
Hypothetical Reasoning
and the Grammar of Signs

Yoad Winter

3.12.2010, DIP Colloquium, Amsterdam

Textbook draft – www.phil.uu.nl/~yoad/efs/main.html

Minimalist Formal Semantics

◮ Trees over strings

◮ Lexical semantic types and denotations

◮ Inductive interpretation of trees using function application

Example

A. B.

Tina
is tall

(IS(tall))(tina) : t

tina : e IS(tall) : et

IS : (et)(et) tall : et

Problem: non-local dependencies – quantifiers, scope,
extraction

Towards a Saussurean grammar

◮ Trees over linguistic signs – pairs of
pheno-level+semantic-level denotations

◮ Lexical types for such pairs

◮ Inductive interpretation of sign trees using function
application and function abstraction

Insight: non-local dependencies are described within the
derived signs

Plan of talk

◮ λ-terms as mere notation for functions

◮ Three classic problems in the Syntax-Semantics interface

◮ The Semantic Operator approach vs. the λ-Syntax approach

◮ Hypothetical Reasoning and the Lambek-Van Benthem
Calculus

◮ Abstract Categorial Grammar – a Saussurean perspective

Why λ-terms?

1. Easy notation for functions

When writing “λxτ .ϕ”, where τ is a type, we mean: “the function
sending every element x of the domain Dτ to ϕ”.

[[Tina is tall]] = (IS(et)(et)(tallet))(tinae)

The denotation IS of is =

a. the function sending every element x of the domain Det to x

b. λxet .x

2. Easy notation for applying functions (β-reduction over-simplified)

The result (λxτ .ϕ)(aτ) of applying a function described by a
lambda term λxτ .ϕ to an argument aτ , is equal to the value of the
expression ϕ, with all occurrences of x replaced by a.

a. the result of applying the function sending every element x of
the domain Det to x to the function tallet is tall

b. (λxet .x)(tallet) = tall

Thus:
(IS(et)(et)(tallet))(tinae) = ((λxet .x)(tall))(tinae) = tall(tinae)

A priori, λ-terms and their reductions are just notation for

functions and simple set-theoretic equivalences.

Three classic problems

Quantifiers in object position

Tina praised every student

What do we do with types e(et) and (et)t?

Quantifier scope

Some teacher praised every student

How do we derive the object wide scope reading?

Extraction
Some teacher that Mary praised smiled

How can we interpret constituents like Mary praised?

Object quantifiers – desired derivation

In our example – praised every student

+

praise e(et)
EVERY(student) (et)t

λye .EVERY(student)(λxe .praise(x)(y)) et

= the function that characterizes the set of entities y s.t.

{x ∈ De : y praised x} contains the set of students

In general

+

R e(et)
Q (et)t

λye .Q(λxe .R(x)(y)) et

A saturation operator for binary relations and quantifiers

SAT = λRe(et).λQ(et)t .λye .Q(λxe .R(x)(y))

Object quantifiers – the Semantic Operator approach

A. B.

Tina

sat praised every student

SAT(praise)(EVERY(student))(tina) : t

tina SAT(praise)(EVERY(student)) : et

SAT(praise) : ((et)t)(et)

SAT praise

EVERY(student) : (et)t

EVERY student

Object quantifiers – the λ-Syntax approach

A. B.

Tina
λye

λxe
y

praised x

every student

(λye .EVERY(student)(λxe .praise(x)(y)))(tina) : t

tina : e λye .EVERY(student)(λxe .praise(x)(y)) : et

λye EVERY(student)(λx .praise(x)(y)) : t

λxe .praise(x)(y) : et

λxe praise(x)(y) : t

y praise(x) : et

praise x

EVERY(student) : (et)t

EVERY student

Object wide scope – the λ-Syntax approach

Some teacher praised every student

every student

λye

λxe
x

praised y

some teacher

Extracted object – the λ-Syntax approach

Some teacher that praised Mary smiled

some

teacher

that

λxe
Mary

praised x

smiled

Semantic operators vs. λ-Syntax

Both approaches stipulate the desired outcome:

◮ using the semantic operator that encodes it
or

◮ in the syntactic derivation of the desired λ-term

We are left with the question:

What are the principles that get us the denotation below from

the denotations mary and praise?

