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Abstract

This paper develops a unified analysis of “functional” anaphora and
wide-scope indefinites. A new operator is added to Jacobson’s variable-free
semantics of functional readings, which leads to an analysis of these read-
ings using the general Skolem function interpretation of wide-scope indefi-
nites. This accounts for the distributional, technical and intuitive similarities
between the two phenomena. Moreover, after formally characterizing the
class of generalized quantifiers that are treated by the proposed mechanism,
it is argued that this class is a good approximation of the quantifiers that
empirically support functional readings.

To appear in Research on Language and Computation

1 Introduction

Traditional formal semantics assumes that quantification in natural language op-
erates only on atomic entities. However, much recent work in natural language
semantics has shown the advantages of more complex forms of quantification that
involve functions over atomic domains. Two areas of functional quantification
have received special attention. One area concerns the so-called functional and
pair-list interpretations of questions and copular sentences. Another area deals
with the wide scope interpretation of indefinite NPs. Quantification over Skolem
functions is used to model both kinds of phenomena. Some theories restrict the us-
age of Skolem functions to the simple case of choice functions: Skolem functions
that map any non-empty set to an entity in this set.

Despite the similarity between the mechanisms that are used for describing
functional readings and wide scope indefinites, no attempt has so far been made to



bring them into one framework. This paper proposes such a unified mechanism. It
argues that functional readings and the interpretation of wide scope indefinites are
restricted by the same principles — those that govern quantification over Skolem
functions. Under this view, quantification over functions in natural language is
existential only, and is furthermore restricted to a small subclass of noun phrases.
This accounts for the similar distribution of functional quantification and wide
scope phenomena, as well as for some formal relations between functional quan-
tification and Generalized Quantifier Theory. A novel hypothesis characterizes
the class of quantifiers that license functional interpretations and explains their
restricted distribution.

In a nutshell, the two general phenomena with which this article deals can be
illustrated by the following two sentences.

(1) a. The (only) woman that every man loves is his mother.

b. Every man loves a (certain) woman.

Sentence (1a) illustrates a functional reading. In this reading, the pronoun his
is “bound” by the noun phrase every man although it is not within its syntactic
scope. Another familiar scope problem appears in sentence (1b). This sentence
has a reading where the indefinite a (certain) woman is interpreted as taking wide
scope over the subject, although the subject is not within its syntactic scope.

Popular analyses of both phenomena involve Skolem functions under some
version or another. To illustrate these approaches, consider first the following
intuitive analyses of sentences (1a) and (1b).

(2)  a. The (only) function in the set { / : f maps every man to a woman he
loves} is the function that maps every man to his mother.

b. There is a choice function f such that every man loves f({z : zisa
woman}).

We refer to nominal expressions such as woman and woman that every man loves
as the restricting predicate, or restriction, of the relevant noun phrase. The func-
tions in (2a) are in the denotation of the surface restriction woman that every man
loves. Consequently, this analysis derives a “bound” reading of the pronoun his
without assuming that every man takes the pronoun within its scope. Similarly,
since the function f in (2b) applies to the restriction woman in its surface position,
there is no standard scope of the object over the subject in this analysis.
However, there is one important difference between the two analyses. In the
analysis (2a) of the functional reading, it is the restricting predicate itself (i.e.
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woman that every man loves) that is assumed to range over functions. In the func-
tional analysis (2b) of the scope of indefinites, the function is used as a variable
that only applies to the restricting predicate woman, but it does not belong to the
restricting predicate itself. Accordingly, existential quantification over functions
in (2b) is assumed as a (possibly contextual) default mechanism, and not as the
denotation of the indefinite article a (certain) in (1b). By contrast, the quantifier
the (only) over functions in (2a) is assumed to be the denotation of the definite
article the (only) in (1a).

The first aim of this paper is to bridge this gap between the two kinds of
analyses. It is argued that a unified analysis is not only justified by the technical
and conceptual similarity between the two theories, but also because functional
readings with copular sentences, questions and wide scope indefinites appear with
the same class of NPs. The first step in unifying the two mechanisms, which is
quite uncontroversial, is to generalize the choice function analysis of wide scope
indefinites to Skolem functions of arbitrary arity. This is independently necessary
for treating indefinites such as a certain woman he knows, where the pronoun he
is bound from outside the indefinite. The second step is to modify Jacobson’s
(1994) analysis of functional readings in variable-free semantics. The revised
analysis allows the Skolem function mechanism of wide scope indefinites to apply
to the restricting predicate also with functional copular sentences, while keeping
the quantification over functions existential only.

The main ingredient in unifying Jacobson’s account with the general treatment
of indefinites is a novel type-shifting operator from objects of type (ee)t (sets of
functions from entities to entities) to binary relations of type e(et) (functions from
entities to sets of entities). Over finite domains this mapping can be one-to-one
only under certain restrictions on its domain of (ee)t objects. It is shown that
this is naturally guaranteed when the quantifier within the functional NP (e.g.
every man in (la)) is a so-called bounded quantifier — a quantifier that can be
expressed as an intersection of a positive universal quantifier every(A) with a
negative universal quantifier no(B), for some sets A and B. This characterization
leads to the linguistically plausible hypothesis that only bounded quantifiers can
give rise to functional readings.

The structure of this paper is as follows. Section 2 briefly overviews the prob-
lems of functional readings and wide scope indefinites, gives necessary technical
details about previous approaches and discusses the motivation for a unified anal-
ysis. Section 3 introduces the mapping that allows an extended theory to treat both
phenomena, and exemplifies its applications. Section 4 motivates the restrictions
on the proposed mapping, and proves the relations between this restriction and the
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class of bounded quantifiers. Section 5 points out the strong relationships between
the present work and the data and mechanisms that are studied in a recent work
by Jacobson (2002).

2 Functional readings and wide scope indefinites

2.1 Functional readings

The so-called functional reading of questions can be illustrated by the following
familiar question-answer pairs.

(3) a. Which woman does every man love? His mother.

b. Which woman does no man love? His mother-in-law.

The problem of interpreting questions that exhibit this kind of readings was dis-
cussed extensively in the literature.! The puzzle is often related (cf. Chierchia
1993) to the problem of pair-list readings of questions, as illustrated by the fol-
lowing short discourse.

(4) Which woman does every man love? John loves Mary, Bill loves Sue, etc.

In order to analyze both kinds of readings that questions exhibit, it has been pro-
posed that quantification over functions plays a role in the interpretation. Similar
mechanisms have been proposed for the functional readings of copular sentences
like the following.

(5) a. The woman that every man loves is his mother.

b. The woman that no man loves is his mother-in-law.

Sharvit (1999) convincingly argues that such copular sentences have the same dis-
tribution and syntactic/semantic properties of functional questions as in (3). In or-
der to illustrate the mechanisms that will be considered, we will therefore concen-
trate on such indicative copular sentences, without getting into the more intricate
semantics of questions.

A fully worked-out account of functional readings in copular sentences as
in (5) is given in Jacobson (1994) and Jacobson (1999). Jacobson claims that
sentences like (5a) and (5b) cannot be treated by giving the noun phrase every
man sentential scope, as informally illustrated below.

'See Engdahl (1986:ch.4) and Groenendijk and Stokhof (1984:ch.3) for two classical works
on this topic.



(6) For every (no) man x, the woman that x loves is z’s mother (mother-in-law).

One reason is syntactic: to obtain such an analysis of the sentences in (5), the noun
phrases every/no man would have to cross a complex NP (the woman that...loves),
which is generally acknowledged to be a scope island. For instance, sentence (7a)
does not have the reading that is paraphrased in (7b).

(7)  a. The woman that no man loves came to the party.

b. For no man z, the woman that = loves came to the party.

Moreover, noun phrases normally do not bind pronouns that are not within their
syntactic scope (their c-command domain) as witnessed by the fact that the infor-
mal analysis in (8b) is not an available reading of sentence (8a).>

(8) a. The woman that no man loves pinched him.

b. For no man z, the woman that = loves pinched z.

Another argument against a “scopal” analysis, which Jacobson attributes to
Dahl (1981), is semantic. Consider sentence (9a) below. This sentence is clearly
not equivalent with (9b), which is obtained by giving the noun phrase no man
sentential scope.

(9) a. The only woman that no man loves is his mother-in-law.

b. For no man z, the only woman that x loves is his mother-in-law.

To see that, consider a situation in which John is a man who loves both his wife
and his mother-in-law. In this situation (9a) is false. However, (9b) may still be
true, as long as also other men do not love only their mother-in-law.

