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General Course Info

Topics: demonstrate basic principles and tools
in formal approaches to natural language
meaning

Relevance: linguists, logicians, computer
scientists, and philosophers

Prior knowledge:
- sets, relations, functions
- aims of theoretical linguistics

Reading: Edinburgh University Press, April 2016
www.phil.uu.nl/~yoad/efs/main.html




Sessions

. Formal semantics: the study of logical meaning
In natural language

. Types and meaning composition: How to
describe properties of meanings? How does
language allow us to combine them?

. Tutorial 1 (Sunday, 9:30-10:00)

. Generalized quantifiers: How to describe
meanings of expressions involving quantity, like all,
some and most?

. Tutorial 2 (Sunday, 2:00-2:30)

. Spatial expressions: Meanings of relations in
space, such as above, in and between.

. Abstract categorial grammar / ExpSem: long
distance dependencies / experiments reciprocals




Exercises

Will be given before tutorial sessions.

It is recommended to try to solve them
before the tutorial.



Soundbites

Intersective vs. non-intersective adjectives:
Tina is a Chinese pianist and a biologist

€= Tina is a pianist and a Chinese biologist
Tina is a skillful pianist and a biologist

€/=>» Tina is a pianist and a skillful biologist

Monotonicity and Negative Polarity ltems:
If John ever goes to Moscow he will have fun
*If John goes to Moscow he will ever have fun

Spatial reasoning:
Dan is close to a gas station
€= Dan is close to some gas station

Dan is far from a gas station
€=>Dan is far from every gas station
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Yoad Winter, Utrecht University, The Netherlands

Session 1:

Basic Notions



Formal Semantics:

History and Principles



Two prominent logicians on meaning
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Gottlob Frege (1848-1925) Alfred Tarski (1902-1983)

Frege: Meanings are composed to each other.

Tarski: Meanings can be described as objects in a
mathematical world, external to language itself.



Meanwhile in Cognitive Science

“It seems clear, then that - .
2 TS

undeniable, though only
imperfect correspondences
hold between formal and
semantic features in
language.”

(Syntactic Structures, 1957)

“...Chomsky would say [that]
the semantic purposes do not
determine the form of the |
syntax or even influence it in
any significant way.”
(Chomsky's Revolution in
Linguistics, John R. Searle, 1972)

Noam Chomsky
(1928)



Towards a Synthesis

Richard Montague
(1930-1971)

"There is In my opinion no
important theoretical difference
between natural languages and
the artificial languages of
logicians; indeed, | consider it
possible to comprehend the
syntax and semantics of both
kinds of language within a single
natural and mathematically
precise theory. On this point |
differ from a number of
philosophers, but agree, |
believe, with Chomsky and his
associates.”

(Universal Grammar, 1970)



The Key to Montague’s Program
-

~

Frege’s Principle of Compositionality

The meaning of a compound expression is
a function of the meanings of its parts, and
the ways they combine with each other.

/

[FormJ ) Compositionality ) [Meaning]













| saw the man with the telescope



| saw the man with the telescope






Notions in Set Theory (1)

Description of sets and their members:
Explicit:  {1,2,3,4}

Implicit: {xis a natural number : x is between 1 and 4}
={xe N:1<x<4}

{xIs a natural number : x is bigger than 90}
={xe N:90<x}



Notions in Set Theory (2)

Al

Element of: =<A Subset: 4cB

Intersection: Union:
AnB AuB A-B












Mentalist vs. Linguistic Meaning Relations

(1) a. What is common to the objects that people categorize as being red?
How do people react when they are addressed with the request please pick a
blue card from this pack?

@]

What emotions are invoked by expressions like my sweetheart, my grandmother
or my boss?

(2) a. How do speakers identify relations between pairs of words like red-color, dog-
animal and chair-furniture?

b. What are the relations between the use of the imperative sentence please pick a
blue card from this pack and the use of the similar sentence please pick a card
from this pack?

c. How are the descriptions my grandmother and my only living grandmother re-
lated to each other in language use?

(3) Redisacolor / ?Red 1s an animal
(4) The color red annoys me / ?The animal red annoys me

(5) Every red thing has a color / ?Every red thing has an animal



Entailment

Tina is tall and thin ==> Tina is thin
premise/antecedent conclusion/consequent

Jeremy knows more than four aunts of mine = Jeremy knows at least five aunts
of mine.

A dog entered the room = An animal entered the room.

John picked a blue card from this pack = John picked a card from this pack.

Tina is a bird =/=> Tina can fly
Tina is a bird but she cannot fly vis a vis
#Tina is tall and thin, but she is not thin

Entailment is the indefeasible relation, denoted S1=>S2, between a premise S

and a valid conclusion Sa expressed as natural language sentences.




More entailments
Tina is tall and thin ==> Tina is thin

o,
ad
j —
s

. Tima 1s excited and she (Tma) 1s joyful or amazed = Tina 1s excited and joyful
or Tina 1s excited or amazed.
b. Tina 1s excited and joyful or Tma 1s excited or amazed = Tina 1s excited and
she (Tma) 1s joyful or amazed.
(4) a. Tma 1s tall. and Ms. Turner 1s not tall = Tina 1s not Ms. Turner.
b. Tina is tall, and Tina is not Ms. Turner = Ms. Turner is not tall.
(5) a. Ms. Turner 1s tall, and Tina 1s Ms. Turner or Ms. Charles = Tina 1s tall or Tina
1s Ms. Charles.
b. Ms. Turner is tall, and Tina is Ms. Turner or Ms. Charles =* Tina is tall.



Let exp be a language expression, and let M be a model. We write Hexp]]M when

referring to the denotation of exp in the model M.




Models and Entailment:
the Truth-Conditionality Criterion

A semantic theory 1 is said to satisfy the truth-conditionality criterion (TCC) if

for all sentences S and Ss, the following two conditions are equivalent:

I. Sentence Sy intuitively entails sentence S.

II. For all models M inT: [[S1]M < [[S2]]M.

y=0 y=1 MODELS
T = (:] ves ves ENTAILMENT [I:.‘S'lﬂﬂ!l < [[‘sz}]iﬂlfl
TCC . Mo . Mo
r=1 no ves . . — [[S1]]72 < [[S2]]72
) A_SJ_ p— *52 i \f ] v
[5:T™ < [saT]™




1 ifxreA
Is(m*l'ﬁl):{ 0 ifzrdA

AND(A.B) = AnB = the set of all members of E that are both in A and in B

[ Zina is thin]]™ = 1s(tina, thin)
([Tina is tall and thin]]™ = 1s(tina, axp(tall, thin))

Let blik be a word in a language. When the denotation [[blik]|™ of blik is arbi-
trary, we mark it blik, and when it is constant across models we mark it BLIK. In
both notations the model M is implicit.




. . Denotations in example
Expression at. A Abstract denotation models with E = {a, b, ¢, d)
Tina entity tina

tall set of enfities | tall

thin set of enfities | thin

tall and thin set of entities | anp(tall, thin)

Tina is thin truth-value 1is(tina, thin)

Tina is tall and thin truth-value 1s(tina, ano(tall, thin))

1s(tina, anp(tall, thin))




Compositionality

All pianists are composers, and Tina 1s a pianist.

All composers are pianists, and Tina 1s a pianist.

Compositionality: 77e denotation of a complex expression is determined by the

denotations of its immediate parts and the ways they combine with each other:

A. B.
S 1s(tina. aND(tall, thin))
Tina 1s AP

/‘\ tina 1s AND(tall, thin)
tall and thin /N

tall aAnxD thin




Tina 1s not tall and thin.
Tina 1s not tall, and thin.

AP — tall, thin, ...
AP — AP and AP
AP — not AP

1S

TN

AP

i

not tall tall and thin




Structural ambiguity (2)

NOT(A) =A=FE N~ A =the setof all the members of E' that are not in A

A. B.
1s(tina, anp(vot(tall), thin)) 1s(tina, vot(anp(tall, thin)))
tina 1s  anp(vot(tall), thin) tina 1s Not(anp(tall, thin))
Nor(tall) axo  thin ot anp(tall, thin)
/\\\
vor - tall tall anp thin

1s(tina. AND(NoT(tall). thin)) = 1, 1.e. tina € tall nthin

1s(tina. NoT(aND(tall, thin))) = 1, 1.e. tina € tall nthin

Note: Ambiguity vs. vagueness



Summary — Main Notions

Facts:
Entailment (indefeasible)

Theory:
Model
Denotation in model

Adequacy:
Truth-Conditionality Criterion

Compositionality

Structural ambiguity
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Session 2:

Types and Meaning
composition



This Lecture

A general theory of model structure; a
general semantic practice for meeting
the TCC.

