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Abstract. This paper introduces a procedure that takes a simple ver-
sion of extensional semantics and generates from it an equivalent possible-
world semantics that is suitable for treating intensional phenomena in
natural language. This process of intensionalization allows to treat inten-
sional phenomena as stemming exclusively from the lexical meaning of
words like believe, need or fake. We illustrate the proposed intensionaliza-
tion technique using an extensional toy fragment. This fragment is used
to show that independently motivated extensional mechanisms for scope
shifting and verb-object composition, once properly intensionalized, are
strictly speaking responsible for certain intensional effects, including de
dicto/de re ambiguities and coordinations containing intensional transi-
tive verbs. While such extensional-intensional relations have often been
assumed in the literature, the present paper offers a formal sense for this
claim, facilitating the dissociation between extensional semantics and
intensional semantics.

1 Introduction

The simplicity and elegance of extensional higher-order logics make them attrac-
tive for treating many phenomena in natural language. The arguments for inten-
sional (and hyper-intensional) semantics are of course compelling, but we would
not like these considerations to complicate the analysis of properly-extensional
phenomena. Unfortunately this is often the case, and especially in Montague’s
classical treatment in [1] (PTQ). In order to address this tension between ex-
tensional semantics and intensional semantics, this paper studies the relations
between elementary extensional semantics and intensional semantics such as
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Montague’s IL or Gallin’s Ty2 in [2]. We propose a general process of intension-
alization that maps an extensional framework to such an intensional framework,
and illustrate its architectural benefits using a toy fragment. More generally,
we argue that also in other frameworks, there are methodological and empirical
reasons for taking intensionalization procedures to be a central part of the study
of intensional phenomena.

The distinction between parts of a language that exhibit intensional effects
and parts that do not can often be reduced to a simple distinction between
two kinds of lexical items: those that create an intensional context and those
that do not. In this paper, expressions like the verbs seek, need and believe
and the adjective fake, which create an intensional context are called intension-
sensitive. Expressions that do not create an intensional context, such as the
verb kiss or the adjective red, are called intension-insensitive. We assume that
an extensional semantics is sufficiently adequate for expressions that consist
solely of intension-insensitive lexical items, while an intensional semantics is
only needed for expressions with intension-sensitive lexical items.

In this paper we propose a modular approach to the architecture of inten-
sional systems that is based on this assumption. We start out by introducing
a simple grammatical framework with a standard extensional semantics, and
then add intension-sensitive words to the lexicon. Since the intension-sensitive
lexical items (semantically) select intensional objects, the extensional types and
meanings of the intension-insensitive lexical items need to be shifted to inten-
sional types and meanings. Following [3], we refer to this shifting process as
intensionalization.

The strategy of intensionalization that we suggest can be traced back to
the type shifting strategy of [4]. But, as far as we know, the only full-fledged
intensionalization procedure in the literature, even if not under this label, was
defined by Keenan and Faltz in [5]. A simple intensionalization procedure can
be inferred from the introduction of intensional semantics in [6] (Ch. 12). This
intensionalization procedure is similar to the “intensionality monad” that Shan
defines in [7]. Shan partly follows an early version of [8], who uses a comparable
architectural approach for treating natural language quantifiers using the notion
of continuations.

The novel feature of our intensionalization procedure, as opposed to pre-
vious proposals, is that the shifting process that we employ from extensional
types and meanings to intensional types and meanings is a general one, and ap-
plies uniformly to all syntactic categories and semantic types. Beside types and
meanings of expressions, the intensionalization process changes very little in the
extensional system. For example, de dicto/de re ambiguities and coordinations
of intension-sensitive with intension-insensitive transitive verbs are treated as
manifestations of purely extensional mechanisms in their intensionalized guise.

One central formal aspect of the intensionalization process is truth-conditional
soundness. In order to preserve the insights of an extensional semantics, we need
to guarantee that its intensionalized version is descriptively equivalent to it. In
more exact terms: both the extensional semantics and its image under inten-



sionalization should provably describe the same entailment relations between
sentences. This paper sets the background for a soundness theorem, which is
stated for the extensional framework we define. The details of the proof appear
in [9].