Jacobson’s account of functional readings is based on her general theory of
variable-free semantics. The theory itself is introduced in much detail in Jacob-
son (1999,2000), and I will not try to review all of its parts here. Jacobson’s
assumptions that are important for our present purposes are the following, which
for convenience are given the names (J1)-(J4).

2Sharvit (1999) claims, following Doron (1982), that if no in (8a) is replaced by every, then
binding may sometimes become possible, but argues that this option should be derived by the same
mechanism that derives pair-list readings with every as in (4). A similar point may be related to
the fact that some speakers find the statement in (7b) more acceptable as a reading of (7a) when
no is replaced by every or each. Since this paper does not deal with pair-list readings, these points
are not directly relevant to its main purposes.



Jn

(J2)

(J3)

An expression F that contains a “free pronoun” P denotes a function from
entities of the standard type of P to entities of the standard type of £.

Consider for instance the noun phrase the woman who gave him birth or,
equivalently his mother (as in (5)). Assume that the standard type of NPsis e
and that this is also the standard type of the pronoun him. Jacobson therefore
assumes that the whole NP denotes a function of type ee: a function from
entities to entities. In the example, this is the function that maps every (adult
male human) entity to its mother.

Transitive predicates like love, of the standard type e(et), have a secondary
meaning of type (ee)(et) that ranges over ee functions in the object argu-
ment. This reading enables the subject NP to “bind” a pronoun within the
object. The operator that derives this additional meaning of transitive pred-
icates is denoted ‘7’ and is defined as follows.

def
(10) Ze(etyy((eey(etyy = ARe(er)-Afec-Aze. R(f(x))(2)

In words: the 7 function maps a binary relation R to the relation Z( R) that
holds exactly between those ee-type functions f and entities = that satisfy
R(f(z))(x). For instance, the following example (11a) is analyzed as in
(11b).?

(11) a. Every man loves his mother.
b. everyzet)((et)t)(mangt)(Z(love;(et))(his_mother;e))

& every’(man’)(Az..love'(his_mother'(z))(z))
& Vz[man'(z) — love'(his_mother'(z))(z)]

The determiner every here standardly denotes the subset relation between
sets, or in lambda format: AA . AB.;.Vz . [A(z) — B(z)].

Items like the definite article the, the relative pronoun that and the copula be
can range over ee functions as well as “ordinary” e-type entities. In essence,

3Throughout this paper, we employ a typed lambda calculus with equality over the extensional
types e, t and their functional compounds. In this formalism, the propositional connectives are eas-
ily defined, as well as the logical quantifiers 3 and V over any type (see Van Benthem (1991:p.7)).
Lambda terms are freely mixed with the set-theoretical correlates of their denotations, where the
domain of entities D, is also denoted ‘E’. For instance: a binary relation is viewed either as
a lambda term of type e(et) or as a subset of E?; a generalized quantifier is viewed either as a
lambda term of type (et)t or as a subset of p(FE); etc.



we can assume that such items denote the (polymorphic) iota, intersection
and identity functions respectively.

(J4) Intransitive restricting predicates like woman, of the standard type et, have
a second meaning of type (ee)t. This meaning ranges over ee functions
and allows the restriction to combine with functional relative clauses. I use
‘N’ to denote the operator that derives this additional meaning of transitive
predicates. This operator is defined as follows.

(12) Neery) 2 AP M e Vo[ P(f(2))]

For instance, the (ee)t denotation of the noun woman that the N operator
derives is the set of ee functions that map each entity to a woman. Note that
this set is empty when there are no women in the model.

For sake of exposition, I will use here a slightly modified version of the 7
operator that Jacobson uses for binding. This revised operator, which is denoted
‘7%, allows generalized quantifiers of type (et)t, rather than e type entities, to
combine directly with the binary relation that is modified by the operator. Its
definition follows.

def
(13) Z° ey (etyt)((eeyt)) = ARe(er) - AQ(etye-Afee-Q@(Axe. R(f(2))(2))

This operator has essentially the same consequences of Jacobson’s 7 operator, but
its arguments are now a quantifier and an ee function (in this order), instead of an
ee function and an entity as in Jacobson’s analysis. This revised formulation of
7, only comes to allow a generalized quantifier such as every man in the relative
clause that every man loves to “saturate” the subject argument of the transitive
predicate loves, without getting into complex questions concerning the derivation
of this option within a general categorial theory.*

Now we can get back to the sentences in (5) and illustrate their analysis in
Jacobson’s approach. The meaning derivation of sentence (5a) is summarized in
figure 1. The type variable 7 stands for any monomorphic type. It is not hard to
verify that the result of this derivation is tantamount to the following statement:

(14) There is only one ee function [ s.t. f maps every man to a woman he loves,
and this function is the function that maps every man to his mother.

4Jacobson’s mechanism achieves this using (a modified version of) the “Geach Rule” and Func-
tion Composition.



every man loves

every (man’) Z°(love)

woman that
. N(woman') ooz Z'0ove)(every man)) i his mother
L(rt)r N(woman’) N Z°(love')(every’ (man’)) id;(-yy hismother(,
t(N(woman') N Z°(love') (every’(man'))) Agee.g = his_mother’

t(N(woman’) N Z°(love')(every’(man’))) = his_ mother’

Figure 1: Jacobson’s derivation of meaning for sentence (5a)

Jacobson argues that this paraphrase captures the intuitive meaning of sentence
(5a).> Furthermore, this meaning is derived without any scope shifting of the noun
phrase every man, which, as mentioned above, would have been problematic.

Alexopoulou and Heycock (2002) observe that copular sentences exhibit func-
tional readings also in cases where their subject is not necessarily a singular defi-
nite as in (5). Some examples for this observation follow.

(15)  a. One/a (certain) woman that every man loves is his mother.

b. One/a (certain) woman that no man loves is his mother-in-law.

(16) A woman that every/no man would be happy to see again is his childhood
sweetheart.

(17)  a. (The) two women that every Frenchman admires are his mother and
Brigitte Bardot. (after Engdahl (1986:ch.4))

b. (The) two women that no Frenchman admires are his mother-in-law
and Margaret Thatcher.

Jacobson does not mention such sentences, and their functional readings are not
immediately captured by her mechanism. However, along the lines of her pro-
posal, it is natural to assume that pre-nominal items such as one, a and (the) two
should also be analyzed as polymorphic operators, similar to the polymorphic iota
operator that Jacobson assigns to the definite article. For instance, the items one
and a in (15) and (16) could be analyzed as polymorphic existential determiners,

3Strictly speaking, this is not true, since requiring uniqueness of an ee function is much too
strong a requirement. In fact, Jacobson argues that domain restriction of the definite article plausi-
bly leads here only to a requirement about the uniqueness of a function from men to women with
the properties required above and which is furthermore “natural” in the given discourse.



of type (7t)((7¢)t). When 7 is the ee type, of functions from entities to entities,
this would allow the determiner to compose with a restricting predicate of type
(ee)t as in Jacobson’s polymorphic analysis of the definite article. Consider the
existential determiner of the relevant type.

(18) a/(( déf /\F(ee)t-/\G(ee)t'Elfee[F(f) A G(f)]

ee)t)(((ee)t)?)

Substituting this existential determiner for ¢ in Jacobson analysis in figure 1, we
get the following meaning.

(19) a'(N(woman’) N Z°(love')(every’(man’)))(Age..g = his_mother')
< 3f[(N(woman')NZ°(love')(every’(man’)))(f)Af = his_mother’]
& (N(woman') N Z°(love')(every’(man’)))(his_mother’)

This analysis makes the requirement of the mother function that is intuitively
expressed by sentence (15a), and similar analyses of the sentences in (15)-(17)
can be derived in the same method. However, a general analysis of determiners
as ranging over ee functions would be unnecessarily strong. This is because other
NPs do not lend themselves so easily to functional readings. Consider for instance
the following unacceptable sentences.

(20) ??At most/at least one woman that every man loves is his mother.

(21) ??No woman that every man would be happy to see again is his childhood
sweetheart.

(22) ?7Between two and three women that every Frenchman admires are his
mother, Brigitte Bardot and possibly Isabelle Adjani.