1 — working with types and denotations
2 — using lambda notation

3 — restricting denotations



Working with types
and denotations



Basic/Complex Types and Domains

A type is a label for part of a model that is
called a domain.

Basic types and domains:
e : D, -arbitrary - ofentities
t : D, ={0,1} - of truth-values

Complex types and domains: defined
inductively from basic types and domains.



Complex Types — Example

E =D, =the set of entities {t,|,m}

[[thin]] = T = {t,]}
We can also define T as a function from D_to
D,:

t>1

j=>1

m->0

This function characterizes TinE =D,

D.; of the complex type et is the domain of
such functions.




Characteristic functions over {t,j,m}

Subset of ). Function in D.;

% fi: t—=0 j»0 m=20
{m} fo: t—0 j—»0 m~1
{i} fa: t—=0 J—»1 m~0
{j.m} fa: t—=0 j»1 me1
{t} f5: t—1 J—»0 m~0
{t,m} fe: t—1 J»0 mel1l
{t.j} fr: t>1 j»1 me=0
{t,j.m} fs: t—=1 J»1 mel

Table 2.1: Subsets of [, and their characteristic functions in D,



Let X be any set.

Every subset A C X gives us a function f4 : X — {0, 1}
called the characteristic function of A.

It is defined as follows:

1 ifxeA

) = {o i x ¢ A

Examrre: X = {a,b,c,d}, A = {a, c}

Here are some examples of how this function f4 works:
fa(a) = 1.
fa(b) =0.

fa(c) = 1.
fa(d) = 0.



Definitions: Types and domains

Definition 1. The set of types over the basic types e and ¢ is the smallest set 7 that
satisfies:

(i) {e,t}cT

(i) If 7 and o are types in 7 then (7o) is also a type in 7.

e, t,
ee, tt, et, te,
e(ee), e(tt), e(et), e(te), t(ee), t(tt), t(et), t(te).
(eee, (tt)e, (et)e, (te)e, (ee)t, (tt)t, (et)t, (te)t,
(ce)(ee), (ee)(tt), (ce)(et), (ee)(te), (tt)(ee), (tt)(tt), (tt)(et), (tt)(te)

Definition 2. For all types 7 and o in 7. the domain D, of the type (7¢) is the set D2~
— the functions from - to D, .

Dty 15 the set of functions from De to Dy
= the functions from entities to [,
= the functions from entities to the functions from ), to Dy
= the functions from entities to the functions from entities to truth-values.



Tina smiled.

smile,;(tina,)




From types e and et, FA gives £ (as we have seen above).

From types (e(et))(et) and e(et), FA gives et.

Types (e(et))(et) and et cannot combine using FA: neither of these types is a prefix of the

other.

tina, + smile.; = smile(tina) : t.

In more general terms, our type-based rule of function application 1s given below.

Types: (ro)+7 =

Denotations:  fr, +a, =

T +(70)
Trr + f'rcr

Function application with typed denotations. applving a function [ of type To to an
object x of type T gives an object f(x) of tvpe 0. In short —

f(x):o




Intransitive and Transitive verbs
Tina smiled.

Tina [praised Marv].

A. B.

/>\ praise(mary)(tina) : ¢
Tina A

praised Mary

tina:e  praise(mary) : et

praise:e(et) mary:e

praise,.,) + mary, = praise(mary) : et

praise(mary) + tina, = (praise(mary))(tina) :

praise(mary)(tina)



U= {(t: H’I}, (m, t): (m*.rj): (IT’I, IT’I)}

]=0 me1
J=0 mee1

J=0 mee1

fu: ¢t — :tl—}U
] > :tl—:rU
m & :tl—:rl

— fu maps the entity t to the function characterizing the set {m}.
— fu maps the entity j to the function characterizing the same set, {m}.

— fu maps the entity m to the function characterizing the set {t, m}.

When the function fir is the denotation of the verb praise. and the entities t, j and m are the denota-
tions of the respective names, this is the situation where:

— Mary is the only one who praised Tina.
— Mary is the only one who praised John.
— Tina and Mary, but not John, praised Mary.




Currying

F: (MXW)=>[0,1]
F gives any pair of man and woman (m,w) a score F(m,w)
indicating matching

G: M=>(W-=>[0,1])
G gives any man m a function G(m) mapping any woman wto a
score (G(m))(w).

Thus, we can define: (G(m))(w) = F(m,w)
We say that G is the Curried version of F, and that F is the
deCurried version of G.



A numerical example of Currying

The function ADD sends every number N to:

the function ADD(N) that sends every number M to:
N+M

Thus: (ADD(N))(M) = N+M.
But:
ADD(1) is the successor function.

ADD(10) adds ten to every number.
Etc.

With two-place operators like "+’ it's impossible to define
such functions directly.

Note: analogy between ADD(1) and praise(mary).



[ TiIlHE [iSY tallet]x ]t

t

TN

Tina: e et

is tall is tall is tall : et

Eq.l: e+ X =1 Sol. 1: X =et Eq.2: Y +et=et Sol. 2: Y = (et)(et)




For every function f in D 1s(f) = f.

A.

. Hﬁ\ (Wt

1s tall
tina: e is(tall) : ef

1s: (et)(et) tall:et




b.
(is’(tall’))(tina’): ¢

tina’: ¢ is’(tall’): [et]

tall': ef




tall’(is’(tina)): ¢

is'(tina’): ¢  tall’: ef




Not 1s the (et)(et) function sending every et function g to the et function Not(¢g) that satis-
fies for every entity 2

corta @) ={ § o))




For every two functions f4 and fp in D, characterizing the subsets A and B of D.:
(anp(fa))(fr) is defined as the function fan g, characterizing the intersection of A and B.

anD(thin)(tall))(tina)

tina AND(thin)(tall)

tall anp(thin)
/\\“\

AND thin




Types of the form

at
a(at)
a(a(at)))

In General

1-p
2-p
3-p
n-p

ace predicates
ace predicates
ace predicates
ace predicates

modifiers
(1-place coordinators) Is, not

2-p
3-p
n-p

ace coordinators
ace coordinators
ace coordinators

smile
praise
send

XandY
X, Yand Z



Using Lambda
Notation



IS as Identity Function

[[ Tinaistall]] =1 -- tina denotes an entity
in the set for tall
With types:

(1S(et)(ety (taller ) ) (tinay)

Intuitively: IS maps any set to itself.
Formally:.
IStet)(et) =

The function sending every element g of the domain Dt to q.



I3(et)(et)
The function sending every element g of the domain Dt to q.

Instead of writing “the function sending every element g of D¢;” as 1 (55), we write “Aget”.

Instead of “to ¢ as in (55), we write “.g”.

The letter <\’ tells us that 1t 1s a function.

The notation ‘g, before the dot introduces ‘g’ as an ad hoc name for the argument of this
function. The type ef 1n the subscript of ¢ tells us that this argument can be any object in the
domain D,;.

The re-occurrence of ‘g’ after the dot tells us that the function we define in (58) returns the
value of its argument.




Lambda notation: When writing “A\icr.p0”, where 7 is a type, we mean:

“the function sending every element x of the domain D, to ©”.




(Aget-g )(tﬂllet)
= tall

succ(22) =22 +1 (Az,,.z+1)(22) 29 11

Function application with lambda terms. The result (Az..¢)(a,) of applving a func-
tion described by a lambda term Ax..p to an argument a., is equal to the value of the

expression , with all occurrences of x replaced by a.




praise, . (tina. )(tina)

(HERSELF (¢ (et))(et) (praisee(ﬂt) ))(tina. )

= praise(tina)(tina)

For all functions R of the domam D, ). for all entities x of the domain D,
(HERSELF (¢(et)) (et) () ) (2) = R(z)(2)




For all functions R of the domain [, (.. for all entities  of the domain [, :
(HERSELF (¢ (1)) (et) () ) (2) = R(z)(x)

I-IERSE[LF(E(Et))(Et) 18

the function sending every element 12 of the domain .., to the function sending every
element z of the domain D, to R(z)(z).

HERSELE (¢(et)) (et)
= AR, (.¢)-the function sending every element = of the domain D, to R(z)(z)

HERSELE (e(et)) (et)

= ARc(ety-(Aze . R(x) (7)) AR ey Az . R(z)(x)




(HERSELF (¢ (ct))(et) (PTAISE,(o4) ) ) (tina,) compositional analysis of structure (63)

= ((ARc(ety-Aze.R(z)(x))(praise) )(tina) definition (70) of HERSELF
= (Az..praise(z)(z))(tina) applying HErsELF to the argument praise

= praise(tina)(tina) applying (HERSELF(praise)) to the argu-
ment tina




What have we learnt here?

