an atomic formula. There are two cases: we look
for interpolants I and J such that

- Γ1, Q ⇒ I - I, Γ2 ⇒ Q and - Γ1 ⇒ J - J, Q, Γ2 ⇒ Q.

This case is trivial: take I = Q and J = 2. The case that P is an instance
of L⊥ is equally simple: again there are two possibilities, like above, and
the interpolants are 2 and ⊥.

d > 1. We distinguish by cases according to the last rule applied in P . If
it is a LC, P looks as follows.

...
Γ1Γ2, A, A ⇒ C

Γ1Γ2, A ⇒ C

Again there are several cases: we look for interpolants

- Γ1, A ⇒ I - I, Γ2 ⇒ C and - Γ1 ⇒ J - J, A, Γ2 ⇒ C.

By the induction hypothesis there are interpolants I ′ and J ′ such that the
sequents Γ1, A, A ⇒ I ′ and I ′, Γ2 ⇒ C, and Γ1 ⇒ J ′ and J ′, A, A, Γ2 ⇒ C
are derivable. Moreover, I ′ is in L(Γ1∪{A}, Γ2∪{C}), and J ′ is in L(Γ1, Γ2∪
{A, C}). Hence taking I = I ′ and J = J ′ and applying contraction gives
the desired result. The case LW is equally trivial.

The connective cases are completely straightforward. For completeness
sake we treat →. Suppose the last rule is L→:

...
Γ1Γ2 ⇒ A

...
Γ1Γ2, B ⇒ C

Γ1Γ2, A → B ⇒ C
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We have to find I ∈ L(Γ1 ∪ {A → B}, Γ2 ∪ {C}) and J ∈ L(Γ1, Γ2 ∪ {A →
B, C}) such that

- Γ1, A → B ⇒ I - I, Γ2 ⇒ C and - Γ1 ⇒ J - J, A → B, Γ2 ⇒ C.

For I, note that by the induction hypothesis there are I ′ ∈ L(Γ2, Γ1 ∪ {A})
and J ′ ∈ L(Γ1 ∪ {B}, Γ2 ∪ {C}) such that

(3) - Γ2 ⇒ I ′ - I ′, Γ1 ⇒ A and - Γ1, B ⇒ J ′ - J ′, Γ2 ⇒ C.

By applying LW with I ′ to the 3rd sequent in (3), then applying L→ to this
and the 2nd sequent, and then applying R→, gives

- Γ1, A → B ⇒ I ′ → J ′.

Applying L→ to the 1st and 4th sequents in (3) gives I ′ → J ′, Γ2 ⇒ C.
Hence we can take I = I ′ → J ′. Note that I indeed is in the common
language L(Γ1 ∪ {A → B}, Γ2 ∪ {C}).

For J , observe that by the induction hypothesis there are I ′′ ∈ L(Γ1, Γ2∪
{A}) and J ′′ ∈ L(Γ1, Γ2 ∪ {B, C}) such that

(4) - Γ1 ⇒ I ′′ - I ′′, Γ2 ⇒ A and - Γ1 ⇒ J ′′ - J ′′, B, Γ2 ⇒ C.

From this it follows that

- Γ1 ⇒ I ′′ ∧ J ′′ - I ′′ ∧ J ′′, A → B, Γ2 ⇒ C.

Hence we can take J = I ′′ ∧ J ′′ in this case. Note that J indeed is in the
common language L(Γ1, Γ2 ∪ {A → B, C}).

Suppose the last rule is R→:

...
Γ1Γ2, A ⇒ B

Γ1Γ2 ⇒ A → B

By the induction hypothesis there is a interpolant I ∈ L(Γ1, Γ2 ∪ {A, B})
for the upper sequent: - Γ1 ⇒ I and - I, A, Γ2 ⇒ B. I is an interpolant
for the lower sequent too.

We treat the universal quantifier and leave the existential quantifier to
the reader. Suppose the last rule is R∀ :

...
Γ1Γ2, Ey ⇒ A(y)
Γ1Γ2 ⇒ ∀xA[x/y]
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By the induction hypothesis there is a interpolant I ∈ L(Γ1, Γ2∪{Ey, A(y)})
for the upper sequent: - Γ1 ⇒ I and - I, Ey, Γ2 ⇒ A(y). In case y is not
free in I the sequent I, Γ2 ⇒ ∀xA[x/y] is derivable too. Hence we can take
I as an interpolant of the lower sequent and are done. Therefore, suppose
y occurs free in I. By the side conditions y is not free in Γ1Γ2. Hence we
have the following derivation:

...
Γ1, Ey ⇒ I

Γ1 ⇒ ∀ zI[z/y]

Thus the following derivation shows that ∀ zI[z/y] is an interpolant for the
lower sequent:

...
I, Ey, Γ2 ⇒ A(y) Ey, Γ2 ⇒ Ey

∀ zI[z/y], Ey, Γ2 ⇒ A(y)
∀ zI[z/y], Γ2 ⇒ ∀xA[x/y]

Finally, we treat L∀ :

...
Γ1Γ2, A(t) ⇒ C

...
Γ1Γ2 ⇒ Et

Γ1Γ2, ∀xA(x) ⇒ C

We have to find I ∈ L(Γ1 ∪ {∀xA(x)}, Γ2 ∪ {C}) and J ∈ L(Γ1, Γ2 ∪
{∀xA(x), C}) such that

- Γ1, ∀xA(x) ⇒ I - I, Γ2 ⇒ C and - Γ1 ⇒ J - J, ∀xA(x), Γ2 ⇒ C.

First we treat the case J . Note that by the induction hypothesis there
are three formulas I ′ ∈ L(Γ1, Γ2 ∪ {A(t), C}), J ′ ∈ L(Γ1, Γ2 ∪ {Et}) and
H ′ ∈ L(Γ2, Γ1 ∪ {Et}) such that

(5) - Γ1 ⇒ I ′ - I ′, A(t), Γ2 ⇒ C and - Γ1 ⇒ J ′ - J ′, Γ2 ⇒ Et

- Γ2 ⇒ H ′ - H ′, Γ1 ⇒ Et.

