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Abstract

This paper develops an inference system for natural language within the
‘Natural Logic’ paradigm as advocated by Van Benthem [14h&hez [10]
and others. The system that we propose is based on the Lambek calculus
and works directly on the Curry-Howard counterparts for syntactic repre-
sentations of natural language, with no intermediate translation to logical
formulae. The Lambek-based system we propose extends the system by
Fyodorov et al. [3], which is based on the Ajdukiewicz/Bar-Hillel (AB) cal-
culus ([6]). This enables the system to deal with new kinds of inferences,
involving relative clauses, non-constituent coordination, and meaning pos-
tulates that involve complex expressions. Basing the system on the Lam-
bek calculus leads to problems with non-normalized proof terms, which are
treated by using normalization axioms.

Keywords: natural logic, inference, lambek calculus, normalization

1 Introduction

Model-theoretic semantics of natural language involves partially ordered domains,
so that meanings of expressions of the same semantic type are naturally compa-
rable. Formal semantics treats order relations between denotations of complex
expressions as compositionally derived from order relations between denotations
of their subexpressions, described using a given grammar and semantic proper-
ties of lexical items. For instance, under standard assumptions about the mean-
ing of the adjectivdall, the meaning of nominal expressions lifedl student is
“smaller” than the meaning of the nogtudent. This ordering, together with the
“order reversing” meaning of the determimeg, is responsible for the fact that the
meaning of the noun phras® tall student is “greater” than the meaning of the
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noun phras@o student. Such order relations between constituents often result in

an ordering of meanings of natural language sentences. In an adequate semantic
theory, this ordering between sentence meanings corresponds to intuitively valid
entailment relations. For instance, the above mentioned order relations, together
with the other elements in the sentence, are responsible for the valid entailment
John saw no student = John saw no tall student.

In modeltheoretic semantics, appealing to models makes it hard to derive in-
ferences in a computationally feasible way. On the other hand, working with
proof systems for first order logic (FOL) for natural language, as proposed in
many works (see, e.g. [9]) also has its weaknesses. First of all, not all NL con-
structs are expressible in FOL. For instance, in the valid entailndeht is very
tall = John is tall, the restrictive modifienvery’ is not expressible in FOL. Fur-
thermore, using FOL proof systems for computing natural language entailments
requires complex mappings from syntactic structures to FOL formulae. These
mappings are motivated mainly by the particular choice of syntax, and not by
independent linguistic considerations. This paper follows previous work in aim-
ing to develop an inference system that is based on insights from model-theoretic
semantics, but using only syntactic representations of natural language, with no
direct appeal to models. The close relationship between syntactic structure and
meaning in model-theoretic semantics eliminates the need for translating the syn-
tactic representations into intermediate logical levels of representation, such as
first order logic.

This initial conception ofNatural Logicwas introduced in [11]. Different
versions of Natural Logic were proposed by [10], [1], [3] and otheranchez
[10] proposes a mechanism that decorates categorial grammar proofs of natural
language expressions using signs that indicatertbeotonicityproperties of the
denotations of these expressions. Bernardi [1] folloaachez and introduces
a system for monotonicity reasoning that is based on a more complex categorial
type logic than &nchez’ work. Bernardi concentrates on monotonicity reasoning
as capturing theyntactic distributiorof negative polarity items. NeithedBchez
nor Bernardi provide a formal calculus for computing inferences. The situation
was partially amended in [3]. Fyodorov et al. define@mler Calculusbased
on similar annotations decorating syntactic derivations of the Ajdukiewicz/Bar-
Hillel (AB) calculus, a simple version of categorial grammar that only contains
slash elimination rules. Fyodorov et al.'s calculus allows a rather straightforward
derivation of inferences with monotone and some non-monotone quantifiers and
cross-categorial conjunctions and disjunctions. However, despite the value of Fy-
odorov et al.’s proposal for demonstrating a novel technique of inference in natural
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language, it fails to derive many inferences, even ones that are strictly based on
simple semantic order relations between expressions (see some examples below).
One of the reasons for this weakness comes from the limitations of the AB calcu-
lus as a categorial grammar.

In this paper we show that Fyodorov et al.’s system can be improved by bas-
ing the inference mechanism on the Lambek calculljssge [7, 8]), which also
contains slash introduction rules in addition to the elimination rules of the AB
calculus. We propose afi-based Order CalculusC(OC) as an intermediate
step towards a more general system that would support various kinds of infer-
ences in natural language in a more expressive syntactic framework. As in the
previous works that were mentioned, the items on which the inferential system
works are syntactic terms, representing structural derivations of natural language
expressions. These derivations now also include deductions using hypothetical
reasoning produced by the introduction rule of the Lambek calculus, and not only
function-argument constructions as in the AB-based order calculus of Fyodorov
et al. Despite the more general syntactic formalism we employ, the manipulation
of semantically-motivated annotations is still done at the level of the syntactic rep-
resentation. In this sense, we believe that our proposal is within the realm of what
previous works calletlatural Logic

We extend the system of Fyodorov et al. in a number of aspects:

1. The inferences are computed using proof terms representing syntactic deriva-
tions via the Curry-Howard correspondence, as opposed to the manipulation
in [3] of the syntactic derivations directly.

2. We add an inference rule callébstraction which works on proof terms
in £ with free variables, corresponding to undischarged assumptions. This
rule enables the Order Calculus to deal with inferences involving sentences
with extraction. Consider for example the following entailments, which are
now derivable in our system (using additional axioms, as will be shown in
the sequel):

(a) Every student whom Mary touched smiled = Every student
whom Mary kissed smiled

(b) Some boy, the brother of whom Mary loves, walked = Some
boy walked

3. We addg/n-normalization axioms, based atin-reduction of proof terms,
which resolve complications caused by proof termsCirthat are not in
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normal form. The normalization axioms enable the system to compute more
entailments, like, for instance, entailments that involve “non-constituent”
conjunctions as in the following example:

John does and Mary doesn’t move = Mary doesn’'t walk

4. Extending the system of [3] td4 also enables us to formulate non-logical
axioms about complex expressions. For example, it is possible to express
the fact that the relation denoted pgssionately love (though not neces-
sarily thelove relation itself) contains in every model the relation denoted
by adore. This is made possible due to the derivability of function compo-
sition in L.

As in [3], we concentrate on entailments between natural language sentences that
are syntactically disambiguated. For the sake of simplicity, we do not assume any
ambiguity at a semantic level. A proof search procedureZf@C, which is an
extension of the proposal by [3] including treatment of abstraction, is formulated
in [15].

The structure of this paper is as follows. Section 2 provides definitions of some
basic notions from model-theoretic semantics, and introddeesrated semantic
typesto be used inC-OC. Section 3 describgsderivations and their correspond-
ing proof terms with decorated semantic types. Section 4 defines the Order Calcu-
lus £-OC and its semantics. Section 5 demonstrates 4@\C can be applied for
deriving natural language inferences. Section 6 focuses on the problem of normal-
ization, explaining how the non-normalized proof terms are creatéd@cC, why
they pose a problem and how the problem is solved using normalization. Section
8 presents conclusions and directions for further research.