In (22), for instance, it could be expected that the sentence should entail that there
are between two and three functions that send each Frenchman to a woman he
admires, in a similar way to the entailment from (17a) to the existence of two
such functions. However, sentence (22) is quite incoherent. Thus, it would not
be too helpful to assign a polymorphic meaning to all the determiners in natu-
ral language, since we only need a proper subset of them (if any) to range over
functions.® In this paper I propose that in fact, no determiner should range over

5An anonymous reviewer points out that quantified NPs like those in (20)-(22) are also infelic-
itous in copular sentences without functional interpretations:

(1) ??At most/at least one woman that every man loves is Sue.



functions. According to the proposed mechanism, functional quantification is only
existential and it is derived by the same general functional process that is respon-
sible for the interpretation of wide scope indefinites. The unified process that will
emerge will also cast some doubts on the usefulness of the other polymorphic
entries that are assumed in (J3) and of the N operator that is assumed in (J4).”

2.2 Wide scope indefinites

The main reason for introducing functions in the semantic analysis of indefinites
is their ability to take scope beyond syntactic islands, which has received much
attention in the literature since Fodor and Sag (1982). Consider for instance the
following example.

(23) If some/a (certain) girl I know arrives to the party then John will be happy.

This sentence has the reading that is paraphrased in (24) below, which makes a
statement about a “specific girl”.

(24) There is a girl = I know such that if = arrives to the party then John will be
happy.

We say that under this reading, the indefinite takes wide scope (WS) over the
conditional. This reading is sometimes sloppily referred to as the WS reading of
the indefinite. This behavior of indefinites is in sharp contrast with the behavior of
other NPs. For instance, the following sentence in (25a) does not have the analysis
that is paraphrased in (25b).

(25) a. If every girl arrives to the party then John will be happy.
b. For every girl z, if = arrives to the party then John will be happy.

This claim can be attested by considering that sentence (25a) can be intuitively
false in situations where the statement in (25b) is true. For instance, when John

(i1)) ??No woman that every man would be happy to see again is Sue.

(iii)) ?7Between two and three women that every Frenchman admires are Catherine Deneuve,
Brigitte Bardot and possibly Isabelle Adjani.

Thus, while I am not claiming here to have an account of unacceptabilities as in (20)-(22) or (i)-

(ii1), my claim is more modest than that: that a ‘functional’ meaning of determiners such as at most

one, at least one, no, between two and three etc. is unnecessary for analyzing functional readings.
7See the derivation in (41) below.
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would be happy if any girl comes to the party, while not wanting all the girls to
come to the party together.

The special scopal behavior of indefinites calls for an explanation. In recent
years, many works have followed Reinhart (1992,1997) and Kratzer (1998), and
assumed that the problem should be solved by allowing indefinites to be inter-
preted using choice functions (CFs), whose definition is given below.

Definition 1 (choice functions) Let /' be a non-empty set. A function [ from
o(F) to E is a choice function over E iff for every A C E: if A is not empty then
f(A) € A

In extensional type logical frameworks like the one assumed throughout this pa-
per, the set C'H™ of choice functions over type 7 is defined as follows:

26) CH™ 2 X o=V Pri # O[P(f(P))]

Convention: we often write ‘C'H’ instead of ‘C'H*’.

The WS behavior of indefinites is treated using CFs by letting a free CF vari-
able apply to the restriction of the indefinite. We assume that an existential quan-
tifier applies to this variable at the matrix level, and derives the following inter-
pretation of sentence (23).

Q27) 3JICH(f) A [arrive'(f(girl)) — glad'(j')]]

The introduction of an existential quantifier over CFs — especially at levels lower
than the matrix level — is controversial. Some authors, notably Kratzer (1998),
favor a usage of CFs as “deictic” entities, without existential quantification over
them. This controversy is not central for the purposes of this paper, and read-
ers may easily modify the analyses below to the “deictic” version of CFs. An-
other problematic point which is not directly relevant to our purposes here is the
treatment of indefinites with an empty restricting predicate. For example, con-
sider sentence (23) when there happens to be no girl in the given situation. In
Winter (1997) and Winter (2001:ch.3) this case is given a solution using CFs of a
higher type. For the sake of presentation I will not employ here this more complex
analysis.

We have seen that indefinites with some and a certain show WS behavior be-
yond the “adjunct island” of the conditional. The same holds for such indefinites
in other syntactic environments that behave like scope islands.® However, many

8See Ruys (1992:ch.3) for a concise description of the facts.
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other NPs (e.g. universal NPs as in (25a)) do not show this island-free behavior.
It is therefore important to characterize those NPs to which the CF mechanism
applies. This question is taken up in Winter (2001:ch.4), where it is argued that in
addition to simple indefinites as in (23), the CF mechanism also applies to simple
numeral indefinites (e.g. three students), WH phrases and singular and plural def-
inite NPs. The WS potential of simple numerals can be easily illustrated by the
interpretation (28b) of sentence (28a).

(28)  a. If three girls I know arrive to the party then John will be happy.

b. There is a set A of three girls that I know such that if the girls in A
arrive to the party then John will be happy.

The WS potential of WH elements is exemplified by Reinhart (1997) using
question-answer pairs like the following:

(29) Who will be offended if we invite which philosopher? John will be offended
if we invite Putnam.

To interpret the noun phrase which philosopher, early semantic theories of ques-
tions would have to assign it sentential scope over the conditional. Reinhart how-
ever shows that the CF mechanism can treat such effects of WH in situ in a similar
fashion to the treatment of indicative indefinite that was reviewed above. As for
definite NPs, because of their uniqueness requirement it is not easy to test their
scopal behavior. I refer the reader to Winter (2001:ch.4) for other interpretative
effects with definites that are accounted for by their CF interpretation.

Crucially, we have seen above that all these kinds of NPs — simple singu-
lar/plural (in)definites and WH elements — also lead to functional readings (cf.
(3), (5) and (15)-(17)). Conversely, NPs as in (20)-(22) do not give rise to wide
scope readings beyond islands, and therefore they do not require the CF analysis.
Consider for instance the contrast between at least one in the following sentence
and some in (23) above.

(30) If at least one girl (I know) arrives to the party then John will be happy.
This sentence does not have the reading that is paraphrased below.

(31) There is at least one girl I know x such that if = arrives to the party then
John will be happy.
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Similar cases where WS interpretations are unavailable can also be illustrated for
the other NPs in (20)-(22). This distinction between NPs where the CF analysis
is available and other NPs where it is unavailable, is addressed by the syntactic-
semantic mechanism that is proposed in Winter (2000, 2001:ch.4). In these works
I propose that the two kinds of nominals correspond to two different syntactic
classes of DP structures. It is proposed that so-called flexible DPs, like simple
(in)definites and WH phrases, are basically predicative, and therefore in argument
position they are interpreted using CFs. Other DPs, which are not amenable to ap-
plication of flexibility principles, are accordingly called rigid. These NPs include
complex numerals (e.g. at least one or exactly one) and universal quantifiers, and
involve a full DP structure. Consequently, these DPs are purely quantificational
and have no CF interpretation.

Of course, the parallelism we observed between WS interpretation and the
availability of functional readings is not accounted for in the absence of a unified
theory of both phenomena. However, before moving on to the details of this
theory, we need to discuss a crucial ingredient of the proposal: general Skolem
functions of arbitrary arity.

2.3 General Skolem functions

It is interesting to note that, quite independently of the scope of indefinites that
have occupied semantic theories in recent years, some earlier works had proposed
to use general Skolem functions (SFs) for capturing other semantic effects with
indefinites and interrogatives. Intuitively, we can think of an n-ary Skolem func-
tion as a choice function with n parameters. While a choice function f maps any
non-empty set X to a member of X, a general Skolem function f,, of arity n maps
such a set X, together with tuple of n parameters (z1, ..., z,), to a member of X.
Since we want to treat parameters in such tuples as “free variables” in Jacobson’s
variable-free framework, we assume that the input to a Skolem function is an n-
place function that has the power-set p( ) as its range. A variable-free Skolem
function modifies such a function to a function that has F as its range. This is
formally stated in the following definition.

Definition 2 (Skolem functions of arity > 1) Let I/ and A be non-empty sets.
A function f from (p(E))* to E# is a Skolem function iff for every function

g € (p(E))A, for every x € A st glz) # 0: (f(9))(x) € g(z). If Aisa
Cartesian product of arity n > 1 then we say that f is a Skolem function of arity
n.
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9 hi hy hs hy
= {c} ¢ ¢ ¢ ¢
— | {a,b}|a a b b
— | {a,b}|a b a b

o o Q

Table 1: an e(et) function and some ee functions

In a purely functional type-theoretical format, the set A cannot be a Cartesian
product. However, standard ‘Currying’ allows us to simulate products using func-
tions and generalize the notion of Skolem functions. SFs of arity n > 0 are defined
as objects of the following type scheme:

(71 (e (7 (7)) ) (71 (o (T07).00)).