The paper is organized as follows. Section 2 defines a setting for an exten-
sional grammar, and illustrates it using a toy grammar. The intensionalization
process is the subject of Section 3, which also states its soundness and demon-
strates its application to the toy grammar of Section 2. Section 4 demonstrates
how intension-sensitive lexical items are added to the intensionalized grammar,
and illustrates the resulting grammatical interactions between such items and
intension-insensitive expressions and extensional mechanisms.

2 Formalizing the extensional setting

To formalize an intensionalization procedure we first need to make explicit as-
sumptions about the extensional semantics. We define a simple undirected type-
logical grammar that includes the bare semantic details necessary for defining
the intensionalization procedure. Syntactic, pragmatic and phonological details
are ignored.

2.1 Extensional setting

The extensional grammars that we assume are of the form 〈Σ, type, {{·}}〉. Σ is
the lexicon (‘alphabet’) – a finite set of words (‘lexical items’, ‘terminal sym-
bols’). Every word α ∈ Σ is assigned an extensional type type(α). The exten-
sional types that we assume are the standard functional types over basic types
e and t. The set of all extensional types is denoted by Tex. The role of the third
component of a grammar is to determine the possible interpretations for each
word, as described below.

Lexical items are directly interpreted by models. Standardly, a model M is a
pair 〈FM, IM〉, where FM is an extensional frame and IM is an interpretation
function. The extensional frame is a collection of domains Dσ for every exten-
sional type σ. Standardly, we assume that Dt is the set {0, 1} of truth values,
De is an arbitrary nonempty set E of entities, and D(τσ) is the set DDτ

σ of all
functions from Dτ to Dσ. Thus, an extensional frame is uniquely determined by
the set E of entities. For every E we refer to the induced frame as the E-based
(extensional) frame. The interpretation function IM maps every word α to a
member of Dtype(α) ∈ FM.

To derive interpreted sentences from interpreted lexical items, let us add a
simple notion of a grammar, keeping in mind that, as before, we only introduce
the bare semantic notions that are necessary in order to define an intensional-
ization process in a most general way. A derivation is either a lexical item (rule
(1) below) or a compound derivation. Compound derivations are obtained from
simpler derivations by one of two rules: functional application (rule (2) below)
or conjunction (rule (3) below).



(1) a. Every lexical item α is a derivation of type type(α) of the expression α.
b. For every model M: [[α]]M = IM(α).

(2) a. If ∆1 is a derivation of type (στ) of an expression ε1 and ∆2 is a deriva-
tion of type σ of an expression ε2, then [∆1 ∆2] (respectively, [∆2 ∆1])
is a derivation of the expression ε1 ε2 (respectively, ε2 ε1) of type τ .

b. For every model M: [[[∆1 ∆2]]]M = [[[∆2 ∆1]]]M = [[∆1]]M([[∆2]]M).

Regarding the conjunction rule, one of our main concerns is to enable a
coordination of intension-insensitive words with intension-sensitive words, like
in Mary sought, found and ate a fish. The syncategorematic introduction of
conjunction that we use here is convenient for the sake of exposition of our
intensionalization procedure, as it does not require adding a polymorphic entry
to the lexicon or using several entries for an arbitrary number of types. Similar
derivation rules can be formulated for other Boolean words such as or and not.
For the purposes of this paper, however, it is enough to restrict attention to the
conjunctive and. In order for two expressions to be conjoinable, they must be
of the same type. Furthermore, this type must be Boolean (or t-ending). In a
type system that contains the basic type t (e.g., our extensional types Tex), a
type σ is called Boolean iff either σ = t or σ = (σ1σ2) for a Boolean type σ2.
For the semantic composition in the conjunctive rule (3) we use the well-known
Generalized Conjunction operator from [4], denoted here ‘u’.

(3) a. If ∆1 is a derivation of an expression ε1 and ∆2 is a derivation of an
expression ε2, both of a Boolean type σ, then [∆1 and ∆2] is a derivation
of type σ of the expression ε1 and ε2.

b. For every intended modelM, [[[∆1 and ∆2]]]M = uσ(σσ)([[∆1]]M)([[∆2]]M),
where ‘uσ(σσ)’ is recursively defined for Boolean types σ as follows:

uσ(σσ) =
{
∧ (standard propositional conjunction) σ = t
λXσλYσλZσ1 . uσ2(σ2σ2) (X(Z))(Y (Z)) σ = (σ1σ2)

Among all possible models for a grammar G = 〈Σ, type, {{·}}〉 we are in-
terested only in those intended models that respect lexical restrictions on the
meaning of individual words. This is obtained using the an operator {{·}} that
assigns to every word α ∈ Σ a functional {{α}} that maps a frame F to the subset
{{α}}F of

⋃
F that consists of all admissible interpretations for α. Formally, a

model M = 〈FM, IM〉 is an intended model for a grammar G = 〈Σ, type, {{·}}〉
iff IM(α) ∈ {{α}}FM for every α ∈ Σ. The class of all intended models for a
grammar G is denoted MG.

