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General Course Info

Topics: demonstrate basic principles and tools 
in formal approaches to natural language
meaning

Relevance: linguists, logicians, computer 
scientists, and philosophers

Prior knowledge: 
- sets, relations, functions
- aims of theoretical linguistics

Reading: Edinburgh University Press, April 2016

www.phil.uu.nl/~yoad/efs/main.html



Sessions
1. Formal semantics: the study of logical meaning 

in natural language

2. Types and meaning composition: How to 

describe properties of meanings? How does 

language allow us to combine them?

3. Tutorial 1 (Sunday, 9:30-10:00)

4. Generalized quantifiers: How to describe 

meanings of expressions involving quantity, like all, 

some and most?

5. Tutorial 2 (Sunday, 2:00-2:30)

6. Spatial expressions: Meanings of relations in 

space, such as above, in and between.

7. Abstract categorial grammar / ExpSem: long 

distance dependencies / experiments reciprocals



Exercises

Will be given before tutorial sessions.

It is recommended to try to solve them 
before the tutorial.



Soundbites
Intersective vs. non-intersective adjectives:
Tina is a Chinese pianist and a biologist
�� Tina is a pianist and a Chinese biologist

Tina is a skillful pianist and a biologist
�/� Tina is a pianist and a skillful biologist

Monotonicity and Negative Polarity Items:
If John ever goes to Moscow he will have fun

*If John goes to Moscow he will ever have fun

Spatial reasoning:
Dan is close to a gas station

�� Dan is close to some gas station

Dan is far from a gas station

��Dan is far from every gas station
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Session 1:

Basic Notions



Formal Semantics:

History and Principles



Gottlob Frege (1848-1925)

Two prominent logicians on meaning

Alfred Tarski (1902-1983)

Frege: Meanings are composed to each other. 

Tarski: Meanings can be described as objects in a 

mathematical world, external to language itself. 



Meanwhile in Cognitive Science

Noam Chomsky

(1928)

“It seems clear, then that 
undeniable, though only 

imperfect correspondences 
hold between formal and 
semantic features in 
language.”

(Syntactic Structures, 1957)

“...Chomsky would say [that] 

the semantic purposes do not 
determine the form of the 
syntax or even influence it in 
any significant way.”

(Chomsky's Revolution in 

Linguistics, John R. Searle, 1972)



Towards a Synthesis

Richard Montague 

(1930-1971)

"There is in my opinion no 
important theoretical difference 
between natural languages and 

the artificial languages of 
logicians; indeed, I consider it 
possible to comprehend the 
syntax and semantics of both 
kinds of language within a single 
natural and mathematically 
precise theory. On this point I 
differ from a number of 
philosophers, but agree, I 
believe, with Chomsky and his 
associates.”
(Universal Grammar, 1970)



The Key to Montague’s Program

Frege’s Principle of Compositionality

The meaning of a compound expression is 
a function of the meanings of its parts, and 
the ways they combine with each other.

MeaningCompositionalityForm



Ambiguous Expressions

I saw the man with the telescope 



I saw the man with the telescope

Syntactic Ambiguity



I saw the man with the telescope

Syntactic Ambiguity



I saw the man with the telescope

Syntactic-Semantic Ambiguity



I saw the man with the telescope

Syntactic-Semantic Ambiguity



Notions in Set Theory



Notions in Set Theory (1)

Description of sets and their members:

Explicit:  {1,2,3,4}

Implicit: {x is a natural number : x is between 1 and 4}

= { x ∈ N : 1 ≤ x ≤ 4 }

{x is a natural number : x is bigger than 90}

= { x ∈ N : 90 ≤ x }



Notions in Set Theory (2)

Subset: 

A

●

x

Element of: 

Intersection: Union: Set difference: 



Notions in Set Theory (3)

Complement:  



Notions in Set Theory (4)

Functions:

But this is not a function:



Notions in Formal Semantics



Mentalist vs. Linguistic Meaning Relations



Entailment

Tina is tall and thin ==> Tina is thin

premise/antecedent conclusion/consequent

Tina is a bird =/=> Tina can fly

Tina is a bird but she cannot fly   vis a vis

#Tina is tall and thin, but she is not thin



More entailments

Tina is tall and thin ==> Tina is thin



Models



Models and Entailment: 

the Truth-Conditionality Criterion



Assumptions about our models

Thus:

Convention:

Every model has a set E of entities.