- A useful notation for functions

- A useful rule for simplifying notation under
function application



Restricting
Denotations



Not 1s the (et)(et) function sending every et function g to the et function Not(¢g) that satis-
fies for every entity 2

corta @) ={ § o))

NOT = Ager Ate-~{9(x))

(Is(et) (et) (NDT(Et) (et) (tall,;)))(tina,) compositional analysis of structure (37)
= ((Aget.g) (vot(tall)))(tina) definition of 1s as identity function

= (~vot(tall))(tina) applying identity function to not(tall)
= ((Aget-Axe.~(g(x)))(tall))(tina) definition (55) of Nor

= ((Az.~(tall(x))))(tina) applying definition of ~ot to tall

= ~(tall(tina)) application to tina




For any two truth-values x and y: the truth-value 2 A y 1s 2 - y. the multiplication of x by y.

AND' = A\Z¢ A\yp.y A T

For every two functions f4 and fp in D)., characterizing the subsets A and B of D.:
(anp(fa))(fr) is defined as the function fan g, characterizing the intersection of A and B.

AND®" = A fer AGet ATe.g(2) A f(2)




Tina 1s a fall woman; the 7all engineer visited us; I met five fa/l astronomers.

Tina 1s a Chinese pianist < Tina 1s Chinese and Tina 1s a pianist.
My doctor has a white Volkswagen < My doctor’s Volkswagen is white.

Mary saw three carnivorous animals < Three animals that Mary saw are carnivorous.

Tina [ 1s [ a pianist ||

A(et)(et) =18 = AJet -9

(1s(a(pianist)))(tina)
= pianist(tina)




Attributive adjectives (2) - Intersective

Tina [ 1s [ a [ Chinese pianist ]]]

chinese?{?f)m) = Afet - AT..chinese(x) A f(2)

For any two truth-values 2 and y: the truth-value > A ¥ 1s 2 - i, the multiplication of 2 by .

(1s(a(chinese™(pianist))))(tina) > compositional analysis of (73)

= (chinese™ (pianist))(tina) > applying 1s and a (identity func-
tions)

= ((Afet-Ax..chinese(x) A f(2))(pianist))(tina) > definition (74) of chinese™

= (Ar..chinese(r) A pianist(z))(tina) > applying modificational denota-

tion to pianist

= chinese(tina) A pianist(tina) > applying result to tina

Conclusion: with adjectives like Chinese the attributive (er)(et)
denotation can be systematically derived from the predicative et

denotation.
Note: this 1s not the case with all adjectives (ct. skillful).



Attributive adjectives (3) - Subsective

Jan is a Chinese surgeon & Jan is a violinist
= Jan is a Chinese violinist

Jan is a skilltul surgeon & Jan is a violinist
=>» Jan is a skillful violinist

Conclusion 1: skillful is not intersective.

However, skillful has a weaker property, which
we call restrictivity.

Jan is a skillful surgeon
=>» Jan Is a surgeon




Attributive adjectives (4) - Subsective

Formally: M is subsective (or “restrictive”) if for
every set of entities A, M(A) < A.

Conclusion 2: skillful is subsective.

In Lambdas:
skiIIfuI(et)(et) = AA. Ay. (skiIIfuI1(et)(et) (A))(y)A A(y)



Summary - restrictions on denotations

Constant, Combinatorial:
1S, A, HERSELF

Constant, Logical:
ANDs, NOTs

Arbitrary:
tina, smile, praise, pianist, chinese (predicative use)

Logical operator on arbitrary:
chinese™o9, skillful™od (attributive use)

Further: bachelor = unmarried ...



More on the
classifictaion of
adjectives



I - Subsective functions

Intersective functions

Subsective functions

M(A)S A

Note: any intersective function is subsective






Non-subsective adjectives

Jan is an alledged surgeon
=/=> Jan Is a surgeon

Conclusion: alleged is not subsective.

More examples (Partee):
potential, alleged, arguable, likely, predicted, putative, questionable, disputed.



111 - Non-subsective but co-subsective

M(A)ZA
Non-subsective (general)

Co-subsective A Prisis

M(A)CE-A

I —

Note: any (non-trivial) co-subsective function is non-subsective



Co-subsective adjectives

This is a false diamond
=/=> This is a diamond

Conclusion 1: false is not subsective.

However:
This is a false diamond
=>» This is not a diamond

Conclusion 2: false is co-subsective.

Formally: M is co-subsective (or “privative”) if
for every set of entities A, M(A) € E-A.



More co-subsective adjectives (Partee)

non-subsective and privative: wouldbe, past, spurious, imaginary, fictitious, fab-
ricated (1n one sense), mythical (maybe debatable): there are prefixes with this
property too, like ex, pseudo, non.

Note:
John is an alleged criminal, and indeed he is a criminal.
Conclusion: alleged is not co-subsective.



Adjectives - summary

N

Subsective - Subsective
Intersective - Intersective Co-subsective - Co-subsective
Dutch skillful false alleged

Intersective =2 Subsective
Co-restrictive = ~Subsective (ignoring trivial cases)

These properties can be generalized (and studied) for modifiers
of other types besides (e?)(et).



Note on (non)extensionality (1)

Jan is a skillful surgeon & Jan is a violinist
=>» Jan is a skilltul violinist

Conclusions we had: skillful is not intersective (but subsective).

Adjectives like skillful lack another property, which we
extensionality.

Jan is a Dutch surgeon &
the surgeons are the same as the lawyers
=» Jan is a Dutch lawyer

Informally: An adjective ADJ is called extensional if for every
two nouns N1 and N2 that denote the same set of entities, we
have: [[ ADJ N1 ]] = [[ ADJ N2 ]].

The adjective Dutch is extensional, but skillful is not:

Jan is a skillful surgeon &
the surgeons are the same as the lawyers
=/=> Jan is a skillful lawyer




Note on (non)extensionality (2)

It has been postulated that the non-intersectivity of many
adjectives is derived from their non-extensionality, but the
ways the two properties are related is unclear.
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Session 3:

Generalized Quantifiers



Quantifiers in different domains

John rarely/usually eats meat.
We are close to/far from Beijing.
There is little/a lot of work to do today.

Many/few people admire Richard Wagner.

We focus on gquantificational NPs:
NPs containing determiners like many, few,
every, some, most etc.



In order to describe the meaning of NPs with determiners (every, some, most
etc.), we should let such NPs denote sets of subsets of £ — type (et )t.

The same type 1s needed for describing NP coordination in a general way.

Montague’s hypothesis about the matching between syntactic categories and
semantic types leads us to adopt a uniform type for all NPs.

Some hard syntactic questions can then be given interesting semantic an-
SWETS.




Keenan’s typology of determiners (1)

Lexical Dets
every, each, all, some, a. no, several, neither, most, the, both, this, my, these, John's,
ten. a few, a dozen. many, few
Cardinal Dets
exactly/approximately/more than/fewer than/at most/only ten, infinitely many. two dozen.
between five and ten, just finitely many. an even/odd number of, a large number of
Approximative Dets
approximately/about/nearly/around fifty, almost all/no, hardly any, practically no
Definite Dets
the, that, this, these, my, his, John's, the ten, these ten, John's ten
Exception Dets
all but ten, all but at most ten, every...but John, no...but Mary,
Bounding Dets
exactly ten, between five and ten, most but not all, exactly half the, (just) one...in ten. only SOME
(= some but not all; upper case = contrastive stress), just the LIBERAL,only JOHN's
Possessive Dets
my, John's, no student's, either John's or Mary's, neither John's nor Mary's
Value Judgment Dets
too many, a few too many, (not) enough, surprisingly few, ?many, ?few
Propor tmn.llltv Dets
exactly half the/John's, two out of three, (not) one...in ten, less than half the/John's, a third of the/John's,



Partitive Dets
most/two/none/only some of the/John's, more of John's than of Mary's, not more than two of the ten
Negated Dets
not every, not all, not a (single), not more than ten, not more than half, not very many, not quite enough,
not over a hundred. not one of John's
Conjoined Dets
at least two but not more than ten, most but not all. either fewer than ten or else more
than a hundred, both John's and Mary's, at least a third and at most two thirds of the.
neither fewer than ten nor more than a hundred
Adjectively Restricted Dets
John's biggest, more male than female, most male and all female, the last...John visited, the first ...to set
foot on the Moon, the easiest...to clean. whatever...are in the cupboard




Function-Argument flip-flop
(an argument between FLIP and FLOP)

FLIP: NP:e+ VP:et =S:t
(subject as argument)

FLOP: But can all those NPs denote entities? ®

NP:(ef)it + VP:et =S:t
(subject as function)

FLIP: NP denotes (ef)t function??? ®

FLOP: Yes! let's do some work on it! ©



Generalized Quantifiers - example

(1) Every man ran.