In this type scheme, the argument of an SF is a function of type 7;(...(7,(71))...),
which is isomorphic to a function from the Cartesian product D, x ... x D,
to the sets of 7-type elements. An SF maps such a function to a function of
type 71(...(7,7)...), which is isomorphic to a function from the Cartesian product
D;, x .. x D, tor-type elements.

The set S K™ of general Skolem functions of this type is defined as follows.

de

(32) Sk & A NG (ra(rt)) )T T1 VT
[g(21)..(20) # 0 — (g(z1)...(2:))((F(9)) (1) (24))]

Convention: We usually assume that 7y = ... = 7,, = 7, and say that a function in
SK7™" is a Skolem function (of arity n) over type 7. We often write ‘S K™’ instead
of ‘SK™*° . With this notation it is clear that the SF of arity 0 over type 7 are
simply the CFs over 7.

Consider the following example for a Skolem function f of arity 1. Assume
that ¥ = {a,b,c}. Let g be a function of type e(et) that maps « to the singleton
set {c} and maps both b and ¢ to the set {a, b}. Then the function f(¢g) must be one
of the four ee functions k4, ..., k4 that are described in table 1. Note that /5 and h3
illustrate the liberty of f(g) to “choose” a different element of the set {a,b} for
each of the two “parameter values” b and c. It is in this sense that SFs of arbitrary
arity are more powerful than CFs.

The close relationships between WS indefinites and general SFs on the one
hand, and Jacobson’s treatment of functional readings on the other hand, are most
easily demonstrated by the following examples due to Groenendijk and Stokhof
(1984:ch.3) and Hintikka (1986), respectively.
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(33) Every man loves a (certain) woman — his mother.

(34) According to Freud, every man unconsciously wants to marry a certain
woman — his mother.

Both Groenendijk & Stokhof and Hintikka propose to treat such examples using
an existential quantifier over SFs that takes matrix scope. In the current setting,
this means that the restricting predicate that the noun woman denotes must be a
two-place relation, of type e(et). This is surprisingly reminiscent of Jacobson’s
assumption (J4), according to which restricting predicates are systematically of a
higher type. Jacobson’s N operator maps the set of women to the set of ee func-
tions that map any entity to some woman or other. Instead, now we need to map
the set of women to a “parameterized set of women™: the constant function of type
e(et) that maps any entity to the set of women. In view of this similarity, let us use
the notation ‘N° to denote the general operator that derives such functions from
ordinary denotations of nouns. Formally, the N° operator is defined as follows.

de
(35) N°t)(e(er)) = APet Axe Aye. P(y)

Using SFs, we can now model discourses such as (33) and (34) by existential
quantification over an SF at the matrix level. The result is that each of these sen-
tences is analyzed as a statement about the existence of a certain function, where
the second part of each sentence specifies its identity. Even without getting into
the technical derivation of this “discourse specification”, it is clear that existential
quantification over SFs accounts for the interpretation of such sentences.” To give
an illustration of this treatment, consider the following analysis of (33).

“Manfred Krifka (p.c.) points out to me that the discourse processing of similar examples may
be more complicated than a simple substitution of a Skolem function for a variable. He mentions
examples like the following:

(i) Every man loves at most two women — his mother, and if he has one — his sister.

Here, no Skolem function is likely to be operational. However, Skolem functions are required if
we like to account for contrasts like the following, where the indefinite NP is within a (complex
NP) island.

(i) Every child loves every man who admires a certain woman — his mother.

(iii) ?Every child loves every man who admires at most two women — his mother, and if he has
one — his sister.

We see that the same discourse process that applies in (i) does not apply in (iii), although simple
indefinites, as expected, lead to wide scope interpretations beyond islands, as in (ii), as expected
by the Skolem function mechanism.
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(36) Ifie(etyyee)[SK*(f) A every’ (man’)(Z(love')( f(N°(woman'))))]

In words: there is an Skolem function f of arity 1, which maps the function
N° woman’) — the constant function that maps every entity to the set of women —
to an ee function /. This % function furthermore has the property that every man is
in Z(love')(h). More simply: every man loves the woman that % assigns to him.
Assuming that the set of women is not empty, this is equivalent to the standard
analysis of sentences like (33), with narrow scope existential quantification over
e-type entities:

(37) ¥z € man'Jy € woman'[love'(y)(z)]

We see that in these examples, general SFs are employed to account for narrow
scope readings of indefinites that due to the anaphora have a wide scope “func-
tional flavor”. It is curious to note that Reinhart’s usage of the simpler 0-arity SFs
(i.e. CFs) for deriving “ordinary” wide scope readings of indefinites was discov-
ered rather late in the development of the theory.

In addition to the use of general Skolem functions in the treatment of indef-
inites as in (33) and (34), there are (at least) four other types of motivations that
were given in the literature for their introduction:

1. Kratzer (1998) objects to the existential closure of CFs in Reinhart’s anal-
ysis. Instead, Kratzer proposes to use general SFs as a means for deriv-
ing readings that under Reinhart’s account require existential quantification
over CFs with scope that is narrower than matrix scope.

2. Schlenker (1998) and Winter (1998,2001:ch.3) argue (independently) that
certain sentences with indefinites show readings that are inexpressible using
CFs alone and require SFs of arbitrary arity.'”

3. In Winter (2001:ch.3) it is argued that SFs are required in order to eliminate
problematic analyses that are derived using CFs for indefinites with free
pronouns (e.g. a woman he knows).

4. Chierchia (2001) argues that certain effects with indefinites, including weak
crossover and de re interpretations, require introduction of SFs of arbitrary
arity.

19Following Hintikka, Schlenker also uses general SFs for deriving “branching readings” with
indefinites. I will not discuss this phenomenon here.
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I will not discuss these issues in this paper, but simply assume, as in most works
on this subject, that general SFs are required for the treatment of indefinites. The
exact restrictions on their introduction is a topic that is still under extensive in-
vestigation.!! The next section shows how this assumption allows us to achieve a
unified treatment of functional readings and WS indefinites.

3 A unified mechanism for functional readings and
wide scope indefinites

In the previous section we have seen technical, intuitive and distributional rea-
sons to assume that “functional readings” and “wide scope indefinites” are two
phenomena that should be derived by the same mechanism. Technically, the SF
treatment of the scope of indefinites involves functions from entities to entities,
like the ones that were independently employed by Jacobson and others for treat-
ing sentences with functional readings. Intuitively, the “wide scope functional”
interpretation of discourses as in (33) and (34) seems to be essentially the same
kind of thing as the functional interpretation of questions such as (3) or copular
sentences such as (5). From a distributional point of view, we saw that the same
NPs that are treated using SFs and can show WS effects beyond islands also show
“functional” effects. It is therefore natural to expect the two phenomena to be
amenable to the same treatment.

However, as mentioned in the introduction, one link is missing between the
two kinds of theories that were reviewed above. Jacobson assumes that the re-
stricting predicate in NPs with functional readings ranges over functions. Con-
sequently, in her account any NP should in principle allow quantification over
functions. By contrast, the CF treatment assumes that choice functions apply
to the restricting predicate, which denotes a set of “ordinary” entities of type e.
Quantification over CFs, if needed at all, is only existential, and applies syncate-
gorematically: independently of the syntax/semantics of the NP. The same holds
of the way SFs of higher arity are used for treating scopal effects with indefinites.

The main argument of this section is that this discrepancy can be resolved by
renouncing Jacobson’s general polymorphic scheme of quantification over func-
tions. In the proposed modification of her mechanism, functions are involved in
the internal semantics of the NP as part of the variable-free mechanism in assump-

Tn addition to Chierchia (2001), see also Schlenker (1998) and Schwartz (2001) for some re-
cent work in progress that deal with this topic.
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tions (J1) and (J2). However, the restricting predicate and the determiner range
over ordinary entities and are standardly treated using the general SF mechanism.
This allows us to renounce Jacobson’s assumption (J4) about the N operator. Fur-
ther polymorphism as in (J3) will be needed only with the copula construction and
not with determiners or relative pronouns.

To achieve this unified analysis, the main new part of the proposal is an oper-
ator RG (‘range’ operator) that is defined below.