2 Semantic types and order relations

The main objective of the Natural Logic systems, as introduced by Van Benthem,
Sanchez, and Fyodorov et al., is to use the boolean regularities in natural language
(cf. [2]) as a key for an inference system that works directly on syntactic represen-
tations. In this section we review the basic boolean semantic notions that will be
employed in this work, and introduce the way they are used for decorating types
by semantic features.



2.1 Basic semantic notions

Model-theoretic semantic theories associate natural language expressions with
syntactic categoriesand their denotations with (closely relate®mantic types
Furthermore, most expressions denote objects in partially ordered (PO) domains,
so that meanings of equi-typed expressions are naturally comparable. Thus in the
finite set ofprimitive types(denoted by7™”), we distinguish the subset gfr-

tially ordered primitive typesdenoted b 190, which are interpreted over partially
ordered domains.

Formally, the set ofypesis defined as the smallest $etso that/® C T and
if 7 € Tando € T then also(ro) € T. The set ofPO typesis the smallest
setT,, C T's.t. T°, C T,, and ifr € T ando € T, then also(ra) € T),.
Standardly, types (for entities) and (for truth values) are among the primitive
types, where is among the PO primitive types.

For each primitive type- € 79, let D, be a non-empty domain, assuming
that the domains for primitive types are mutually disjoint. We also assume that
the domainD,, of any primitive PO typer is endowed with a given partial order
relation <,. For each non-primitive typeo, the domainD.,, is the set of all
functions fromD, to D,. The partial ordeK ., for complex PO types is defined
pointwise: ifo is a PO type with partial ordex, over the domainD,,, then for
anyd,,d; € D.,: dy <., dyiffforeveryd € D, di(d") <, da(d').

Next, we review some semantic properties of functions over these typed do-
mains, which will be useful in the rest of this paper. First, we refer to types of the
form 77 asmodifier typesWhenr is a PO type, a functiorf € D, of the mod-
ifier type 77 is calledrestrictiveiff for every d € D,: f(d) <, d. For example,
the denotations of adjectives likall, pretty and adverbs likslowly, happily are
commonly analyzed as restrictive functions of typée)(et). Thus, it is assumed
that the denotation of an expression ltkél boy is “smaller” or equal to the deno-
tation of the expressioboy, and that the denotation efowly move is “smaller”
or equal to the denotation afiove. Order relations produced by restrictive mod-
ifiers are one of the simplest ways for generating order relations between natural
language expressions in the order calculus.

Another important source for order relations are expressions afdbelina-
tion types- types of the formr(77). Functions of this type in natural language
are often interpreted ageatest lower boundr least upper boun@perators. A
function f € D (), wherer is a PO type, is called greatest lower bound
(9.1.b.) function iff for alld;, ds, d3 € D, the following two conditions hold:

1. (f(d1))(d2) < dy and(f(d1))(d2) <7 da;
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2. if ds <, d; anddg <, dy thendg <; (f(d1>>(d2)

The first requirement requires thAtbe restrictive, or returns a lower bound, on
both of its arguments; the second requirement ensuresftheturns agreatest
lower bound on both of its arguments.

A dual notion is the notion oeast upper bound.u.b.) functions: a function
[ € D.(,r of the coordination type(77), wherer is a PO type, is called leu.b.
function iff for all d, ds, d3 € D, the following two conditions hold:

1. dy <; (f(d1))(d2) anddy <: (f(d1))(dz);
2. if dy <, dsandd, <, ds then(f(dl))(dg) <, ds.
In natural language there are at least three kinds of g.l.b. functions:

1. Conjunctions: the standardly assumed meaning of conjunctions such as
dance and smile, Mary danced and John smiled, andevery teacher
and some student is the g.l.b. of the meanings of the conjuncts.

2. Relative clauses: a ‘subject oriented’ relative clause sucbhdd who
sneezed is treated as a g.l.b. of the nouch{ld) denotation and the verb
phrase $neezed) denotation. Similarly, an ‘object oriented’ relative clause
such ahild whom Mary saw is treated as a g.l.b. of the nourh{ld) de-
notation and the denotation of the “gapped” verb phr&&sy saw), which
is interpreted as the set of objects seen by Mary.

3. Intersective adjectives: adjectives suctbhge andpregnant when viewed
as modifiers are often assumed to denote ‘intersective functions’: functions
of type ((et)(et)) that intersect their argument with an implicit argument
of type (et). For instance, the nominélue car is synonymous with the
nominalcar that is blue, which is formed using a g.l.b. relative.

One l.u.b. function in natural language is the disjunction the standardly
assumed meaning of disjunctions sucklasce or smile, Mary danced or John
smiled, andevery teacher or some student is the l.u.b. of the meanings of the
disjuncts.

Another useful property of functions in natural languagaaotonicity namely,
order preservation/reversal. Let ando, be PO types. A functiof € D ;)
is:

e upward monotonéf for all dy,dy € D,,: di <,, dy = f(d1) <,, f(d2);



e downward monotonéf for all dy,ds € D,,: di <,, do = f(dy) >,,
f(ds).
For example, the denotation of the determieeery is analyzed as a function
of type ((et)((et)t)) that is downward monotone w.r.t. its first argument and up-
ward monotone w.r.t. its second argument. In this way we capture the following
entailments:
e Every student ran = Every tall student ran (assumingall student <
student)
e Every student ran = Every student moved (assumingan < moved)

2.2 Decoration of types

In order to use the semantic properties that were reviewed above in a calculus, we
follow [3] and use semantic decorations of types of linguistic expressions as an
abstractionof their full denotations. In this way the decorated type of an expres-
sion £’ can be used to derive order relations between more complex expressions
containingF, and ultimately entailment relations with sentences contaifing

We first define the set @lemantic featurethat decorate types according to the
semantic properties discussed above.

Definition 2.2.1 (Semantic featuresJhe set of semantic featur€sat = {+, —, R, C, D}.

Henceforth we use the meta-variablés” to range over subsets éfcat.
The intended use of these marks is as follows:
e ‘+'[*-"marks upward/downward monotonicity of functional types, where
both7 ando are PO types.
e ‘R’ marks restrictivity of modifier typesr, wherer is a PO type.
e ‘'C'/'D’ marks g.l.b./l.u.b. behavior of coordination type$r7), wherer is
a PO type.

Definition 2.2.2 (Decorated types and decorated PO typks} 7° be a set of
primitive types and'S, a set of primitive PO types, such thag, C 7°. The
sets of decorated types and PO decorated types are the smalleg} sety,¢ so
that:

o 1° C Tyee, THo C T'19 (null decoration)

o if 7 € Ty, o € Tyee @Ndp € TEO then(7F0) € Ty, (7Fp) € TEO for

dec dec

any F' C Feat satisfying the following conditions:
1. If F #0,thenr,o € TLO.
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2. If R € FF'thent = 0.
3. IfCorD e Fthen (i) Ifr = (n,"" ) thenF’ =  and (ii) o = (7°7).