In every model, [[Tina]] is an entity.

In every model, [[tall]] and [[thin]] are sets of entities.



TCC - example

In all three models we have:

≤



Compositionality



Structural ambiguity (1)



Structural ambiguity (2)

Note: Ambiguity vs. vagueness



Summary – Main Notions

Facts: 
Entailment (indefeasible)

Theory: 
Model
Denotation in model 

Adequacy: 
Truth-Conditionality Criterion 

Compositionality 

Structural ambiguity
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Types and Meaning 
composition



This Lecture

A general theory of model structure; a 

general semantic practice for meeting 

the TCC.

1 – working with types and denotations

2 – using lambda notation

3 – restricting denotations



Working with types 
and denotations



Basic/Complex Types and Domains

A type is a label for part of a model that is 
called a domain.

Basic types and domains:
e : De - arbitrary - of entities 
t : Dt = {0,1} - of truth-values

Complex types and domains: defined 
inductively from basic types and domains.



Complex Types – Example

E = De = the set of entities {t,j,m}

[[thin]] = T = {t,j}

We can also define T as a function from De to 
Dt :

t�1
j�1
m�0

This function characterizes T in E = De .

Det  of the complex type et is the domain of 
such functions.



Characteristic functions over {t,j,m}



Characteristic Functions

X



Definitions: Types and domains



Intransitive verbs



Function Application



Intransitive and Transitive verbs

=



“Curried” Relations



Currying



A numerical example of Currying

The function ADD sends every number N to:

the function ADD(N) that sends every number M to:

N+M

Thus: (ADD(N))(M) = N+M.

But:

ADD(1) is the successor function.

ADD(10) adds ten to every number.

Etc.

With two-place operators like `+’ it’s impossible to define 

such functions directly.

Note: analogy between ADD(1) and praise(mary).



Solving Type Equations

Conclusion: type of is should be (et)(et)



Non-arbitrary Denotations: IS



Function application & constituency (1)

What would be the type of IS with the following 

(infelicitous) structure?

[Tina is] tall

What denotation would we assume for IS?



Function application & constituency (2)



Non-arbitrary Denotations: NOT

Tina [ is [ not tall ]]



Non-arbitrary Denotations: AND

Explain:     
Tina is tall and thin ==> Tina is thin

Types?



In General

Types of the form

at 1-place predicates smile

a(at) 2-place predicates praise

a(a(at))) 3-place predicates send

… n-place predicates

aa modifiers

(1-place coordinators) is, not

a(aa) 2-place coordinators X and Y

a(a(aa)) 3-place coordinators X, Y and Z

… n-place coordinators



Using Lambda 
Notation



IS as Identity Function

[[ Tina is tall ]] = 1   -- tina denotes an entity 
in the set for tall

With types:

Intuitively: IS maps any set to itself. 

Formally:

=



IS in lambda notation

Thus: Summing up: 



Lambda Notation - summary



Function application with Lambda’s

Another example:

=



Reflexives in object position

Tina praised herself

[[ herself ]] = tina   ???

Generalizing:



Reflexives in object position (cont.)

=



Verifying the derivation



What have we learnt here?

- A useful notation for functions

- A useful rule for simplifying notation under 
function application



Restricting 
Denotations



Expressing NOT in lambda’s

Tina [ is [ not tall ]]



Expressing ANDs in lambda’s

[ Tina [ is tall ]] [ and [ Tina [ is thin ]]]

Tina [ is [ tall [ and thin ]]]



Attributive adjectives (1) - Intersective



Attributive adjectives (2) - Intersective

Conclusion: with adjectives  like Chinese the attributive (et)(et)

denotation can be systematically derived from the predicative et 

denotation. 

Note: this is not the case with all adjectives (cf. skillful).



Jan is a Chinese surgeon & Jan is a violinist  

� Jan is a Chinese violinist 

Jan is a skillful surgeon & Jan is a violinist  

� Jan is a skillful violinist 

Conclusion 1: skillful is not intersective.

However, skillful has a weaker property, which 

we call restrictivity.

Jan is a skillful surgeon 

� Jan is a surgeon

Attributive adjectives (3) - Subsective



Formally: M is subsective (or “restrictive”) if for 

every set of entities A, M(A) ⊆⊆⊆⊆ A.

Conclusion 2: skillful is subsective. 