Note that I ′, J ′ and H ′ may contain t. If t does not occur in I ′ and J ′ or it
occurs in L(Γ1, Γ2 ∪ {∀xA(x), C}), then I ′, J ′ ∈ L(Γ1, Γ2 ∪ {∀xA(x), C}).
Moreover, (5) implies

- Γ1 ⇒ I ′ ∧ J ′ - I ′ ∧ J ′, ∀xA(x), Γ2 ⇒ C.
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Thus in this case we can take J = I ′ ∧ J ′.
On the other hand, if t does occur in I ′ or J ′ and not in L(Γ1, Γ2 ∪

{∀xA(x), C} we proceed as follows. Either t occurs not in Γ1 or t does not
occur in Γ2∪{∀xA(x), C}. In the first case, it follows that t does not occur
in I ′ and not in J ′, contradicting our assumptions. Thus t occurs in Γ1 but
not in Γ2 ∪ {∀xA(x), C}. Hence t does not occur in H ′. Note that we have
a derivation

...
H ′, Γ1 ⇒ I ′ ∧ J ′

...
H ′, Γ1 ⇒ Et

H ′, Γ1 ⇒ ∃x(I ′ ∧ J ′)[x/t]
Γ1 ⇒

(
H ′ → ∃x(I ′ ∧ J ′)[x/t])

)

Now note something important: because t does not occur in ∀xA(x), this
implies that ∀xA(x) = ∀xA[x/t] (for the difference between A(x) and
A[x/t] see the preliminaries, Section 2.1). Thus also ∀x(A[y/t])[x/y] =
∀xA(x). And because t does not occur in Γ2 or C, by the substitution
lemma, Lemma 3, we also have a derivation for a variable y not occurring
in P of

...
Γ2 ⇒ H ′

...
(I ′ ∧ J ′)[y/t], Ey, A[y/t], Γ2 ⇒ C

...
Ey, (I ′ ∧ J ′)[y/t], Γ2 ⇒ Ey

Ey, (I ′ ∧ J ′)[y/t], ∀xA(x), Γ2 ⇒ C

∃x(I ′ ∧ J ′)[x/t], ∀xA(x), Γ2 ⇒ C
(
H ′ → ∃x(I ′ ∧ J ′)[x/t]

)
, ∀xA(x), Γ2 ⇒ C

Hence we can take J =
(
H ′ → ∃x(I ′ ∧ J ′)[x/t]

)
and are done.

The last case we have to treat is the one where we look for the interpolant
I ∈ L(Γ1 ∪ {∀xA(x)}, Γ2 ∪ {C}) such that

(6) - Γ1, ∀xA(x) ⇒ I - I, Γ2 ⇒ C.

Note that by the induction hypothesis there are I ′ ∈ L(Γ1 ∪ {A(t)}, Γ2 ∪
{C}), J ′ ∈ L(Γ2, Γ1 ∪ {Et}) and H ′ ∈ L(Γ2, Γ1 ∪ {Et}) such that

- Γ1, A(t) ⇒ I ′ - I ′, Γ2 ⇒ C and - Γ2 ⇒ J ′ - J ′, Γ1 ⇒ Et

- Γ1 ⇒ H ′ - H ′, Γ2 ⇒ Et.

Observe that whence we have - (J ′ → I ′), Γ2 ⇒ C. Furthermore, we have
a derivation

...
J ′, A(t), Γ1 ⇒ I ′

...
J ′, Γ1 ⇒ Et

J ′, ∀xA(x), Γ1 ⇒ I ′

∀xA(x), Γ1 ⇒ J ′ → I ′
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Thus, in case t belongs to the common language L(Γ1∪{∀xA(x)}, Γ2∪{C}))
we can take I = (J ′ → I ′) and are done. Therefore, assume t does not
belong to the common language. In case it does not belong to Γ2 ∪ {C},
it follows that both I ′ and J ′ cannot contain t and we can again take
I = (J ′ → I ′). Therefore, assume t does not belong to Γ1 ∪ {∀xA(x)}.
Hence H ′ does not contain t. But then we can infer, by Lemma 3, for a
fresh variable y, from - ∀xA(x), Γ1 ⇒ J ′ → I ′ above, that we have the
following derivation

...
∀xA(x), Ey, Γ1 ⇒ (J ′ → I ′)[y/t]
∀xA(x), Γ1 ⇒ ∀ z(J ′ → I ′)[z/t]

...
Γ1 ⇒ H ′

∀xA(x), Γ1 ⇒ ∀ z(J ′ → I ′)[z/t] ∧ H ′

On the other hand we also have
...

H ′, J ′ → I ′, Γ2 ⇒ C

...
H ′, J ′ → I ′, Γ2 ⇒ Et

H ′, ∀ z(J ′ → I ′)[z/t], Γ2 ⇒ C

H ′ ∧ ∀ z(J ′ → I ′)[z/t], Γ2 ⇒ C

Hence we take I = H ′ ∧ ∀ z(J ′ → I ′)[z/t] as the interpolant.
It is interesting to note that (6) also holds for I = (Et → I ′) ∧ H ′. But

in this case I belongs in general not to the common language.
Finally, we show that LJE′(ΣL) has interpolation too, by reducing this

case to the case LJE′ in the following way. Given a proof P of Γ1Γ2 ⇒ C in
LJE′(ΣL) we consider all axioms of the form Π ⇒ Et ∈ ΣL that occur in P .
Suppose there are n of them: Π1 ⇒ Et1, . . . , Πn ⇒ Etn. Note that all ti
have to be closed. Clearly, there is a proof of Et1, . . . , Etn, Γ1Γ2 ⇒ C in LJE′

by replacing the axioms Πi ⇒ Eti by the logical axioms Πi, Eti ⇒ Eti. Now
we consider the following partition Γ′

1Γ′
2 ⇒ C of Et1, . . . , Etn, Γ1Γ2 ⇒ C:

Γ′
1 = Γ1 ∪ {Etj | j ≤ n, tj occurs in Γ1 or not in Γ1 ∪ Γ2}.

Γ′
2 = Γ2 ∪ {Etj | j ≤ n, tj occurs in Γ2}.

