The Semantics of Intensionalization

Gilad Ben-Avi Technion Yoad Winter Technion/Utrecht University

New Directions in Type-Theoretical Grammar, ESSLLI Dublin, 10 August 2007

- Some words are intension-sensitive (IS): *seek* a lawyer, *fake* diamond, *believe* that...
- Other words are intension-insensitive (INS): *kiss* a lawyer, *shiny* diamond
- IS words and expressions lead to intensional phenomena: propositional attitudes, privative modification.
- INS words and expressions only require extensional semantics.

IS and INS expressions may share syntactic categories and appear in the same constructions.

Especially – in the case of transitive verbs: John needed and inherited a house. Mary sought, found and ate a fish. Sue ordered and got a new PC. Intensional phenomena may appear due to mechanisms that are also relevant for purely extensional effects.

The Quine-Montague Hypothesis: *De dicto/de re* ambiguity as scope ambiguity:

A queen kissed every king.

A queen looked for a king.

Intensional phenomena may appear due to mechanisms that are also relevant for purely extensional effects.

The Quine-Montague Hypothesis: *De dicto/de re* ambiguity as scope ambiguity:

A queen kissed every king.

A queen looked for a king. (vs. A queen kissed a king)

Keenan and Faltz 1985, p. 274:

"Our general task will be to create a system of model-theoretic semantic interpretation for our logical language which will preserve the advantages and insights revealed by our extensional system while allowing properly intensional facts to be represented."

Our aim – a modular architecture of intensional semantics

• Start with an extensional grammar – only INS items in the lexicon.

- Start with an extensional grammar only INS items in the lexicon.
- Intensionalize shift meanings of INS items so to allow:

- Start with an extensional grammar only INS items in the lexicon.
- Intensionalize shift meanings of INS items so to allow:
 - adding IS items,

- Start with an extensional grammar only INS items in the lexicon.
- Intensionalize shift meanings of INS items so to allow:
 - adding IS items,
 - without changing anything else in the extensional grammar,

- Start with an extensional grammar only INS items in the lexicon.
- Intensionalize shift meanings of INS items so to allow:
 - adding IS items,
 - without changing anything else in the extensional grammar,
 - and especially preserving truth-conditional behavior.

- Start with an extensional grammar only INS items in the lexicon.
- Intensionalize shift meanings of INS items so to allow:
 - adding IS items,
 - without changing anything else in the extensional grammar,
 - and especially preserving truth-conditional behavior.
- Add IS items to the lexicon.

Graphically

Graphically

Benefits

Architectural benefits:

- Extensional treatments have exact parallels in intensional systems.
- Treatments of intensional phenomena are fully lexicalized.
- No *ad hoc* type shifts for intensionality as in Partee & Rooth (1983).

Benefits for treating concrete phenomena:

- De dicto/de re manifestations of extensional scope shifting principles.
- Avoiding PTQ-style meaning postulates for high types of INS words.
- IS TVs (e.g. seek) and INS TVs (e.g. kiss) are naturally coordinated.

Pedagogical benefit:

• We don't have to teach intensional systems "from scratch" – we can rely to a large extent on the understanding of extensional systems.

• Strong syntactic equivalence between G and $\mathcal{I}(G)$.

- Strong syntactic equivalence between G and $\mathcal{I}(G)$.
- Truth-conditional soundness: G and $\mathcal{I}(G)$ support the same entailments.

- Strong syntactic equivalence between G and $\mathcal{I}(G)$.
- Truth-conditional soundness: G and $\mathcal{I}(G)$ support the same entailments.
- Extendability: by only adding IS lexical items, $\mathcal{I}(G)$ can be extended to an adequate intensional grammar.

- An explicit intensionalization procedure in Keenan and Faltz (1985).
- Insights on type-theoretical frameworks in Van Benthem (1988).
- A limited intensionalization procedure can be inferred from Heim and Kratzer (1998,ch.12).
- Shan (2001) formalizes a similar intensionalization procedure using *monads*, following Barker's (2002) modular treatment of quantification using *continuations*.

Modify components of a grammar G as follows:

- Types add a basic type *s*.
- Frame add a nonempty domain D_s of possible worlds.
- Typing modify types of lexical items.
- Meanings modify meanings of lexical items.

Sentences in $\mathcal{I}(G)$ are of type *st*.