Condition 1 guarantees that only functional tyge5c), where bothr ando are

PO decorated types can be marked with (). Condition 2 guarantees that only
modifier types are marked with ‘R’. Condition 3 guarantees that an expression of
a type marked with ‘C’ or ‘D’ is treated as denoting a binary function and all its
markings are specified on the functor type.

Definition 2.2.3 Let 7 be a decorated type iff... The (non-decorated) type
7° € Tye. corresponding ta is defined by:

1. If 7 is primitive thenr® = 7.
2. If 7 = (af'B) thent® = (a°3°).

After defining the decorated types, the corresponding domains are naturally de-
fined as follows.

Definition 2.2.4 (Domains of decorated type&pr each non-primitive decorated
typerfo € Ty \T°, the domainD.r, C D,, is the set of functions i®,, that
have the semantic properties denoted by the semantic featufés in

For exampleD,+) is the set of upward monotone functions frdm to D, .

3 The calculus.

In the proposed system, entailments between natural language sentences are com-
puted based on lambda terms with decorated types, representing the syntactic
derivations of these sentences. The Lambek calculus is an appealing formalism
to be used in such framework because of the built-in interface between the syn-
tactic structure of natural language expressions and their compositional semantics
due to the Curry-Howard correspondence between ptreoid lambda terms. We

use the product-free associative Lambek calculus (in its Natural Deduction for-
mulation, see [8]) and extend it to the calculdsdefined below enriched with
decorations of semantic types. The set of syntactic categGAdsis the small-

est set, such that a finite set of primitive categoGed ° (standardly containing

s) is included in it, and for everd, B € CAT: (A/B),(A\B) € CAT. Let

1By ‘proofs’ we mean here derivation from assumptions.
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type® : CAT? — T be a typing function for primitive categories, such that
type’(s) = t. This function is extended to the functiegpe : CAT — T as
follows?: type(A/B) = type(A\B) = (type(A)type(B)).

In our original presentation af-OC ([14, 15]) we presented the system using
directedlinear lambda terms, as only such terms materialize the Curry-Howard
correspondence with L as 1-1. However, directionality is not essential for con-
veying the main ideas of L-OC, and here we simplify the presentation by using
ordinary linear lambda terms (see [12])ree(v)), the set of free variables of a
linear termy), is defined standardly. For any terprsuch that no free variables of
+ occur bound iy, the terma[z/~] is obtained fromn by substituting all free
occurrences af by ~.

Our term language contains also a€etnst of constants, that are in a 1-1 corre-
spondence with the set of natural language words. The NL words are displayed in
san-serif font, and the constants in italic font. Thus, the congidntorresponds

to the wordgirl. Most importantly, the constants are typed, carrying the decorated
types driving the inferences.

Similarly to [3], we say that two decorated types areformally equivalentand
denote it byr =; o, if 7 ando are identical up to their decoration.

Definition 3.1 (The calculus£) Let I',T';, 'y range over finite non-empty se-
guences of pairsA : ., where A is a syntactic category ang, a term of a
(decorated) type-. The notationl’ > A : ¢, means that the sequenceis re-
ducible toA : v.. The rules of_ are as follows :

(aziom)A : x> A: x,, where x; € VAR U Const and type(A) = 7°

I'y>(A/B) 1 Ygyrry) Tab By

17 72

'y A (w(TlFTQ)(SOT{)>T2

I'o>B: (p.,.{ I'i> (A\B) : @Z)(TlFTQ)
ToT1 5 A ($r, ) (970

» (\E)
where T =y 7|, type(A) = 75, type(B) = 17

', Brax; > Ay,
Iy (A/B) : (/\xﬁ-wm)(‘rl‘rg)

B:x;, I''>A:Y,,

(/1) I'io (A\B) : (Ax‘r1-¢T2)(7172)

\)

for I'y not empty, type(A) = 75, type(B) = 77

°Note that the functiomype returns a non-decorated type.



If a sequent’ > A : ¢ has a proof inC, we denote it by, I'> A : ).

Definition 3.2 (Type-Logical Categorial Grammarh type-logical categorial gram-

mar is a tupleG' = (X, CAT?, A°, o)3, where:

Y is the alphabet.

e CATY is the set of basic syntactic categories.

o AYis the target category.

e o : ¥ — 2CATxConst g an assignment of finite sets of (abstracted)
signs, pairs of categories and constants, to lexical items, such that for every
(A, w,) € a(w): 7° = type(A). We will refer to an assignment as a
lexicon

e Theabstracted languageG] is defined as:

LG = {(w, M) | Il € a(w), s.t. FoT>s: My}

Note thatM, which usually specifies the semard&notatiorof w, is used
here to carry the abstracted type of the denotation. In a similar way, we
defineL|G, A], the expressions of categary so thatL[G]| = L[G, s].

4 The L-based Order Calculus

In this section we introduce the main part of the proposed system £-theesed
Order Calculus£-OC). £-OC manipulates ordered pairs of proof terms that rep-
resentL derivations of natural language expressions. These pairs, which are re-
ferred to asorder statementsare so defined to specify semantic order relations
between denotations of proof terms. Similarly to [3], however, order statements
are purely syntactic objects with no direct appeal to models (as opposed to the
works of [10, 1]). The soundness proof in [13] implies that the denotations of
terms in aL-OC-provable order statement indeed satisfy the ordering in every
model.

41 L-OC

Order statements — the items that are manipulatedyC— are defined to be
of the formy, <,. ., whereyp and are directed lambda terms of formally
equivalent types and7’, andr° is the non-decorated type derived by recursively
erasing the decorations from(or equivalently, fronv’).

3Standardly A, is taken to bes, the category designated for sentences in natural language.

10



The definition of£-OC contains, similarly to the system of [3], rules of the
following three kinds:

1. Structural rules of reflexivity (REFL) and transitivity (TRANS) for the order
relation<,.

2. Rules that describe the order behavior of monotonic expressions (MON+
and MON-), restrictive modifiers (RMOD), conjunctions(§) and dis-
junctions (D-2).

3. Arule of “function replacement” (FR), which captures the pointwise behav-
ior of the order relation.

In addition to the rules of the Order Calculus of [Z};0C also includes an ab-
straction (Ab) rule and standargiand» normalization axioms. The abstraction

rule of £-OC is used for deriving order statements between terms that are ob-
tained using the introduction rule of th& calculus. The normalization axioms
solve some problems that appear due to possible loss of semantic features when
derivations of order relations contain non-normalized terms.