Let every man denote a set of sets: the set of subsets of £ that include the set of
men:

(2) {B C F:man’ C B}

[n type-theoretical terms: every man denotes an (et )t function.
Application of this function to the VP denotation:

(3) run’ € {B C EF: man’ C B}
< man’ C run’
“every member of the set man’ is a member of the set run’”

For instance, if £ = {a,b,c,d}, man’ = {a,b} and run’ = {a,b,c},
then:

[every man] = {B C F : man’ C B}

= {B C{a,b,c,d} : {a,b} C B}

= {{a.b}.{a.b,c},{a,b,d},{a.b,c,d}}.

and thus run’ = {a, b, ¢} € [every man].



(4) Some man ran.

(5) run’ € {B C E:man’'N B # ()}
< man’ Nrun’ # (0
“there is an entity that is a member of both man’ and run’

(6) No man ran.

(7) run’ € {BC E:man'N B = (}

< man’ Nrun’ = ()
(8) exactly five men: {B C E : |man’ N B| =5}

(9) most men: {B C E : |man’ N B| > |man’\ B|}




Terminology: Any set ) C o(F) (a set of subsets of F) is called a generalized
quantifier (GQ) over E.




GQ Monotonicity

(10) a. Some man ran quickly = Some man ran

How do we
b. Some man ran quickly <= Some man ran show non-
: monotonicit
(I1) a. Noman ran quickly #% No man ran ) y
entailments?

b. No man ran quickly <= No man ran

(12) a. Exactly five men ran quickly # Exactly five men ran

b. Exactly five men ran quickly <= Exactly five men ran

Some man 1s called an upward monotone (mont) noun phrase.
No man 1s called a downward monotone (monJ.) noun phrase.
Exactly five men 1s called a non-monotone (neither mon7 nor monlJ ) noun phrase.

Definition 1 (quantifier monotonicity) A generalized quantifier () € o(p(FE))
[s:

1. mon?T iff forall AC BC E:ifA€ Q) then B € Q).

2. monl]. iff forall AC B C E:if BeQthen A € Q.



Noun phrase Generalized quantifier Monotonicity

every man {B C E : man* C B} MON?

some man {B C E :man* N B # ¥} MON?T
no man {BC E :man*N B =@} MONJ,
exactly one man {BCE: man*NB| =1} MON-—
at least three men {BCE:|man*NB| > 3} MON?
fewer than five men {BCE:|man*NB| <5} MONJ,
between six and eleven men {B C E :6 < |[man*NB| <11} MON—

IIT at least half the men {BCE:|man*NB| >12.- |man*|} MON%}




every man:

{a, cj
{a}

{b, c}

{a,c.d} {b, c,d}

{a.d}

{c}
0

{b,d} {c.d}

some man:

{c,d}

no man:

{a, b, c, d}

{a,b,c} {a,b,d} {a,c,d}{b, c,d}

{a,b} {a,c}
{a}

ib,c} {a,d} {b,d}
{b}




(23) Tina ran.

(24) run’ € {B C E : tina’' € B}
“the set of runners is in the set of subsets of F that contain tina’”
& tina’ € run’




Linguistic fact: Coordination applies freely to proper names and other NPs alike.

(25) Mary and/or John, neither Mary nor John, every woman or every man, most
women and most men, many students but few teachers, one student and five
teachers, the teacher and every student etc.

The denotation of these NPs 1s easily derived using GQs and the boolean treatment
of coordination.

(26) a. Mary and John smiled.
smile’ e {ACE:m'e AAn{ACE:j e A}
& m’ € smile’ Aj € smile’
b. Mary smiled and John smiled.
smile’ € {ACFE:m'€ A} Asmile' e {ACFE:j € A}
& m’ € smile’ A j € smile’




(27) a. Mary or John smiled.
smile’ € {ACE - mc AJU{ACE:jec A}

& m’ € smile’ Vj' € smile

b. Mary smiled or John smiled.
smile' € {ACE:m'€ A} Vsmile' c {ACFE:jecA}
< m’ € smile’ Vj' € smile’

(28)  a. Neither Mary nor John smiled.
smile' € {ACE - m'c AIN{ACE:jcA}
& m' € smile’ Aj & smile’

b. Mary didn’t smile and John didn’t smile.
smile’ € {AC E:m’' € A} Asmile’ € {AC E:j € A}
& m' € smile’ Aj & smile’




This is 1n agreement with the old (and 1ll-defined) transformational rule of con-
junction reduction (CR). However, consider the following:

(29) a. NP sang and danced 4 NP sang and NP danced
NP = some man, no man, not every man, Mary or John, at least/most
five women, exactly five women, most women

. NP sang and danced < NP sang and NP danced
NP = every man, Mary, Mary and John

. NP sang or danced ¢ NP sang or NP danced
NP = every man, no man, not every man, Mary and John, at least/most
five women. exactly five women, most women

. NP sang or danced < NP sang or NP danced
NP = some man, Mary, Mary or John




(31) Some man danced and sang.
dance’ Nsing’ € {AC F:man’' NA # 0}
& man’ N (dance’ Nsing’) # ()

This can be false when both man’ N dance’ and man’ N sing’ are non-
empty.

(32) Every man danced and sang.
dance’ Nsing’ € {A C F : man’ C A}
< man’ C dance’ N sing’
This holds iff man’ € dance’ and man’ C sing’.

Conclusion: The boolean semantics of GQs 1s much more fine-grained than any
syntactic account of the semantics of coordination.




X +et = (ef)t

Determiners like the ones considered above denote functions from sets to GQs:

(13) every'(A) = {BC E: AC B}

Thus, determiners denote functions of type (et)((et)t).
Alternatively, we can view such functions as relations between subsets of £

(14) every'(A)(B)iff AC B
(15) some'(A)(B)iff ANB # ()

(16) most'(A)(B)iff [AN B| > |A\ B]

I EEEE——————
Terminology: Any set D C o(FE) x p(FE) (a relation between subsets of E) is

called a determiner function over FE.




Determiner Monotonicity

|[Every [tall man]] [ran quickly] = [Every [tall man]] ran
[Every [tall man from Japan]] [ran quickly]

= [Every [tall man from Japan]] ran

[Every [tall man from Japan who sings the blues]] [ran quickly]
— [Every [tall man from Japan who sings the blues]| ran

|[Every N| [ran quickly] = [Every N] ran

A determiner relation D over E is called right upward monotone
(MON?) if and only if for all AC E and B; € B, € E: D(A, B) =
D(A, B,).
A determiner relation D over E is called right downward monotone
(MONYJ) if and only if forall AC E and By C B, C E: D(A, B;) =
D(A, B)).



|[Every man| ran = [Every [tall man]] ran.

Suppose that the relation EVERY(A;, B) holds.
Then A; C B.

By our assumption A, C A, we also have A, C B.
Thus, the relation EVERY( A,, B) holds.

Some man ran % Some tall man ran.

Some tall man ran = Some man ran.

Exactly one man ran # Exactly one tall man ran.

Exactly one tall man ran % Exactly one man ran.




Determiner relations Monotonicity
EVERY (A, B) ACB Imont

SOME (A, B) ANB #£Y tMoNt
NOo (A, B) ANB =1/ IMoN]
ANB
ANB
ANB
6<|ANB| <11

|ANB| =2 | A

exactLy 1 (A, B)
AT LEAST 3 (A, B)
FEWER THAN 5 (A, B)

BETWEEN 6 AND 11 (A, B)

NI R O O (R

AT LEAST HALF (A, B)




. John hasn’t ever been to Moscow.

. *John has ever been to Moscow.

. John didn’t see any birds on the tree.

. *John saw any birds on the tree.

a. No student here has ever been to Moscow.

. *Some/every student here has ever been to Moscow.

a. Neither John nor Mary saw any birds on the tree.

. *Either John or Mary saw any birds on the tree.

a. None of John’s students has ever been to Moscow.

. *One of John’s students has ever been to Moscow.

. Not a single student here has ever been to Moscow.

. A single student here has ever been to Moscow.

. Not more than five students here have ever been to Moscow.

. *More than five students here have ever been to Moscow.

a. Fewer than five students here have ever been to Moscow.

. *More than five students here have ever been to Moscow.




. At most four students here have ever been to Moscow.

. *At least four students here have ever been to Moscow.

a. Less than half the students here have ever been to Moscow.

. *More than half the students here have ever been to Moscow.

a. Neither any students nor any teachers attended the meeting.

. *Either any students or any teachers attended the meeting.

a. John neither praised nor criticized any student.
. *John either praised or criticized any student.

. Every/no/at most one student who has ever been to Moscow knows
about the weather there.

. *Some/at least one student who has ever been to Moscow knows about

the weather there.

(46) If John ever goes to Moscow he will know about the weather there.

The Ladusaw-Fauconnier Generalization: Negative polarity items occur within
arguments of monotonic decreasing functions but not within arguments of mono-
tonic increasing functions.