For simplicity, we henceforth assume that for every lexical item α either (4)
or (5) holds.

(4) For every frame F : {{α}}F = Dtype(α) ∈ F .
(5) For every frame F there is ϕ ∈ Dtype(α) ∈ F such that {{α}}F = {ϕ}.
Whenever (4) (respectively, (5)) holds for a lexical item α we will say that α is
a nonlogical constant (respectively, logical constant).3

3 There are at least two other kinds of possible logical restrictions on the meaning
of lexical items. First, there are lexical items α for which {{α}}F is a non-singleton



2.2 Example

As an example consider the simple grammar in Table 1. The determiners every
and a are standardly treated as logical constants. For convenience, the single
function that a logical constant is assumed to denote is described by a lambda-
term in the 3rd column. On the other hand, nouns (both proper and common)
and (in)transitive verbs, as well as other expressions of open lexical categories,
are standardly treated as nonlogical constants. Intersective adjectives like bald
or red are also treated as nonlogical constants of type (et). For the sake of the
example, we assume that all intension-insensitive adjectives are intersective.

Table 1. Extensional lexical entries

word α Type {{α}}F λ-term

Mary, John e De

red, bald et Det

king, queen et Det

smile, jump et Det

kiss, eat e(et) De(et)

every (et)((et)t) {every} every = λAetλBet.∀xe[A(x) → B(x)]
a (et)((et)t) {some} some = λAetλBet.∃xe[A(x) ∧B(x)]

The toy grammar in (1)-(3), together with the lexical entries in Table 1, does
not allow to derive all grammatical strings over the given lexicon. For instance,
they do not allow to derive a transitive sentence like (6) below.

(6) A queen kissed every king.

Similarly, intersective modification with adjectives (e.g. bald king) and coordi-
nation of proper names with quantifiers (e.g., Mary and every queen) are not
treated by the assumptions introduced so far. In order to deal with such examples
without complicating too much the introduction of our proposed grammatical ar-
chitecture, we use some phonologically-silent lexical items. These phonologically-
silent lexical items (also called empty words or operators) are introduced in Ta-
ble 2 as an ad hoc extension of the lexicon from Table 1. Note that all operators
in this extension are treated as logical constants.

proper subset of the domain of α’s type. An example for such a lexical item is the
TV follow. To account for the entailment from (ia) below to (ib), it is reasonable to
assume that follow is interpreted as an arbitrary transitive relation in De(et).

(i) a. Jack follows Cole and Cole follows Jessica.
b. Jack follows Jessica.

Second, there are lexical items for which {{α}}F is possibly the whole domain of its
type, but there are restrictions on the relation between α’s interpretation and the
interpretation of other lexical items (e.g., kill and die).



Table 2. Extending the lexicon from Table 1 with empty words as type shifting oper-
ators.

word α Type {{α}}F λ-term

εONS (e(et))(((et)t)(et)) {ONS} λRe(et)λF (et)tλxe.F (λye.R(y)(x))
mapping a binary predicate between entities to
a binary predicate between entities and quanti-
fiers (the quantifier taking narrow scope)

εOWS (((et)t)(et)) {OWS} λR(((et)t)(et))λF (et)tλQ(et)t.
(((et)t)(((et)t)t)) F (λye.Q(λxe.R(λAet.A(y))(x)))

mapping a binary predicate between entities
and quantifiers to a binary predicate between
quantifiers (the object quantifier taking wide
scope)

εlift e((et)t) {LIFT} λxeλAet.A(x)
lifting an entity to a quantifier

εadj (et)((et)(et)) {ADJ} λAetλBetλxe.A(x) ∧B(x)
mapping a set to an intersective modifier

The operation of the empty words εONS and εOWS can be demonstrated with
sentence (6) above. This sentence can be derived in two different ways. In both
derivations, (7a) and (8a), the operator εONS is applied to the TV kissed. The
difference is that derivation (8a) also uses the operator εOWS. In an intended
model M, derivation (7a) denotes the object narrow scope (ONS) interpretation
(7b), and derivation (8a) denotes the object wide scope (OWS) interpretation
(8b). To facilitate readability, we henceforth let word (in boldface) stand for
IM(word) whenever word is a lexical item, M is an arbitrary model, and there
is no other model in the context.