Definition 4.1.1 (£-OC:)

FOTTEfT/Eff'Ef%, pEfp/Efﬁ4:

0 (TRANS)aT <o 0pr O <o #
T/ (075 STO V7

(REFL) —

[0 < o (5 ’ 6 / < o (X
T =T T (MON—) T —T T
Vet (@r) Spo Varp) (07) Ve (ar) Spo Vep) (077)

(MON+)

A(rFp) S(rp)e (urt yy Vo =ro OF (RMOD) 0
A(rFp) (’%ﬁ) Spo ¢(T/F/p/) (57:) Q(7R77) (7?) <ro Vr

(FR)

Qp Spe Vp!

Ab
( ))\xT.ap <(rp)e AT7Yp

Az.a, Ax.7y are linear terms

“Note thatr® is equal tor without any semantic decorations, thtls=; 7 =y 7/ =; 7 =; 7
and<,. is compatible with<,, <,,, <; and<:. The case fop° is similar.
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0 (C,) ar <o Y i <ro Yz
(e (rry (V) (7)) <70 Q Yoz <ro (040 (rry (1)) (V1)
Q =1z or Q=

@ (D2) 1/}7" STO az V7 STO az
Q <ro (870 (rr)) (7)) (¥2) O (rry) (V) (hr) <ro a2
Q=1 orQd =

(Cy)

(D1)

Normalization axioms:
d () )
(Qbf[yp/’Yp’])T =r° (/\?/p-d)T)(pT) (’Yp’) ¢(7Fp) =(rp)° (A‘TT‘¢(TF,0) (337))(7;))
xr & Free(y)

(6)

The Abstraction (Ab) rule captures the discharge of an assumption{n a
derivation. Given a premisg; < 5, Where bothp; andy; represent derivation
trees with a free variable occurring exactly once, the order statemgntp; <
Az.p9 is derived. The normalization axions) and(n) captures andn reduc-
tions of proof terms. The application of these axioms is discussed in detail in
section 6. For explanation of the rest of the rules, the reader is referred to [3].

4.2 The semantics af-OC

Thesemantic®f £-OC is naturally defined using standard models (i.e., full Henkin
models, see [5]) for the extensional fragment of Montague’s IL [4] and the point-
wise definition of semantic order relations. A modélis a set of (non-empty)
domainsD, for every primitive typer € TJ... For each non-primitive type

o = (Fp), D(, is the domain of all functions fronD, to D,, satisfying the
semantic conditions specified by. Every proof termy, is associated with a
denotation[[gop]]Mg relative to a modelM and an assignment functign which
assigns to any variable of decorated typgome element ab,,.

Definition 4.2.1 (Denotations of proof terms).et M be a model and; an as-
signment function. For a given proof termn, the denotatior{y,],, , is defined
as follows:

o If ¢, € VAR, then[¢,],,, = g(¢.).
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o If ¢T = @(UFT)(¢U)’ thenﬂwT]]Mg = HSO(JFT)]]Mg([[QSU]]]W,g)'

o If i, = Az,p.0,, then[[d}T]]Mg is that functionh € D, s.t. foralld € D,:
hd) = [#0] s gjuimapp Whereg[z := d] is an assignment function similar to
g, except that it assigns, to x,,.

Definition 4.2.2 (Semantics of order statementtpet ¢, ¢, be terms of (deco-
rated) typer and g an assignment function.

1. Mag >: Y1 <; ©2 Zﬁ ngl]]M,g <; [[302]]]\/[,9
2. M =1 <: @0 iff VO: M,0 k= ¢1 <; ¥2.

In [13] it is shown thatZ-OC is strongly sound relative to this semantics, that is:

Feeoca <y = VM,g: [[a]]M,g < [['Y]]M,g

5 L-OC-based inference system for natural language

This section illustrates howl-OC can be used for deriving inferences in natural
language. We first introduce a toy lexicon which is used for defining a small frag-
ment of English. Then we define a way to represent natural language assertions
asL-OC order statements. In addition, we extend the postulate introduced by [3]
for universal quantification in order to expand the range of inferences derived by
the system. We also introduce some non-logical axioms for complex expressions.
Finally, we present examples of deriving inferences with sentences involving rel-
ative clauses and pied piping, as well as inferences using the extended postulate
for universal quantification.

To keep the relation between terms (derivations) and natural language expres-
sions clear, we sometimes denote a tes(y) by [¢]¢, thus restoring the dis-
tinction between the rightward and leftward slash elimination rules. For instance,
the (normalized)C-derivation ofadores and loves is represented by the directed
term([adores|and)(loves), rather than the non-directed tefamd(adores))(loves).

5.1 Lexicon

A lexicon in a type-logical categorial grammar is a functiony — 2CAT*Const

from words to finite sets of pairs of categories and constants with decorated types.
These sets are of course non-empty, and contain more than one pair for any word
thatis lexically ambiguous. In Table 1 we introduce a toy lexicon for a fragment of
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[ Word | Category [ Type
wT s t
every GG\, (G\(5/mp)/n) (e~ (e 7 1)
no ((s/(s\np))/n), ((s\(s/np))/n) ((et)~((et)~t))
some ((s/(5\np)) /), ((3\(s/mp)) /) (D) ™ ((e) TD))
student,boy n (et)
walk,walked,smile, smiled, move, moved | (s\np) (et)
touched, loved ((s\mnp)/np) (e(et))
tall, nice, smart, intelligent, creative (n/n) (et)F(et)
Mary, John (s/(s\np)), (s\(s/np)) ((e) ™)
does ((s\np)/(s\np)) (et) T (et)
doesn't ((s\mp)/(s\np)) (et)~ (et)
whom ((n\n)/(s/np)) (et) ((et)(et))
the-brother-of-whom ((n\n)/(s/np)) (et)((et)(et))
and ((s\5)/s), ((s\np)\(s\np))/(s\np)) | (t(tt)), ((et)“((et)(et))),

Table 1: Lexicon

English, including the decorated types that are assigned to the decorated syntactic
categories.
Some remarks on this lexicon are in place:

1.

5.2

Following [3], we use a fictitious sentend&’ that is assigned the con-
stant proof term w!. This proof term is used in the representation of a
natural language assertighas the order statement’ <, ¢, where?

is a proof term representing afrderivation ofS. This representation of
assertions makes it easy to treat natural language sentences using order re-
lations, wheraw! is understood as a sentential “top-element” term, with a
denotation that is constantiyue.

. Determiners and proper names are assigned two categories, which allow

them to appear in both subject and object positions. The semantic markings
of their types, as in [3], captures their monotonicity properties. For in-
stance, the determineweryis marked as downward monotone on its noun
argument, and upward monotone on its verb argument.

Natural Logic inferences

In general, we represent Natural Logic inferenceg§4@C as follows.