In Lambdas: 

skillful(et)(et) = λλλλA.A.A.A.λλλλy.y.y.y. (skillful1(et)(et) (A))(y)∧∧∧∧ A(y)

Attributive adjectives (4) - Subsective



Constant, Combinatorial: 

IS, A, HERSELF

Constant, Logical: 

ANDs, NOTs

Arbitrary: 

tina, smile, praise, pianist, chinese (predicative use)

Logical operator on arbitrary: 

chinesemod, skillfulmod (attributive use)

Further: bachelor � unmarried …

Summary – restrictions on denotations



More on the 
classifictaion of 
adjectives



I - Subsective functions

A X

M(A)=X∩A

A

M(A)⊆A

Intersective functions

Subsective functions

Note: any intersective function is subsective



II - Non-Subsective functions

A

M(A)⊈A



Non-subsective adjectives

Jan is an alledged surgeon 

=/=> Jan is a surgeon

Conclusion: alleged is not subsective.

More examples (Partee):



III - Non-subsective but co-subsective

A

M(A)⊆E-A

Non-subsective (general)

Co-subsective

Note: any (non-trivial) co-subsective function is non-subsective

A

M(A)⊈A



Co-subsective adjectives

This is a false diamond 

=/=> This is a diamond

Conclusion 1: false is not subsective.

However: 

This is a false diamond 

� This is not a diamond

Conclusion 2: false is co-subsective.

Formally: M is co-subsective (or “privative”) if 

for every set of entities A,  M(A) ⊆⊆⊆⊆ E-A.



More co-subsective adjectives (Partee)

Note: 

John is an alleged criminal, and indeed he is a criminal.

Conclusion: alleged is not co-subsective.



Adjectives - summary

Subsective ¬ Subsective

¬ Co-subsectiveCo-subsective¬ IntersectiveIntersective

allegedfalseskillfulDutch

Intersective ���� Subsective

Co-restrictive ���� ¬Subsective (ignoring trivial cases)

These properties can be generalized (and studied) for modifiers 

of other types besides (et)(et).



Note on (non)extensionality (1)
Jan is a skillful surgeon & Jan is a violinist  

� Jan is a skillful violinist 

Conclusions we had: skillful is not intersective (but subsective).

Adjectives like skillful lack another property, which we 
extensionality.

Jan is a Dutch surgeon  &

the surgeons are the same as the lawyers
� Jan is a Dutch lawyer

Informally: An adjective ADJ is called extensional if for every 
two nouns N1 and N2 that denote the same set of entities, we 
have: [[ ADJ N1 ]] = [[ ADJ N2 ]]. 

The adjective Dutch is extensional, but skillful is not:

Jan is a skillful surgeon  &

the surgeons are the same as the lawyers

=/=> Jan is a skillful lawyer



Note on (non)extensionality (2)

It has been postulated that the non-intersectivity of many 
adjectives is derived from their non-extensionality, but the 
ways the two properties are related is unclear.
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Generalized Quantifiers



Quantifiers in different domains

We focus on quantificational NPs: 
NPs containing determiners like many, few, 
every, some, most etc.



Quantifiers – main claims



Keenan’s typology of determiners (1)



Keenan’s typology (2)



Function-Argument flip-flop
(an argument between FLIP and FLOP)

FLIP:  NP:e + VP:et = S:t
(subject as argument)

NP:(et)t + VP:et = S:t
(subject as function)

FLOP: But can all those NPs denote entities? �

FLIP: NP denotes (et)t  function???   �

FLOP: Yes! let’s do some work on it! ☺



Generalized Quantifiers - example



GQs - more examples



GQs - definition

NP:(et)t + VP:et = S:t

(et)t functions   ~=  sets of sets of entities



GQ Monotonicity 

How do we 

show non-

monotonicity 

entailments?



Quantifiers and monotonicity - summary



Quantifiers in models

every man:



Back to proper names



NP Coordination (1)



NP Coordination (2)

Conjunction Reduction???



Quantifiers with VP coordination



Against conjunction reduction



Determiner expressions

What is X?



Determiner Monotonicity



Determiner Monotonicity – left argument



Determiners - summary



Negative polarity items (1)



Negative polarity items (2)



Determiner Conservativity
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2

""∃

252km

137km

68km

""∀Michael is far from a gas station.

2km

Michael is close to a gas station.

