
Computing Scope Dominance with Upward Monotone
Quantifiers

Alon Altman
Technion

Yoad Winter
Technion/UiL OTS

Abstract

This paper describes an algorithm that characterizes logical relations between different
interpretations of scopally ambiguous sentences. The proposed method uses general prop-
erties of natural language determiners in order to generate a model which is indicative of
such entailment relations. The computation of this model involves information about car-
dinalities of noun denotations and containment relations between them, which often affect
entailment relations with quantifiers. After proving the correctness of the proposed method,
the paper briefly describes a demo implementation that illustrates its main results.

1 Introduction

Since its introduction into linguistic research in the early 1980s, the theory of Generalized
Quantifiers has been pivotal to the formal semantics of natural language. This theory has al-
lowed the expression of sound generalizations about quantification in natural language which
are not expressible in first order logic. At the same time, the higher level of expressibility
in GQ theory causes undecidability problems for inference in computational semantics. Such
problems, which are perhaps theoretically unavoidable given the higher-order semantics of nat-
ural language, can be at least partly tackled by studying a limited variety of inference patterns
that are of special interest for computational needs. One example for such patterns is what we
henceforth refer to as scope dominance — a situation in which one reading of a scopally am-
biguous sentence entails another reading. A familiar case of such relations is in simple transitive
sentences where the subject and object both denote existential or universal quantifiers, as in the
following example.

(1) A priest visited every church.

Here the object narrow scope reading (the ∃∀ order of the quantifiers) entails the object wide
scope reading (the ∀∃ order). We describe this situation by saying that an existential quantifier
is scopally dominant over a universal quantifier (but not the other way around). This is of course
a simple fact of first order logic, but the entailment pattern it exemplifies is quite general, and
appears in any case where an upward monotone noun phrase replaces either the subject or the
object in (1) (but not both of them). This includes NPs like more than half of the churches or
infinitely many priests, whose semantics is not first order definable.

The computation of scope dominance is not only a significant challenge for the usability of
generalized quantifier theory for limited cases of inference in natural language. A procedure
that fully computes scope dominance relations in a substantial part of natural language would
reduce, at least for some purposes, the extent of the ambiguity that we need to represent in

1

scopally ambiguous sentences. For instance, in sentence (1) only the object wide scope reading
— the weaker of the two readings — is relevant if we want to make sure that any reading of the
ambiguous sentence is entailed by some given statement. Conversely, to test if an ambiguous
use of sentence (1) is definitely refuted by a given statement, or, alternatively, if the sentence
entails a given statement, we can use only the narrow scope reading of (1).

A partial characterization of scope dominance relations with upward monotone determin-
ers over finite domains appears in Westerståhl (1986), which has been recently extended in
Altman et al. (2002) for all upward monotone generalized quantifiers over countable domains.
In this paper we show that this characterization of scope dominance can be applied “globally”
across models to identify valid inferences that involve scope dominance. This involves three
non-trivial phenomena:

• Noun phrase coordination: For simple noun phrases of the form Determiner-Nominal,
the semantic properties of the noun phrase that affect scope dominance can be computed
directly from lexical syntactic features of the determiner. However, computing the seman-
tic properties of NP coordinations involves more intricate procedures because of possible
relations between the denotations of the NP conjuncts.

• Cardinality information: In everyday use, common nouns often come with information
about the cardinality of their set denotation. Such cardinality information affects the
semantic properties of quantified NPs. For instance, knowing that there are exactly three
people in the room, we can deduce that the noun phrase more than two people in the
room denotes a universal quantifier in the given situation, equivalent to every person in
the room. Such universal quantifiers take part in scope dominance relations than do not
appear without the additional cardinality information.

• Containment relations: Many nominals, common nouns as well as proper names, are con-
nected to each other in “super-concept” or containment relations. Such semantic relations
between nominals, as for example between the nouns student and person, impose further
cardinality restrictions on their possible denotations. For instance, in the situation just
described, with three people in the room, the noun phrase more than two students in the
room denotes either an empty set (if there are less than three students in the room) or a
universal quantifier (in case the three people in the room are all students). This of course
affects the scope dominance properties of the noun phrase.