(7) a. [[a queen] [[εONS kissed] [every king]]]
b. ∃xe[queen(x) ∧ ∀ye[king(y) → kiss(y)(x)]]

(8) a. [[a queen] [[εOWS [εONS kissed]] [every king]]]
b. ∀ye[king(y) → ∃xe[queen(x) ∧ kiss(y)(x)]]

This use of (extensional) operators on predicates in order to derive ONS and
OWS analyses essentially follows the (intensional) operators proposed in [10].

The empty word εadj is used to shift the set denoted by an intension-insensitive
adjective to an intersective function of type (et)(et). The latter can modify the
set denoted by a common noun in the usual way.

The empty word εlift allows a proper noun like Mary to be of the same type
as that of a quantified noun phrase like every queen. Such a typing is necessary
for the treatment of coordinations like in Mary and every queen smiled.



3 A sound intensionalization procedure

Having defined a setting for an extensional semantics, we can now introduce our
proposed intensionalization procedure for this setting and discuss its implica-
tions.

To enable the introduction of intension-sensitive lexical items we should let
their arguments denote intensional objects. For example, it is well known that
for a reasonable analysis of a sentence like Mary sought a unicorn the noun
phrase a unicorn should not have an extensional meaning of the kind that was
introduced in Section 2. In this section we introduce our proposed semantics of
intensionalization, by which the extensional types and meanings of lexical items
in an extensional grammar can be modified, so that the resulting grammar is
equivalent to the original extensional grammar, and at the same time can be
extended to a properly intensional grammar by only adding intension-sensitive
items to its lexicon.

3.1 Intensionalization

The intensional types that we assume are the functional types over e, s and t.
The set of all intensional types is denoted by Tin. Intensional frames are defined
similarly to extensional frames. But while an extensional frame is determined
by a nonempty set E of entities as the domain of type e, an intensional frame is
determined both by such a set E and a nonempty set W of possible worlds as the
domain of type s. For a fixed choice of such E and W , the induced intensional
frame is called the E,W -based frame. An intensional grammar is defined like
an extensional grammar as a triple 〈Σ, type, {{·}}〉, where for every α ∈ Σ:
type(α) ∈ Tin, and {{α}} maps every intensional frame F to a subset {{α}}F of
Dtype(α). The derivation rules remain the same.

The intensionalization that we propose follows Van Benthem’s typing recipe
in [3]. Formally, the intensionalization procedure is defined as a mapping I from
extensional grammars to intensional grammars. Given an extensional grammar
G = 〈Σ, typeG, {{·}}G〉, its intensionalization I(G) = 〈Σ, typeI(G), {{·}}I(G)〉
is obtained by a systematic modification of the typing function typeG and
the meaning functional {{·}}G. Following Van Benthem, we modify an exten-
sional type σ by substituting (st) for every occurrence of t. The resulting in-
tensional type is denoted pσq. Thus, for every α ∈ Σ we define typeI(G)(α) =
ptypeG(α)q.

Using this global type-change recipe, we should now intensionalize the mean-
ings of lexical items so that I(G) is equivalent to G. To facilitate the inten-
sionalization of meanings, we made the simplifying assumption that each lexical
item is either a logical or a nonlogical constant. With this assumption, the inten-
sionalization of meanings is defined so that (non)logical constants in G remain
(non)logical constants also in I(G). The question of how to treat other kinds of
lexical items may be more complicated, and is left for future research.4

4 Makoto Kanazawa (p.c.), based on a discussion with Philippe de Groote and Rein-
hard Muskens, suggests a modification of our intensionalization procedure that does



The case of nonlogical constant is simple. If α is a nonlogical constant in G,
we define {{α}}I(G) to be the functional that maps every intensional frame F to
the domain DtypeI(G)(α) in F . For a logical constant α in G to remain logical
constant also in I(G), we need to define {{α}}I(G) in such a way that for every
E,W -based intensional frame F there is an object g ∈ DtypeI(G)(α) such that
{{α}}FI(G) = {g}. It is expected that this object g is systematically derived from
the unique interpretation of α in the corresponding E-based extensional frame
F ′ using some mapping L(·) from DtypeG(α) ∈ F ′ to DtypeI(G)(α) ∈ F .