By the interpolation theorem for LJE′ there exists an interpolant I such
that -LJE′ Γ′

1 ⇒ I and -LJE′ I, Γ′
2 ⇒ C where I is in the common language

of Γ′
1 and Γ′

2∪{C}. It is not difficult to see that whence I is in the common
language of Γ1 and Γ2 ∪ {C} too. By cutting on the Eti’s we obtain

-LJE′(ΣL) Γ1 ⇒ I -LJE′(ΣL) I, Γ2 ⇒ C.

This proves that LJE′(ΣL) has interpolation too. !
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COROLLARY 14. LJE and LJE(ΣL) have interpolation.

5.1 Beth’s theorem
Following standard proofs for the Beth definability property of LJ, it is easy
to prove the following theorem.

THEOREM 15. LJE and LJE(ΣL) satisfy the Beth definability property.

6 Two notions of forcing
In [30] Unterhalt proved the completeness of IQCE+ with respect to a certain
Kripke semantics that is similar to the semantics defined below. Here we
define a semantics via Kripke models equipped with a slightly different
notion of forcing, called eforcing and denoted by "e. We then show that
LJE is sound and complete with respect to "e.

As we will define various kinds of Kripke models and various kinds of
forcing, let us start with listing the notions we are going to define:

Kripke models, models for short: standard Kripke models,

Kripke existence models, emodels for short: Kripke models with con-
stant domains in which the existence predicate plays a special role as
it is assumed to be nonempty,

total emodels: emodels in which the image of a function on arguments
that exist always exist,

forcing: the standard notion of forcing,

existence forcing, eforcing for short: a notion of forcing in which pred-
icates and connectives are forced in the usual way, but for which the
quantifiers range over existing objects only. This notion of forcing is
only defined for emodels.

6.1 Kripke models and Kripke existence models
A classical structure for L′ is a pair (Dw, Iw) such that Dw is a nonempty
set and Iw is a map from L′

Dw
such that

for every n-ary predicate P in L′, Iw(P ) is an n-ary predicate on Dw,

for every n-ary function f in L′
D, Iw(f) is an n-ary function on Dw

(constants are considered as 0-ary functions),

Iw(a) = a for every constant a ∈ Dw.

A classical existence structure for L′ is a classical structure for L′ satisfying
the extra requirement
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Iw(E) is a nonempty unary predicate on Dw.

Note that in a classical structure the existence predicate plays no special
role, while in a classical existence structure.

For any closed L′
D-term t, Iw(t) denotes the interpretation of t under Iw

in D, which is defined as usual. Iw(t1, . . . , tn) is short for Iw(t1), . . . , Iw(tn).
For L′

D-sentences A, let (D, Iw) |= A denote that A holds in the structure
(D, Iw), which is defined as usual for classical structures. Note that the
interpretation of any closed term in L′

D is an element of and the same in all
domains.

A frame is a pair (W, #) where W is a nonempty set and # is a partial
order on W with a root. A Kripke model , model for short, on a frame
F = (W, #) is a triple K = (F, D, I), where D = {Dw | w ∈ W} is
a collection of nonempty sets and I is a collection {Iw | w ∈ W}, such
that the (Dw, Iw) are classical structures for L′ that satisfy the persistency
requirements:

w # v ⇒ Dw ⊆ Dv,

and for all predicates P (x̄) in L and for all closed L′
D-terms t̄,

w # v ⇒
(
(D, Iw) |= P (t̄) ⇒ (D, Iv) |= P (t̄)

)
,

w # v ⇒ Iw(t̄) = Iv(t̄).

In particular, Iw(t) = Iv(t) for all closed terms in L′
Dw

. Therefore, we
sometimes write I(t) instead of Iw(t). A Kripke existence model , emodel
for short, is a Kripke model in which the (Dw, Iw) are classical existence
structures and in which for all nodes w and v: Dw = Dv, i.e. Kripke ex-
istence model have constant domains. Therefore, we denote emodels often
by K = (F, D, I), where D is now a non empty set, and not a collection of
sets as in the case of models. We call an emodel total when for all its nodes
k and for all functions f(x1, . . . , xn) in L′

∀ a1, . . . , an ∈ D : k "
n∧

i=1

Eai → Ef(a1, . . . , an).

6.2 Forcing and existence forcing
Given a Kripke model the notion of forcing, ", is defined as usual. Given
a Kripke existence model K = (D, #, I), the existence forcing relation "e,
eforcing for short, is defined as follows, and denoted by "e to distinguish
it from the standard forcing relation. For our purposes it suffices to define
the eforcing relation K, w "e A at node w inductively only for sentences in
L′

D. For predicates P (x̄) in L′ (including E) and closed L′
D-terms t, we put

K, w "e P (t̄) ≡def (D, Iw) |= P (t̄),
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and extend K, w "e A to all sentences in L′
D in the usual way for connec-

tives, but differently for the quantifiers:

k /"e ⊥
k "e A ∧ B iff k "e A and k "e B
k "e A ∨ B iff k "e A or k "e B
k "e A → B iff ∀ k′ $ k : k′ "e A ⇒ k′ "e B
k "e ∃xA(x) iff ∃ d ∈ D k "e Ed ∧ A(d)
k "e ∀xA(x) iff ∀ d ∈ D : k "e Ed → A(d).

Note that the upwards persistency requirement

k # l ∧ k "e A ⇒ l "e A.

is fulfilled. Moreover, note that

k "e ∀xA(x) ⇔ ∀ l $ k∀ d ∈ D l "e Ed → Ad.

When K is clear from the context we write k "e A instead of K, k "e A.
We call an emodel K an L-emodel when

∀ k∀ t ∈ TL : k "e Et.

A valuation on K is a map α from variables to the domain at the root.
Thus in the case of existence models it is a map from variables to D. For
a formula A in L′

D we write A[α] for the formula that is the result of
substituting α(x) for x, for every variable x in A. For formulas A we write
K "e A and say that A is eforced in K if for all nodes k, for all valuations
α on K, K, k "e A[α]. We say that A is L-eforced , written "e

L A, when
K "e A for all L-emodels K. We define similar notions for sequents Γ ⇒ C,
considering them as formulas

∧
Γ → C. We say that a collection of sequents

S (L-)eforces S when for all (L-)models K, if K "e
L S′ for all S′ ∈ S, then

K "e
L S. Similar notions are defined for forcing, reading forcing everywhere

for eforcing and model for emodel.