The Gas Station Puzzle (Iatriduo 2003)



3

Analyzing ``a gas station´´ --

Background on indefinites

Indefinites as predicates:

Michael is a driver.  

London is a city.

Indefinites as arguments:

A driver showed me his car.  

A city was built here.

Partee (1987):

Predicate indefinites are type et:  [[a driver]] = driver

Argument quantifiers are type (et)t: λPet.∃xe.driver(x) ∧∧∧∧ P(x)



4

Analyzing ``far from/close to´´ --

Background on locatives

Locatives are two-place predicates:

Michael is far from/close to London.  

Locatives are applied to entities that have locations:

A deeper semantics as two-place locative predicates:

=



5

Basic Account
The gas station puzzle reflects the set denotation of 

indefinites, together with the part-whole properties of spatial 

prepositions. 

(1) Michael is close to London  ��

For some part of London x, Michael is close to x.

(2) Michael is far from London ��

For every part of London x, Michael is far from x.

The same principles about locatives that  account for (1) and 

(2) will be used to account for the gas station puzzle. 

“A gas station” – analyzed as an et predicate; distances 
are measured from the union location of the members of 

this predicate.



6

Background - Types of locatives
Topological locatives:

The car is in the garage.

The camp is outside the city.

Distal locatives:

The car is far from the garage.

The camp is close to the city.

Beijing is 1,318km from Shanghai.

Projective locatives:

The car is left of the garage.

The bird is close to the house.



Topological Locatives



Topological Locatives

Locative indefinites:

outside every garage

outside every star system

outside every MC



Topological Locatives - formally



Distal Locatives

Locative indefinites:

Upward monotone, downward monotone and  non-
monotone distal locatives:



Measuring distances



“Far from” vs. “Close to”



Projective Locatives

Non-existential locative indefinites:

Experimental work with Robert Grimm, Eva Poortman
and Choonkyu Lee (SALT 2014)



Projective Locatives – formally



Summary
Topological (inside, outside), distal (far from, 
close to), and projective (behind, above) 
locatives. 

For all these locatives, we see pseudo-
quantificational effect w.r.t. part-whole relations:

close to London = close to some part of London

far from London = far from every part of London

We explain the similarity between this behavior 
and “strange” effects with locative indefinites:

close to a gas station = close to some gas station

far from a gas station = far from every gas station



Thank you!

Sela Mador-Haim Joost Zwarts



Modified Locatives

Modified outside (topological use) – pseudo-intersective:

Non-existential locative indefinites:



Fido is less than 5m outside of a doghouse

5m

There is a doghouse X such that Fido 
is less than 5m from X

and for every doghouse Y Fido is 
outside Y

Hence it is not truly 

existential

Modified Locatives (cont.) 

Modified outside (topological use) – pseudo-intersective:



Modified Locatives (cont.)

Projective locatives + projective modifier:

Non-existential locative indefinites:

Non-intersective, using 

shortest vector (Z&W)



Modified Locatives (cont.)

Projective locatives + distal modifier:

Kerewan is 10km south of the Senegalsese Border. 

Kerewan is 30km north of the Senegalsese Border. 

We are interested in the length of the shortest vector(s) among 

the vectors north of the border, and of the shortest vector(s) 

among the vectors south of the border.

Not the shortest vectors from the border (contra Z&W).



Modified Locatives (cont.)

Kerewan is 30km north of the Senegalsese Border. 

=

Of the vectors pointing northbound from the Senegalese 

border to Kerewan, the shortest vector is 30km. 

Projective locatives + distal modifier: Don’t care…



Modified Locatives (cont.)

Tweety is 30m above a cloud. 

=

Of the vectors pointing upward 
from a cloud to Tweety, 

the shortest vector is 30km. 

Now with locative indefinites:

10m

30m

30m

30m

Don’t 
care…



An alternative account - decomposition

Problems:

1. Why decomposing far from and not close to? (cf. Heim/Büring).

2. Radical decomposition: exactly � at least and at most?

3. How to modify 3m outside? As *3m not inside?

4. How to account for non-existential effects that are not 

obtained by any decomposition?

The dot is left of a circle.

Tweety is 30m/diagonally above a cloud. 



Remarks and Speculations

� Existentiality

� Extensionality

� Specificity

� Some vs. a

� Kind readings

� NPIs

� Collectivity



Eigenspace readings and existentiality

Existential entailment/implication?