To motivate our proposed definition of this mapping, consider for example the
determiner every as appearing in the extensional lexicon from Table 1. For this
determiner, we need to map the object every

def
= λAetλBet.∀xe[A(x) → B(x)]

in D(et)((et)t) to a unique member of the intensional domain Dp(et)((et)t)q. The
intensional denotation that we are after is similar to the denotation of every
in PTQ.5 This is the function that when applying to two properties P and Q,
returns the proposition that is true in a world w just in case the predicate exten-
sions in w of P and Q satisfy the containment requirement of every. In symbols,
we would like to end up with L(every) = λwsλP e(st)λQe(st).every(Pw)(Qw),
where Pw is λxe.P (w)(x) – the extension of the property P in a given index w
– and similarly for Qw.

To generalize this relatively simple example to any logical constant of any
type, we first define an extensionalization mapping from intensional domains to
extensional domains (Definition 3). We then use this notion in Definition 4 of
the intensionalization mapping. To facilitate the definition of these mappings,
we follow a tentative proposal in [3], and restrict our attention to the quasi-
relational types of [11]. Definition 2 below of the quasi-relational types refers to
the set Te of e-based types.

Definition 1 (e-based types). The set Te of e-based types is the smallest set
that satisfies:

1. e ∈ Te, and
2. If σ1, σ2 ∈ Te then (σ1σ2) ∈ Te.

Thus, the e-based types are simply the standard functional types over a single
primitive type e of entities. A quasi-relational type is a Boolean type in which
every argument is either quasi-relational or e-based. Formally:

Definition 2 (Quasi-relational types). The set Tqr ⊂ Tex of quasi-relational
types is the smallest set that satisfies:

1. t ∈ Tqr, and

not need to stipulate different treatments for logical constants and non-logical con-
stants. Furthermore, Kanazawa et al’s proposal may be preferable to ours in some
other important respects. We are currently studying the implications of their pro-
posal.

5 Determiners are introduced syncategorematically in [1], whereas here they are part
of the lexicon. But this hardly matters for the semantic analysis.



2. If both σ1 ∈ Te ∪ Tqr and σ2 ∈ Tqr, then (σ1σ2) ∈ Tqr.

Note that the domain Dσ of a quasi-relational type σ = (σ1 · · · (σnt) · · · ) is
isomorphic to the cartesian product Dσ1 × · · · ×Dσn .

The definition of a w-extension of an object is as follows.

Definition 3 (w-extension). Let F be an E,W -based intensional frame and
F ′ the corresponding E-based extensional frame. Let w ∈ W , and g ∈ Dpσq ∈ F
for some σ ∈ Tqr ∪ Te. The w-extension of g is the object gw ∈ Dσ ∈ F ′ that
satisfies:

1. If σ ∈ Te then gw = g;
2. if σ = t then gw = g(w);
3. if σ = (σ1 · · · (σnt) · · · ), n ≥ 1, then

gw = λxσ1
1 · · ·λxσn

n .∃z1 · · · ∃zn.
n∧

i=1

((zi)w = xi) ∧ g(z1) · · · (zn)(w)

In words, a tuple 〈x1, . . . , xn〉 is in the w-extension of an intensional relation g,
iff there is a tuple 〈z1, . . . , zn, w〉 in g such that the w-extensions of the zis are
the xis, respectively.

The intensionalization mapping L(·) is now defined as follows.

Definition 4 (Intensionalization mapping). Let F be an E,W -based in-
tensional frame and F ′ the corresponding E-based extensional frame. Let f ∈
Dσ ∈ F ′ for some σ ∈ Tqr ∪ Te. The intensionalization of f is the object
L(f) ∈ Dpσq ∈ F that satisfies:

1. if σ ∈ Te then L(f) = f ;
2. if σ = (σ1 · · · (σnt) · · · ), n ≥ 0, then

L(f) = λxpσ1q
1 · · ·λxpσnq

n λws.f((x1)w) · · · ((xn)w)

In words, a tuple 〈x1, . . . , xn, w〉 is in the intensionalization of a relation f , iff
the w-extensions of x1, . . . , xn are in f .