λxe .((praisee(et)(x)) (marye))

PBM = {x ∈ De : Mary praised x }

Proposal (Saussure, Lambek, Curry, Van Benthem, De Groote,
Muskens): Hypothetical Reasoning + a Grammar of Signs

Function Application and Modus Ponens

Function Application (FA) Rule Interpretation

τσ τ

σ

A B

A(B)

Implication Elimination (Modus Ponens)

ϕ→ ψ ϕ

ψ

If Mary is tall then Tina is tall,
and Mary is tall

⇒ Tina is tall

Hypothetical Reasoning – Two Equivalent Patterns

(A) Tina is taller than Mary

⇒ If Mary is tall then Tina is tall

(B) Tina is taller than Mary
and Mary is tall

⇒ Tina is tall

Proving (B) using (A)

Tina is taller than Mary

If Mary is tall then Tina is tall
(A)

Mary is tall

Tina is tall
MP

Proving (A) using (B)

Tina is taller than Mary [Mary is tall]1

Tina is tall
(B)

If Mary is tall then Tina is tall
discharge hypothesis 1

Implication Introduction

Implication Introduction

. . . [ϕ]1

...

ψ

ϕ→ ψ
discharge hypothesis 1

Example

ϕ1 → (ϕ2 → ψ) [ϕ1]
1

ϕ2 → ψ
MP

ϕ2

ψ
MP

ϕ1 → ψ
discharge hypothesis 1

Function Abstraction

Function Introduction

. . . [τ]1

...
σ
τσ discharge hypothesis 1

Example

e(et) [e]1

et
APP

e
t

APP

et
discharge hypothesis 1

Function Abstraction – Interpretation

Function Introduction

. . . [u : τ]1

...
z : σ

λu.z : τσ
discharge hypothesis 1

Example

praise : e(et) [u : e]1

praise(u) : et
FA

mary : e

praise(u)(mary) : t
FA

λue .praise(u)(mary) : et
discharge hypothesis 1

Intermediate summary

◮ Semantic engine: type-logical, over denotations

◮ Interpreted objects: trees over strings

◮ No syntactic variables

Using Application: praise(mary)

mary praise

Using Abstraction: λu.praise(u)(mary)

mary praise

Application (Ajdukiewicz):
undergeneration – object quantifiers, wide scope, extraction
overgeneration – extraction

Application + Abstraction (Lambek-Van Benthem):
less undergeneration
more overgeneration

Using signs

“The linguistic sign unites, not a thing and

a name, but a concept and a sound-image.”
(de Saussure 1916)

A linguistic sign, or in short a sign, is a pair 〈P ,C 〉, where P

stands for a perceptual representation of sensory input and C

stands for a conceptual representation of meaning.

Sign composition:

MARY (sign)

{

mary (perception)
mary (concept)

}

+

PRAISE (sign)

{

praise (perception)
praise (concept)

}

=... (two possibilities)

Pheno-level interpretation

The domain of phonetic entities D f = F satisfies:

– Closure under concatenation. For all phonetic entities
a, b ∈ F , the concatenation a · b is also in F .

– Neutral element for concatenation. F contains an element ǫ
that satisfies for every x ∈ F : x · ǫ = ǫ · x = x .

Pheno-types: f is a pheno-type. If σ and τ are pheno-types then
(στ) is a pheno-type as well.

Example: In a given model –

◮ tina f = tina

◮ mary
f
= mary

◮ praise
f(f f) = λx f.λy f. y · praised · x

praise
f(f f)(mary f

)(tina f) = tina · praised ·mary

praise
f(f f)(tina f)(mary f

) = mary · praised · tina

Application and Abstraction using signs
Application

〈praise
f(f f), praisee(et)〉 〈mary

f
,mary

e
〉

〈praise(mary), praise(mary)〉
APP

In our model: 〈λy f. y · praised ·mary , entities that praised Mary〉

Abstraction

〈praise
f(f f), praisee(et)〉 [〈u f, ue〉]

1

〈praise(u f), praise(ue)〉
FA

〈mary
f
,mary

e
〉

〈praise(u f)(mary), praise(ue)(mary)〉
FA

〈λu f.praise(u f)(mary), λue .praise(ue)(mary)〉
discharge hypothesis 1

In our model: 〈λu f.mary · praise · u , entities that Mary praised〉

Hypothetical reasoning without overgeneration!