Our suggestion: only spatial eigenspace readings are

existential. 

– LOC function triggers existence requirement



Eigenspace readings and extensionality

Our suggestion: all eigenspace readings are 

extensional. 



27

Eigenspace readings and specificity

Our suggestion: indefinites are ambiguous between

properties and E-quantifiers.



28

Eigenspace readings and some

Our suggestion: some is only existential. There is a 

connection between genericity and eigenspace readings.



29

Eigenspace readings and kind readings

Our suggestion: following McNally – kind nouns

trigger the property analysis.

McNally:



30

Eigenspace readings and NPI/monotonicity

Our suggestion: the eigenspace analysis naturally

exploits the monotonicity properties of spatial Ps.



The Impure-Atom analysis of Plurals

Our suggestion: the eigenspace of a plural can be a

convex hull of the union of eigenspaces.



Big Picture
Existential quantification (specificity)

Distributive quantification

Set



Assumptions
1. Indefinites in PPs are derivationally ambiguous (Partee 87).

2. Two levels of analysis of locatives (Zwarts and Winter 00).

a. Syntactic-semantic: 

b. Conceptual-semantic:  

3. Property-Eigenspace Hypothesis: A property’s eigenspace is 

the union of eigenspaces for entities in its extension.

the property GS is located at 
the union of gas station locations



Plan
- Overview of locatives with non-existential 

indefinites

- Their account using the PEH

- Why existential analyses fail

- Remarks and speculations:
- Existentiality
- Extensionality
- Specificity
- Some vs. a
- Kind readings
- NPIs
- Collectivity



Lexical Reciprocity as a Typicality 
Preference: Experimental Evidence

Yoad Winter

Joint work with Imke Kruitwagen and Eva Poortman

ESSLLI2016, Bolzano - Bolzen, 22-26 August 2016

To appear in NELS 2016



Reciprocal verbs

Focus: verbs like hug, kiss, collide

Two usages:

A and B hug

A hugs B

Old assumption:

Reciprocity = Symmetric Participation

A and B hug �� A hugs B and B hugs A

Newer assumption:

Reciprocity entails Symmetric Participation

A and B hug � A hugs B and B hugs A

Claim: Neither assumption is correct. The two entries 

are logically independent, but related through typicality.



“They are hugging” in Google Images

Hypothesis: for A&B hug, and with many other verbs, 

symmetric participation is not required. 



Aim

Examine whether a substantial percentage of 
speakers accepts reciprocity without symmetric 
participation above chance level, for a substantial 
number of reciprocal verbs.



Materials - Verbs

knuffelen – “hug”

botsen (tegen) – “collide (with)”

appen – “send WhatsApp message to (each other)”

praten (tegen) – “talk (to)”

spreken (tegen) – “speak (to)”

kletsen (tegen) – “chat (to)”

roddelen (tegen) – “gossip (to)”

vechten (tegen) – “fight (against)”

Why not “talk with” etc.?



Materials – target items

One side is active; the other side is (visibly) passive. 

Passive side shows collaboration.

Truth-judgement task for two sentences:

Collective – het meisje en de vrouw knuffelen 

“the girl and the woman hug”

Binary – het meisje knuffelt de vrouw

“the woman hugs the girl”



Materials – more target illustrations



Materials – more target illustrations



Materials - Fillers

8 target verbs

X 2 sentences (collective + binary)

= 18 target items

+ 30 fillers, of two types – to hit balance between 

expected true/false ratios:

1. Collective/binary sentences, in situations where they 

are clearly true

2. Other types of sentences, in situations where they 

are not clearly true/false 



Procedure

- 48 Dutch speakers (female 37, age M=23) 

- Trials on a screen in a pseudo-random order 

(Open Sesame) 

- green key for “true” and a red key for “false”



Control task

Appendix – 9 control items

Only collective sentences:

“the girl and the woman hug”

“the boy and the girl talk”