(20) Every man ran < Every man 1s a man who ran
(21) Some man ran < Some man 1s a man who ran

(22) Exactly five men ran < Exactly five men are men who ran

... and so on (allegedly) for all determiners!

Definition 3 (conservativity) A determiner function D C p(E) x o(E) is called
conservative iff forall A, B C E: D(A)(B) < D(A)(AN B).

Hypothesized universal: All natural language determiners (simple and complex)
denote conservative determiner functions.




Formal Semantics of Natural Language
ESSLLI2016, Bolzano - Bolzen, 22-26 August 2016
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Spatial Semantics



The Gas Station Puzzle (latriduo 2003)

" 3" \

Michael is close to a gas station.




Analyzing a gas station” --
Background on indefinites

Indefinites as predicates:
Michael is a driver.
London is a city.

Indefinites as arguments:
A driver showed me his car.
A city was built here.

Partee (1987):
Predicate indefinites are type etf: [[a driver]] = driver
Argument quantifiers are type (ef)t: AP, .3x..driver(x) A P(x)



Analyzing far from/close to "’ --
Background on locatives

Locatives are two-place predicates:
Michael is far from/close to London.

far_from(m,1)

Locatives are applied to entities that have locations:

roc(m) =m; vroc(l)=L

A deeper semantics as two-place locative predicates:
FAR_FROM(Loc(m), Loc(1l))
- FAR_FROM(m, L)




.
Basic Account

The gas station puzzle reflects the set denotation of
indefinites, together with the part-whole properties of spatial
prepositions.

(1)  Michael is close to London €=
For some part of London x, Michael is close to x.

(2)  Michael is far from London €
For every part of London x, Michael is far from x.

The same principles about locatives that account for (1) and
(2) will be used to account for the gas station puzzle.

“A gas station” — analyzed as an et predicate; distances
are measured from the union location of the members of
this predicate.

FAR_FROM(m, [J{LOoC(X) : X € gS}) :



L
Background - Types of locatives

Topological locatives:
The car is in the garage.
The camp is outside the city.

Distal locatives:
The car is far from the garage.
The camp is close to the city.
Beijing is 1,318km from Shanghai.

Projective locatives:
The car is left of the garage.
The bird is close to the house.




B
Topological Locatives

INSIDE: in, inside (of), within

OUTSIDE:  out of. outside (of), without

The wisitor 1s side the building.

o &

The wisitor 1s outside the building.

The wvisitor 1s inside somes part of the building.
The wisitor 1s outside every, part of the building.

For all points = and regions A:
wsE(r, A) < xeA

oUuTsE(x,A) < ¢ A



B
Topological Locatives

INSIDE: in, inside (of), within

OUTSIDE:  out of. outside (of), without

&

The wisitor 1s side the building.

=3

The wisitor 1s outside the building.

The wvisitor 1s inside somes part of the building.
The wisitor 1s outside every, part of the building.

Locative indefinites:

Every vehicle or trailer which is parked outside of a garage shall display license
plates with current registration tabs.  outside every garage

I personally find the planets that formed owutside of a star systemn more fascinat-
ing than ejecta. outside every star system

One-third of the funded proposals shall serve schools within a Metropolitan

County, and at least one-third shall serve schools outside of a Metropolitan
County. outside every MC



B
Topological Locatives - formally

a. The school 1s within a Metropolitan County:.

b. The school 1s outside of a Metropolitan County:.

INSIDE(7r,UA) < 3JAe AmsmE(z, A)

oUTsSIDE(z,UA) <« VAe Aoutsme(z, A)

a. INSIDE( s, Loc(MC))
< INSIDE( s, U{roc(z) : & € mc})
< Jr € mc.INSIDE( s, Loc(x))

b. ouTsIE(s,Loc(Mc))
< oUTSIDE( s, U{roc(x) : = € mc})
< V2 € mc.oUTSIDE( s, Loc(x))



B
Distal Locatives

Upward monotone, downward monotone and non-
monotone distal locatives:

DISTNe:  far from, away from, more than/at least 20km (away) from
DIST\ . close to, near (to), less thanlat most 20km (away) from

DIST\_: exactly 20km (away) from, between 20km and 30k (away) from

a. Michael is at least 20km from London.
b. Michael is at most 20km from London.

a. Michael 1s at least 20km from every, part of London.
b. Michael 1s at most 20km from some; part of London.

Locative indefinites:

Michael 1s at least 20km from a gas station.

o =

Michael 1s at most 20km from a gas station.

Michael 1s at least 20km from every, gas station.

=

b. Michael 1s at most 20km from some; gas station.



- B
Measuring distances

Definition 2 (mefric function) Let M be a non-empty set, and let d be a function
from the cartesian product M x M to non-negative real numbers in R. The function
d is called a metric function if it satisfies the following requirements for all elements

xX,vyeM:

d(x,y)=d(y,x) (symmetry)
d(x,v)+d(v,z)>d(x,z) (triangle inequality)
d(x,v)=0iff x=y (identity of indiscernibles)

Definition 3 (distance) For every non-empty closed region A € M and a point x € M
not in A, the distance between x and A 1s defined by:
d(x,A) =min({d(x,y):ve A}).

FAR_FROM(x, A) <= d(x, A) >r

CLOSE_TO(x, A) < d(x, A) <r



B
“Far from” vs. “Close t0”

FAR_FROM(x, UA) < VA € A.FAR FROM(x, A)

CLOSE_TO(x, UA) < JA € A.cLosE_To(x, A)



Projective Locatives
above. behind. north of. left of

The dot 1s left of the line.
The dot 1s right of the line.

N

Non-existential locative indefinites:

The dot 1s left of a circle.
The dot 1s right of a circle.

O

O

Experimental work with Robert Grimm, Eva Poortman
and Choonkyu Lee (SALT 2014)



I
Projective Locatives — formally

For any region A and point = ¢ A:
LEFTOF(r, A) <
the shortest vector from A to x has a non-zero ‘left of” component

the dot is left of the line

the dot is left of a circle




B
Summary
Topological (inside, outside), distal (far from,

close to), and projective (behind, above)
locatives.

For all these locatives, we see pseudo-

guantificational effect w.r.t. part-whole relations:
close to London = close to some part of London
far from London = far from every part of London

We explain the similarity between this behavior
and “strange” effects with locative indefinites:

close to a gas station = close to some gas station
far from a gas station = far from every gas station



-

Thank you!




B
Modified Locatives

With distal modifiers: far outside of. 10km north of. deep under

With projective modifiers:  diagonally above. straight in front of. right beneath

Modified outside (topological use) — pseudo-intersective:

The hotel 1s far outside the city center.

FAR OUTSIDE(x, A) < FARFROM(x,A) A OUTSIDE(x, A)

Non-existential locative indefinites:
a. This scene shows Roamer ships encountering a huge. derelict alien city in space.
far outside of a star system.
b. Lightning can strike up to 10 miles outside of a thunderstorm.

c. The participants were primarily Caucasian and lived ar least 25 miles outside of
a town of 12.500 or more people.



. .
Modified Locatives (cont.)
Modified outside (topological use) — pseudo-intersective:
Fido 1s less than Sm outside of a doghouse

There is a doghouse X such that Fido
is less than 5m from X

Hence it is not truly
existential

and for every doghouse Y Fido is
outside Y




B
Modified Locatives (cont.)

Projective locatives + projective modifier:

a. The bird 1s straight above the house.
b. The bird 1s diagonally above the house.

P

/ [ . Non-intersective, using
shortest vector (Z&W)

Non-existential locative indefinites:
The bird 1s diagonally above a cloud. Nl N



. B
Modified Locatives (cont.)

Projective locatives + distal modifier:

u
Senega f&a‘ Kerewa 1"1 Okm

IS
Wm U 30km
Gambia

\'%

Kerewan is 10km south of the Senegalsese Border.
Kerewan is 30km north of the Senegalsese Border.

We are interested in the length of the shortest vector(s) among
the vectors north of the border, and of the shortest vector(s)
among the vectors south of the border.

Not the shortest vectors from the border (contra Z&W).



B
Modified Locatives (cont.)

Projective locatives + distal modifier: Don’t care...

Senegal — u
J (\f“av\, Kerewa 1’10km
L] . h.:;"t\\__‘_.__/f
VA
e —Y, 30km
\ Gambia
Vv

——

Kerewan is 30km north of the Senegalsese Border.

Of the vectors pointing northbound from the Senegalese
border to Kerewan, the shortest vector is 30km.



. B
Modified Locatives (cont.)

Now with locative indefinites:
Tweety is 30m above a cloud.

Of the vectors pointing upward
from a cloud to Tweety,
the shortest vector is 30km.