The following should be equivalent, given two derivations $\mathcal{D}(S_1)$ and $\mathcal{D}(S_2)$ in *G* of sentences S_1 and S_2 :

• For every model \mathcal{M} of G:

$$\llbracket \mathcal{D}(S_1) \rrbracket^{\mathcal{M}} = 1 \Rightarrow \llbracket \mathcal{D}(S_2) \rrbracket^{\mathcal{M}} = 1$$

• For every model \mathcal{M} of $\mathcal{I}(G)$ and for every $w \in D_s$:

$$\llbracket \mathcal{D}(S_1) \rrbracket^{\mathcal{M}}(w) = 1 \Rightarrow \llbracket \mathcal{D}(S_2) \rrbracket^{\mathcal{M}}(w) = 1$$

- Following Van Benthem (1988):
 - For all extensional types: type *t* (of truth-values) is replaced by type *st* (of propositions).
 - Only relational types are used (inessential).
- Heim and Kratzer's distinction between logical constants and non-logical constants is preserved.
- A sophisticated mapping is now needed for logical constants, which may have many *s*'s in their intensionalized type.
- Words for boolean operators are treated syncategorematically.

A proposal by Van Benthem (1988), attributed to Reinhard Muskens: "a relational rather than a functional type theory may prove the proper setting for this investigation..."

We restrict the set of possible types to T_{ext} , which is the least set s.t.

- $t \in T_{\text{ext}}$.
- If $\sigma_1 \in \{e\} \cup \mathcal{T}_{ext}$ and $\sigma_2 \in \mathcal{T}_{ext}$ then $(\sigma_1 \sigma_2) \in \mathcal{T}_{ext}$.

Note that if $\sigma \in T_{ext}$ then:

- $\sigma = (\sigma_1 \dots (\sigma_n t) \dots)$ for some $n \ge 0$ and $\sigma_1, \dots, \sigma_n \in \{e\} \cup \mathcal{T}_{ext}$.
- D_{σ} is isomorphic to $\wp(D_{\sigma_1} \times \cdots \times D_{\sigma_n})$.

Intensionalizing types

For every σ ∈ T_{ext}, let Γσ[¬] the type that results from replacing each occurrence of *t* within σ by *st*. (This is adopted from Van Benthem (1988).)

• Let
$$\mathcal{T}_{\text{int}} \stackrel{def}{=} \{ \lceil \sigma \rceil \mid \sigma \in \mathcal{T}_{\text{ext}} \}.$$

• Denote by
$$\lfloor \cdot \rfloor$$
 the inverse of $\lceil \cdot \rceil$.

Examples:

- $\lceil t \rceil = st$ (propositions).
- $\lceil et \rceil = e(st)$ (properties). Note: $D_{e(st)}$ is isomorphic to $D_{s(et)}$ – the standard domain of properties.

•
$$\lceil e(et) \rceil = e(e(st))$$

- Logical constants: If a word α has a constant denotation f ∈ D_σ (e.g., *every*), then in the intensionalized grammar α denotes a constant L(f) ∈ D_{Γσ}¬.
- Non-logical constants: If a word α can denote any f ∈ D_σ, then in the intensionalized grammar α can denote any f ∈ D_{¬σ¬}. For instance: words that denote arbitrary one-place predicates in D_{et} are mapped to words that denote arbitrary elements in D_{e(st)}.

But how to define $L(\cdot)$?

• every =
$$\lambda A_{et} \lambda B_{et} \cdot \forall x_e [A(x) \rightarrow B(x)].$$

• every =
$$\lambda A_{et} \lambda B_{et} \cdot \forall x_e [A(x) \to B(x)].$$

• We would like to arrive at the PTQ-like denotation: $L(every) = \lambda A_{e(st)} \lambda B_{e(st)} \lambda w_s . \forall x_e [A(x)(w) \rightarrow B(x)(w)]$

- every = $\lambda A_{et} \lambda B_{et} \cdot \forall x_e [A(x) \to B(x)].$
- We would like to arrive at the PTQ-like denotation: $L(every) = \lambda A_{e(st)} \lambda B_{e(st)} \lambda w_s . \forall x_e[A(x)(w) \rightarrow B(x)(w)]$
- Note that if we define the extension of A ∈ D_{e(st)} in w ∈ D_s as A^w = λx_e.A(w)(x) then: L(every)(A)(B)(w) = every(A^w)(B^w)

- every = $\lambda A_{et} \lambda B_{et} \cdot \forall x_e [A(x) \to B(x)].$
- We would like to arrive at the PTQ-like denotation: $L(every) = \lambda A_{e(st)} \lambda B_{e(st)} \lambda w_s. \forall x_e[A(x)(w) \rightarrow B(x)(w)]$
- Note that if we define the extension of $A \in D_{e(st)}$ in $w \in D_s$ as $A^w \stackrel{def}{=} \lambda x_e A(w)(x)$ then: $L(\mathbf{every})(A)(B)(w) = \mathbf{every}(A^w)(B^w)$
- But, standardly: the extension of an intensional denotation φ in w ∈ D_s is assumed to be φ(w).