Definition 3 (RG operator) Given two non-empty sets, A and B, the RG oper-
ator is a function from p(B?) (the sets of functions from A to B) to (p(B))*

(the functions from A to subsets of B) s.t. for all F C B, for all x € A:
def

(RG(F))(x) = {f(z): feF}

In other words, if F'is a set of functions from A to B, then RG(F') maps each
entity = in A to the subset of B that consists of the images of = by the functions
in F. As an example, reconsider the functions in table 1 above, and observe that
RG({h1, h2, hs, ha}) = g.

For our purposes, the most useful instance of RG is when A and B are both
equal to the domain of entities. The RG operator of the respective type is given
below in lambda format.

(38) RG((ee)t)(e(et)) = /\F(ee)t-)\l'e-/\ye-zlf € F[f(l‘) = y]

To illustrate how this operator allows us to unify the two mechanisms, consider
again Jacobson’s analysis of sentence (5a) that was illustrated in figure 1 above.
In the revised analysis, the denotation of the “gapped” constituent every man loves
still denotes the same (ee)t set of functions as in Jacobson’s analysis. This is the
set ' = Z°(love')(every’(man’)) — the set of functions that map every man
to something he loves. The RG operator maps F' to a binary predicate — the
function that maps every man to the set of things he loves, provided that every man
loves something.'? Let us henceforth denote this binary relation RG(F') by “S”.
The binary relation S should be intersected with the denotation of common noun
woman. This can be achieved by lifting the set woman’ using the N° operator
that was defined in (35) above, and was used in the treatment of sentence (33)
in (36).!* Consequently, the restricting predicate woman that every man loves

121f there is a man who does not love anything, then F' is empty and consequently RG(F) sends
everything to the empty set.

3Later we will see that this special operator is actually not needed here, and its postulation
reflects a more general property of the “binding” mechanism.
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every man loves

every (man’) Z°(love')

woman that
a N®(woman’) Niro)((re)(re)) RG(Z°(love') (every’(man’))) his mother
fle(et))(ee) NY(woman’) N RG(Z°(love')(every’ (man’))) idy(rt) his_mother,,
F(N°(woman’) N RG(Z°(love')(every’ (man')))) Agee.g = his_mother’

F(N°(woman’) N RG(Z°(love')(every’(man’)))) = his_ mother’
Elf(e(et))(ee)[SKl(f) A f(N?(woman') N RG(Z?(love')(every’ (man’)))) = his_ mother]

EC

Figure 2: Derivation of meaning for sentence (39)

denotes the function that maps every man to the set of women he loves. Let us
refer to this binary relation (N°(woman’) N S) by the letter ‘R’. To the binary
relation R we can apply the general SF mechanism, as in (36). It is easier to see
how this SF mechanism works with indefinites. Therefore, let us consider how
the meaning of sentence (39) below is derived. This sentence (=(15a)) is a slight
variation on Jacobson’s example (5a).

(39) A (certain) woman that every man loves is his mother.

The analysis of this example using SFs is given in figure 2, where K (' stands
for “existential closure” — here of an SF of arity 1. In this analysis, the Skolem
function f applies to the denotation of the restricting predicate woman that every
man loves: the binary relation R that sends each man to the set of women he
loves. Assuming that R(z) is non-empty for every man z, any SF sends R to an
ee function that maps every man to one of the women he loves. The statement
that is derived in figure 2 claims that one of these ee functions is the mother
function. This is the desired interpretation of sentence (39), and it is equivalent to
the Jacobsonian analysis of the same example in (19) above.

The proposed treatment of sentence (39) as described above is presented in a
way that highlights the main differences from Jacobson’s treatment. These dif-
ferences (cf. figure 1 vs. figure 2) are the introduction of the RG operator and
the application of SFs to the restricting predicate. However, a more general treat-
ment is obtained if we adopt the mechanism of Winter (2001:ch.3) for handling
“free variables”. This mechanism uses a special functional type constructor “—”
in order to distinguish the type of denotations that contain “free variables” from
the type of other functions.!* An expression of type 7 — o denotes a function

14Jacobson (1999) identifies expressions that contain “free variables” by their syntactic category
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from D, to D,, but it behaves compositionally like an expression of type o that
contains a “gap” (a free variable) of type 7. For instance, a transitive predicate
such as love gets the standard type e(et). By contrast, a binary relation like the
relation R that is denoted by the expression woman that every man loves gets the
type e — (et): it behaves compositionally like an ordinary noun of type et, but
involves a “free variable” of type e. In order to capture this double nature of ex-
pressions with gapped meanings, we use the following categorial rule.

. I'yo F oy ACOND X,yi(zr) = yoz,)

T o F T — 0y X, y1 = vy

This rule, presented here in sequent format with the appropriate semantics, is
called ACOND (for “Argument Conditionalization”), and it is a restricted version
of the general Conditionalization rule of the Lambek Calculus (see Van Benthem,
1991). An example for its application is the following derivation of meaning for
the constituent that every man loves in (39). Unlike Jacobson, we assume now
that the relative pronoun that standardly denotes the monomorphic intersection
function of type (et)((et)(et)). The derivation of meaning for the constituent ev-
ery man loves proceeds as in figure 2. Recall that we denote this meaning by ‘5.
Accordingly, we assume the following types and meanings:

40) [that] = Nienyenen) = AAerABaAz.. A(z) A B(z)

[every man loves] = S, = RG(Z°(love')(every’(man’)))

Composition of these two types and meanings is achieved by the following appli-
cation of ACOND:

(et)((et)(et)), et - (et)(et)
(et)((et)(et)), e = (et) F e — ((et)(et))

To see the use semantics of this rule, note the following valid derivation (using
application):

N, S(z) = N(S(x)),

which is tantamount to:

N, (Ay.S(y)(x) = (Ay- N (5(y)))(x)

Using ACOND, we can use this derivation as follows:

N, (Ay.S(y))(z) = (Ay. N (S(y))) (=)
N, S= Ay.N(S(y))

ACOND

ACOND

rather than by their semantic type, and changes the categorial syntax accordingly.
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Intuitively, when composing N and S, this rule amounts to: introduction of a
“fresh free variable” y, application of N to S(y) and abstraction over y. Moti-
vations for this particular formulation and for the “—” constructor are given in
Winter (2001:ch.3), and I will not repeat them here.

In a similar way, the ACOND rule allows us to derive the meaning of the con-
stituent woman that every man loves, without applying the N° operator to woman
as in figure 2. This derivation is given below.

et, (et)(et) k- et
et, e — ((et)(et)) F e — (et)
(41) woman’, N(S(z)) = woman’ N (S(z))
woman’, (Ay. N (S(y)))(z) = (Ay.woman’nN (S(y)))(z)
woman’, Ay. N (S(y)) = Ay.woman’nN (S(y))

ACOND

ACOND

Note that the result is the same as the relation R, which was obtained above by
intersecting S with N°(woman’) (cf. figure 2). Formally, let N; and N, denote the
intersection operators of one-place and two-place predicates respectively. Then
we have:

(42) [woman that every man loves] = R
= (N°woman’)) N, S
= (Ay.Az.woman’(z)) Ny S
= Ay.((Az.woman’(z)) Ny S(y))
= Ay.woman’ Ny S(y)

In words, for any binary relation S: the intersection of S with the relation that
sends each entity to the set of women, is the relation that sends each entity y
to the set of women in S(y). This means that when the second conjunct in the
construction woman that... ranges over functions as in Jacobson’s account, the
outcomes of the N° operator are now derived rather than stipulated. '

The revised analysis of sentence (39) using the ACOND rule is given in figure
3, with the abbreviations .S and R for the denotations of the expressions every
man loves and woman that every man loves respectively, as derived above. The
meaning that is derived in this way is equivalent to the meaning that is derived
using the more ad hoc mechanism in figure 2. It is important to mention that
the introduction of the free SF variable in this analysis (and the following one) is

I5Note that for cases such as (33) or (34) above, where there is no functional conjunct, an
operation like N© is still required in order to introduce the “implicit variable” within the noun
woman. 1 do not address here the linguistic status of such implicit variables.
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every man loves

woman that every’ (man’) Z°(love’)
a womang,  N(et)((et)(et) Ses(et) is his mother
ACOND = .
e (et))(e—ve) Res (et) co id;(;+y hismother,_,,
J(R)esse Age—ye.g = his_mother’

f(R) = his.mother’
IFISK(f) A f(R) = his. mother’]

EC

Figure 3: Revised derivation of meaning for sentence (39)

only for the sake of presentation. In fact, the ACOND rule as introduced above is
designed to get rid of such free variables, as explained in Winter (2001:ch.3).