- B
An alternative account - decomposition

Michael 1s far from a gas station.

a. Michael is [[NEG [close to]] [a gas station]]
b. Michael 1s [NEG [[close to] [a gas station]]]

Problems:

1. Why decomposing far from and not close to? (cf. Heim/Bliring).
2. Radical decomposition: exactly =» at least and at most?

3. How to modify 3m outside? As *3m not inside?

4. How to account for non-existential effects that are not
obtained by any decomposition?

The dot is left of a circle.
Tweety is 30m/diagonally above a cloud.



Remarks and Speculations

m Existentiality
m Extensionality
m Specificity

m SomeVvs. a

m Kind readings
m NPls

m Collectivity



- -
Eigenspace readings and existentiality

Existential entailment/implication?

During a car race in the desert, Michael’s Ferrari F2002 is running out of oil. Unfortu-

nately, the oil used by Michael’s Ferrari is extremely hard to find.

Michael 1s far from a gas station that sells this type of oil.
Leonhard 1s far from a proof of his conjecture.

Our suggestion: only spatial eigenspace readings are

existential.
— LOC function triggers existence requirement



- -
Eigenspace readings and extensionality

a. John is far from a school.

b. John is far from a church.

Context: All schools are churches and all churches are schools.

a. The world 1s far from a social revolution.
b. The world 1s far from a solution to the imequality between people.

Context: Every social revolution is (or would be) a solution to the inequality between
people, and every solution to the inequality between people is (or would be) a social

revolution.

Our suggestion: all eigenspace readings are
extensional.



Eigenspace readings and specificity

We’re far from a gas station that I read about 1n the guide.

Our suggestion: indefinites are ambiguous between
properties and E-quantifiers.

27



- -
Eigenspace readings and some

a. John 1s a teacher. (predication. #identity)

b. John 1s a teacher that I read about in the press. (#predication. identity)

c. #John 1s some teacher. (*predication, #identity)

d. John is some teacher that I read about in the press.  (*predication. identity)

a. A dog barks. (generic, #existential)

b. A dog that I know barks. (# generic. existential)

c. Some dog barks. (*generic, # existential)

d. Some dog that I know barks. (*generic. existential)

a. We're far from a gas station. (universal. # existential)
b. We're far from a gas station that I read about in the guide. (=(22)) (#universal. existential)
c. We're far from some gas station. (*universal. # existential)
d. We're far from some gas station that I read about in the guide. (*universal. existential)

Our suggestion: some is only existential. There is a

connection between genericity and eigenspace readings.
28
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Eigenspace readings and kind readings
McNally:

There was every kind of doctor at the convention.

s

b. Martha has been every kind of doctor.

st , ; ] :
a. “There was every doctor at the convention.
b. *Martha has been every doctor.

a. There was a doctor at the convention.

b. Martha has been a doctor.

Michael 1s far from t/ie kind of gas station that sells this type of oil.

Our suggestion: following McNally — kind nouns
trigger the property analysis.

29



- I
Eigenspace readings and NPI/monotonicity

Michael 1s far from any gas station.

o =

?Michael 1s close to any gas station.

pu]

This park 1s outside any urban area.

=

?This park 1s mside any urban area.

a. My country is far from Eurasia = My country 1s far from Asia
b. My country is close to Eurasia = My country is close to Asia

a. My country is outside Eurasia = My country is outside Asia
b. My country is inside Eurasia =% My country is inside Asia

Our suggestion: the eigenspace analysis naturally
exploits the monotonicity properties of spatial Ps.

a. Michael 1s far from a gas station = Michael 1s far from a big gas station
b. Michael is close to a gas station = Michael is close to a big gas station

a. This park 1s outside an urban area = This park 1s outside an industrial urban area
b. This park is inside an urban area = This park is inside an industrial urban area



- B
The Impure-Atom analysis of Plurals

i a. The house 1s (exactly) 10m away from the (row of) utility poles.
b. The house 1s (exactly) 10m away from a utility pole.

| I10m

A

Our suggestion: the eigenspace of a plural can be a
convex hull of the union of eigenspaces.




B
Big Picture

Existential quantification (specificity)

singular DENOTATION EIGENSPACE
indefinite \
=
singular
definite \
atom
plural /
definite 1mmnp.a.
Set \

/

Distributive quantification



- B
Assumptions

1. Indefinites in PPs are derivationally ambiguous (Partee 87).
Michael 1s far from a gas station.
a. Michael is [[far from] [E [a gas station]]]
b. Michael 1s [[far from] [a gas station]]

2. Two levels of analysis of locatives (Zwarts and Winter 00).
Michael 1s far from London.

a. Syntactic-semantic: far_from(m,1)
b. Conceptual-semantic:  FarRFroM(m, L)

3. Property-Eigenspace Hypothesis: A property’s eigenspace is
the union of eigenspaces for entities in its extension.

H&R.FROI\/I(?’nj GS) the property GS is located at

roc(es) = U{roc(z): z e gs} the union of gas station locations



Plan

- Overview of locatives with non-existential
Indefinites

- Their account using the PEH
- Why existential analyses fail
- Remarks and speculations:

- Existentiality
- Extensionality
- Specificity
. Somevs. a
- Kind readings
- NPIs
- Collectivity



Lexical Reciprocity as a Typicality
Preference: Experimental Evidence

Yoad Winter
Joint work with Imke Kruitwagen and Eva Poortman

ESSLLI2016, Bolzano - Bolzen, 22-26 August 2016

To appear in NELS 2016



Reciprocal verbs
Focus: verbs like hug, kiss, collide

Two usages:
A and B hug
A hugs B

Old assumption:
Reciprocity = Symmetric Participation
A and B hug €=>» A hugs B and B hugs A

Newer assumption:
Reciprocity entails Symmetric Participation
A and B hug =» A hugs B and B hugs A

Claim: Neither assumption is correct. The two entries
are logically independent, but related through typicality.



“They are hugging” in Google Images

Hypothesis: for A&B hug, and with many other verbs,
symmetric participation is not required.



Aim

Examine whether a substantial percentage of
speakers accepts reciprocity without symmetric
participation above chance level, for a substantial
number of reciprocal verbs.



Materials - Verbs

knuffelen — “hug”

botsen (tegen) — “collide (with)”

appen — “send WhatsApp message to (each other)”
praten (tegen) — “talk (to)”

spreken (tegen) — “speak (to)”

kletsen (tegen) — “chat (t0)”

roddelen (tegen) — “gossip (to)”

vechten (tegen) — “fight (against)”

Why not “talk with” etc.?



Materials — target items

One side is active; the other side is (visibly) passive.
Passive side shows collaboration.

Truth-judgement task for two sentences:
Collective — het meisje en de vrouw knuffelen
“the girl and the woman hug”
Binary — het meisje knuffelt de vrouw
“the woman hugs the girl”



Materials — more target illustrations




Materials — more target illustrations




Materials - Fillers

8 target verbs
X 2 sentences (collective + binary)
= 18 target items

+ 30 fillers, of two types — to hit balance between
expected true/false ratios:

1. Collective/binary sentences, in situations where they
are clearly true

2. Other types of sentences, in situations where they
are not clearly true/false



Procedure

48 Dutch speakers (female 37, age M=23)

Trials on a screen in a pseudo-random order
(Open Sesame)

green key for “true” and a red key for “false”



Control task

Appendix — 9 control items

Only collective sentences:
“the girl and the woman hug”
“the boy and the girl talk”



More control drawings




More control drawings




verb

hug

collide
appen

talk

speak

chat

gossIp

fight

MEAN

col+

79%
98%
94 9%
46%
69%
98%
90%
73%
81 %

bin+

31%
2%
3%
4%
13%
17%
6%
15%
12 %

Results summary

col+bin-

48%
96%
35%
42 %
36%
81%
33%
38%
69 %

ctrl.col+

19%
635%
44%
13%
33%
2'7%
46%
23%
34 %



Results summary

verb col+ bin+ col+bin- ctrl.col+
hug 7% M%
collide  98% 96 % 65%
appen QA e 35% 449
talk Changed their mind: 429, 13%
speak T 86%, M=A0% 56%  33%
chat 98 % 17% 81% 2’1 %
gosSip 90% 6% 83% 46%

fight 73% 15% 58% 23%
MEAN 81% 12 % 69 % 34 %



Pilot — video clips

knuffelen — “hug”

botsen (tegen) — “collide (with)”

appen - “send WhatsApp message to (each other)”
praten (tegen) — “talk (to)”

vechten (tegen) — “fight (against)”

After showing the film, the sentence was:
“Violet and Mark hugged/collided/apped/talked/fought”
Or: “Mark hugged/... Violet”



Verb
hug
collide
appen
talk
fight
MEAN

Col+
64%
92%
20%
48%
48%
54%

Bin-
28%
0%
0%
4%
4%
7%

Results summary

Col+Bin-

36%
92%
20%
48%
48%
49%

Ctrl.Col+
24%
76%

8%

8%

8%

25%



Discussion

- Symmetric participation is not required with collective
verbs that are traditionally classified as “reciprocal”

- Attitude of passive side matters: collaboration
positively affects collective judgement

Outline of theory:

For pseudo-reciprocal predicates P, an event e is typical
for P proportionally to two values:

- Participation, e.g. number of hugs
- Evidence for collective intentionality

The higher the typicality value is, the higher the
chance is that the event passes the speaker
threshold for “truth™.
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Our minimalist formal semantics

> Trees over strings
» Lexical semantic types and denotations

» Inductive interpretation of trees using function application




Our minimalist formal semantics

> Trees over strings
» Lexical semantic types and denotations

» Inductive interpretation of trees using function application

Example
A. B.
(1s(tall))(tina) : t
Tina is tall
tina:e 1s(tall) : et

1s: (et)(et) tall: et



Three classic problems

Quantifiers in object position
Tina praised every student

What do we do with types e(et) and (et)t?