The method that is developed in this paper takes these factors into account by computing a
model that is indicative of scope dominance in simple transitive sentences. The generation of
this model relies on a novel observation that natural language determiners are downward consis-
tent with respect to certain semantic properties. A determiner D is called downward consistent
with respect to a property F of generalized quantifiers if for all sets A ⊆ B: if the generalized
quantifier D(B) has property F , the quantifier D(A) has property F as well. It is hypothesized
that all upward monotone determiners in natural language are downward consistent with respect
to the properties of generalized quantifiers that affect scope dominance. Consequently, for any
A ⊆ B: if D(B) is scopally dominant over a quantifier Q (or Q is dominant over D(B)), then
D(A) is scopally dominant over Q as well (Q is dominant over D(A), respectively). Together
with the familiar conservativity, extension and isomorphism invariance properties of natural lan-
guage determiners, it follows that there is a minimal cardinality for A such that D(A) exhibits
no more scope dominance relations than D(B), for any countable B. This in turn guarantees
that under certain limitations, simple transitive sentences with NP coordinations can be effec-
tively assigned a model that is indicative of scope dominance in the sentence: the quantifiers

2

in this model exhibit scope dominance if and only if there is an entailment between the two
readings of the sentence.

Section 2 introduces some background on generalized quantifiers, and the problem of scope
dominance in particular. Section 3 introduces the proposed algorithm for computing scope
dominance with upward monotone quantifiers. Section 4 makes some remarks about the imple-
mentation of this algorithm in a working demo, which is available at http://www.yeda.
cs.techion.ac.il/˜alon_a/. Section 5 concludes with a discussion of some remain-
ing problems and prospects for further research on scope dominance in natural language.

2 Scope Dominance in Generalized Quantifier Theory

This section overviews the notions and facts from Generalized Quantifier Theory (GQT) that
are essential for the proposed method of computing scope dominance. After reviewing some
familiar basics of GQT, we mention without proof the main results in Altman et al.’s (2002)
characterization of scope dominance. This allows us to define the notion of downward consis-
tency and introduce the specification of natural language determiners that will be used by the
algorithm of Section 3.

2.1 Generalized quantifiers

In GQT,1 noun phrases such as some student, every teacher and at least half of the children each
denote a subset of ℘(E), where E is an arbitrary non-empty domain, and ℘(E) is its powerset.
Such sets are called generalized quantifiers (GQs) over E. Determiner expressions such as
some, every and at least half (of) denote determiner functions. A determiner function DE over
E is a function from ℘(E) to ℘(℘(E)), or — equivalently modulo isomorphism — a two place
relation over ℘(E). If we standardly assume that nominal expressions such as student, tall
student, or student in the room denote subsets of the domain E, then NPs such as every (tall)
student (in the room) denote GQs over E, as required. We often sloppily use the notation ‘D’
instead of ‘DE’ for a determiner function, when the domain E is understood from the context.
Some examples of determiners with their denotations are given in Table 1. In this table the
determiners above the line are treated as lexical items in the fragment that will be introduced
in Section 3. Here and henceforth we use the notation blik′E for the denotation of the word or
phrase blik under the domain E. Note that the determiners at least half and each of the five are
assumed to denote partial functions, which impose a cardinality presupposition on their first
argument — finiteness in the first case, cardinality five in the second case. Such cardinality
requirements will play a crucial role in the computation of scope dominance.

In this paper, we limit ourselves to upward monotone quantifiers. Standardly, a quantifier
Q over E is called upward monotone if it is closed under supersets: for all A ⊆ B ⊆ E,
A ∈ Q entails B ∈ Q. A determiner D over a domain E is called right upward monotone
if for all A ∈ E, the quantifier D(A) is upward monotone if it is defined. We henceforth
refer to (right) upward monotone quantifiers and determiners simply as monotone. Table 1
gives examples of both monotone and non-monotone determiners. Note that the definition of
monotone determiners ignores cases where they are undefined. Henceforth in this paper, we
keep to this convention in the characterization of determiners and ignore sets that are outside
their domain. For sake of briefness, this point will not be explicitly mentioned in the definitions.

1See Barwise and Cooper (1981), Van Benthem (1984), and Keenan and Stavi (1986) for three classic works
on the application of GQT to linguistics. See Keenan and Westerståhl (1996) for a more up-to-date overview of
the field.

