Hypothetical Reasoning and the Grammar of Signs

Yoad Winter

3.12.2010, DIP Colloquium, Amsterdam

Textbook draft - www.phil.uu.nl/~yoad/efs/main.html

Towards a Saussurean grammar

- Trees over linguistic signs pairs of pheno-level+semantic-level denotations
- Lexical types for such pairs
- Inductive interpretation of sign trees using function application and <u>function abstraction</u>

Insight: non-local dependencies are described within the derived signs

Minimalist Formal Semantics

- Trees over strings
- Lexical <u>semantic</u> types and denotations
- Inductive interpretation of trees using function application

Example

Problem: non-local dependencies – quantifiers, scope, extraction

Plan of talk

- λ -terms as mere notation for functions
- Three classic problems in the Syntax-Semantics interface
- ▶ The Semantic Operator approach vs. the λ -Syntax approach
- Hypothetical Reasoning and the Lambek-Van Benthem Calculus
- ► Abstract Categorial Grammar a Saussurean perspective

Why λ -terms?

1. Easy notation for functions

When writing " $\lambda x_{\tau}.\varphi$ ", where τ is a type, we mean: "the function sending every element x of the domain D_{τ} to φ ".

 $\llbracket \text{Tina is tall} \rrbracket = (IS_{(et)(et)}(\text{tall}_{et}))(\text{tina}_{e})$

The denotation is of is =

a. the function sending every element x of the domain D_{et} to x

b. $\lambda x_{et}.x$

2. Easy notation for applying functions (β -reduction over-simplified)

The result $(\lambda x_{\tau}.\varphi)(a_{\tau})$ of applying a function described by a lambda term $\lambda x_{\tau}.\varphi$ to an argument a_{τ} , is equal to the value of the expression φ , with all occurrences of x replaced by a.

a. the result of applying the function sending every element x of the domain D_{et} to x to the function $tall_{et}$ is tall

b. $(\lambda x_{et}.x)(tall_{et}) = tall$

Thus: $(IS_{(et)(et)}(tall_{et}))(tina_e) = ((\lambda x_{et} \cdot x)(tall))(tina_e) = tall(tina_e)$

A priori, λ -terms and their reductions are just notation for functions and simple set-theoretic equivalences.

Three classic problems

Quantifiers in object position

Tina praised every student

What do we do with types e(et) and (et)t?

Quantifier scope

Some teacher praised every student

How do we derive the object wide scope reading?

Extraction

Some teacher that Mary praised smiled

How can we interpret constituents like Mary praised?

Object quantifiers - desired derivation

In our example -

	praise	e(et)
+	EVERY(student)	(et)t
-	λy_e . EVERY(student)(λx_e . praise(x)(y))	et

= the function that characterizes the set of entities y s.t. $\{x \in D_e : y \text{ praised } x\}$ contains the set of students

In general

$$+ \frac{\begin{matrix} R & e(et) \\ Q & (et)t \end{matrix}}{\lambda y_e.Q(\lambda x_e.R(x)(y)) & et}$$

A saturation operator for binary relations and quantifiers

$$SAT = \lambda R_{e(et)} \cdot \lambda Q_{(et)t} \cdot \lambda y_e \cdot Q(\lambda x_e \cdot R(x)(y))$$

Object quantifiers – the Semantic Operator approach

Object quantifiers – the λ -Syntax approach

Object wide scope – the λ -Syntax approach

Extracted object – the λ -Syntax approach

Semantic operators vs. λ -Syntax

Both approaches stipulate the desired outcome:

- using the semantic operator that encodes it OR
- \blacktriangleright in the syntactic derivation of the desired $\lambda\text{-term}$

We are left with the question:

What are the principles that get us the denotation below from the denotations mary and praise?