Three classic problems

Quantifiers in object position
Tina praised every student

What do we do with types e(et) and (et)t?

Quantifier scope
Some teacher praised every student

How do we derive the object wide scope reading?



Three classic problems

Quantifiers in object position
Tina praised every student

What do we do with types e(et) and (et)t?

Quantifier scope
Some teacher praised every student

How do we derive the object wide scope reading?

Extraction
Some teacher that Mary praised smiled

How can we interpret constituents like Mary praised?



Our modified system

» Hypothetical Reasoning: a dual principle to Function
Application.

» Signs: pairs of sounds and meanings replace strings as the
items manipulated by the grammar.



Function Application and Modus Ponens

Function Application (FA) Rule Interpretation
TO T A B
o A(B)
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Function Application and Modus Ponens

Function Application (FA) Rule Interpretation
TO T A B
o A(B)

Implication Elimination (Modus Ponens)

=Y @
(0

If Mary is tall then Tina is tall,
and Mary is tall

= Tina is tall
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Hypothetical Reasoning — Two Equivalent Patterns

(A) Tina is taller than Mary
= If Mary is tall then Tina is tall

(B) Tina is taller than Mary
and Mary is tall

= Tina is tall

Suppose we accept entailment (A). General principles of
entailment, plus a general principle of conditional reasoning —
Modus Ponens — force us to accept (B).



Hypothetical Reasoning — Two Equivalent Patterns

(A) Tina is taller than Mary

= If Mary is tall then Tina is tall
(B) Tina is taller than Mary

and Mary is tall

= Tina is tall

Suppose we accept entailment (A). General principles of
entailment, plus a general principle of conditional reasoning —
Modus Ponens — force us to accept (B).

Suppose we accept entailment (B). General principles of
entailment, plus a general principle of conditional reasoning —
which one? — should force us to accept (A).
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(A) Tina is taller than Mary
= If Mary is tall then Tina is tall
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Hypothetical Reasoning — Two Equivalent Patterns

(A) Tina is taller than Mary
= If Mary is tall then Tina is tall

(B) Tina is taller than Mary
and Mary is tall

= Tina is tall

Proving (B) using (A)
Tina is taller than Mary
If Mary is tall then Tina is tall Mary is tall
- - MP
Tina is tall

Proving (A) using (B)

Tina is taller than Mary [Mary is tall]! ®

Tina is tall
If Mary is tall then Tina is tall

)

discharge hypothesis 1




Implication Introduction

Implication Introduction
1
[¢e]

discharge hypothesis 1

1)
o=



Implication Introduction

Implication Introduction

[o]!
Y discharge hypothesis 1
o=
Example
p1 = (g2 = ¥) [pn]!
MP
w2 =Y ©2

MP
discharge hypothesis 1

Y
w1 —> Y



Function Abstraction

Function Introduction

[7]*

g . .
.3 discharge hypothesis 1



Function Abstraction

Function Introduction

[7]*
.3 discharge hypothesis 1

Example

e(et) [e]'

et € ApPP

t . .
of discharge hypothesis 1



Function Abstraction — Interpretation

Function Introduction

[u: 7]}

—_Z£:.0 discharge hypothesis 1
Au.z . TO



Function Abstraction — Interpretation

Function Introduction

[u: 7]

—_Z£:.0 discharge hypothesis 1
Au.z . 17O
Example
praise : e(et) [u : €] A
praise(u) : et mary : e

FA

raise mary) : t
P (u)( y) discharge hypothesis 1

AUe.praise(u)(mary) : et



Praising Mary: an intermediate summary

The constituent praised Mary can be analyzed in two ways.
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Praising Mary: an intermediate summary

The constituent praised Mary can be analyzed in two ways.

Using Application: praise(mary)

N

mary praise

Using Abstraction: Au.praise(u)(mary)

N

mary praise

Application (Ajdukiewicz):
undergeneration — object quantifiers, wide scope, extraction
overgeneration — extraction



Praising Mary: an intermediate summary

The constituent praised Mary can be analyzed in two ways.

Using Application: praise(mary)

N

mary praise

Using Abstraction: Au.praise(u)(mary)

N

mary praise

Application (Ajdukiewicz):
undergeneration — object quantifiers, wide scope, extraction
overgeneration — extraction

Application 4+ Abstraction (Lambek-Van Benthem):
less undergeneration
more overgeneration



Using signs

“The linguistic sign unites, not a thing and
a name, but a concept and a sound-image.”
(de Saussure 1916)
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stands for a conceptual representation of meaning.
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stands for a perceptual representation of sensory input and C
stands for a conceptual representation of meaning.

Sign composition:

_ mary (perception)
MARY (sign) {mary (concept) }
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PRAISE (sign) praise (perception)
¢ praise  (concept)



Using signs

“The linguistic sign unites, not a thing and
a name, but a concept and a sound-image.”
(de Saussure 1916)

A linguistic sign, or in short a sign, is a pair (P, C), where P
stands for a perceptual representation of sensory input and C
stands for a conceptual representation of meaning.

Sign composition:

_ mary (perception)
MARY (sign) {mary (concept) }

_l’_

PRAISE (sign) praise (perception)
¢ praise  (concept)

=... (two possibilities)



Strings as perceptual units

The domain of strings D, = F satisfies:
— Closure under concatenation. For all strings a, b € F, the
concatenation a- b is also in F.
— Neutral element for concatenation. F contains an element ¢
that satisfies for every x € F: x-e =€ -x = x.
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Strings as perceptual units

The domain of strings D, = F satisfies:

— Closure under concatenation. For all strings a, b € F, the
concatenation a- b is also in F.

— Neutral element for concatenation. F contains an element ¢
that satisfies for every x € F: x-e =¢-x = x.

Pheno-types: f is a pheno-type (of strings). If o and 7 are
pheno-types then (o7) is a pheno-type as well.

Example: In a given model —
» tina,= tina
> mary,= mary

> praise . = AXpAYr y - praised - x

praise(mary )(tina,) = tina- praised - mary

praise . (tina/)(mary,) = mary - praised - tina



Application and Abstraction using signs
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Application

(praise gy, praise.,) (mary,,mary,)

(praise(mary), praise(mary))

APP

In our model:
= ((AxrAyr y - praised - x)(mary,) , praise(mary,))
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Application and Abstraction using signs

Application

(praise gy, praise.,) (mary,,mary,)

(praise(mary), praise(mary))

APP

In our model:
= ((AxrAyr y - praised - x)(mary,) , praise(mary,))
= ((Ayr y - praised - mary,) , praise(mary,))

Abstraction
(praise sy, praise.,) [(ur, ue)]*
(praise(uy), praise(u.)) FA (mary ,, mary,)
(praise(uf)(mary), praise(u.)(mary))
(Aur.praise(ur)(mary), Aue.praise(ue)(mary))

discharge hypothesis 1

In our model:
= (Aun(Axp Ay y - praised - x)(uf)(mary), Aue.praise(ue)(mary))
= (Aun(Ayr y - praised - ug)(mary), Aue.praise(u.)(mary))



Application and Abstraction using signs

Application

(praise gy, praise.,) (mary,,mary,)

(praise(mary), praise(mary))

APP

In our model:
= ((AxrAyr y - praised - x)(mary,) , praise(mary,))
= ((Ayr y - praised - mary,) , praise(mary,))

Abstraction
(praise sy, praise.,) [(ur, ue)]*
(praise(uy), praise(u.)) FA (mary ,, mary,)
(praise(uf)(mary), praise(u.)(mary))
(Aur.praise(ur)(mary), Aue.praise(ue)(mary))

discharge hypothesis 1

In our model:

= (Aun(Axp Ay y - praised - x)(uf)(mary), Aue.praise(ue)(mary))
= (Aun(Ayr y - praised - ug)(mary), Aue.praise(u.)(mary))

= (Aurmary - praised - u;, \ue.praise(u.)(mary))
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» Direct application:
PRAISE(MARY) =

string praised Mary
denotation {x € E : x praised Mary }
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» Direct application:

PRAISE(MARY) =
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No overgeneration!