3

Determiner Denotation — for all A ⊆ E: Mon.

every, each, all every′E(A)
def
= {B ⊆ E : A ⊆ B} Yes

some some′E(A)
def
= {B ⊆ E : A ∩B 6= ∅} Yes

at least m at least m ′
E(A)

def
= {B ⊆ E : |A ∩B| ≥ m} Yes

more than m more than m ′
E(A)

def
= {B ⊆ E : |A ∩B| > m} Yes

at least half at least half ′E(A)
def
=

{

{B ⊆ E : |A ∩B| ≥ |A \ B|} A < ℵ0

undefined otherwise
Yes

more than half more than half ′E(A)
def
=

{

{B ⊆ E : |A ∩B| > |A \B|} A < ℵ0

undefined otherwise
Yes

all but at most m all but at most m ′
E(A)

def
= {B ⊆ E : |A \ B| ≤ m} Yes

infinitely many inf many′E(A)
def
= {B ⊆ E : |A ∩B| ≥ ℵ0} Yes

all but finitely many all but fin many′E(A)
def
= {B ⊆ E : |A \ B| < ℵ0} Yes

each of the m each of the m ′
E(A)

def
=

{

{B ⊆ E : A ⊆ B} |A| = m
undefined otherwise

Yes

some and every some and every′E(A)
def
= {B ⊆ E : A ⊆ B ∧ |A| ≥ 1} Yes

some or every some or every′E(A)
def
= {B ⊆ E : A ∩B 6= ∅ ∨A = ∅} Yes

no no′E(A)
def
= {B ⊆ E : A ∩B = ∅} No

exactly m exactly m ′
E(A)

def
= {B ⊆ E : |A ∩B| = m} No

Table 1: Denotations of some determiner expressions

A quantifier Q ⊆ ℘(E) is called trivial (TRIV) if Q = ∅ (Q is TRIV0) or Q = ℘(E) (Q
is TRIV1). For example, the noun phrases at least zero students and less than zero students
denote trivial quantifiers (℘(E) and ∅ respectively) in any model.

A monotone quantifier Q ⊆ ℘(E) is a filter (FLT) if it is closed under finite intersections.
A filter Q ⊆ ℘(E) is principal if it is closed under arbitrary (finite or infinite) intersections. For
example, the noun phrase every student denotes a principal filter in any model. The noun phrase
all but finitely many students denotes a non-principal filter whenever the denotation of the noun
students is infinite. A filter Q ⊆ ℘(E) is called an ultrafilter if for all A ⊆ E, either A ∈ Q or
E \A ∈ Q. A quantifier Q is therefore a principal ultrafilter (i.e. a principal filter that is also an

ultrafilter) iff Q = Ix
def
= {A ⊆ E : x ∈ A} for some x ∈ E. Proper names such as John, Mary

etc. denote principal ultrafilters in any model. As far as we know, non-principal ultrafilters do
not exist in natural language. In fact, their (non-constructive) existence proof relies on Zorn’s
lemma (see Comfort and Negrepontis (1974)).

Quantifiers Q ⊆ ℘(E) s.t. Q = {B ⊆ E : B ∩ A 6= ∅} for some A ⊆ E are referred
to as EXIST quantifiers.2 Quantifiers Q ⊆ ℘(E) s.t. Q = {A ⊆ E : B ⊆ A} for some
B ⊆ E are referred to as universal (UNIV). The latter are simply the principal filters over E.
By definition, NPs headed by the determiners some and every denote in any model EXIST and
UNIV quantifiers respectively.

The dual of a quantifier Q ⊆ ℘(E) is the quantifier Qd def
= {A ⊆ E : E \ A /∈ Q}.

For example: any EXIST quantifier is the dual of a UNIV quantifier (and vice versa), the two
trivial quantifiers are duals of each other, and every ultrafilter is self-dual. Further, in any model

2Note the difference from the standard (and more general) notion of existential (or intersective) quantifiers:
those quantifiers Q ⊆ ℘(E) for which there is A ⊆ E s.t. for all B, C ⊆ E that satisfy |B ∩ A| = |C ∩ A|:
B ∈ Q ⇔ C ∈ Q.