Definition 5.2.1 (Fnatz04) LELG be some type-logical grammar. LELS,, ..., S,

be non-ambiguous sentencedift-] (i.e., having only one reading) and let

o oft, ..., ar" be any proof terms representidgderivation trees of, Sy, ..., Sy,
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’ Input: SentencesS, S1, ..., Sn ‘:>’ Find £ proof terms ¢S, fl,...,wf" for S, S1, ..., Sn

=

’ Provetz_oc wh <y from bz_oc wT <951, .. Fr_oc wT < ¢Sn

Figure 1: DerivingSy, ..., S, Fnatrog S In the system

respectively. We say that, ..., S, Fyatreg S if Fr_oc wl < afl,...,l—g_oc
w! < o™ impliesks_oc wl < .

In order to proveS; Fyairog So, it is enough to show ._oc o < a,, Where
a1, g are proof terms representing derivationsf S, resp., and the rest fol-
lows from transitivity. We do so in all the following examples to shorten up the
presentation.

The general process of deriviit, ..., S,, Fnatzog S 1S Summarized in Figure 1.

In this paper we only handle the casenof 1.

5.3 Non-logical axioms and tHevery’ postulate

Non-logical axioms are order statements that reflect possible meaning assump-
tions on the denotations of natural language expressions. For example, in the
models that we would like to consider, a student is also a person, and a walking
object is a moving object. It is also natural to assume that in the relevant models a
creative intelligent Xs asmart X for any nominalX. Similarly, we may assume
thatpassionately lovingomex entailsadoring x for any entityx. The following
non-logical axioms of2-OC, which correspond to these intuitions, will be useful

in the examples of-OC proofs that are introduced below.

0 0

walked ey < movedqp) walk(ery < move ey

0 0
kissed ey < touched, ey s student o) < person ey

0

)‘x(et) .creative((et)ﬁ,(et)) (intelligent((et)a(et)) (x(et))) S smart((et)R(et))

0
AZe.passionatelycr ery) (0V€S (¢ (er)) (Te)) < adorese(er)

a2

a4

as

ae
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Our L-based system, as opposed to the AB-based system of [3], makes it possible
to define non-logical axioms involving complex proof terms. For example, one of
the terms involved im, is a composition of two functional termscative ;) r et
andintelligent (. r 1)), Which can not be derived in the less powerful AB calcu-
lus.

Another advantage af is that it allows us to use the ad hoc postulate that [3]
defines for the determinégvery’ also for other positions beside subject position.
The determinetevery’ is treated by inducing an order statement between its two
arguments. For example, from the order statement

w] < (every -+ (studeny) (smiled

[3] induce the order statemestudent ) < smiled,. However, [3] cannot
handle a similar case wheevery’ is in an object position. For example, the fact
that the order statement

(*) studenty) < Aze.(Mary( o+ (Kisseqe(er)) (ze)))
should be induced from the order statement
wi < [Aze.Mary o+ (KisSege ey (@e))] (€VErY p — ((cry+r)(Studenty))

cannot be accounted for by [3]. We define a generalized postulatevieny’ as
follows:

th < (every(et)_((et)ﬂ) (a(et)>> (7(&))
Alet)y < Vet)

((ev))

Some examples for the use of the postulates above for deriving inferences are
given in the following subsection.

5.4 Examples of-OC derivations

In this subsection we show examplesBOC derivations of inferences involving
sentences with relative clauses and pied piping, as well as inferences using the
extendedevery’ postulate, which cannot be derived by the AB-based system in
[3]. Instances of the Reflexivity axiom are omitted. Also, when the rule FR is
used with its second premise an identity (not just formal equivalence), the second
premise is omitted for brevity.

16



PajiWsS Passiy ArejN Wwoym juapnis A1sAg%°7#*N | pajis payoanol Arejpy woym jusapnis Aiang
'Sasne|d aAle|ay g aInbi-

H(®Ppapuus) ((((((x) passiy) fiaw py-ay) woym) [puapnis]) fiizas))
H(®papuus) ((((((x) payonoy) fiav pyxy ) woym) [puapnys)) fisona))
+@ 5?223 pass1y) fiuv py-xy) woym) [puapngs]) H+ED(P)f505))
S () payonoy) fiuv py-ay) woym) [puapngs]) DR 00)
() payonoy) fiuo py-ax) woym) [Pluapnys))

> PU(((%) possyy) fian pyxy) woym) [Wquopnys))

P (1) ponon)an ) (0 oy
> WIN((((x) passuey) A py-ay) @100 wuoym)
)(((2) porponoy) franprry) 5 @ a@ poss i)y )
(@) porgpnon) C O Viangy) S A(((#) possiy) Vi)

() poyonoy) > W((°x) passiy)
(®)2)passuy

S|

>
(

-NOW

+NOW

av

((32)2)
(%) R)R)paronoy

Sw

17



pay[em Juapnis oN “°7N_j payjem passiy Arep
woym uapnis oN ‘wapnis Alana passp| AeN:.Alasperejnisod [ediboj-uou papualxe ayl buisn 7 ainbi4

(pogpom) (puopmgs) o)) > fm
(P poygom)((ruapnys) on)) 5 ((Ppasom) (((((x) passiy) Rav ) woya) [puopmis]) on)) S fm
Q\waﬁz%imv F@&TG&QZV
QL@:QQQ&V passy) fian pyay) woym) [uapngs)) G\G&TQ&QZV

7 X SNviL

a4

-NOW

>
B)((((z) passiy) v pyay) PPoEhuoym [quapnis]) S 2quapngs
@)(((z) passwy) favpray) > Pluapngs
mmmhﬁmvwﬁmﬁj\w%v Q+G®vvlﬁmv@&®©®v meﬁv wavwvﬁwmm.@v\v G.lwwvv@cSuE.mH/\C S F

o]

(22)

payjem Aoq awoS°T#N | payem ‘Sano| Arej\ woym Jo Jayrolq ay ‘foq swosBuidid paid g ainbi

(Ppagyppm)((fiog) +02)+1awios) >
(Gpacgoa) (((¢)(((w)s2a0p)fiaw -2y ) W N Dwoym — fo — uaypouq — ayp)[(Pfiog]) #+02)+(02)awwo0s

<E|

AmoevAereruv@SQm S
((#(()saa0p) ran py-2x) 020 Dwoyn — fo — soyposq — ayp)[iog]) 4+0D+02)ouos

+NOW

G&@QQ S
((®)((x)s200))fiauv py-ax ) PN Dwoym — fo — soypoiq — ayp)[P)fiog)

0

70

18



Figures 2 and 3 illustrate the derivation of inferences with simple relative
clauses including an object gap. In Figure 2 we se&€dDC derivation, from
which it follows thatEvery student whom Mary touched smiled -y .1..,EVery
student whom Mary kissed smiled. In this derivation the Abstraction rule of
L-OC is used to discharge the assumption In Figure 3 we show a-OC
derivation, from which we conclud8ome boy, the brother of whom Mary
loves, walked - y4:1..,S0me boy walked. For simplicity we assume that the cat-
egory ((n\n)/(s/np))ne ety €an be derived for the expressitive brother
of whom. In Figure 4 the extende@very’ postulate is used. Figures 5 and 6
illustrate the use of-OC for term composition as in the non-logical axioa¥s
andab.