We are now ready to define the intensionalization of the meanings of logical
constants, which completes the definition of the intensionalization process. Let α
be a logical constant in an extensional grammar G. For every intensional E,W -
based frame F we define {{α}}FI(G) = {L(f)}, where f is the single element in

{{α}}F ′G for the extensional E-based frame F ′.
We claim that the intensionalization process that we have just defined is

sound, in the sense that it preserves entailment between derivations of sentences.
Entailment over an extensional grammar G is defined in the usual way: ∆1 ex-
tensionally entails ∆2 iff for every intended model M∈ MG: [[∆1]]M ≤ [[∆2]]M.
Over an intensional grammar G, entailment is defined as a relation between
derivations of type st: ∆1 intensionally entails ∆2 iff for every intended model
M∈ MG and for every w ∈ Ds: [[∆1]]M(w) ≤ [[∆2]]M(w).



The soundness of the intensionalization process is formally stated in Theo-
rem 1 below. The proof appears in [9]. For the proof we assume that whenever a
nonlogical constant has a quasi-relational type, then all its arguments are of an
e-based type. This restriction reflects our assumption that intension-insensitive
relational nonlogical constants are basically relations between entities, or func-
tions defined in terms of which.

Theorem 1 (Soundness of the intensionalization procedure). Let G be
an extensional grammar in which (i) every lexical item is either nonlogical or
logical constant; (ii) every lexical item is of a quasi-relational or e-based type; and
(iii) if a nonlogical constant has a quasi-relational type, then all its arguments
are of an e-based type. Let ∆1 and ∆2 be two derivations of type t over G. Then
∆1 extensionally entails ∆2 over G iff ∆1 intensionally entails ∆2 over I(G).

3.2 Example

To see the benefits of the proposed intensionalization procedure, let us get back
to the lexical entries from Tables 1 and 2. The intensionalizations of these entries
are shown in Table 3. For a logical constant α in this table, we write its constant
interpretation as L(f), where f is its constant extensional interpretation. A
routine but somewhat tedious calculation shows that the relevant functions are
as follows:

L(every) = λAλBλw.∀x[A(x)(w) → B(x)(w)]

L(some) = λAλBλw.∃x[A(x)(w) ∧ B(x)(w)]

L(ONS) = λRλFλxλw.Fw(λy.R(y)(x)(w))

L(OWS) = λRλFλQλw.Fw(λy.Qw(λx.Rw(λA.A(y))(x)))

L(LIFT) = λxλA.A(x)

L(ADJ) = λAλBλxλw.A(x)(w) ∧ B(x)(w)

In the lambda-terms above, x and y are of type e, w is of type s, A is of type et,
A and B are of type e(st), Q and F are of type (e(st))(st), R is of type e(e(st)),
and R is of type (((e(st))(st))(e(st))).

The soundness of the intensionalization process is demonstrated with two
simple examples. The sentences every king smiled and every bald king smiled
have the derivations in (9a) and (10a), respectively. The denotations of these
derivations are shown in (9b) and (10b), for the extensional grammar, and in (9c)
and (10c), for the intensionalized grammar. These denotations support entail-
ment from derivation (9a) to derivation (10a) both in the extensional grammar
and in its intensionalization.

(9) a. [[every king] smiled]
b. ∀xe[king(x) → smile(x)]



Table 3. Intensionalization of the lexical entries from Tables 1 and 2.

word α Type {{α}}F

Mary, John,. . . e De

red, sick,. . . e(st) De(st)

king, queen,. . . e(st) De(st)

smile,. . . e(st) De(st)

kiss,. . . e(e(st)) De(e(st))

every (e(st))((e(st))(st)) {L(every)}
a (e(st))((e(st))(st)) {L(some)}
εONS (e(e(st)))(((e(st))(st))(e(st))) {L(ONS)}
εOWS (((e(st))(st))(e(st)))(((e(st))(st))(((e(st))(st))(st))) {L(OWS)}
εlift e((e(st))(st)) {L(LIFT)}
εadj (e(st))((e(st))(e(st))) {L(ADJ)}

c. λws.∀xe[king(x)(w) → smile(x)(w)]
(10) a. [[every [[εadj bald] king]] smiled]

b. ∀xe[(bald(x) ∧ king(x)) → smile(x)]
c. λws.∀xe[(bald(x)(w) ∧ king(x)(w)) → smile(x)(w)]