More control drawings



More control drawings



verb col+ bin+ col+bin- ctrl.col+

hug 79% 31% 48% 19%

collide 98% 2% 96% 65%

appen 94% 8% 85% 44%

talk 46% 4% 42% 13%

speak 69% 13% 56% 33%

chat 98% 17% 81% 27%

gossip 90% 6% 83% 46%

fight 73% 15% 58% 23%

MEAN 81% 12% 69% 34%

Results summary



verb col+ bin+ col+bin- ctrl.col+

hug 79% 31% 48% 19%

collide 98% 2% 96% 65%

appen 94% 8% 85% 44%

talk 46% 4% 42% 13%

speak 69% 13% 56% 33%

chat 98% 17% 81% 27%

gossip 90% 6% 83% 46%

fight 73% 15% 58% 23%

MEAN 81% 12% 69% 34%

Results summary

Changed their mind:

24-66%, M=40%



Pilot – video clips

knuffelen – “hug”

botsen (tegen) – “collide (with)”

appen – “send WhatsApp message to (each other)”

praten (tegen) – “talk (to)”

vechten (tegen) – “fight (against)”

After showing the film, the sentence was:

“Violet and Mark hugged/collided/apped/talked/fought”

Or: “Mark hugged/… Violet”



Verb Col+ Bin- Col+Bin- Ctrl.Col+

hug 64% 28% 36% 24%

collide 92% 0% 92% 76%

appen 20% 0% 20% 8%

talk 48% 4% 48% 8%

fight 48% 4% 48% 8%

MEAN 54% 7% 49% 25%

Results summary



Discussion
- Symmetric participation is not required with collective 

verbs that are traditionally classified as “reciprocal”

- Attitude of passive side matters: collaboration 

positively affects collective judgement

Outline of theory:

For pseudo-reciprocal predicates P, an event e is typical

for P proportionally to two values:

- Participation, e.g. number of hugs

- Evidence for collective intentionality

The higher the typicality value is, the higher the 

chance is that the event passes the speaker 

threshold for “truth”.
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Our minimalist formal semantics

I Trees over strings

I Lexical semantic types and denotations

I Inductive interpretation of trees using function application

Example

A. B.

Tina
is tall

(IS(tall))(tina) : t

tina : e IS(tall) : et

IS : (et)(et) tall : et



Our minimalist formal semantics

I Trees over strings

I Lexical semantic types and denotations

I Inductive interpretation of trees using function application

Example

A. B.

Tina
is tall

(IS(tall))(tina) : t

tina : e IS(tall) : et

IS : (et)(et) tall : et



Three classic problems

Quantifiers in object position

Tina praised every student

What do we do with types e(et) and (et)t?

Quantifier scope

Some teacher praised every student

How do we derive the object wide scope reading?

Extraction
Some teacher that Mary praised smiled

How can we interpret constituents like Mary praised?



Three classic problems

Quantifiers in object position

Tina praised every student

What do we do with types e(et) and (et)t?

Quantifier scope

Some teacher praised every student

How do we derive the object wide scope reading?

Extraction
Some teacher that Mary praised smiled

How can we interpret constituents like Mary praised?



Three classic problems

Quantifiers in object position

Tina praised every student

What do we do with types e(et) and (et)t?

Quantifier scope

Some teacher praised every student

How do we derive the object wide scope reading?

Extraction
Some teacher that Mary praised smiled

How can we interpret constituents like Mary praised?



Our modified system

I Hypothetical Reasoning: a dual principle to Function
Application.

I Signs: pairs of sounds and meanings replace strings as the
items manipulated by the grammar.



Function Application and Modus Ponens

Function Application (FA) Rule Interpretation

τσ τ

σ

A B

A(B)

Implication Elimination (Modus Ponens)

ϕ→ ψ ϕ

ψ

If Mary is tall then Tina is tall,
and Mary is tall

⇒ Tina is tall
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Hypothetical Reasoning – Two Equivalent Patterns

(A) Tina is taller than Mary

⇒ If Mary is tall then Tina is tall

(B) Tina is taller than Mary
and Mary is tall

⇒ Tina is tall

Suppose we accept entailment (A). General principles of
entailment, plus a general principle of conditional reasoning –
Modus Ponens – force us to accept (B).

Suppose we accept entailment (B). General principles of
entailment, plus a general principle of conditional reasoning –
which one? – should force us to accept (A).
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Hypothetical Reasoning – Two Equivalent Patterns

(A) Tina is taller than Mary

⇒ If Mary is tall then Tina is tall

(B) Tina is taller than Mary
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⇒ Tina is tall

Proving (B) using (A)

Tina is taller than Mary

If Mary is tall then Tina is tall
(A)

Mary is tall

Tina is tall
MP

Proving (A) using (B)

Tina is taller than Mary [Mary is tall]1

Tina is tall
(B)

If Mary is tall then Tina is tall
discharge hypothesis 1
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Implication Introduction

Implication Introduction

. . . [ϕ]1

...