- every = $\lambda A_{et} \lambda B_{et} \cdot \forall x_e [A(x) \to B(x)].$
- We would like to arrive at the PTQ-like denotation: $L(every) = \lambda A_{e(st)} \lambda B_{e(st)} \lambda w_s. \forall x_e[A(x)(w) \rightarrow B(x)(w)]$
- Note that if we define the extension of $A \in D_{e(st)}$ in $w \in D_s$ as $A^w \stackrel{def}{=} \lambda x_e A(w)(x)$ then: $L(\mathbf{every})(A)(B)(w) = \mathbf{every}(A^w)(B^w)$
- But, standardly: the extension of an intensional denotation φ in w ∈ D_s is assumed to be φ(w).
- Thus, standardly: it is implicitly assumed that φ has to have a type sτ in order to have an extension.

- every = $\lambda A_{et} \lambda B_{et} \cdot \forall x_e [A(x) \to B(x)].$
- We would like to arrive at the PTQ-like denotation: $L(every) = \lambda A_{e(st)} \lambda B_{e(st)} \lambda w_s. \forall x_e[A(x)(w) \rightarrow B(x)(w)]$
- Note that if we define the extension of $A \in D_{e(st)}$ in $w \in D_s$ as $A^w \stackrel{def}{=} \lambda x_e A(w)(x)$ then: $L(\mathbf{every})(A)(B)(w) = \mathbf{every}(A^w)(B^w)$
- But, standardly: the extension of an intensional denotation φ in w ∈ D_s is assumed to be φ(w).
- Thus, standardly: it is implicitly assumed that φ has to have a type sτ in order to have an extension.
 And furthermore τ has to be extensional.

- every = $\lambda A_{et} \lambda B_{et} \cdot \forall x_e [A(x) \to B(x)].$
- We would like to arrive at the PTQ-like denotation: $L(every) = \lambda A_{e(st)} \lambda B_{e(st)} \lambda w_s. \forall x_e[A(x)(w) \to B(x)(w)]$
- Note that if we define the extension of $A \in D_{e(st)}$ in $w \in D_s$ as $A^w \stackrel{def}{=} \lambda x_e A(w)(x)$ then: $L(\mathbf{every})(A)(B)(w) = \mathbf{every}(A^w)(B^w)$
- But, standardly: the extension of an intensional denotation φ in w ∈ D_s is assumed to be φ(w).
- Thus, standardly: it is implicitly assumed that φ has to have a type sτ in order to have an extension.
 And furthermore τ has to be extensional.
- This is a too strong assumption for obtaining a general extensionalization procedure.

We therefore generalize our observation about intensional determiners in PTQ.

Definition (extension F^w of F in a world w)

Let
$$\sigma \in \mathcal{T}_{int} \cup \{e\}, F \in D_{\sigma} \text{ and } w \in D_{s}.$$

• if $\sigma = e$ then $F^{w} = F$;
• if $\sigma = (\sigma_{1} \cdots (\sigma_{n}(st)) \cdots), n \ge 0$, then for all $x_{1} \in D_{\lfloor \sigma_{1} \rfloor}, \dots, x_{n} \in D_{\lfloor \sigma_{n} \rfloor}$:
 $F^{w}(x_{1}) \cdots (x_{n}) = 1 \Leftrightarrow$
 $\exists Y_{1} \cdots Y_{n} [\bigwedge_{i=1}^{n} (Y_{i}^{w} = x_{i}) \land f(Y_{1}) \cdots (Y_{n})(w) = 1]$

In words: A tuple $x_1, ..., x_n$ is in the *w*-extension of a relation *F* iff there is a tuple $Y_1, ..., Y_n$ in *F* whose *w*-extensions are $x_1, ..., x_n$.

In words: A tuple $X_1, ..., X_n$ and w are in the intension of a relation f iff the w-extensions of $X_1, ..., X_n$ are in f.

If a word α has a constant denotation $f \in D_{\sigma}$, then in the intensionalized grammar α denotes the constant $L(f) \in D_{\lceil \sigma \rceil}$.