With the ACOND rule, it is also no longer necessary to adopt Jacobson’s as-
sumption (J3) that items such as relative pronouns (e.g. that) or the definite article
(i.e. the) are polymorphic. We adopt the treatment in Winter (2001:ch.3) of the
definite article as a predicate modifier that imposes singularity on the restricting
predicate. The Strawsonian (presuppositional) version of this operator is defined
as follows.

43) thel.y = Mode.x = (A)

Thus, the the' operator sends a set to itself if it contains a unique element, and is
undefined otherwise.'® Using these assumptions, the analysis of sentence (5a) in
figure 4 becomes analogous to the analysis of sentence (39) in figure 3.

A similar analysis becomes now possible for copular sentences with bare nu-
merals as illustrated in (17). We adopt the common assumption that the numeral
two is a predicate modifier, similarly to the definite article. Concretely, given a
cardinality function card on “plural” e-type entities, we can assume the following
denotation for the numeral two:

@4) two] = twol,, . = Aeda..card(x) =2 A Alx)

16 A Russellian (truth-conditional) version of the definite operator of this type is: the’(et) (et) el

AAct Aze |A| = 1 A A(z). T use here the Strawsonian operator for sake of compatability with
Jacobson’s analysis.

"The only material difference between the two analyses is that the SF variable corresponds to
the indefinite article in figure 3, and to a null element in figure 4. In fact, in Winter (2001) it is
argued that SF variables correspond to null elements in both cases, and the deviation from this
treatment is here only for the sake of simplicity.
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every man loves

woman that every’ (man’) Z°(love’)
the womang, Net)((et)(et)) Seos(et)
7 ACOND
the(et)(et) Re—>(et) ACOND s his mother
f(e—)(et))(e—)e) )\:E.thel(R(:L‘))e%(et) idr(rt) hiS_rnOthel‘;_>€
F(Az.the' (R(x)))esse AJe—ye.g = hismother’

f(Az.the'(R(z))) = his_mother’ 5
F[SK'(f) A f(Az.the'(R(z))) = his_ mother’]

Figure 4: Derivation of meaning for sentence (5a)

This makes the analysis of (17) similar to the analysis of (5a) in figure 4.!

Note that in the proposed modification of Jacobson’s system, the only poly-
morphic item in the analysis of functional readings is the copula be. This is not
coincidental. The polymorphism of be is what allows predicates such as be his
mother to range over functions of type e — e. With a monomorphic transitive
predicate such as love or pinch this is not possible. In the proposed system, there
are two ways to analyze a verb phrase such as love his mother. The object his
mother is of type e — e. The transitive predicate love is standardly of type e(et).
One way to compose their denotations is using ACOND; another is using the 7
(or Z°) function and direct application. These two options are illustrated below.

ACOND

(45)  a. love/,_,,, his_mother’ = (Az.love'(his_mother’(z)))._, (.t
e(et) e—e (et)

b. Z(love') (. .\ (er), his_mother’ = (Mz.love'(his_mother’(z))(z))
( — )( ) e—e

The first option accounts for the deictic interpretation of the pronoun (as in Mary
loves his mother). The second option accounts for the bound interpretation of
the pronoun (as in every man loves his mother). However, the VP denotation
cannot combine with e — e functions that are denoted by NPs. This accounts for
the impossibility to get a functional reading in non-copular sentences such as the
following (cf. Sharvit (1999)).

18Post-copular nominals such as his mother and Brigitte Bardot are treated using the ACOND
rule. Suppose (for the sake of presentation alone) that and denotes here the i-sum operator of
Link (1983). This operator, of type e(ee) composes using ACOND with the e-type denotation of
Brigitte Bardot and the (e — e)-type denotation of his mother, to derive another (e — e)-type
function that maps each man to the i-sum of his mother and Brigitte Bardot. A similar analysis
can be derived within the more complex treatment of plurals and predication that is proposed in
Winter (2001:ch.4).
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(46) a. The woman that no man admires hates his mother.

b. The woman that no man loves pinched him.(=(8a))

Assuming that no man admires his mother-in-law, sentence (46a) cannot mean
something like “a mother-in-law always hates her son-in-law’s mother”. Thus,
the sentences in (46), as opposed to (5b), do not have a functional interpretation.
This is accounted for by our assumption that ordinary transitive predicates, as
opposed to be, do not have a polymorphic meaning. '’

As pointed out by an anonymous reviewer, relying on polymorphism for the
derivation of functional readings has some further implications. One implication
is that the functional interpretation of questions as in (3) should also involve a
polymorphic item. It seems natural to assume that wh elements can indeed range
over functions, which is the source of this interpretation. Another phenomenon
that Jacobson (1999) proposed to treat using her functional mechanism is the case
of “unexpected” (or “sloppy”) inferences. Consider for instance the following
inference, of the type that Jacobson (1999) attributes to Reinhart (1990).

(47) Mary will buy what(ever) Bill buys; Bill buys his favorite car
= Mary will buy her favorite car.

Jacobson shows that her binding mechanism using ee functions accounts for this
kind of inferences and shows some advantages of her analysis over previous one.
Again, in order to achieve this in the present setting of Jacobson’s mechanism we
need a polymorphic item to blame. I think that polymorphism is quite natural to
assume for the relative pronoun what(ever), but I will not try to substantiate this
suggestion here, and leave for further study the details of the adaptation of the
present account for the sake of analyzing functional questions and “unexpected”
inferences.
Let us summarize the main proposals of this section:

e Sets of ee functions are mapped to binary relations using the RG operator.
e This allows the general SF mechanism to derive functional readings.

e The analysis of functional readings does not require Jacobson’s N operator
or polymorphic meanings of items such as that or the. These are treated
using a more general variable-free compositional mechanism.

19Tn fact, as argued in Winter (2001:ch.4), it may be advantageous to treat copulas as meaning-
less rather than polymorphic, but whether this alternative is adopted or not is irrelevant for our
present purposes.
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e Polymorphism of the copula be is required in order to account for its licens-
ing of functional readings as opposed to other transitive predicates.

Note that SFs of arity greater than one are needed in order to analyze sentences
with more than one pronoun in the post-copular NP. For example:

(48) The present that every man will send to every woman is the present that she
asked him to send her.

For sake of exposition, I will not consider such complex examples in the sequel.

4 Generalized quantifiers and functional readings

Mapping sets of functions to binary relations using the RG operator may poten-
tially result in loss of information. To see that, note that in a model with r. entities,
the cardinality of the (ee)t domain is 2(*"), whereas the cardinality of the e(et)
domain is only (2")" = 2("*) . Consequently, the RG operator is not one-to-one.
This means that the present proposal is, at least in principle, less expressible than
Jacobson’s original quantification over functions. In this section it is argued that
this loss of expressibility is not only innocuous, but actually desired. In the mech-
anism that was introduced in the previous section, a restricting predicate such as
woman that Q loves denotes a set of functions F' for any quantifier (). This sec-
tion introduces a notion of closed sets of functions, for which the RG operator
is one-to-one, and shows that the set /' is closed if and only if () is a bounded
quantifier: an intersection of a principal filter and a principal ideal. We will then
hypothesize that it is exactly the bounded quantifiers that are licensed in functional
interpretations of questions and copular sentences.

To illustrate the intuitive reasoning that underlies the formal discussion in this
section, consider the following contrast.

no

(49) A woman that { %4t moSt one

} man loves is his mother-in-law.

As in Jacobson’s analysis, the denotation of the constituent woman that no man
loves is the set of functions that send no man to a woman he loves. Let us de-
note this set of functions by F,,,. Assuming that F},, is not empty, the relation
RG(F,,) sends every man to the set of women he does not love. Applying any
Skolem function of arity 1 to RG(F,,,) gives us again a function in F,,,. This is
not the case when we consider the determiner at most one, which does not support

25



a functional reading in (49). Let us denote the set of functions that send at most
one man to a woman he loves by F<;. Assume that the men are John and Bill
and that the women are Mary and Sue. Assume further that John loves Mary and
hates Sue, and that Bill loves Sue and hates Mary. Thus, the set F'<; includes the
following functions fi, f, and fs:

fi: John — Mary, Bill — Mary

f2: John — Sue,  Bill — Sue

fs: John — Sue,  Bill = Mary
This means that RG(F<;) sends both John and Bill to the set {Mary, Sue}. Con-
sequently, a Skolem function of arity 1 may map RG(F;) to the function that
sends each of the two men to the woman he loves. But this function is not in F';.
This formal distinction between the quantifiers that the noun phrases no woman
and at most one woman denote will be given a general characterization in this
section, in terms of bounded and unbounded quantifiers. It will be hypothesized
that (un)boundedness of quantifiers is responsible for contrasts as in (49).