Hypothesis: The Lambek-Van Benthem Calculus is a suitable
logical apparatus for manipulating the composition of signs in
natural language grammar.

Back to relative clauses (1)

that = λP f f.λy f. y · that · P(ǫ)

mp = λu f.mary · praised · u

that(mp)
= (λP f f.λy f. y · that · P(ǫ))(mp)
= λy f. y · that · mp(ǫ)
= λy f. y · that · ((λu f.mary · praised · u)(ǫ))
= λy f. y · that · (mary · praised · ǫ)
= λy f. y · that ·mary · praised

Back to relative clauses (2)

some ·teacher ·that ·mary ·praised ·smiled

SOME(THAT(λue .praise(u)(mary))(teacher))(smile)

SOME(THAT(λU f,e .PRAISE(U)(MARY))(TEACHER))(SMILE)

SOME(THAT(λU f,e .PRAISE(U)(MARY))(TEACHER))

SOME THAT(λU f,e .PRAISE(U)(MARY))(TEACHER)

TEACHER THAT(λU f,e .PRAISE(U)(MARY))

THAT λU f,e .PRAISE(U)(MARY)

MARY PRAISE

SMILE

Back to quantificational object noun phrases

tina·praised ·every ·student
EVERY(student)(λue .praise(u)(tina))

EVERY(STUDENT)(λU f,e .PRAISE(U)(TINA))

TINA λV f,e .EVERY(STUDENT)(λU f,e .PRAISE(U)(V))

PRAISE EVERY(STUDENT)

EVERY STUDENT

Back to quantifier scope (1)

some ·teacher ·praised ·every ·student
SOME(teacher)(λve .EVERY(student)(λue .praise(u)(v)))

SOME(TEACHER)(λV f,e .EVERY(STUDENT)(λU f,e .PRAISE(U)(V)))

SOME(TEACHER)

SOME TEACHER

λV f,e .EVERY(STUDENT)(λU f,e .PRAISE(U)(V))

PRAISE EVERY(STUDENT)

EVERY STUDENT

Back to quantifier scope (2)

some ·teacher ·praised ·every ·student
EVERY(student)(λue .SOME(teacher)(λve .praise(u)(v)))

EVERY(STUDENT)(λU f,e .SOME(TEACHER)(λV f,e .PRAISE(U)(V)))

EVERY(STUDENT)

EVERY STUDENT

λU f,e .SOME(TEACHER)(λV f,e .PRAISE(U)(V))

PRAISE SOME(TEACHER)

SOME TEACHER

Two parameters:

◮ Order of composition of signs – determines semantic scope

◮ Sign argument saturated – determines syntactic position

Summary

◮ Lambek-Van Benthem Calculus – flexibility of hypothetical
reasoning

◮ Directionality is not in tecto-level syntax, but in the
pheno-level objects that it manipulates

◮ Saussurean signs – avoiding overgeneration

◮ Implications:
◮ Modeltheoretic phonology
◮ Free variables in grammar, not in meaning
◮ Syntax and semantics hand in hand

References

Curry, H. B. (1961), Some logical aspects of grammatical structure, in R. O.
Jakobson, ed., ‘Structure of Language and its Mathematical Aspects’,
Vol. 12 of Symposia on Applied Mathematics, American Mathematical
Society, Providence.

de Groote, P. (2001), Towards abstract categorial grammars, in ‘Proceedings of
the 39th annual meeting of the Association for Computational Linguistics
(ACL)’.

de Saussure, F. (1959), Course in General Linguistics, Philosophical Library,
New York. Translation of Cours de Linguistique Générale, Payot & Cie,
Paris, 1916.

Lambek, J. (1958), ‘The mathematics of sentence structure’, American

Mathematical Monthly 65, 154–169.

Muskens, R. (2003), Language, Lambdas, and Logic, in G.-J. Kruijff &
R. Oehrle, eds, ‘Resource Sensitivity in Binding and Anaphora’, Studies in
Linguistics and Philosophy, Kluwer, pp. 23–54.

van Benthem, J. (1991), Language in Action: categories, lambdas and dynamic

logic, North-Holland, Amsterdam.