6 Normalization in £-OC

In this section we focus on normalizatiom £-OC. First of all, we demonstrate
how non-NF proof terms emerge +OC. Consider the following example.

0

/\x(et) .creative((et)n (et)) (intelligent((et)n(et)) (J)(et) )) < smart((et)n(et))

as

Az.creative(intelligent (z))(boy(er)) < smart(boyet))

In this example the termz.creative(intelligent(x))(boy) is not in NF and it3-
reduces tareative(intelligent(boy)).
Another example for the creation of non-NF terms is as follows:

1]
(T(ety)) < tall(eryr ety (T(er))
(T(ery)) < Az-tall(eryr (er)(T(er))

RMOD
happy ety r ety (tall eryr et

Az happy(eeyr ety (taller r (er)

Here, the term\z.tall(z) is not in NF and it)-reduces tdall.
In these examples we see two main problematic aspects in the emergence of
non-normalized terms i£-OC. The first problem igbstraction termsvith un-
marked semantic types. Basing the systenCaallows us to derive order state-
ments that involve non-lexical expressions, and apply composition of terms in
the representation of their derivation. In AB, in contrast, the creation of func-
tional terms that do not originate from the lexicon is impossible due to the lack

SNormalization in£-OC was initially proposed in [15].
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of introduction rules. InC-OC new functional terms that are created via abstrac-
tion can apply as functions to other terms, creating non-NF terms. Some of the
abstraction terms may denote monotone (restrictive, etc.) functions, but their
types are not respectively marked. For instance, consider the abstraction term
P = A2r. Yo+ ) (o) (2-)), Which is a composition of the termsande). Since

their types are marked for upward monotonicity, the denotation of their composi-
tion is an upward monotone function. Thus, given o¢ v, <, d,, we expeci-

OC to derive(Az.¢(¢(2)))(7) <, (Az.p(p(x)))(5). But the type of\z.¢(¢(x))

is not marked for monotonicity, thus we cannot directly use the MON+ rule (or
any other-OC rules).

Let us show a more concrete example. Using), MON and FR we can
derive:

Fe—oc Mary(doesn't(move)) < Mary(doesn't(walk))
Consider, however a similar order statement:

Fe—oc [Ax.John(does(z))]and(Ay.Mary(doesn't(y)))(move) <

\y. Mary(doesn/t(y))(walk)

Since the type ohy.Mary(doesn't(y)) is not marked for downward mono-
tonicity, without normalizing it we cannot use the non-logical axigm) in any
way. In Figure 7 we show a derivation of this example usihgormalization.
Alternatively, instead of normalization we can addd@C a mechanism for dy-
namically marking monotonicity of types, so that markings of lexical expressions
are correctly inherited by complex expressions, also with non-normalized deriva-
tions. Such a method is described in the next section.
Another problematic aspect of non-NF termsdrOC is effectiveness consider-
ations In the general architecture of our system (Figure 1), one of the integral
parts is finding£-derivations for the goal sentences. However, finding a non-
normalized derivation of a natural language expression is problematic due to the
lack of the sub-formula property in non-normalized derivations, which in turn cre-
ates an infinite proof search space. Therefore, any reallgt@rser would search
for normal form derivations only. Thus, for the purpose of implementation, we
need to express the relation between non-NF terms represehtiagvations of
the goal sentences and their normal form equivalents. This technical development
is carried out in [13].
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7 Dynamic marking

In this section we focus on the problem of marking the typesbstractionterms
created inC-OC derivations. We describe a method of dynamic marking (first
proposed in [14]), which marks the types of abstraction terms for monotonicity.
We show that the proposed method does not in fact increase the expressive power
of £L-OC, in the sense that any derivation using dynamic marking can be simulated
by £-OC.

To implement dynamic marking we use the notiorpofarity introduced by
[11] and used by [10] and [1].

Definition 7.1 (Polarity of occurrences)Given a termy) and a subterny of v,
a specified occurrence af in ¢ is called positive (negativg according to the
following clauses:

1. ¢ is positive ing.

2. If¢ = a(v) then:

e ¢ is positive (negative) i if ¢ is positive (negative) in.

e ¢ is positive (negative) in) if ¢ is positive (negative) iny and «
denotes an upward monotone function.

e ¢ is negative (positive) iny if ¢ is positive (negative) iny and «
denotes a downward monotone function.

3. If v = Az.u theng is positive (negative) in if ¢ is positive (negative) in
.

Fact 7.2 [11] If x is positive (negative) i then\z.¢ denotes an upward (down-
ward) monotone function.

Dynamic marking is performed bDL — an extended version af. Instead
of linear lambda termsPDL usesextendedinear terms, where variables are
assigned a polarity marking € Pol = {®,5,®}, which is anabstraction

of its actual polarity: @, ©, ® mark positive, negative and unspecified polarity
respectively.

Definition 7.3 (Extended linear terms) et VE = {y!1 | y € VAR,II € Pol}.
The seELTermsis the smallest set s.t.:
e VE U Const C ELTerms
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o If &,r.y, ¥, € ELTerms then(®(V)), € ELTerms
e If z, € VAR, &, € ELTermsand for somdl € Pol: z}' occurs in®,
exactly once, the\z.®),,) € ELTerms

The set of free variables (with an assigned polarity markifigge(V) for ¥ €
ELTerms is standardly defined.

Definition 7.4 (II-strip) For ¥ € ELTerms its I1-strip linear termIlstrip(¥) is
defined as follows:

strip(a™) = a, for a € VAR,II € Pol

[strip(®(A)) = Istrip(P) (Mstrip(A))
strip(Az.®) = Az Ilstrip(P)

In words,ITstrip(V) is the term obtained fronk by deleting the polarity marking
of all of its variables. It is easy to show that given a linear extended t&ym
representing somPDL derivation, the termilstrip(¥), obtained by deleting all
polarity markings fromV, is a linear term representing sorfalerivation.