4.1 Closed sets of functions and bounded quantifiers

Consider first the following definition.

Definition 4 (closed sets of functions) Let I' C B* be a set of functions from A

to B. The closure of F is the set of functions F C B* that is defined by:

FY {f € B” : foreveryx € Athereis g € F s.t. f(z) = g(z)}.

We call F a closed set of functions if F' = F.

Example: Consider the functions in table 1 above. The set {A, ko } is closed. By
contrast, the set {A, hy} is not closed: its closure is { %1, hq, b3, hy}.

Note that F' C F trivially holds for any set of functions F. It is also easy to
observe the following fact.

Fact 1 If F and G are sets of functions in B4 then RG(F) = RG(G) iff F = G.

As a result, the RG operator is one-to-one when it is restricted to apply to closed
sets of functions:

Corollary 2 If F and G are closed sets of functions in B* then RG(F) = RG(G)
i F =G
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A related fact about closed sets of functions, which was informally mentioned
and illustrated above, concerns their relations with Skolem functions and the RG
operator.

Fact 3 A non-empty set F' of functions in B* is closed iff for every Skolem
function [ from (p(B))* to BA: f(RG(F)) € F.

Proof

(=): Assume that /' is a non-empty closed set of functions in B4 and that f
is an SF of the given signature. For every x € A: from F # () it follows that
(RG(F))(z) # ), and by definition of SFs: (f(RG(F)))(z) € (RG(F))(x).
By definition of RG, this means that for every € A there is ¢ € F' such that
(F(RG(F)))(z) = g(x). Hence f(RG(F)) € F. But F' = F by closure of F,
hence f(RG(F)) € F.

(«<=): Assume that for every Skolem function f of the given signature: f(RG(F')) €
F. By definition of SFs, this means that for every function ¢ € B*: if ¢ sends
every z € A toamember of (RG(F))(z) then g € F. But this means that F' C F,
hence F' = F, so F'is closed. O

Thus, we know that for a non-empty closed set of functions F', sequential
application of RG and a Skolem function maps F' to one of its members. Recall
that in the compositional mechanism of section 3, the set F' is the denotation of
a restricting predicate such as (woman that) every man loves, which is derived
by applying the Z° operator to a quantifier ) (e.g. the denotation of every man)
and a binary relation R (e.g. the denotation of loves). Let us use the following
abbreviation:

(50) For 2 7°(Quy)(Reen) = Mee.QO\xe. R(f(2))(2))
Further modification of the set /'gr within the relative clause is immaterial for
our present purposes, hence ignored.?® In set-theoretical format, for any quantifier
Q C p(F) and binary relation B C E?, the set of functions Fgr is {f € EF :
{z: R(f(z),z)} € Q}.

The main theorem of this section characterizes the class of quantifiers () that
guarantee that Fiyr is a closed set of functions for every R. It will be shown

20 As an illustration for why this is justified, consider a modified restricting predicate of the form
A that Q R, where A is the denotation of a noun (e.g. woman). Our analysis of this construction in
section 3 is N°(A) N RG(Fgr), which is equal to RG(N(A) N For) = RG(Fgg'), of the form
of the analysis, where R’ = Az.Ay.R(z)(y) A A(z).
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Noun Phrase: Quantifier bounded by:

every student student’ E

no student 0 FE \ student’

every student but no teacher | student’ FE \ teacher’

every student but Mary student’ \ {m’} | £\ {m'}

no student but Mary {m'} E\ (student’\ {m'})

Table 2: Bounded quantifiers

that this class is precisely the class of bounded quantifiers: those quantifiers that
are an intersection of a principal filter (e.g. the denotation of every student) and
a principal ideal (e.g. the denotation of no teacher). This class of quantifiers is
officially defined below.

Definition 5 (bounded quantifiers) A quantifier Q@ C o(F) is called bounded
iff there are two sets X andY C E st. Q ={AC E: X C ACY}. Inthis
case we say that () is bounded by X and Y .

Table 2 gives some NPs that denote bounded quantifiers with the sets that bound
them.

Theorem 4 A quantifier Q C o(FE) is bounded iff the set of functions Fgpr is
closed for any binary relation R C E?.

The proof of this theorem makes use of the convexity?! property of quantifiers,
which is defined below.

Definition 6 (convex quantifiers) A quantifier Q C ©(F) is convex iff for all
ACBCCCE:ifAeQandC € Q) then B € Q.

For instance, the noun phrase between three and five students denotes a convex
quantifier in any model, but this is not true of the disjunctive noun phrase exactly
three or exactly five students.

The following simple fact will be useful in proving theorem 4.

Fact 5 A quantifier Q C o(FE) is bounded iff @Q is convex and closed under
arbitrary intersections and unions. Inthiscase ) = {A C E:NQ C A CUQ}.

2IThijsse (1983), who introduced this notion into generalized quantifier theory, gave it the mis-
nomer continuity, which was used in some subsequent works.
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Proof of theorem 4

(=): We assume that Q C p(F) is bounded by X,Y C F and show that Fyp is
a closed set of functions for any R C EZ. It is enough to show that any f, € Fgr
is also in Fyr. Thus, we need to show that for any f, € Fyg, forany R C E?:
the set Ay 2 {z € E': R(fy(x),)}isin Q, which holds iff X C A, C Y.

To show that Ag C Y, we assume zg € A and show zy € Y.

From fy € Fyr it follows that some gy € Fgr satisfies go(z0) = fo(xo).
Because go € Fyr, we conclude from the definitions of Figr and @) that {z € £ :
R(go(z),z)} CY. (@)

From the assumption zo € Ay, it follows that the relation R(fo(x¢),zo) holds.
Because go(zo) = fo(zo), we conclude that R(go(zo), zo) holds too. (ii)

Facts (i) and (ii) entail that 5 isin Y.

The proof that X C Ay is similar.

(«<=): Assume that for a quantifier ) C p(F), the set of functions Fr is closed
for any binary relation R C E?. By fact 5, we need to show that () is convex and
closed under arbitrary intersections and unions. The proofs of the convexity and
closure properties of () are all similar.

Convexity of (): Suppose, for contradiction, that there are A C B C (' C E st
A, C € Qbut B ¢ Q. We conclude that |E| > 2 and denote a,b € F for two
arbitrary elements a # b. Consider the relation R ) {a} x F and the character-
istic functions x 4, x5 and x¢ in {a,b}? of the sets A, B, C' C E. By saying that
Xy € {a,b}¥ is the characteristic function of a set Y C £ we mean that yy is the
function that satisfies for any = € F:

XY(:L‘):{Z §Z§

Observe now the following equalities:
{zr € E: R(xa(z),z)} =A
{zr € F: R(xg(z),z)} =B
{r € E: R(xc(z),z)} =C
By definition of Fyr and the non-convexity assumption about () it therefore fol-
lows that X4, Xc € FQR, but XB Q FQR.
However, by the assumption A C B C ', we have for every z € F:
r€B = xg(r)=a=xc(z)
t¢€ B = xplz)=b= ya(z)
Thus, for every x € E thereis f € {xa, xc} s.t. xp(z) = f(z).
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We conclude that x5 € {x4, xc} C Fgr, which means that Fyr # Fgg.
By assuming non-convexity of (), we contradicted the assumption that Figr is a
closed set of functions for any relation . Hence: () is convex.

Closure of () under intersections: Suppose, for contradiction, that there is a set
ACQst.NAZQ(|A| > 2). Again, we conclude that || > 2, denote a,b € £
for two arbitrary elements a # b, and consider the binary relation R = {a} x .
Now consider the characteristic functions in {a, b}¥ of the sets in .4 and of their
intersection N.A. Observe now the following equalities:

{r € F: R(xa(z),z)} = A, forevery A € A

{z € E: R(xna(z),z)} =NA
By definition of Fior and the assumption about () it therefore follows that x 4 €
Forforevery A € A, but xna € For.
However, for every = € F:

r€NA = xnalz) =a= xa(z)forany A € A4

€ NA = xna(z)=b= xp(z)foratleastone B € A"
Thus, for every = € F thereis f € {xa € {a,b}¥ : A€ A} s.t. xru = f(2).
We conclude that xna € {xa € {a,b}F: A€ A} C Fgr, which means that
For # For.
This contradiction to our assumption about the closure of Fgr entails that () is
closed under arbitrary intersections.