What have we achieved so far?

Two ways of combining the signs MARY and PRAISE:
» Direct application:
PRAISE(MARY) =

string praised Mary
denotation {x € E : x praised Mary }

» With abstraction:

AU.PRAISE(U)(MARY) =
string Mary praised
denotation {y € E : Mary praised y }

No overgeneration!

Hypothesis The Lambek-Van Benthem Calculus (Application +
Abstraction) is a suitable logical apparatus for manipulating the
composition of signs in natural language grammar.



Relative clauses (1): using empty strings

Consider the string that ran in some man that ran smiled .
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Consider the string that ran in some man that ran smiled .

run = A\unu-ran

that(run)
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Relative clauses (1): using empty strings

Consider the string that ran in some man that ran smiled .

run = A\unu-ran

that(run)

= ()\Pff)\_yfy - that - P(e))(run)
= A\yr. y - that - run(e)

= Ay y - that - ((Aur.u - ran)(e))
= Ay y - that - (e - ran)



Relative clauses (1): using empty strings

Consider the string that ran in some man that ran smiled .

run = AunU-

that(run)

= (AP Ayr y -
= \y;y - that -
= Ay.y - that -
= Ay, y - that -
= Ay;y - that -

ran

that - P(¢€))(run)
run(e)

((Aur.u - ran)(e))
(e - ran)



Relative clauses (2): using empty strings

Consider the string that Mary praised.
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Relative clauses (2): using empty strings

Consider the string that Mary praised.

mp = Augmary - praised - u

that(mp)

= A\yr. y - that - mp(e)

= A\yr. y - that - ((Aupr.mary - praised - u)(e))



Relative clauses (2): using empty strings

Consider the string that Mary praised.

mp = Augmary - praised - u

that(mp)

= A\yr. y - that - mp(e)

= A\yr. y - that - ((Aupr.mary - praised - u)(e))
= Ay y - that - (mary - praised - €)



Relative clauses (2): using empty strings

Consider the string that Mary praised.

mp = Augmary - praised - u

that(mp)

= (AP Ayr y - that - P(¢))(mp)

= A\yr. y - that - mp(e)

= A\yr. y - that - ((Aupr.mary - praised - u)(e))
= Ay y - that - (mary - praised - €)

= Ay y - that - mary - praised



Quantifiers

Consider the noun phrase someone in someone ran .

someone = APy. P(someone)
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Quantifiers

Consider the noun phrase someone in someone ran .

someone = APy. P(someone)
run = Aupnu-ran

someone(run)

(AP P(someone))(Auru - ran)
(Aur.u - ran)(someone)
someone - ran

Question: How about some in some man ran?

Further: The notion abstract type (abstract category).



Relative clauses (3): full derivation

SOME (THAT(AU ¢ .PRAISE(U)(MARY) ) (TEACHER)) (SMILE)

N

SOME(THAT(AU ;¢ .PRAISE(U)(MARY))(TEACHER)) SMILE

/\

SOME  THAT(AU/e.PRAISE(U)(MARY))(TEACHER)

T

TEACHER  THAT(AU.PRAISE(U)(MARY))

R

THAT  AUje.PRAISE(U)(MARY)

N

MARY  PRAISE



Relative clauses (3): full derivation

some-teacher - that- mary - praised - smiled
SOME(THAT(Aue.praise(u)(mary))(teacher))(smile)

SOME THAT )\Ufe PRAISE MARY TEACHER SMILE)

N

SOME(THAT( AU ;¢ .PRAISE(U)(MARY))(TEACHER)) SMILE

A

SOME  THAT(AU/e.PRAISE(U)(MARY))(TEACHER)

T

TEACHER  THAT(AU.PRAISE(U)(MARY))

TN

THAT  AUje.PRAISE(U)(MARY)

N

MARY  PRAISE



Quantificational object noun phrases

EVERY(STUDENT) (AU ¢.PRAISE(U)(TINA))

TINA AV c.EVERY(STUDENT)(AUe.PRAISE(U)(V))

PRAISE  EVERY(STUDENT)

N

EVERY  STUDENT



Quantificational object noun phrases

tina- praised - every - student
EVERY(student)(\u,.praise(u)(tina))

EVERY(STUDENT) (AU ¢.PRAISE(U)(TINA))

TINA AV c.EVERY(STUDENT)(AUe.PRAISE(U)(V))

PRAISE  EVERY(STUDENT)

N

EVERY  STUDENT



Quantifier scope (1): object narrow scope

SOME(TEACHER)( AV 1 ¢.EVERY(STUDENT ) (AU ¢ .PRAISE(U)(V)))

TN

SOME(TEACHER) AV .EVERY(STUDENT)(AUe.PRAISE(U)(V))

N

SOME  TEACHER PRAISE  EVERY(STUDENT)

N

EVERY  STUDENT



Quantifier scope (1): object narrow scope

some-teacher - praised - every - student
soME(teacher)(\ve.EVERY(student)(Au..praise(u)(v)))

SOME(TEACHER)( AV 1 ¢.EVERY(STUDENT ) (AU ¢ .PRAISE(U)(V)))

TN

SOME(TEACHER) AV .EVERY(STUDENT)(AUe.PRAISE(U)(V))

N

SOME  TEACHER PRAISE  EVERY(STUDENT)

N

EVERY  STUDENT



Quantifier scope (2): object wide scope

EVERY(STUDENT ) (AU ¢ ¢.SOME(TEACHER) ( AV £ .PRAISE(U)(V)))

T

EVERY(STUDENT)  AU.SOME(TEACHER)( AV ;e.PRAISE(U)(V))

N

EVERY ~ STUDENT PRAISE  SOME(TEACHER)

N

SOME  TEACHER



Quantifier scope (2): object wide scope

some-teacher - praised - every - student
EVERY(student)(Aue.SOME(teacher)(Ave.praise(u)(v)))

EVERY(STUDENT ) (AU ¢ ¢.SOME(TEACHER) ( AV £ .PRAISE(U)(V)))

T

EVERY(STUDENT)  AU/e.SOME(TEACHER)(AV ;e.PRAISE(U)(V))

N

EVERY ~ STUDENT PRAISE  SOME(TEACHER)

N

SOME  TEACHER



Quantifier scope (2): object wide scope

some-teacher - praised - every - student
EVERY(student)(Aue.SOME(teacher)(Ave.praise(u)(v)))

EVERY(STUDENT ) (AU ¢ ¢.SOME(TEACHER) ( AV £ .PRAISE(U)(V)))

T

EVERY(STUDENT)  AU/e.SOME(TEACHER)(AV ;e.PRAISE(U)(V))

N

EVERY ~ STUDENT PRAISE  SOME(TEACHER)

N

SOME  TEACHER

Two parameters:
» Order of composition of signs — determines semantic scope

» Sign argument saturated — determines syntactic position



Summary

» Lambek-Van Benthem Calculus — flexibility of hypothetical
reasoning

» Directionality is not in tecto-level syntax, but in the
pheno-level objects that it manipulates

» Saussurean signs — avoiding overgeneration

» Implications:

» Modeltheoretic phonology
> Free variables in grammar, not in meaning
» Syntax and semantics hand in hand



Further usages

By extending the framework with possible worlds, scope
mechanisms as in ACG can also deal with de dicto/de re
ambiguities, such as:

Mary is looking for a secretary.



References

Curry, H. B. (1961), Some logical aspects of grammatical structure, in R. O.
Jakobson, ed., ‘Structure of Language and its Mathematical Aspects’,
Vol. 12 of Symposia on Applied Mathematics, American Mathematical
Society, Providence.

de Groote, P. (2001), Towards abstract categorial grammars, in ‘Proceedings of
the 39th annual meeting of the Association for Computational Linguistics
(ACL)".

de Saussure, F. (1959), Course in General Linguistics, Philosophical Library,

New York. Translation of Cours de Linguistique Générale, Payot & Cie,
Paris, 1916.

Lambek, J. (1958), ‘The mathematics of sentence structure’, American
Mathematical Monthly 65, 154-169.

Muskens, R. (2003), Language, Lambdas, and Logic, in G.-J. Kruijff &
R. Oehrle, eds, ‘Resource Sensitivity in Binding and Anaphora’, Studies in
Linguistics and Philosophy, Kluwer, pp. 23-54.

van Benthem, J. (1991), Language in Action: categories, lambdas and dynamic
logic, North-Holland, Amsterdam.