 $\lambda x_e.((\operatorname{praise}_{e(et)}(x))(\operatorname{mary}_e))$

 $PBM = \{x \in D_e : Mary \ praised \ x \ \}$

Proposal (Saussure, Lambek, Curry, Van Benthem, De Groote, Muskens): Hypothetical Reasoning + a Grammar of Signs

Hypothetical Reasoning – Two Equivalent Patterns

(A)	Tina is taller than Mary
	\Rightarrow If Mary is tall then Tina is tall

(B) Tina is taller than Mary and Mary is tall
 ⇒ Tina is tall

Proving (B) using (A)

Tina is taller than Mary
If Mary is tall then Tina is tall(A)Mary is tallTina is tallMP

Proving (A) using (B)

 $\frac{ {\rm Tina \ is \ taller \ than \ Mary \ [Mary \ is \ tall]^1 } { {\rm Tina \ is \ tall } \over {\rm If \ Mary \ is \ tall \ then \ Tina \ is \ tall } } {\rm discharge \ hypothesis \ 1 }$

Function Application and Modus Ponens

Functi	on Applic	Inter	Interpretation		
$ au\sigma$	au		A	В	
σ			A(A(B)	

Implication Elimination (Modus Ponens) $\varphi \rightarrow \psi$ φ

If Mary is tall then Tina is tall, and Mary is tall \Rightarrow Tina is tall

Implication Introduction

Example

$$\begin{array}{c} \displaystyle \frac{\varphi_1 \rightarrow \left(\varphi_2 \rightarrow \psi\right) \quad [\varphi_1]^1}{\frac{\varphi_2 \rightarrow \psi}{\frac{\psi}{\varphi_1 \rightarrow \psi}}} \; \mathrm{MP} \\ \displaystyle \frac{\varphi_2}{\frac{\psi}{\varphi_1 \rightarrow \psi}} \; \mathrm{discharge \ hypothesis \ 1} \end{array}$$

 Function Introduction

 $[\tau]^1$
 \vdots
 $\frac{\sigma}{\tau\sigma}$ discharge hypothesis 1

Example

$$\frac{e(et) \quad [e]^1}{\frac{et}{\frac{et}{\frac{t}{et}}}} \operatorname{APP} \underbrace{e}_{\text{APP}} \operatorname{APP}$$

Function Abstraction – Interpretation

Examplepraise : e(et) [u : e]^1praise(u) : etFApraise(u)(mary) : tFA $\lambda u_e.praise(u)(mary) : etGischarge hypothesis 1$

Intermediate summary

- Semantic engine: type-logical, over denotations
- Interpreted objects: trees over strings
- No syntactic variables

Using Application:

Using Abstraction:

Application (Ajdukiewicz): undergeneration – object quantifiers, wide scope, extraction overgeneration – extraction

Application + Abstraction (Lambek-Van Benthem): less undergeneration more overgeneration

Using signs

"The linguistic sign unites, not a thing and a name, but a concept and a sound-image." (de Saussure 1916)

A linguistic sign, or in short a sign, is a pair $\langle P, C \rangle$, where P stands for a perceptual representation of sensory input and C stands for a conceptual representation of meaning.

Sign composition:

mary (perception) mary (concept) MARY (sign) +praise (perception)
praise (concept) PRAISE (sign) =... (two possibilities)

Pheno-level interpretation

The domain of phonetic entities $D_f = F$ satisfies:

- Closure under concatenation. For all phonetic entities $a, b \in F$, the concatenation $a \cdot b$ is also in F.
- Neutral element for concatenation. F contains an element ϵ that satisfies for every $x \in F$: $x \cdot \epsilon = \epsilon \cdot x = x$.

Pheno-types: f is a pheno-type. If σ and τ are pheno-types then $(\sigma \tau)$ is a pheno-type as well.