4

the dual of the quantifier that is denoted by the noun phrases infinitely many students is the
quantifier denoted by the noun phrase all but finitely many students. Note also that

(

Qd
)d

= Q
for any quantifier Q.

Following Barwise and Cooper (1981), we say that a quantifier Q ⊆ ℘(E) lives on a set
A ⊆ E (or alternatively: A is a live on set of Q) if for all B ⊆ E: B ∈ Q ⇔ A ∩ B ∈ Q.
For example, the noun phrase some student denotes a quantifier that lives on the set of students.
A determiner function DE is conservative (CONS) if for all A ⊆ E: DE(A) lives on A. The
well-known conservativity generalization of Barwise and Cooper (1981) states that all natural
language determiners are conservative.

The denotation of determiner expressions varies with the choice of the domain E. Their
meaning across different domains is therefore described using global determiners — functionals
that map a domain E to a (local) determiner function DE . We say that a global determiner D
(and the determiner expression it corresponds to) has a property F if DE has property F for any
choice of E. One useful property of global determiners is isomorphism invariance. Standardly,
we say that a global determiner D is isomorphism invariant (ISOM) if for all bijections π :
E → E ′, for all A, B ⊆ E: {π(y) : y ∈ B} ∈ DE′({π(x) : x ∈ A}) ⇔ B ∈ DE(A). An
ISOM global determiner is thus sensitive only to cardinalities of sets and not to the identity of
elements in the domain. All the determiners in Table 1 are ISOM.

Another useful property of global determiners is extension. We say that a global determiner
D satisfies extension (EXT) if for all A, B ⊆ E ⊆ E ′: B ∈ DE(A) ⇔ B ∈ DE′(A).
Intuitively, the global determiners that satisfy EXT are those determiners that do not change
their behavior on subsets of a domain E, when E is extended with new elements.

It is standard in GQT to concentrate on conservative global determiners in natural language
that satisfy ISOM and EXT, and in this paper we follow this practice. While it is doubtful
whether there are any non-conservative determiners in English,3 there are some determiner
functions in natural language that do not satisfy ISOM and EXT, most notably genitive pre-
nominals like my or John’s. However, the treatment of scope dominance with these expressions
is fairly straightforward, as the quantifiers they lead to are either principal ultrafilters or principal
filters, which will be treated below. It is therefore instructive for us to officially adopt the
following standard assumption in the rest of this paper:

Assumption 1 Natural language determiners are conservative and satisfy ISOM and EXT.

2.2 Scope dominance

Reconsider the following simple example from the introduction.

(2) A priest visited every church.

This sentence is ambiguous with regard to the relative scope of the subject and object quanti-
fiers. Assume that the nouns priest and church denote sets P, C ⊆ E respectively, and that the
transitive verb visited denotes a binary relation V ⊆ E × E. The two readings of the sentence
are the following:

1. ∃p ∈ P, ∀c ∈ C : 〈p, c〉 ∈ V

2. ∀c ∈ C, ∃p ∈ P : 〈p, c〉 ∈ V

3The expression only, as in only students smiled, is the typical counterexample to this claim. But it is often
pointed out that this is just one of many indications that only requires a different semantic treatment than determin-
ers in natural language.

5

The first reading, in which the object quantifier takes scope below the existential quantifier de-
noted by the subject, is standardly called the object narrow scope (ONS) reading of the sentence.
The second reading is called the object wide scope (OWS) reading.

In general, let Q1 and Q2 be the generalized quantifier denotations of the subject and object
respectively, and let R be the denotation of the transitive verb V in a sentence of the form SV O.
The ONS and OWS readings of the sentence are the following, respectively.

(3)
Q1Q2R

def
⇔ {x ∈ E|Rx ∈ Q2} ∈ Q1;

Q2Q1R
−1 def

⇔ {y ∈ E|Ry ∈ Q1} ∈ Q2,

We standardly use the notations Rx
def
= {y ∈ E : R(x, y)} and Ry def

= {x ∈ E : R(x, y)}.
Scope dominance between quantifiers is now defined as follows.

Definition 1 (scope dominance) A quantifier Q1 ⊆ ℘(E) is scopally dominant over a quanti-
fier Q2 ⊆ ℘(E) if for all binary relations R ⊆ E × E: Q1Q2R ⇒ Q2Q1R

−1.