7 Soundness and completeness
For the soundness and completeness proof of LJE with respect to "e to come,
it will be convenient to work in Gentzen calculus LJE∞ that is equivalent to
LJE for finite sequents but that can deal with sequents of the form Γ ⇒ ∆,
where Γ and ∆ may be infinite and ∆ may contain more than one formula.
It is similar to LJE, and in the case of R∀ and R→ the antecedent may still
contain only one formula, like in LJE. Furthermore, it has structural rules
weakening and contraction. Because of this, in L→ and L∀ the principal
formula does not have to occur in the hypotheses.
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Important : From now on Γ, Π, ∆ and Λ range over countably infinite
multisets of formulas, and sequents may be infinite from now on. Except in
the setting of LJE or -L that only apply to finite sequents: in these cases
we tacitly assume the sequents to be finite.

The system LJE∞

Ax Γ, P ⇒ P, ∆ (P atomic) L⊥ Γ,⊥ ⇒ ∆

Γ ⇒ ∆LW Γ, A ⇒ ∆
Γ ⇒ ∆RW Γ ⇒ A, ∆

Γ, A, A ⇒ ∆
LC Γ, A ⇒ ∆

Γ ⇒ A, A, ∆
RC Γ ⇒ A, ∆

Γ, A, B ⇒ ∆
L∧ Γ, A ∧ B ⇒ ∆

Γ ⇒ A, ∆ Γ ⇒ B, ∆
R∧ Γ ⇒ A ∧ B, ∆

Γ, A ⇒ ∆ Γ, B ⇒ ∆
L∨ Γ, A ∨ B ⇒ ∆

Γ ⇒ A, B, ∆
R∨ Γ ⇒ A ∨ B, ∆

Γ ⇒ A, ∆ Γ, B ⇒ ∆
L→ Γ, A → B ⇒ ∆

Γ, A ⇒ B
R→ Γ ⇒ A → B

Γ, At ⇒ ∆ Γ ⇒ Et, ∆
L∀ Γ, ∀xAx ⇒ ∆

Γ, Ey ⇒ Ay
R∀ ∗

Γ ⇒ ∀xA[x/y]

Γ, Ay, Ey ⇒ ∆
L∃ ∗

Γ, ∃xA[x/y] ⇒ ∆
Γ ⇒ At, ∆ Γ ⇒ Et, ∆

R∃ Γ ⇒ ∃xAx, ∆

Γ ⇒ A Γ, A ⇒ ∆
Cut Γ ⇒ ∆

We write LJE∞(ΣL) for the system obtained from LJE∞ by adding the
sequents ΣL as axioms. We say that LJE∞ derives Γ ⇒ ∆, -LJE∞ Γ ⇒ ∆,
when there are finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that -LJE∞ (Γ′ ⇒ ∆′). We
say that a set of sequents S derives a sequent S in LJE∞, when there are
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finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that Γ′ ⇒ ∆′ is derivable in the system LJE∞

to which the sequents in S are added as axioms. We have similar notions
for LJE∞(ΣL). We often write -∞

L for LJE∞(ΣL) -.
We leave it to the reader to verify that the following holds, using the fact

that LJE has weakening and contraction, Lemma’s 4 and 5:

LEMMA 16. For finite Γ and ∆: -∞
L Γ ⇒ ∆ if and only if -L Γ ⇒

∨
∆.

7.1 Soundness

THEOREM 17. For all sets of closed sequents S and all closed sequents S
in L′:

S -∞
L S implies S "e

L S.

Proof. We only consider the case that S is empty and that S is a sequent
with at most one formula in the succedent and leave the other cases to the
reader. For a smooth induction we prove that all axioms of LJE∞(ΣL) are
L-forced, and that for all its rules, if the hypotheses of the rule are L-forced,
then so is the conclusion. The case of the axioms is simple and so are most
of the rules. We treat the axiom ΣL and the rules R∀ and R∃ . Let K be an
L-model. Recall that we write k "e Γ meaning that k "e A for all A ∈ Γ.

Consider a sequent Γ ⇒ Et in ΣL. Hence t is a closed term in TL. Let
x̄ be all the free variables that occur in Γ. By assumption on L-models it
follows that K "e

L (Γ ⇒ Et)[ā/x̄] for all ā ∈ D.
For R∀ suppose "e Π, Ey ⇒ Ay and y not free in Π. Consider k in K,

suppose that the free variables in Π and Ay are among x̄y, let ā ∈ D, and
assume k "e Π[ā/x̄]. We have to show that

∀ d ∈ D : k "e (Ed → Ad)[ā/x̄].

Therefore, consider l $ k and d ∈ D such that l "e Ed. We have to show
that l "e Ad[ā/x̄]. As the side condition on R∀ implies that y does no occur
free in Π, we have l "e (Π ∧ Ey)[ād/x̄y]. As "e Π, Ey ⇒ Ay, this implies
l "e Ay[ād/x̄y], that is, l "e Ad[ā/x̄].

For R∃ suppose "e Π ⇒ At, "e Π ⇒ Et, and let all free variables of Π
and At be among x̄, pick ā ∈ D and assume k "e Π[ā/x̄]. We have to show
that

∃ d ∈ D : k "e (Ed ∧ Ad)[ā/x̄].

Since "e Π ⇒ Et and k "e Π[ā/x̄], this gives k "e Et[ā/x̄]. Similarly,
k "e At[ā/x̄]. Let d = t[ā/x̄]. Then we have k "e (Ed ∧ Ad)[ā/x̄], as
desired. !
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7.2 Completeness
As mentioned above, the completeness proof given follows the pattern of
the completeness proof for LJ as given in [26]. The idea is that if a sequent
is underivable we apply the inference rules in the reversed order as long
as possible, resulting is a so-called reduction tree with at least one branch
along which all sequents are underivable. This branch will be a node in
the Kripke model that we obtain by repeating this process, and that will
refute the sequent we started with. Therefore, we first have to introduce
the notion of a reduction tree, a notion similar to that of a Beth tableau.