Next, we define the functionBlip : ELTerms — ELTerms and

Anull : ELTerms — ELTerms. Flip(V) is the (extended) term obtained from
U by swapping the polarity marking of the free variabledlims follows: &’ to
‘@ '0'e, 'R0 ®. Anull(W) is the (extended) term obtained froby
setting the polarity marking of all the free variablesdino ‘®’. We also define
the functionPol2Feat : Pol — 2F¢ that decorates the type of abstraction terms
according to the polarity marking of the discharged assumption:

Pol2Feat(®) = {+}, Pol2Feat(S) = {—}, Pol2Feat(®) = ()

Definition 7.5 (DDL) Let I',T';, 'y range over finite hon-empty sequences of
pairs A : V., whereA is a syntactic category and& € ELTerms. The nota-
tionI'> A : ¥, means that the sequences DD L-reducible toA : ¥,. The rules

of DDL are as follows :

o

(aziomi) A: 22> A: 29 forx, € VE and type(A) =7

(aziomg) A :w;> A:w, for w, € Const and type(A) =7

for T =5 11, type(A) =75, type(B) =17 :
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Elimination rules:
( )Fl > (A/B) : \I’(TI—T2) I's> B (I)T{ I's> B QDT{ I'i> (A\B) : \Ij('rl"rz)
© o> A (\IJ(n—Tg)(Flip((I)‘r{)))m © Lol'i > A (\Ij(Tl_Tg)(Flip((bT{)))TQ

Fl > (A/B) : \11(7'1""7'2) FQ > B : (I)T{ FQ >B: (I)T{ Fl > (A\B) : \11(7.1+T2)
(VBe) =T T, A (0 P O\ Ee)—F F oA P
1Dy > A (V740 (D7) 2l1> A (V40 (Dr7))ry
ForF ¢ {{+},{-}}:
( )r1>(A/B) Wy rnyy TavB:dy (\E)FQDB @ T (A\B): ¥, r,,
FlFQ >A: (\I/(TlFTZ)<ATLu”<(I)T1/)))T2’ FQFl >A: (\II(TlFQ)(Anull(‘I)T{)))TQ
Introduction rules:
I’l,B:a:ElDA:\IIT2 B::zzgl,f‘le:\I»'T2

(/1)

1
I'ipo (A/B) : ()\3;'7-1.‘1/7-2)(7_1130121:5@(1‘1)7_2) (\ )Fl > (A\B) : ()‘1371-\I’Tz)(TlPomFeat(H)TQ)
for I'y not empty, z,, € VAR

The Elimination rules update the polarity marking of the variables of the argument
term: a downward monotone function triggers a “flipping” of polarity marking,
an upward monotone function leaves polarity intact, and a function unmarked for
monotonicity nullifies polarity marking. The Introduction rules mark the type of
the dynamically created functional term according to the polarity marking of the
abstracted variable corresponding to the discharged assumption. (The polarity
marking of the bound variables becomes irrelevant.)

The rules of the Order Calculus that is basedimPL (DDL-OC ) are very
similar to the rules of£-OC, except that they manipulate order-statements be-
tween extended linear terms, representi@ L derivations. We do not include
normalization axioms iDDL-OC .

Definition 7.6 (DDL-0OC ;)

Forr=sr' =;7=;7, p=sp =5p

@ \I!‘r STO ET’ ET’ STO (I)‘F
(REFL) ——— (TRANS) TR
U, <0 O Y <po U,

(MON+) (MON-)

(b(f*p)(\ljf) <pe (I)(ﬁﬂ) (3+) <I>(+7p)(Flip(\I/T)) <pe (I)(7°70) (Flip(3+1))
Virrp) S(rpye Virrpy 2 =ro 2z

(FR)
Virpy (Ap[®2]) <po T'r ) (Ap[E5])
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where Ay = idELTerms®, Ay = Flip, Ap = Anull for F & {{+},{—}}
0 (Ab) Ty(27) <po q)p’(xgl)
Sorry () <o 10 (N7 0y) rrorsreacting) S(epye NErr 8p) o momareartn )
Az, \x.® € ELTerms
0 (C,) Ve <;o I'mv Uiz <;0 @p
(B(re (rryy (Anull (@) (Anull(Tz)) <go Q2 Ws <ro (S(rc(rry) (Anull(®2))) (Anull(T,))
Q=Ts0rQ=,.
0 Y <ro Uy Bz <po U

(RMOD)

(C)

Bug <ro (Z(r0(rry) (Anull(®,1))) (Anull(T'7)) (DZ)(E(TD(TT»(Anull(@;)))(Anull(FT)) <, W

Q:FT/OT‘Q:(I).;

Let us now demonstrate the wayD L-OC works. Consider the following order-
statement between extended tefms

(1) [M\z.John(does(z®))]and(\y.Mary(doesn't(y®)))(move)

< A\y.Mary(doesn't(y®)) (walk)

First let us note that the extended tekpn M ary(doesn’t(y®)) represents a valid
DDL derivation, where its type is dynamically marked for downward monotonic-

ity:

((s\np)/(s\np)) : doesn't(epy-(ery (s\mp) : y®
(5/((s\np))) : Mary(ey+ (s\np) : doesn’t(y®) (/Es)
s : Mary(doesn't(y®)) 1) ©

s/(s\np) : (\y.Mary(doesn't(y®)))et)- (et)

In Figure 8 we present thBDL-OC derivation of (1). Note that by discarding

all polarity markings from it, we do not necessarily get a vali®C derivation.
This is because the type ofy. M ary(doesn’t(y)) cannot be marked for down-
ward monotonicity inZ, and so the MON rule cannot be applied. Nevertheless,
we can still show that we can simulatefrOC any derivation oDDL-OC . More
precisely, for any order-statemefit< ¢ derivable inDDL-OC (whereV, ® are
extended linear terms)Istrip(V) < Ilstrip(®) is derivable in£-OC (where
Istrip(¥), [Istrip(®) are the linear terms obtained froin, & respectively by
deleting their polarity markings). From this we conclude that basing the Order

(/Ee)

5By idgrTerms WE mean the identity functiond : ELTerms — ELTerms, such that
1d(¥) = W for every ELTerm¥.
"Note that we specify here the polarity marking of the bound variables.
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Calculus onDDL instead ofL does not increase its expressive power. Note,
however, that this negative result only holds for the current semantic features. In
general, there need not exist such a bypass, and therefore dynamic marking is a
general solution which should be further investigated.

The following lemma formalizes the relation betweB® L-OC and£-OC dis-
cussed above:

Lemma 7.7 Fppr_oc V<P =+, o0 Hstmp(\lf) < Hstr@p(@)

The full proof of the lemma is deferred to appendix A. Now we exemplify the
lemma by returning to thé&DL-OC derivation in Figure 8. According to the
above lemma, we should be able to show the following:

Fe_oc [Mx.John(does(z))]and(Ny.Mary(doesn't(y)))(move)

< \y.Mary(doesn't(y))(walk)

It was already shown in Figure 7 that:
Fe_oc [Mx.John(does(z))]and(Ny.Mary(doesn't(y)))(move)

< \y.Mary(doesn't(walk))
Using the(3) axiom:

\y.Mary(doesn't(walk)) = \y. Mary(doesn't(y))(walk)

and the TRANS rule, we can indeed construct the degi+&IC derivation.