Any EXIST quantifier (e.g. the denotation of a priest in (2)) is scopally dominant over any
UNIV quantifier (e.g. the denotation of every church). When two quantifiers Q1 and Q2 are
dominant over each other, we say that they are scopally independent.

Previous studies of generalized quantifiers have characterized some commutativity proper-
ties of quantifiers in constructions with multiple quantification. Notably, Westerståhl (1996)
characterizes the class of self-commuting quantifiers — those quantifiers Q that satisfy the fol-
lowing equivalence.

(4) For all R ⊆ E × E : QQR ⇔ QQR−1.

Thus, Q is self-commuting iff Q stands in the independence (equivalently, scope dominance)
relation to itself. Westerståhl shows that a quantifier Q is self-commuting iff it is existential,
universal, a symmetric difference of principal ultrafilters, or a negation of such a symmetric
difference. Another commutativity problem was studied by Zimmermann (1993). Zimmermann
characterizes the class of scopeless quantifiers — those quantifiers Q that satisfy the following
equivalence.

(5) For all Q1 ⊆ ℘(E), for all R ⊆ E × E : QQ1R ⇔ Q1QR−1.

Thus, Q is scopeless if it stands in the independence relation to any quantifier Q1. Zimmermann
shows that the scopeless quantifiers over E are precisely the ultrafilters over E. In particular,
all the principal ultrafilters — the denotations of proper names such as Mary and John — are
scopeless.

The more general notion of scope dominance was first studied in Westerståhl (1986). West-
erståhl points out the following fact about scope dominance relations with monotone quantifiers
over finite domains:4

Fact 1 Let Q1 and Q2 be monotone quantifiers over a finite domain E. Q1 is dominant over Q2

iff these quantifiers fall under at least one of the following cases:

(i) Q1 is EXIST.

(ii) Q2 is UNIV.

4Actually, Westerståhl characterizes scope dominance for determiners, and Fact 1 is a simpler statement of his
result for generalized quantifiers. Westerståhl uses the term order to refer to what we here call scope dominance.

6

(iii) Q1 = ℘(E) and Q2 6= ∅.

(iv) Q2 = ∅ and Q1 6= ℘(E).

The “if” direction of the proof is easy, and holds independently of the cardinality of E. For the
construction that proves the “only if” direction, which will be useful for the algorithm in the next
section, assume that Q1 is dominant over Q2. First it is easy to see that if Q1 = ℘(E) then Q2 6=
∅ and that if Q2 = ∅ then Q1 6= ℘(E). Assume for contradiction that no one of the conditions
(i)–(iv) holds. By finiteness of E, there is a minimal set A ∈ Q1 such that |A| ≥ 2 (otherwise by
monotonicity, Q1 = ℘(E) or Q1 = {A ⊆ E|∃x ∈ A : {x} ∈ Q1} which is EXIST). Similarly,
by finiteness of E, there are B1, B2 ∈ Q2 such that B1 ∩ B2 /∈ Q2 (otherwise by monotonicity,
Q2 = ∅ or Q2 = {A ⊆ E| ∩ Q2 ⊆ A} which is UNIV). Given the sets A, B1, and B2, and
an arbitrary a ∈ A, it is easy to verify that the relation R = ({a} × B1) ∪ ((A \ {a}) × B2)
contradicts our assumption that Q1 is dominant over Q2.

One familiar example of scope dominance was already given in sentence (2). According to
Westerståhl’s observation, the situation is similar over finite domains in cases where (exactly)
one of the quantifiers is replaced by another monotone quantifier. The sentences in (6) below
illustrate some cases like that, where the ONS reading entails the OWS reading over finite
domains.

(6) a. At least half/at least two/all but at most five of the students saw every teacher.

b. Some student saw at least half/at least two/all but at most five of the teachers.