The second example involves the derivations (7a) and (8a) of the sentence a
queen kissed every king, repeated here as (11a) and (12a) respectively. The re-
spective extensional interpretations (7b) and (8b) of these derivations exhibit an
extensional entailment from the ONS derivation to the OWS derivation. In the
intensionalized grammar, derivation (11a) has the ONS interpretation in (11b),
while (12a) has the OWS interpretation in (12b). From the soundness theorem
it follows that these intensionalized interpretations preserve the extensional en-
tailment, as can be independently verified.

(11) a. [[a queen] [[εONS kissed] [every king]]]
b. λws.∃xe[queen(x)(w) ∧ ∀ye[king(y)(w) → kiss(y)(x)(w)]]

(12) a. [[a queen] [[εOWS [εONS kissed]] [every king]]]
b. λws.∀ye[king(y)(w) → ∃xe[queen(x)(w) ∧ kiss(y)(x)(w)]]

4 Extending the intensionalized system

Our main reason to develop a sound intensionalization procedure is to allow
a simple introduction of intension-sensitive entries into the lexicon, without
any further modification in the intensionalized grammar. Van Benthem’s typing
strategy in [3] that we have followed enables a simple and natural introduction
of intension-sensitive words like seek and need without modifying the grammar,
while allowing these intension-sensitive TVs (ITVs) to be of the same type as
(intensionalized) intension-insensitive TVs (ETVs) like kiss. In this section we
demonstrate this by integrating ITVs into the lexicon of Table 3. As we shall
see, de dicto/de re ambiguities and coordinations of ITVs with ETVs are simply
treated in the extended grammar.



One simple way to add ITVs to the lexicon from Table 3 is to let them
denote nonlogical constants of type ((e(st))(st))(e(st)). By this we treat ITVs
as in PTQ, where the object of such verbs is assumed to denote an intensional
quantifier. It should be emphasized, however, that this is not an assumption of
our intensionalization procedure but a simple way to accommodate ITVs into the
toy lexicon that we are using for exemplification. The treatment of de dicto/de
re ambiguities under this technique is demonstrated using the two derivation in
(13) below of the sentence Mary sought a king.

(13) a. [Mary [sought [a king]]]
b. [[εlift Mary] [[εOWS sought] [a king]]]

(14) a. seek(λBe(st)λws.∃ye[king(y)(w) ∧ B(y)(w)])(mary)
b. λws∃ye[king(y)(w)∧∃Q(e(st))(st)[Qw = (λAet.A(y))∧ seek(Q)(mary)]]

The denotation of (13a) is the de dicto interpretation in (14a) above. The deno-
tation of (13b), on the other hand, is the de re interpretation in (14b). Note that
the latter is created by the same mechanism that creates object wide scope in-
terpretations in the extensional grammar (cf. (8)). This is similar to PTQ, where
the quantifying in mechanism is responsible both for the creation of scope ambi-
guities and for the creation of de dicto/de re ambiguities. However, in distinction
with the proposals by Montague, [10] and others, intensionalization spares us the
need to define an intricate intensional version of the scope shifting mechanism.

The typing strategy that we follow also enables a simple treatment of coor-
dinations between ITVs and ETVs, like in the sentence Mary sought and kissed
a king. Each of the two derivations in (15) is equivalent to another reading of
the intensional conjunct in the (ambiguous) paraphrase Mary sought a king and
kissed a king. Derivation (15a) represents the reading in which Mary sought a
king de dicto, while derivation (15b) represents the reading in which Mary sought
a king de re.

(15) a. [Mary [[sought and [εONS kissed]] [a king]]]
b. [Mary [[[εOWS sought] and [εOWS [εONS kissed]]] [a king]]]

As mentioned above, our intensionalization process is not restricted to the
Montagovian treatment of ITVs. An example of an alternative treatment is that
of Zimmermann in [12], where the (in)definite object of an ITV is assumed
to denote a property. To support Zimmermann’s treatment, we assume that
extensional indefinite NPs are of type et, and that the determiner a(n) is a logical
constant of type (et)(et), whose constant denotation is the identity function of
this type. Thus, an indefinite like a king denotes the set denoted by the noun
king.