Note: Applying L to extensional det's gives intensional PTQ-style det's.
Theorem

The intensionalization procedure described above is sound for any extensional grammar with:

- Logical constants of constant denotation.
- Non-logical constants (only n-ary predicates over e-type entities)
 of arbitrary denotation.
- Syncategorematic boolean operators.

$$F^{w}(x_1)\cdots(x_n) = F(L(x_1))\cdots(L(x_n))(w)$$

Expected benefits:

- No restriction to relational types.
- No restriction over the types of non-logical constants.
- Simpler soundness proof (De Groote, Kanazawa and Muskens).
- Similar or wider linguistic coverage (work in progress).

word α	type	denotes in	λ -term
Mary, John,	е	D_e	
king, queen,	et	D_{et}	
smile,	et	D_{et}	
<i>kiss</i> ,	e(et)	$D_{e(et)}$	
every	(et)((et)t)	{every}	$\lambda A_{et} \lambda B_{et} \cdot \forall x_e [A(x) \to B(x)]$
a	(et)((et)t)	{some}	$\lambda A_{et} \lambda B_{et} \exists x_e [A(x) \land B(x)]$

word α	type	denotes in	λ -term
$\epsilon_{\rm ONS}$	(e(et))(((et)t)(et))	{ons}	$\lambda R_{e(et)} \lambda F_{(et)t} \lambda x_e \cdot F(\lambda y_e \cdot R(y)(x))$
$\epsilon_{\rm OWS}$	(((et)t)(et))	{ows}	$\lambda R_{(((et)t)(et))} \lambda F_{(et)t} \lambda Q_{(et)t}.$
	(((et)t)(((et)t)t))		$F(\lambda y_e.Q(\lambda x_e.R(\lambda A_{et}.A(y))(x)))$
$\epsilon_{ m lift}$	e((et)t)	{lift}	$\lambda x_e \lambda A_{et}.A(x)$

In addition: boolean conjunction, disjunction and negation are treated syncategorematically.

Example

The sentence *Every king kissed a queen* has (at least) the two derivations in (1) and (2).

- (1) [[Every king] [[ϵ_{ONS} kissed] [a queen]]]
- (2) [[Every king] [[ϵ_{OWS} [ϵ_{ONS} kissed]] [a queen]]]
 - $\llbracket (1) \rrbracket^{\mathcal{M}} = 1$ iff

 $\forall x \in D_e[\llbracket king \rrbracket^{\mathcal{M}}(x) \to \exists y \in D_e[\llbracket queen \rrbracket^{\mathcal{M}}(y) \land \llbracket kiss \rrbracket^{\mathcal{M}}(y)(x)]]$

•
$$\llbracket (2) \rrbracket^{\mathcal{M}} = 1$$
 iff

 $\exists y \in D_e[\llbracket queen \rrbracket^{\mathcal{M}}(y) \land \forall x \in D_e[\llbracket king \rrbracket^{\mathcal{M}}(x) \to \llbracket kiss \rrbracket^{\mathcal{M}}(y)(x)]]$

• Standardly, (2) (extensionally) entails (1).

word α	type	denotes in	λ -term
Mary, John,	е	D_e	
king, queen,	e(st)	$D_{e(st)}$	
smile,	e(st)	$D_{e(st)}$	
<i>kiss</i> ,	e(e(st))	$D_{e(e(st))}$	
every	(e(st))((e(st))(st))	$\{L(every)\}$	(3)
a	(e(st))((e(st))(st))	$\{L(\mathbf{some})\}$	(4)

(3) $L(\text{every}) = \lambda \mathcal{A}_{e(st)} \lambda \mathcal{B}_{e(st)} \lambda w_s . \forall x_e [\mathcal{A}(x)(w) \to \mathcal{B}(x)(w)]$ (4) $L(\text{some}) = \lambda \mathcal{A}_{e(st)} \lambda \mathcal{B}_{e(st)} \lambda w_s . \exists x_e [\mathcal{A}(x)(w) \land \mathcal{B}(x)(w)]$

word α	type	denotes in	λ -term
$\epsilon_{\rm ONS}$	(e(e(st)))(((e(st))(st))(e(st)))	$\{L(\mathbf{ons})\}$	(5)
$\epsilon_{\rm OWS}$	(((e(st))(st))(e(st)))	$\{L(\mathbf{ows})\}$	(6)
	(((e(st))(st))(((e(st))(st))(st)))		
$\epsilon_{ m lift}$	e((e(st))(st))	$\{L(\mathbf{lift})\}$	(7)

(5)
$$L(\mathbf{ons}) = \lambda \mathcal{R}_{e(e(st))} \lambda \mathcal{F}_{(e(st))(st)} \lambda x_e \lambda w_s. \mathcal{F}^w(\lambda y_e. \mathcal{R}(y)(x)(w))$$