DEFINITION 18. Given a (possibly infinite) sequent S, the reduction tree
for S is inductively defined as follows. Recall that we assumed that L con-
tains at least one constant and no variables, and that L′ has an infinite set
of variables. Furthermore, we assume that at every stage of the construction
we have infinetely many fresh variables of L′ available, i.e. variables that do
not occur in the sequents constructed so far.

The construction of the reduction tree for S = (Γ ⇒ ∆) consists of
repeated application of steps 0,1, 2, . . . , 7, which correspond to inference
rules of LJE without the structural rules, R∀ and R→. We leave it to
the reader to check that at every stage of the construction we deal with
countably infinite sequents only, i.e. with sequents for which the antecedent
and succedent contain countably inifnite many formulas only.

Step n = 0: write S at the bottom of the tree.
Step n > 0: if every leave is an axiom of LJE or a sequent in ΣL, then

stop. If this is not the case, then this stage is defined according to n ≡
0, 1, . . . , 8 mod 9. Let Π ⇒ Λ be any leave of the tree defined at stage n−1.

n ≡ 0: L∧ reduction. Let α be a set such that {Ai0∧Ai1 | i ∈ α} consists
exactly of all formulas in Π with outermost logical symbol ∧ to which no
reduction has yet been applied. Then above S write the sequent

Π, {Ai0, Ai1 | i ∈ α} ⇒ Λ.

n ≡ 1: R∧ reduction. Let α be a set such that {Ai0∧Ai1 | i ∈ α} consists
exactly of all formulas in Λ with outermost logical symbol ∧ to which no
reduction has yet been applied. Then above S write all sequents of the form

Π ⇒ {Aif(i) | i ∈ α}, Λ

for any map f : α → {0, 1}.
n ≡ 2: L∨ reduction. Defined in a similar way as R∧ reduction.
n ≡ 3: R∨ reduction. Defined in a similar way as L∧ reduction.
n ≡ 4: L→ reduction. Let α be a set such that {Ai → Bi | i ∈ α}

consists exactly of all formulas in Π with outermost logical symbol → to
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which no reduction has yet been applied. Then for all f : α → {0, 1}, write
above S the sequent

Π, {Bi | f(i) = 1} ⇒ {Ai | f(i) = 0}, Λ.

n ≡ 5: L∀ reduction. Let α be a set such that {∀xiAi(xi) | i ∈ α}
consists exactly of all formulas in Π with outermost logical symbol ∀ . Let T
consists of all terms t for which Et occurs in Π. Above S write the sequent

Π, {Ai(t) | i ∈ α, t ∈ T} ⇒ Λ.

Note that if {Et | t ∈ TL} ⊆ Π we can always carry out this step, since there
is at least one constant in L, which implies there is at least one expression
of the form Et in {Et | t ∈ TL}, and thus in Π.

n ≡ 6: L∃ reduction. Let α be a set such that {∃xiAi(xi) | i ∈ α}
consists exactly of all formulas in Π with outermost logical symbol ∃ to
which no reduction has yet been applied. Introduce fresh variables {yi | i ∈
α} of L′, and above S write the sequent

Π, {Ai(yi), Eyi | i ∈ α} ⇒ Λ.

n ≡ 7: R∃ reduction. Defined in a similar way as L∀ reduction.
n ≡ 8: if Π ⇒ Λ is an axiom of LJE or a sequent in ΣL, then stop. If this

is not the case write the same sequent Π ⇒ Λ above it.
This completes the definition of reduction trees.

The follwing is straightforward.

LEMMA 19. If all leaves of the reduction tree of a sequent S are axioms of
LJE(ΣL), then S is provable in LJE(ΣL).

The following lemma, Lemma 21, is non-trivial and crucial in the com-
pleteness proof. It is an analogue of a lemma in [26] for LJ, and its main
ingredient is the following generalization of König’s Lemma.

PROPOSITION 20. (A generalized König’s Lemma, Takeuti [26]) Let X
be any set. Let ∗(·) be a property on partial functions f : X → {0, 1}. If

1. ∗(f) holds if and only if there is a finite subset Z ⊆ X such that
∗(f ↑ Z) (here f ↑ Z is the restriction of f to Z), and

2. ∗(f) holds for all total functions f on X,

then there exists a finite set X ′ ⊆ X such that ∗(f) for any f with X ′ ⊆
dom(f) (dom(f) is the domain of f).
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Proof. For completeness sake we repeat Takeuti’s proof from [26]. Let Y
be the product of |X | times {0, 1}. Give {0, 1} the discrete topology and
Y the product topology. Since {0, 1} is compact, so is Y by Tychonoff’s
theorem. For maps f and g call g an extension of f , when dom(f) ⊆ dom(g)
and f and g are equal on dom(f). For every f with finite domain, let

Nf ≡def {g | g is total and an extension of f}.

Furthermore, let

C ≡def {Nf | dom(f) is finite and ∗(f)}.

C is an open cover of Y . Therefore, C has a finite subcover, say Nf1 , . . . ,Nfn .
Let

X ′ = dom(f1) ∪ . . . ∪ dom(fn).

Then X ′ satisfies the conditions of the theorem: assume Z ⊆ dom(f). Let
f ′ be a total extension of f . Then ∗(f ′) by 2. and f ∈ Nf1 ∪ . . . ∪Nfn , say
f ∈ Nfi . Whence f is an extension of fi and ∗(fi). Therefore, ∗(f) by 1.

!

LEMMA 21. If a sequent S is not provable in LJE(ΣL), then its reduction
tree has a branch along which all sequents are underivable in LJE(ΣL).

Proof. In this proof provable will always mean provable in LJE(ΣL), -
stands for LJE(ΣL) -. We prove the lemma by proving the following: if
in a reduction tree, for some set α, Γβ ⇒ ∆β (β = 1, 2 . . . , α) are all the
immediate successors of Γ ⇒ ∆, then if all these successors are provable,
then so is Γ ⇒ ∆. Recall that a sequent Π ⇒ Λ is provable when there are
finite Π′ ⊆ Π and Λ′ ⊆ Λ such that Π′ ⇒ Λ′ is provable.

We distinguish by cases acceding to the rule that is applied to Γ ⇒ ∆
resulting in the immediate successors Γβ ⇒ ∆β .