Westerståhl’s result shows that over finite domains, EXIST quantifiers (for Q1) and UNIV
quantifiers (for Q2) are the only non-trivial monotone quantifiers that exhibit scope dominance
relations with other monotone quantifiers. Thus, the sentences in (2) and (6) are representative
of the cases where upward monotone quantifiers lead to an entailment from the ONS reading to
the OWS reading over finite domains. It is easy to see that the scope dominance relations that are
characterized by Fact 1 also hold in infinite domains. However, over infinite domains there are
also cases of scope dominance that are not covered by Westerståhl’s characterization. Consider
the following example (Altman et al. (2002), following Westerståhl), where E is assumed to be
countable.

(7) Infinitely many dots are contained in at least one of the three circles.

Q1 = {A ⊆ E : |D ∩ A| = ℵ0}

Q2 = {A ⊆ E : C ∩ A 6= ∅}, where |C| = 3

It is easy to verify that Q1 is dominant over Q2, but Q1 and Q2 are upward monotone and the
conditions of Fact 1 do not hold. Altman et al. (2002) extend Westerståhl’s result to cover also
such dominance relations over countable domains. They use the following quantifier properties,
in addition to the ones that were defined in Subsection 2.1.

A quantifier Q is said to satisfy the union property (U) if for all A1, A2 ⊆ E: if A1∪A2 ∈ Q
then A1 ∈ Q or A2 ∈ Q. For example, any EXIST quantifier satisfies (U) while a UNIV
quantifier every′(X) satisfies (U) if and only if X is either a singleton or the empty set. The
set of all infinite subsets of E satisfies (U) as well.

Further, we say that a quantifier Q satisfies the Descending Chain Condition (DCC) if for
every descending sequence A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · in Q, the intersection ∩Ai is in Q
as well. For example, any UNIV quantifier satisfies (DCC). An EXIST quantifier some′(X)

7

satisfies (DCC) if and only if X is finite. Another quantifier that satisfies (DCC) is the following,
where the domain E = N is the set of natural numbers:

{A ⊆ N : ∀n ∈ N[2n ∈ A ∨ 2n + 1 ∈ A]}.

If every set in a quantifier Q contains a finite subset that is also in Q, we say that Q satisfies
(FIN). The following fact uses (FIN) in characterizing dual properties to (U) and (DCC) over
the class of monotone quantifiers.

Fact 2 For any monotone generalized quantifier Q over a domain E:

(i) Q satisfies (U) iff Qd is a filter.

(ii) If E is countable: Q satisfies (DCC) iff Qd satisfies (FIN).

Using these two pairs of dual properties, Altman et al. prove the following theorem.

Theorem 3 Let Q1 and Q2 be monotone quantifiers over a countable domain E. Then the
following conditions (I) and (II) are equivalent:

I. Q1 is dominant over Q2.

II. (i) Qd
1 or Q2 (or both) are filters;

(ii) Qd
1 or Q2 (or both) satisfy (DCC);

(iii) Qd
1 or Q2 (or both) are not empty.

Using Fact 2, it can be easily shown that when Q1 and Q2 are monotone quantifiers over a
countable domain, Statement (II) above is equivalent to Statement (II’) below.

(II’) Q1 and Q2 fall under at least one of the following cases:

(i’) Q1 is EXIST.

(ii’) Q2 is UNIV.

(iii’) Q1 satisfies (U), Q2 6= ∅ and Q2 satisfies (DCC).

(iv’) Q2 is a filter, Q1 6= ℘(E) and Q1 satisfies (FIN).

(v’) Q1 = ℘(E) and Q2 6= ∅.

(vi’) Q2 = ∅ and Q1 6= ℘(E).

Altman et al.’s result thus shows that in addition to EXIST and UNIV quantifiers over finite
domains, the other non-trivial quantifiers that show scope dominance over countable domains
are as classified in Clauses (iii’) and (iv’). In sentence (7) above we have already seen an
example for Clause (II’)(iii’): Q1 satisfies (U), and Q2 = some′(C) for a finite C (|C| = 3),
hence it satisfies (DCC). The following example illustrates quantifiers Q1 and Q2 that fall under
the dual case of Clause (II’)(iv’).

(8) Each of the three circles contains all but finitely many dots.

Q1 = {A ⊆ E : C ⊆ A}, where |C| = 3

Q2 = {A ⊆ E : |D \ A| < ℵ0}

By using the more general results of Altman et al. (2002), we will be able to take into account in
the system more cases that go beyond first order logic, and to deal also with the characterization
of scope dominance with monotone determiners whose definition involves infinite domains,
such as infinitely many or all but finitely many.