ψ

ϕ→ ψ
discharge hypothesis 1

Example

ϕ1 → (ϕ2 → ψ) [ϕ1]1

ϕ2 → ψ
MP

ϕ2

ψ
MP

ϕ1 → ψ
discharge hypothesis 1
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Function Abstraction

Function Introduction

. . . [τ ]1

...
σ
τσ discharge hypothesis 1

Example

e(et) [e]1

et APP e
t APP

et
discharge hypothesis 1
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Function Abstraction – Interpretation

Function Introduction

. . . [u : τ ]1

...
z : σ

λu.z : τσ
discharge hypothesis 1

Example

praise : e(et) [u : e]1

praise(u) : et
FA

mary : e

praise(u)(mary) : t
FA

λue .praise(u)(mary) : et
discharge hypothesis 1
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Praising Mary: an intermediate summary

The constituent praised Mary can be analyzed in two ways.

Using Application: praise(mary)

mary praise

Using Abstraction: λu.praise(u)(mary)

mary praise

Application (Ajdukiewicz):
undergeneration – object quantifiers, wide scope, extraction
overgeneration – extraction

Application + Abstraction (Lambek-Van Benthem):
less undergeneration
more overgeneration
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Using signs

“The linguistic sign unites, not a thing and
a name, but a concept and a sound-image.”
(de Saussure 1916)

A linguistic sign, or in short a sign, is a pair 〈P,C 〉, where P
stands for a perceptual representation of sensory input and C
stands for a conceptual representation of meaning.

Sign composition:

MARY (sign)

{
mary (perception)
mary (concept)

}
+

PRAISE (sign)

{
praise (perception)
praise (concept)

}
=... (two possibilities)
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Strings as perceptual units

The domain of strings D f = F satisfies:

– Closure under concatenation. For all strings a, b ∈ F , the
concatenation a · b is also in F .

– Neutral element for concatenation. F contains an element ε
that satisfies for every x ∈ F : x · ε = ε · x = x .

Pheno-types: f is a pheno-type (of strings). If σ and τ are
pheno-types then (στ) is a pheno-type as well.

Example: In a given model –

I tina f = tina

I mary f = mary

I praise f( f f) = λx f.λy f. y · praised · x

praise f( f f)(mary f)(tina f) = tina · praised ·mary

praise f( f f)(tina f)(mary f) = mary · praised · tina
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Application and Abstraction using signs

Application

〈praise f( f f), praisee(et)〉 〈mary f ,marye〉
〈praise(mary), praise(mary)〉 APP

In our model:
= 〈(λx f.λy f. y · praised · x)(mary f) ,praise(marye)〉
= 〈(λy f. y · praised · mary f) ,praise(marye)〉

Abstraction
〈praise f( f f), praisee(et)〉 [〈u f, ue〉]1

〈praise(u f), praise(ue)〉 FA 〈mary f,marye〉
〈praise(u f)(mary), praise(ue)(mary)〉 FA

〈λu f.praise(u f)(mary), λue .praise(ue)(mary)〉
discharge hypothesis 1

In our model:
= 〈λu f.(λx f.λy f. y · praised · x)(u f)(mary), λue .praise(ue)(mary)〉
= 〈λu f.(λy f. y · praised · u f)(mary), λue .praise(ue)(mary)〉
= 〈λu f.mary · praised · u f, λue .praise(ue)(mary)〉
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What have we achieved so far?

Two ways of combining the signs MARY and PRAISE:

I Direct application:

PRAISE(MARY) =
string praised Mary
denotation {x ∈ E : x praised Mary }

I With abstraction:

λU.PRAISE(U)(MARY) =
string Mary praised
denotation {y ∈ E : Mary praised y }

No overgeneration!

Hypothesis The Lambek-Van Benthem Calculus (Application +
Abstraction) is a suitable logical apparatus for manipulating the
composition of signs in natural language grammar.
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Relative clauses (1): using empty strings

Consider the string that ran in some man that ran smiled .

that = λP f f.λy f. y · that · P(ε)

run = λu f.u · ran
that(run)
= (λP f f.λy f. y · that · P(ε))(run)
= λy f. y · that · run(ε)
= λy f. y · that · ((λu f.u · ran)(ε))
= λy f. y · that · (ε · ran)
= λy f. y · that · ran
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Quantifiers

Consider the noun phrase someone in someone ran .

someone = λP f f.P(someone)

run = λu f.u · ran
someone(run)
(λP f f.P(someone))(λu f.u · ran)
(λu f.u · ran)(someone)
someone · ran
Question: How about some in some man ran?