Example: In a given model -

- ▶ tina_f = tina
- mary $_{f} = mary$

▶ praise_{f(ff)} =
$$\lambda x_{f} \cdot \lambda y_{f}$$
. y · praised · x

 $praise_{f(ff)}(mary_f)(tina_f) = tina \cdot praised \cdot mary$ $praise_{f(ff)}(tina_f)(mary_f) = mary \cdot praised \cdot tina$

Back to relative clauses (1)

that =
$$\lambda P_{ff} \cdot \lambda y_{f} \cdot y \cdot that \cdot P(\epsilon)$$

mp = $\lambda u_{f} \cdot mary \cdot praised \cdot u$
that(mp)
= $(\lambda P_{ff} \cdot \lambda y_{f} \cdot y \cdot that \cdot P(\epsilon))(mp)$
= $\lambda y_{f} \cdot y \cdot that \cdot mp(\epsilon)$
= $\lambda y_{f} \cdot y \cdot that \cdot ((\lambda u_{f} \cdot mary \cdot praised \cdot u)(\epsilon))$
= $\lambda y_{f} \cdot y \cdot that \cdot (mary \cdot praised \cdot \epsilon)$
= $\lambda y_{f} \cdot y \cdot that \cdot mary \cdot praised$

Application and Abstraction using signs

Application

 $\frac{\langle \texttt{praise}_{\textit{f(ff)}}, \texttt{praise}_{e(et)} \rangle \quad \langle \texttt{mary}_{\textit{f}}, \texttt{mary}_{e} \rangle}{\langle \texttt{praise}(\texttt{mary}), \texttt{praise}(\texttt{mary}) \rangle} \quad APP$

In our model: $\langle \lambda y_{f}, y \cdot praised \cdot mary$, entities that praised Mary \rangle

Abstraction

 $\frac{\langle \text{praise}_{f(ff)}, \text{praise}_{e(et)} \rangle \quad [\langle u_f, u_e \rangle]^1}{\frac{\langle \text{praise}(u_f), \text{praise}(u_e) \rangle}{\langle \text{praise}(u_f)(\text{mary}), \text{ praise}(u_e)(\text{mary}) \rangle}} \frac{\text{FA}}{\langle \text{mary}_f, \text{mary}_e \rangle}{\text{FA}} \text{FA}} \frac{\langle \text{praise}(u_f)(\text{mary}), \text{ praise}(u_e)(\text{mary}) \rangle}{\langle \lambda u_f. \text{praise}(u_f)(\text{mary}), \lambda u_e. \text{praise}(u_e)(\text{mary}) \rangle}} \text{ discharge hypothesis 1}$

In our model: $\langle \lambda u_f.mary \cdot praise \cdot u$, entities that Mary praised \rangle

Hypothetical reasoning without overgeneration!

Hypothesis: The Lambek-Van Benthem Calculus is a suitable logical apparatus for manipulating the composition of signs in natural language grammar.

Back to relative clauses (2)

Back to quantificational object noun phrases

Back to quantifier scope (1)

Back to quantifier scope (2)

Two parameters:

- Order of composition of signs determines semantic scope
- Sign argument saturated determines syntactic position

Summary

- Lambek-Van Benthem Calculus flexibility of hypothetical reasoning
- Directionality is not in tecto-level syntax, but in the pheno-level objects that it manipulates
- Saussurean signs avoiding overgeneration
- Implications:
 - Modeltheoretic phonology
 - Free variables in grammar, not in meaning
 - Syntax and semantics hand in hand

References

- Curry, H. B. (1961), Some logical aspects of grammatical structure, *in* R. O. Jakobson, ed., 'Structure of Language and its Mathematical Aspects', Vol. 12 of *Symposia on Applied Mathematics*, American Mathematical Society, Providence.
- de Groote, P. (2001), Towards abstract categorial grammars, *in* 'Proceedings of the 39th annual meeting of the Association for Computational Linguistics (ACL)'.
- de Saussure, F. (1959), *Course in General Linguistics*, Philosophical Library, New York. Translation of *Cours de Linguistique Générale*, Payot & Cie, Paris, 1916.
- Lambek, J. (1958), 'The mathematics of sentence structure', American Mathematical Monthly **65**, 154–169.
- Muskens, R. (2003), Language, Lambdas, and Logic, *in* G.-J. Kruijff &R. Oehrle, eds, 'Resource Sensitivity in Binding and Anaphora', Studies in Linguistics and Philosophy, Kluwer, pp. 23–54.
- van Benthem, J. (1991), Language in Action: categories, lambdas and dynamic logic, North-Holland, Amsterdam.