(6) $L(\mathbf{ows}) = \lambda \mathcal{R}_{(((e(st))(st))(e(st)))} \lambda \mathcal{F}_{(e(st))(st)} \lambda \mathcal{Q}_{(e(st))(st)} \lambda w_s.$
 $\mathcal{F}^w(\lambda y_e. \mathcal{Q}^w(\lambda x_e. \mathcal{R}^w(\lambda A_{et}. A(y))(x)))$

(7) $L(\mathbf{lift}) = \lambda x_e \lambda \mathcal{A}_{e(st)} \cdot \mathcal{A}(x)$

Example

The sentence *Every king kissed a queen* has (at least) the two derivations:

- (8) [[Every king] [[ϵ_{ONS} kissed] [a queen]]]
- (9) [[Every king] [[ϵ_{OWS} [ϵ_{ONS} kissed]] [a queen]]]

Given an intensional model \mathcal{M} and $w \in D_s$:

• $\llbracket (8) \rrbracket^{\mathcal{M}}(w) = 1$ iff

 $\forall x_e[\llbracket king \rrbracket^{\mathcal{M}}(x)(w) \to \exists y_e[\llbracket queen \rrbracket^{\mathcal{M}}(y)(w) \land \llbracket kiss \rrbracket^{\mathcal{M}}(y)(x)(w)]]$

•
$$\llbracket (9) \rrbracket^{\mathcal{M}}(w) = 1$$
 iff

 $\exists y_e[\llbracket queen \rrbracket^{\mathcal{M}}(y)(w) \land \forall x_e[\llbracket king \rrbracket^{\mathcal{M}}(x)(w) \to \llbracket kiss \rrbracket^{\mathcal{M}}(y)(x)(w)]]$

• Now, the extensional entailment is preserved after intensionalization: (9) (intensionally) entails (8).

Extending the intensionalized grammar

- We can add a transitive verb like *seek* as a nonlogical constant of type ((e(st))(st))(e(st)).
- Thus, the object of *seek* is an intensional quantifier like in PTQ.

Example

In a model \mathcal{M} , the derivation (10) is interpreted as the proposition in (11).

- (10) [Mary [sought [a king]]]
- (11) $\llbracket seek \rrbracket^{\mathcal{M}}(\lambda \mathcal{B}_{e(st)}\lambda w_s.\exists y_e[\llbracket king \rrbracket^{\mathcal{M}}(y)(w) \land \mathcal{B}(y)(w)])(\llbracket Mary \rrbracket^{\mathcal{M}})$

Deriving the *de re* interpretation extensionally

- The interpretation in (11) is the *de dicto* interpretation of (10).
- We can also derive the *de re* interpretation, using the *intensionalized* version of the *extensional* scope mechanism.

Example

In a model \mathcal{M} , the derivation (12) is interpreted as the proposition in (13).

(12) [[ϵ_{lift} Mary] [[ϵ_{OWS} sought] [a king]]]

(13) $\lambda w_s \exists y_e[\llbracket king \rrbracket^{\mathcal{M}}(y)(w) \land (\llbracket seek \rrbracket^{\mathcal{M}})^w (\lambda A_{et}.A(y))(\llbracket Mary \rrbracket^{\mathcal{M}})]$

Example

(14) [Mary [[sought [and [ϵ_{ONS} kissed]]] [a king]]] The denotation of (14) in a model \mathcal{M} is:

$$\lambda w_{s}.\exists y_{e}[\mathbf{king}(y)(w) \land \mathbf{kiss}(y)(\mathbf{m})(w)] \land \\ \mathbf{seek}(\lambda \mathcal{B}_{e(st)}\lambda w_{s}.\exists y_{e}[\mathbf{king}(y)(w) \land \mathcal{B}(y)(w)])(\mathbf{m})$$

- = "Mary sought a king and kissed a king"
 - A *de dicto* reading of *a king* relative to *seek*.
 - The existential import of *Mary kissed a king* is preserved thanks to the intensionalization technique.

- Intensionalization glues an *extensional grammar* to *intensional lexical entries*.
- Implication 1: Extensional scope mechanisms allow to derive intensional *de dicto/de re* ambiguities the Quine-Montague Hypothesis.
- Implication 2: Extensional composition of objects with transitive verbs allows to derive conjunctions of extensional TVs with intensional TVs.
- *Hope*: Such modular architectures will be found useful for different grammatical frameworks and various linguistic phenomena, and especially for teaching them.