L∧ reduction: then Γ ⇒ ∆ has one upper sequent, which is of the form
Γ, {Ai0, Ai1 | i ∈ α} ⇒ ∆, where Ai0 ∧ Ai1 are all the sequents in Γ with
outermost logical symbol ∧. By assumption there are finite Γ′ ⊆ Γ and
∆′ ⊆ ∆ and Bi ∈ {Ai0, Ai1} for i ≤ n such that - Γ, B1, . . . , Bn ⇒ ∆′.
Hence - Γ′, {Ai0, Ai1 | i ≤ n} ⇒ ∆′, which again implies - Γ′, {Ai0 ∧ Ai1 |
i ≤ n} ⇒ ∆′. Thus - Γ ⇒ ∆.

R∧ reduction: then Γ ⇒ ∆ has immediate successors Γ ⇒ {Aif(i) | i ∈
α}, ∆ for any map f : α → {0, 1}, where {Ai0∧Ai1 | i ∈ α} consists exactly
of all formulas in ∆ with outermost logical symbol ∧. By assumption for
all f : α → {0, 1} there are finite Γ′ ⊆ Γ, ∆′ ⊆ ∆ and nf ∈ ω such that -
Γ′ ⇒ {Aif(i) | i ≤ nf}, ∆′. Now we are going to use the generalized König’s
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Lemma. We define a property ∗(·) on the partial functions f : α → {0, 1}
as follows (dom(f) denotes the domain of f):

∗(f) ≡ ∃m∃ a1 . . . am ∈ dom(f )∃ finite Γ′ ⊆ Γ, ∆′ ⊆ ∆ :
- Γ′ ⇒ {Aαif(ai) | i ≤ m}, ∆′.

Then conditions 1. and 2. of the generalized König’s Lemma 20 are satisfied.
Hence there is a finite subset β ⊆ α such that ∗(f) whenever β ⊆ dom(f).
Let F be the collection of f for which dom(f) = β. Thus for all f ∈ F
there are finite Γf ⊆ Γ and ∆f ⊆ ∆ such that

- Γf ⇒ {Aif(i) | i ∈ β}, ∆f .

Hence by weakening and repeated application of R∧, one obtains

- {Γf | f ∈ F} ⇒ {Ai0 ∧ Ai1 | i ∈ β}, {∆f | f ∈ F}.

This implies that - Γ ⇒ ∆.
The case R∨ is similar to R∧, and L∨ and L→ are similar to R∧.
L∃ reduction: then Γ ⇒ ∆ has immediate successor

Γ, {Ai(yi), Eyi | i ∈ α} ⇒ ∆,

where {∃xiAi(xi) | i ∈ α} consists exactly of all formulas in ∆ with outer-
most logical symbol ∃ . By assumption there are finite Γ′ ⊆ Γ and ∆′ ⊆ ∆
and n ∈ ω such that

- Γ′, {Ai(yi), Eyi | i ≤ n} ⇒ ∆′.

Applications of L∃ imply that then Γ ⇒ ∆ is provable too.
The cases R∃ and L∀ are similar. This proves the lemma. !

THEOREM 22. For all sets of closed sequents S and all closed sequents S
in L′:

S "e
L S implies S -∞

L S.

Proof. We treat the case that S is empty and leave the other case to the
reader. The proof we give is similar to the elegant completeness proof for
LJ in [26]. Recall that -∞

L stands for -LJE(ΣL). In the proof we will write -
for -LJE(ΣL). Let S = (Γ ⇒ ∆) be a closed sequent and assume that /- S.
We will construct a L-model K such that K /"e S in the following way.

K will be defined in ω many steps using reduction trees, which will be
the nodes of K. We assume that L′ contains infinitely many variables that
do not occur in S.
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Step 0: Let T0 be the reduction tree for Γ, {Et | t ∈ TL} ⇒ ∆. Call this
node 0. Since /- Γ ⇒ ∆ , also

/- Γ, {Et | t ∈ TL} ⇒ ∆.

By Lemma 21 there is a branch b0 in T0 containing only unprovable sequents.
We proceed with b0 and T0 to the next step 1.

Step i+1. For any reduction tree T with branch b along which all sequents
are unprovable constructed at step i, we consider Π and Λ, which are the
respective unions of the formulas in the antecedents and succedents along b.
Note that thus /- Π ⇒ Λ. Let k range over all formulas in Λ with outermost
logical symbol → or ∀ . We proceed in the following way.

If k is a formula of the form A → B. Then construct the reduction tree
Tk for Π, A ⇒ B. This tree will be an immediate successor of T . Note that
/- Π, A ⇒ B. Thus by Lemma 21 there is a branch b in T containing only
unprovable sequents. We proceed with b and T to the next step i + 2.

If k is a formula ∀xA(x). Then construct the reduction tree Tk for
Π, Ey ⇒ A(y), where y is a variable in L that has not yet occurred in the
construction of K. This tree will be an immediate successor of T . Observe
that if Π, Ey ⇒ A(y) is derivable, then so is Π ⇒ ∀xAx, since y does not
occur in Π. Thus /- Π, Ey ⇒ A(y), and whence by Lemma 21 there is a
branch b in T containing only unprovable sequents. We proceed with b and
T to the next step i + 2.

This process is continued ω times. Let W be the union of 0 and all
k’s in the construction and let # be the reflexive transitive closure of the
immediate successor relation constructed at the stages. Define D to be the
set of all terms appearing in the construction. Given a k in the construction,
let Tk be the reduction tree at k and let Πk and Λk be the respective unions
of the formulas in the antecedents and succedents along the chosen infinite
branch bk in Tk. Then define an interpretation I as follows:

Ik(R) ≡def {d̄ ∈ D | R(d̄) ∈ Πk},

and Ik is the identity on function symbols: Ik(f)(ā) = f(ā) ∈ D. Since
L contains at least one constant c, it also implies that Ik(E) is nonempty.
Note that K = ((W, #), D, I) indeed is a Kripke existence model. The fact
that we started with the sequent Γ, {Et | t ∈ TL} ⇒ ∆ implies that Et ∈ Πk

for all k and all terms t in L. Hence K "e Et for all terms t ∈ TL, and thus
K is an L-model. It is not difficult to show with formula induction that we
have

A ∈ Πk ⇒ k "e A

A ∈ Λk ⇒ k /"e A
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we treat the case A = B → C and leave the other cases to the reader. This
will complete the theorem.