To allow the composition of ETVs with predicative indefinites, it is customary
to assume a process of semantic incorporation ([13],[14]). In this process, an ETV
can compose with predicative indefinites by way of existential quantification.
Formally, the extensional incorporation operator on ETVs is defined as follows.

(16) INC
def
= λRe(et)λP et.λye.∃xe[R(x)(y) ∧ P (x)]



Thus, we assume that there is some phonologically-silent lexical item εINC, whose
constant denotation is the function INC. The relevant addition to the exten-
sional lexical entries from Tables 1 and 2 are given in (17) below.

(17)
word α Type {{α}}F λ-term

a(n) (et)(et) {a} λAet.A

εINC (e(et))((et)(et)) {INC} λRe(et)λAetλxe.∃ye[A(y) ∧R(y)(x)]

Since both the determiner a(n) and the empty word εINC are logical con-
stants, they are both intensionalized using the operator L(·). The constant in-
terpretations of these two items are as follows:

L(a) = λAe(st).A

L(INC) = λRe(e(st))λAe(st)λxeλws.∃ye[A(y)(w) ∧R(y)(x)(w)]

With these intensionalized values, an ITV like seek can be added to the
lexicon as a nonlogical constant of type (e(st))(e(st)), whose object argument is
a property. Meaning derivation for coordinations like sought and kissed a king are
now easily obtained using the incorporation operator. For example, derivation
(18a) of the sentence Mary sought and kissed a king is interpreted as (18b).

(18) a. [Mary [[sought and [εINC kissed]] [a king]]]
b. λws.∃ye[king(y)(w) ∧ kiss(y)(mary)(w)] ∧ seek(king)(mary)(w)

Arguably, this account is as natural as the derivation in (15a), based on the
Montagovian treatment of ITVs.

Like derivation (15a), derivation (18a) amounts to the reading of the sen-
tence Mary sought and kissed a king in which Mary sought a king de dicto. A
de dicto reading is also easily derived for simple transitive sentences without
coordinations. For example, derivation (19a) of the sentence Mary sought a king
is interpreted as (19b).

(19) a. [Mary [sought [a king]]]
b. seek(king)(mary)

However, as Zimmermann notes, de re readings with ITVs, and more gener-
ally object-wide-scope readings, require a scope shifting mechanism for predica-
tive indefinites. One such mechanism is the incorporation operator, which allows
a property (e.g., the denotation of a king in (18a)) to take a wide scope over a
relation between two entities (e.g. the denotation of kissed in (18a)). The same
strategy can be used to derive a de re reading for a sentence like Mary sought
a king, but for this the denotation of the ITV seek (type (e(st))(e(st)) must be
shifted to a suitable relation between two entities (type e(e(st))). This shifting
can be achieved by the intensionalization of the operator AL in (20) below. In
the definition of the extensional AL, indent is the operator λxeλye.y = x from
e.g., [15].

(20) AL
def
= λR(et)(et)λxe.R(indent(x))



Suppose that in the extensional system there is a zero morphology word εal
that denotes AL in every model. With this operator, derivation (21a) of the
sentence Mary sought a king is interpreted as (21b).

(21) a. [Mary [[εINC [εal sought]] [a king]]]
b. (L(INC))((L(AL))(seek))(king)(mary) =

λws.∃xe[king(x)(w) ∧ ∃P e(st)[Pw = (λye.y = x) ∧ seek(P )(mary)]]

In words, according to this interpretation the sentence is true in w just in case
there is a king in w such that Mary sought a property that uniquely defines this
king in w. It should be noted that the derivation of AL from indent is a result
of hypothetical reasoning that is embodied in undirected type logical grammars
as proposed in [16] and [17].

5 Conclusion

So far, the study of intensionalization has not been a central part of the massive
semantic literature on intensionality. In this paper we argued that such a process
is necessary if we want to understand better the separation between extensional
semantics and intensional semantics. We propose that intensionality phenomena
are lexically driven, and that it is mostly this fact that allowed Montague to
use essentially extensional mechanisms for treating long-standing puzzles like de
dicto/de re ambiguities. The study of intensionalization provides a missing link
in this story: it explains what is “extensional” in those mechanisms. By doing
that, it articulates the lexically-driven nature of intensionality phenomena in
natural language.
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