The proof of the closure of ¢) under unions is similar. O

4.2 The distribution of quantifiers in functional readings
Consider the following examples.

every/no man (but John)
(51) The/A woman that ¢ *at most one man loves is his mother.
?exactly/at least one man

every/no man (but John)
(52) Which woman does ¢ *at most one man love? His mother.
?exactly/at least one man

These examples show a contrast in acceptability of functional readings between
bounded quantifiers such as every, no etc. and unbounded quantifiers such as
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exactly one, at most/least one etc. The following hypothesis makes a natural con-
nection between this linguistic contrast and the formal properties that were proven
in the previous subsection.

(53) Hypothesis: the RG operator applies only to closed sets of functions.

Let us examine how this hypothesis makes the desired connection. As shown
by theorem 4, it is exactly the bounded quantifiers that generate closed sets of
functions. Thus, if hypothesis (53) is correct, then the functional mechanism is
analyzed as sensitive to the (un)boundedness property of the quantifier. This is
due to theorem 4. Such sensitivity is not at all trivial to explain in compositional
frameworks, because the functional mechanism applies at a much higher syntactic
level than the level where the quantifier is present. However, theorem 4 makes
the necessary connection between the restrictions on the set of functions that is
generated, and the generalized quantifier that participates in its generation.

But why should the RG operator be sensitive to whether the set of functions
it applies to is closed or not? Fact 3 gives at least a partial answer to this ques-
tion. According to this fact, these are exactly the closed sets F' of functions that
guarantee that Skolem functions do not return functions outside /. For instance,
an SF that applies to the denotation RG([woman that every man loves]), does not
return functions that were not already in the basic denotation of woman that ev-
ery man loves. Thus, if the hypothesis in (53) is correct, then in a sense it makes
the grammar of functional quantification semantically “optimal”: functional read-
ings derive “natural functions” exactly in the cases when they are grammatically
licensed.??

Despite this attractiveness of hypothesis (53), there are (at least) two poten-
tial empirical problems that it has to face. One problem concerns the felicitous
functional interpretation of sentences such as the following, which is based on
examples due to Alexopoulou and Heycock (2002).

(54) The woman that almost every/no man loves is his mother.

The natural interpretation of the noun phrase almost every man is the following
generalized quantifier.

(55 {AC E:1<|[ANnman’| <n},
where n is a (small) number that is determined by the context.

221 believe that a similar reasoning underlies Barwise and Cooper’s (1981) semantic account of
the grammaticality of there sentences with various NPs, using a non-triviality assumption.
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This quantifier in not bounded. However, sentence (54) can also be interpreted as
in the rough paraphrase below.

(56) There is a (small) set of men B s.t. the woman that every/no man except for
the men in B loves is his mother.

In other words: the “exception set” B that almost quantifiers require can take
here sentential scope, which allows the noun phrase almost every/no man to be
interpreted as a bounded quantifier.?

Another problem for the hypothesis in (53) may come from certain facts that
are pointed out by Sharvit (1999:(18)-(21)). Sharvit considers plural sentences in
Hebrew that are parallel to the following English sentence.?*

(57) The woman that most of the students invited was their mother.

The determiner most is unbounded, hence functional anaphora is a priori not ex-
pected here by hypothesis (53).

However, with noun phrases such as most of the students, also discourse anaphora
as in the following example may appear and complicate the picture.

(58) Most of the students admire their mother. They invited her.

By contrast, discourse anaphora is unacceptable with the other quantifiers that
illustrated (un)availability of functional readings in the above examples. For in-
stance:

(59) No/at most one student hates his mother. *He invited her.

This means that the contrast we observed above between no and at most one can-
not originate from different discourse anaphora potentials, and therefore it sup-
ports hypothesis (53). The functional reading in Sharvit’s example (57) may re-
sult from discourse anaphora and therefore it does not seriously challenge this hy-
pothesis. For recent works that deal with discourse anaphora using a mechanism
of functional quantification see Steedman (1999) and Peregrin and Von Heusinger
(2001).

Z3This is not always the case with almost quantifiers. For instance, a sentence such as every
Frenchman admires almost every actress, is compatible with a situation where one Frenchman
admires every actress but Brigitte Bardot, while another Frenchman admires every actress but
Isabelle Adjani.

24Sharvit also judges as felicitous sentences like (57) with more than two and at most two instead
of most of the. However, my Hebrew informants disagree, and consider these cases significantly
worse than the Hebrew parallel of (57).
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5 Further motivation: a note on Jacobson (2002)

In her recent article, Jacobson shows motivation for an operator that is very similar
to the RG operator, although her motivation comes from different phenomena than
the ones that were addressed throughout this paper. The examples that motivate
Jacobson’s proposal are all similar to the following ones.

(60) The woman he loves that every/no man invited (to his wedding) is his
mother.

(61) A (certain) woman he loves that every/no man invited (to his wedding) is
his mother.

Jacobson (1994) lifts the denotation of the noun woman to a set of ee functions.
However, in her variable-free treatment of anaphora, the denotation of the relative
he loves, which should be intersected with the denotation of woman, is a binary
relation. Hence, Jacobson (2002) proposes to shift this binary relation into a set of
functions using an operator that she calls ‘m’. The effect of this operator is to map
any binary relation R C A x B to the set of functions {f € B# : forallz € A :
R(x, f(z))}. In type-theoretical format:

def
(62) Mty ((ee)ty = ARe(er)-Mee Ve R(f(x))(2)

In Jacobson’s categorial treatment of extraction, the relative he loves denotes the
following relation:

(63) heloves' = Az.\y.love'(y)(z)

Intersection with the functional denotation of the noun woman leads to the follow-
ing analysis:

(64) N(woman’) N m(he_loves') =

(Afee.Vz[woman'(f(2))]) N (Mee-Vullove'(f(u))(u)]) =
Afee Vz[woman'(f(z))] A Vul[love'(f(u))(u)]

In words, this is the set of ee functions that send every = to a woman that x loves.
Once this set of functions is derived, the rest of the analysis of sentences (60) and
(61) is analogous to the analysis of sentences (5a) and (39) in figure 1 (see also
(19)). For instance, the analysis of sentence (61) using Jacobson’s m operator is
given below.
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(65) a’'(N(woman’)Nm(heloves’)NZ"(invite')(every’(man’)))(Ag...g = his_mother’)
& 3f[(N(woman’)"m(he loves')NZ° (invite') (every’(man’)))(f)Af = his_mother']

& (N(woman') Nm(heloves’) N Z°(invite') (every’(man’))) (his_-mother’)

In the present proposal, since the noun woman is anyway lifted to a binary
relation using the N operator, there is no need to use further shiftings, and the
analysis of the relative nominal woman he loves is as follows.

(66) N°(woman’) N (he_loves') =
(Az.Ay.woman’(y)) N (Az.Ay.love'(y)(z)) =
Az.Ay.woman'(y) A love'(y)(z)

From this point the analysis is as in figure 2:

(67) 3ftetet))(ee)[SK'(f) A
f(N°(woman’)N(heloves')NRG(Z°(invite')(every’ (man’)))) = his_ mother’]

This statement is equivalent to the one that is derived above in the Jacobsonian
analysis (65).

We conclude, in agreement with Jacobson, that her strategy is in a sense the
inverse of the present proposal. Jacobson shifts relatives from binary relations into
sets of functions, while in this paper we used the opposite direction — from sets
of functions to binary relations — using the RG operator. It is notable that the RG
mechanism, which was developed for entirely different reasons than Jacobson’s
m operator, also handles the problem that motivated this latter operator. I also
believe that it is likely that Jacobson’s mechanism can be adapted to handle at
least some of the problems that were treated in the present paper.

6 Conclusions

In this paper we have seen intuitive, distributional and technical support for the
claim that “functional” readings of questions and copular sentences and “wide
scope” readings of indefinites are two names for the same phenomenon. One sim-
ple operator that maps sets of functions to binary relations was used as the key
for unifying separate mechanisms that had been previously introduced for treat-
ing these phenomena using Skolem functions. This unified mechanism establishes
some new relations between functional quantification and generalized quantifier
theory. In particular, it was shown that there are both empirical and mathematical
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reasons to expect functional quantification to be restricted to the newly introduced
class of bounded quantifiers. Of course, many hard linguistic-logical questions
about functional quantification in natural language are still open. However, I be-
lieve that the results in this paper exemplify the benefits that can be gained by the
on-going study into this challenging area.
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