First assume B → C ∈ Πk. We have to show that k "e B → C. There-
fore, consider l $ k such that l "e B. Thus by the induction hypothesis
B ∈ Πl. By the construction of the reduction tree, C ∈ Πl or B ∈ Λl. Since
B /∈ Λl, otherwise the branch would be derivable, it follows that C ∈ Πl,
and thus l "e C.

Second, assume B → C ∈ Λk. By the construction of the model, there is
a node l $ k such that B ∈ Πl and C ∈ Λl. This implies that l "e B and
l /"e C. Hence k /"e B → C. !

By Lemma 16 it follows that :

COROLLARY 23. For all sets of finite closed sequents S and all finite closed
sequents S in L′:

S -L S if and only if S "e
L S.

COROLLARY 24. For all sets of closed sequents S and all closed sequents
S in L′:
S -L S if and only if K "e S for all L-models K based on frames that are
conversely well-founded trees that force S.

Proof. Immediate from Lemma 16 and the proof of Theorem 22. !

8 Applications
8.1 Skolemization
One use of the existence predicate is in the setting of Skolemization. Recall
that the Skolemization of a formula is the result of replacing strong quan-
tifiers, i.e. positive universal and negative existential quantifiers, by fresh
function symbols, thus obtaining a formula without strong quantifiers that
is equiconsistent with the original formula. As is well-known, Skolemization
is not complete with respect to IQC. That is, there are formulas that are
underivable, but for which their Skolemized version is derivable in IQC. For
example,

IQC /- ∀x(Ax ∨ B) → (∀xAx ∨ B) IQC - ∀x(Ax ∨ B) → (Ac ∨ B).

In [1] an alternative Skolemization method called eSkolemization is intro-
duced and is shown to be sound and complete with respect to IQC for a
large class of formulas, including all formulas in which every strong quan-
tifier is existential or of the form ∀x¬¬Ax. This class is much larger than
the class of formulas for which the standard Skolemization method is sound
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and complete. This eSkolemization method makes use of the existence pred-
icate. It replaces negative occurrences of existential quantifiers ∃xBx by
(Ef(ȳ) ∧ Bf(ȳ)), and positive occurrences of universal quantifiers ∀xBx
by (Ef(ȳ) → Bf(ȳ)). For example, the eSkolemization of the displayed
formula above is

IQCE /- ∀x(Ax ∨ B) → ((Ec → Ac) ∨ B).

The eSkolemization method is extended to sequents Γ ⇒ C by considering
them as formulas

∧
Γ → C. The eSkolemization of a sequent S is denoted

by Ss. Clearly,
LJE - A ⇒ As.

Then it is shown in [1] that

THEOREM 25. [1] For each closed sequent S in L′ in which all strong
quantifiers are existential: -L S if and only if -L Ss.

[1] By Lemma 8 this implies that

COROLLARY 26. [1] For each closed sequent S in L\E in which all strong
quantifiers are existential: -LJ S if and only if -L Ss.

There is an extension of the main result to a larger class of formulas
than the one occurring in the theorem above. This class of formulas is
not syntactically defined and therefore less useful. However, it contains
a syntactically defined class of formulas strictly larger than the class of
formulas in which all strong quantifiers are existential: the class of formulas
in which all strong universal quantifiers are of the form ∀x¬¬Ax. Hence
the result, Theorem 29, that eSkolemization is sound and complete for this
class of formulas is a genuine extension of Theorem 25.

DEFINITION 27. For a formula A that occurs in a sequent S, S[B/A]p (p
for positive) denotes the result of replacing every positive occurrence of A in
S by B. Note that we do not put restrictions on the possible occurrences of
free variables in A or S. We say that all strong quantifiers in S are almost
existential if for every subformula ∀xAx of S, it holds that

S[¬∃x¬Ax/∀xAx]p -L S.

Note that we always have

S -L S[¬∃x¬Ax/∀xAx]p.

Thus almost existential sequents are sequents that, as a formula, are equiv-
alent to a formula in which all strong quantifiers are existential.
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REMARK 28. Clearly, all strong quantifiers in S are almost existential,
if no strong universal quantifiers occur in S. But the class of sequents in
which all strong quantifiers are almost existential also contains the formulas
in which all strong universal quantifiers are of the form ∀x¬¬Ax. But
the class contains more: for example, ⊥ ⇒ ∀xAx does not belong to the
mentioned classes but every quantifier in this formula is almost existential.

THEOREM 29. [1] For each closed sequent S in L′ in which all strong
quantifiers are almost existential:

-L S if and only if -L Ss.

COROLLARY 30. [1] For all closed sequents S in L\E in which all strong
quantifiers are almost existential:

-LJ S if and only if -L Ss.

As was first proved by Mints in [?] we have the following corollary when
using Proposition 9.

COROLLARY 31. [1] For the fragment of sentences without weak quanti-
fiers and in which all strong quantifiers are almost existential, derivability
on IQC is decidable.

In [1] also an analogue of Herbrand’s theorem is provided, which to-
gether with eSkolemization links derivability in intuitionistic predicate logic
to derivability in intuitionistic propositional logic, at least for formulas in
which all strong quantifiers are almost existential.

8.2 Truth-value logics

Another application of the existence predicate is in the context of truth-
value logics. These are logics based on truth-value sets V , i.e. closed subsets
of the unit interval [0, 1], also called Gödel sets. One can, for a given Gödel
set V , interpret formulas by mapping them to elements of V . The logical
symbols receive a meaning via restrictions on these interpretations, e.g. by
stipulating that the interpretation of ∧ is the infimum of the interpreta-
tions of the respective conjuncts, or that the interpretation of ∃xAx is the
supremum of the values of Aa for all elements a in the domain. Given these
interpretations, one can associate a logic with such a Gödel set V : the logic
of all sentences that are mapped to 1 under any interpretation on V . Here
we work only with the languages L′ and L′

− = \E.
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We define the following frame logics:

LF " A ≡def K " A for all models K on F
LF ≡def {A | A a sentence in L′

−, F " A}
Lcd

F ≡def {A | A a sentence in L′
−,

K " A for all models K on F with constant domain}
Lcdte

F ≡def {A | A a sentence in L′
−,

K " A for all total emodels K on F with constant domain}

Gödel logics are a famous example of truth value logics. Given a Gödel
set V and a nonempty set D, a Gödel logic interpretation I is defined as
follows.