8 Conclusions

In this paper we have proposed a Natural Logic inference system that is baSed on
and transcends the AB-based system of [3]. Basing the systehborught about

a complication — non-normalized proof terms, with which we dealt by augment-
ing the system with normalization, or, alternatively, using dynamic monotonicity
marking. We have shown that this allows to derive new kinds of inferences in-
volving sentences with extraction, pied piping and non-logical axioms with com-
plex expressions. Further work is needed to allow inferences with more than one
sentential premise. It is clear, however, tifais also not the optimal categorial
formalism to underly a Natural Logic inference system, due to its own limitations,
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mainly overgeneration and incapability of dealing with non-peripheral extraction.
Therefore, we view the proposed inference system only as an intermediate step
towards a more complex one, to be finally based on some decidable fragment of
type-logical grammar. Much work still has to be done in this direction. Further
research should also enlarge the variety of semantic properties used for natural
language inference, beyond the ones employed in current work on Natural Logic.
These reservations notwithstanding, we believe that the present work has shown
some advances in extending the Natural Logic paradigm to a more substantial
system of reasoning in natural language.
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A Proof of Lemma 7.7

First we prove the following lemma that we will use in the sequel:

LemmaA.l Let¥ € ELTermss.t. z € Free(Ilstrip(V)) andz is marked for
positive (negative) polarity inv. Thent-,_oc v <, 6 (Fr—oc 0 <, 7) implies
Fe—oc Ustrip(V)[z/v] <; Ustrip(¥)[z/d].

Proof: by induction on the complexity o’. We prove only for the positive
polarity case; the proof for negative polarity is symmetric.
e U = 2% ThenIlstrip(¥) = z andk,_oc v <, § impliest,_oc
zlz/y] <o xfx/d].
o U = O¢r,(A¢). Then (since the terms are linear) only one of the following
holds:z € Free(Ilstrip(©)) orx € Free(Ilstrip(A)).

e Supposer € Free(Ilstrip(©)). If z is marked for positive polarity
in ¥, thenx is marked for positive polarity also i@. By the induc-
tion hypothesis;y;_oc v <, d impliest-;_oc Hstrip(©)[z/v] <(¢p)
[Istrip(©)[z/d]. By applying the FR rule, we can prove

Fe—oc (strip(©)[x/v]) (strip(A)) <, (ILstrip(©)[z/d])(Lstrip(A))
IIstrip(©(A))[z /7] IIstrip(©(A))[z/d]

e Supposer € Free(Ilstrip(A)). If x is marked for positive polarity
in ¥, then (i) either the type @b is marked for upward monotonicity
and x is marked for positive polarity in\ or (ii) the type of© is
marked for downward monotonicity andis marked for negative
polarity in A. Suppose that (i) holds. By the induction hypothesis,
Fe—oc v <o dimpliest,_oc [strip(A) [z /] < Lstrip(A)[x/d].

By applying MON+ rule, we can prove

Fr—oc (Ustrip(©)c+p)) (Ustrip(A)¢[z/v]) <, (Ustrip(©)) ¢+ py (Hstrip(A)[z/d])

Mstrip(©(A))[z/A] Mstrip(©(A))[x/d]

The proof for (ii) is symmetric.
o U = \y..®, wherey # z. Sincex is marked for positive polarity i,
then it is marked for positive polarity i®. By the induction hypothe-
Sis,Fz_oc v <, 6 impliest._oc Ustrip(®)[z/y] <, lstrip(®)[z/d].

8Recall that since we use extended linear terms, every variable occurs at most once, and so we
can speak of the marking efand not of its specific occurrence.
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By applying the Ab rule, we can prove;_oc Ay.(Ilstrip(®)[z/v]) =
Hstrip(Ay.®@)[z/v] <, A\y.(Ustrip(®)[z/d]) = Istrip(Ay.®)[z/d], and
so we have:

Fr—oc Ustrip(Ay.@)[xz/v] <cp) strip(Ay.®)[z /4]

Now we prove lemma 7.7, which states the following:
Fope—oc ¥ <@ =t oc strip(V) < Istrip(P)

Suppose that there is a pra@f of ¥ < & in DDL-OC. We construct &£-OC

proof Qy of [Istrip(V) <, Ilstrip(®). First we delete all polarity markings
from the variables of the extended termgin Then we delete all monotonicity
markings of abstraction terms §py.

If the proof contains no MON rule applications based on dynamic marking of
types of abstraction terms, then it is easy to see that the obtained derivation is a
valid £-OC proof oflLstrip(V) <, Ilstrip(®).

Otherwise, the resulting invalid applications of the MON rule of the form:

[strip(©) <, lstrip(A)
Az, Tstrip(0)) (o (strip(0,)) <, (A, Mstrip(¥)) ) (Mstrip(A,)) (1)

where the type ohz,.Ilstrip(¥) is not marked for monotonicity. We choose the
innermost invalid MON instance, that is such that does not have invalid MON
instances if2. First of all, due to its being the innermost non-valid instance of
MON, €2 is a valid £-OC proof of the order statemefitstrip(©) < IIstrip(A).
Secondly, since the type ofr. ¥ is marked for upward monotonicity, must be
marked for positive polarity ilv. By lemma A.1:

Fr—oc Ustrip(V) [z /ILstrip(©)] <(;p) strip(V)[z/strip(A)]

Thus we can replace (1) by the following validOC proof:

In this way we can systematically remove all invalid instances of MON.
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0 5 N L 5
Az Istrip(V) (Istrip(©)) Hstrip(V)[z/Ustrip(A)]
=(rp) Ustrip(¥)[z/Tstrip(©)] Mstrip(¥)[z/IIstrip(©)] =(rp) ArIlstrip(¥) ;) (Lstrip(A))
<(rp) Ustrip(¥)[z/Tstrip(A)]

TRANS

Az Istrip(V))(IIstrip(©)) < (AxIlstrip(¥))(strip(A))

Example: Let us demonstrate the method presented above usinGIhe-OC
derivation from Figure 8. First we delete all the polarity markings and monotonic-
ity markings of types of abstraction terms and get the following “derivation”:

0
c1
[Az.John(does(x))]and(\y.Mary(doesn't(y)))
< Ay.Mary(doesn't(y)) - walk < move MON
[Az.John(does(x))]and(Ay.Mary(doesn’t(y)))(move) ANy Mary(doesn't(y)) (et)(et) (move)
< (N\y.Mary(doesn't(y)))(move) < Xy.Mary(doesn't(y)) et)(et) (walk)
[Az.John(does(x))|and(Ay.Mary(doesn't(y)))(move) < Ay.Mary(doesn't(y))(walk) TRANS

Of course, the underlined application of MON is not valid, since the type of
Ay.Mary(doesn't(y)) is no longer marked for downward monotonicity.

Since the type of abstraction tetxp. M ary(doesn't(y)) was dynamically marked
for *-’, it means thaty was marked for®’ in Mary(doesn't(y®)). By lemmaA.1
and using the non-logical axiomalk < mowve:

Fr_oc Mary(doesn't(move)) < Mary(doesn't(walk))

(see the right side of Figure 7), and usisfignormalization as described above, we
obtain the-OC derivation in Figure 9.
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