Further: The notion abstract type (abstract category).
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Relative clauses (3): full derivation

some ·teacher ·that ·mary ·praised ·smiled
SOME(THAT(λue .praise(u)(mary))(teacher))(smile)

SOME(THAT(λU f,e .PRAISE(U)(MARY))(TEACHER))(SMILE)

SOME(THAT(λU f,e .PRAISE(U)(MARY))(TEACHER))

SOME THAT(λU f,e .PRAISE(U)(MARY))(TEACHER)

TEACHER THAT(λU f,e .PRAISE(U)(MARY))

THAT λU f,e .PRAISE(U)(MARY)

MARY PRAISE

SMILE



Relative clauses (3): full derivation

some ·teacher ·that ·mary ·praised ·smiled
SOME(THAT(λue .praise(u)(mary))(teacher))(smile)

SOME(THAT(λU f,e .PRAISE(U)(MARY))(TEACHER))(SMILE)
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MARY PRAISE
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Quantificational object noun phrases

tina·praised ·every ·student
EVERY(student)(λue .praise(u)(tina))

EVERY(STUDENT)(λU f,e .PRAISE(U)(TINA))

TINA λV f,e .EVERY(STUDENT)(λU f,e .PRAISE(U)(V))

PRAISE EVERY(STUDENT)

EVERY STUDENT
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Quantifier scope (1): object narrow scope

some ·teacher ·praised ·every ·student
SOME(teacher)(λve .EVERY(student)(λue .praise(u)(v)))

SOME(TEACHER)(λV f,e .EVERY(STUDENT)(λU f,e .PRAISE(U)(V)))

SOME(TEACHER)

SOME TEACHER
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PRAISE EVERY(STUDENT)

EVERY STUDENT



Quantifier scope (1): object narrow scope

some ·teacher ·praised ·every ·student
SOME(teacher)(λve .EVERY(student)(λue .praise(u)(v)))

SOME(TEACHER)(λV f,e .EVERY(STUDENT)(λU f,e .PRAISE(U)(V)))

SOME(TEACHER)

SOME TEACHER

λV f,e .EVERY(STUDENT)(λU f,e .PRAISE(U)(V))

PRAISE EVERY(STUDENT)

EVERY STUDENT



Quantifier scope (2): object wide scope

some ·teacher ·praised ·every ·student
EVERY(student)(λue .SOME(teacher)(λve .praise(u)(v)))

EVERY(STUDENT)(λU f,e .SOME(TEACHER)(λV f,e .PRAISE(U)(V)))

EVERY(STUDENT)

EVERY STUDENT

λU f,e .SOME(TEACHER)(λV f,e .PRAISE(U)(V))

PRAISE SOME(TEACHER)

SOME TEACHER

Two parameters:

I Order of composition of signs – determines semantic scope

I Sign argument saturated – determines syntactic position



Quantifier scope (2): object wide scope

some ·teacher ·praised ·every ·student
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I Sign argument saturated – determines syntactic position
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EVERY(STUDENT)(λU f,e .SOME(TEACHER)(λV f,e .PRAISE(U)(V)))

EVERY(STUDENT)

EVERY STUDENT

λU f,e .SOME(TEACHER)(λV f,e .PRAISE(U)(V))

PRAISE SOME(TEACHER)

SOME TEACHER

Two parameters:

I Order of composition of signs – determines semantic scope

I Sign argument saturated – determines syntactic position



Summary

I Lambek-Van Benthem Calculus – flexibility of hypothetical
reasoning

I Directionality is not in tecto-level syntax, but in the
pheno-level objects that it manipulates

I Saussurean signs – avoiding overgeneration
I Implications:

I Modeltheoretic phonology
I Free variables in grammar, not in meaning
I Syntax and semantics hand in hand



Further usages

By extending the framework with possible worlds, scope
mechanisms as in ACG can also deal with de dicto/de re
ambiguities, such as:

Mary is looking for a secretary.
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