I(P t̄) = I(P )( ¯I(t))
I(A ∧ B) = inf(I(A), I(B))
I(A ∨ B) = sup(I(A), I(B))

I(A → B) =
{

1 if I(A) ≤ I(B)
I(B) otherwise,

I(∃xAx) = sup{I(Aa) | a ∈ D}
I(∀xAx) = inf{I(Aa) | a ∈ D}.

The Gödel logic GV consists of those sentences in L′
− that receive value 1

under all such Gödel logic interpretations I, for all possible domains D. A.
Beckmann and N. Preining in [5] proved that Gödel logics correspond to
the logics of linear frames with constant domain in the following way.
THEOREM 32. (A. Beckmann and N. Preining [5]) For any countable lin-
ear frame F there exists a Gödel set V such that

(7) GV = Lcd
F ,

and vice versa: for every Gödel set V there exists a countable linear frame
F such that (7).

Based on these ideas, in [13] an analogue was found for the case of linear
frames without the extra restriction to constant domains. So-called Scott
logics SV were defined, where SV consists of all sentences A in L′

− that
receive the value 1 for any domain assignment and any Scott logic inter-
pretation on V . Here a domain assignment is a pair (D, e) where D is a
nonempty set and e is a function e : D → V satisfying

∃ a ∈ D e(a) = 1.

Given a domain assignment (D, e), a Scott logic interpretation I interprets
terms and predicate symbols on D, satisfies

inf
i

e(ai) ≤ e(I(f)(ā))



38 Matthias Baaz and Rosalie Iemhoff

for all n-ary function symbols f in the language and all sequences ā =
a1, . . . , an in Dn, and extends to all formulas as follows:

I(P t̄) = I(P )( ¯I(t))
I(A ∧ B) = inf(I(A), I(B))
I(A ∨ B) = sup(I(A), I(B))

I(A → B) =
{

1 if I(A) ≤ I(B)
I(B) otherwise,

I(∃xAx) = sup{e(a) ∧ I(Aa) | a ∈ D}
I(∀xAx) = inf{e(a) → I(Aa) | a ∈ D}.

Note that a Gödel logic interpretation is a Scott logic interpretation where e
is the constant 1 function. Then one can show that Scott logics correspond
to the logics of linear frames:

THEOREM 33. [13] For every countable linear frame F there exists a Gödel
set V such that

(8) SV = LF ,

and vice versa: for every countable Gödel set V there exists a countable
linear frame F such that (8).

Note that this correspondence is not quite as strong as in the case of
Gödel logics where every V is linked to a frame. In the case of Scott logics
we could establish this only for countable V . We do not know whether the
stronger form also holds, but conjecture it to be the case.

In the same paper [13] it has been shown that there is a natural and
faithful translation (·)e from Scott logics into Gödel logics that makes use
of the existence predicate. Roughly, we extend the notion of Gödel logics to
the language L′, and then we let the E in the Gödel logic of V correspond
to the e in the Scott logic of V . Thus in this setting we first have to extend
the notion of a Gödel logics to the language L′, i.e. to E.

A Gödel existence logic interpretation I on (V, D) is a Gödel logic inter-
pretation on (V, D) that satisfies the extra requirements that

∃ a ∈ D I(Ea) = 1,

and for all functions h in L, for all ā = a1, . . . , an ∈ D,

I(
∧

i≤n

Eai) ≤ I(Eh(ā)).

The Gödel existence logic Ge
V of a Gödel set V consists of all L′-sentences

A such that receive value 1 under all Gödel existence logic interpretations
on all domain assignments.

Given these definitions, (·)e is defined as follows.
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(
P (t̄)

)e = P (t̄) for atomic P and terms t̄,

(·)e commutes with the connectives,

(∃xA(x))e = ∃x
(
Ex ∧ (A(x))e

)
,

(∀xA(x))e = ∀x
(
Ex → (A(x))e

)
.

Given this translation we then have the following theorem.

THEOREM 34. [13] For any Gödel set V , (·)e is a faithful translation of
SV into GV , i.e. for all sentences A in L′

−:

SV |= A ⇔ Ge
V |= Ae.

Furthermore, we have: (in [13] Lcdte
F is denoted Lcde

F )

PROPOSITION 35. [13] For any frame F , (·)e is faithful translation of LF

into Lcdte
F , i.e. for all sentences A in L′

−:

LF " A ⇔ Lcdte
F " Ae.

PROPOSITION 36. [13] For every frame F , Lcdte
F = Ge

V .

Note the similarity between the different applications of the existence
predicate: the translation (·)e does a similar thing to quantifiers as eS-
kolemization does.
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[12] Herbrand, J., Recherches sur la théorie de la demonstration, PhD thesis University
of Paris (1930).

[13] Iemhoff, R., A note on linear Kripke models, Journal of Logic and Computation,
2005, to appear.

[14] Mints, G.E., An analogue of Hebrand’s theorem for the constructive predicate calculus,
Sov. Math. Dokl. 3 (1962), pp. 1712-1715.

[15] Mints, G.E., Hebrand’s theorem for the predicate calculus with equality and function
symbols, Sov. Math.,Dokl. 7 (1966), pp. 911-914

[16] Mints, G.E., The Skolem method in intuitionistic calculi, Proc. Steklov Inst. Math.
121 (1972), pp. 73-109

[17] Mints, G.E., Resolution strategies for the intuitionistic predicate logic, Constraint
Programming. Proceedings of the NATO Advanced Study Institute, Comput. Syst. Sci.
131, Springer (1994), pp. 289-311.

[18] Mints, G.E., Axiomatization of a Skolem function in intuitionistic logic, Formalizing
the dynamics of information, Faller, M. (ed.) et al., CSLI Lect. Notes 91, pp. 105-114,
2000.

[19] Preining, N., Complete Recursive Axiomatizability of Gödel Logics, PhD-thesis, Tech-
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