8

2.3 Specifying determiner functions

Our usage of Theorem 3 in the computation of scope dominance requires to specify the mean-
ings of lexical determiner expressions. Van Benthem (1984) points out that for any globally con-
servative determiner D that satisfies ISOM and EXT there is a relation fdet s.t. for all A, B ⊆ E:
B ∈ DE(A) iff fdet(|A∩B|, |A \B|) holds. For such monotone Ds over finite domains, we can
furthermore use the following fact (cf. Väänänen and Westerståhl (2001)).

Fact 4 For any monotone conservative global determiner D that satisfies ISOM and EXT,
there is a function gdet : N → N that satisfies for all A, B ⊆ E s.t. A is finite:

B ∈ D(A) ⇔ |A ∩ B| ≥ gdet(|A|).

For countably infinite arguments of D, we observe the following fact.

Fact 5 For any monotone conservative global determiner D that satisfies ISOM and EXT,
there is n ∈ N ∪ {ℵ0} s.t. one of the following holds:

(i) For all A, B ⊆ E s.t. |A| = ℵ0: B ∈ D(A) ⇔ |A ∩B| ≥ n;

(ii) For all A, B ⊆ E s.t. |A| = ℵ0: B ∈ D(A) ⇔ |B \ A| < n.

Proof Let fdet be the “Van Benthem relation” over N ∪ {ℵ0} that specifies the behavior of D
over countable sets. By monotonicity of D, we have for all a, b ∈ N ∪ {ℵ0} s.t. a < b:

(*) fdet(a,ℵ0) ⇒ fdet(b,ℵ0),

(**) fdet(ℵ0, b) ⇒ fdet(ℵ0, a).

Let A, B ⊆ E be sets s.t. |A| = ℵ0.
Assume that fdet(ℵ0,ℵ0) holds. Let n ∈ N∪{ℵ0} be the minimal value s.t. fdet(n,ℵ0) holds.

By (*), fdet(a,ℵ0) holds for all a ≥ n. By (**), fdet(ℵ0, b) holds for all b ∈ N ∪ {ℵ0}. Thus,
B ∈ DE(A) ⇔ fdet(|A ∩ B|, |A \B|) ⇔ |A ∩B| ≥ n.

Now assume fdet(ℵ0,ℵ0) does not hold. Let n ∈ N ∪ {ℵ0} be the minimal value s.t.
fdet(ℵ0, n) does not hold. By (**), fdet(ℵ0, a) does not hold for any a ≥ n. By (*), fdet(b,ℵ0)
does not hold for any b ∈ N∪{ℵ0}. Thus, B ∈ DE(A) ⇔ fdet(|A∩B|, |A\B|) ⇔ |A\B| < n.
2

This fact means that with countably infinite arguments, monotone determiners with the assumed
properties either put a “minimum cardinality” requirement on the intersection of their A and B
arguments, or a “maximum cardinality” requirement on the set B \ A. In the first case the
determiner is equal over countably infinite domains to the one of the determiners at least n (for
n ∈ N) and infinitely many. In the second case, the determiner behaves over countably infinite
domains like the determiner all but less than n (for n ∈ N) or all but finitely many. In the sequel
we use the property inf det ∈ {‘at least n’, ‘infinitely many’, ‘all but lt n’, ‘all but fin many’}
to denote the behavior of a determiner over countably infinite domains.

From Facts 4 and 5 it follows that the values gdet and inf det completely specify the behavior
over countable domains of any monotone conservative global determiner that satisfies ISOM
and EXT. In the algorithm that we propose in the next section these two values are used for
computing scope dominance in simple transitive sentences. The algorithm generates a model
M which is indicative of scope dominance in the sentence. In an indicative model M, a scope
dominance relation exists between the quantifier denotations of the subject and the object if and

9

only if such a relation is exhibited under any model. Thus, for a model M to be indicative
of scope dominance in a sentence s, we have to guarantee that in terms of the properties that
affect scope dominance, the quantifiers that M assigns to the subject and object in s exhibit the
“most general” behavior of the global determiners in s. For example, consider a model in which
the subject NP, headed by a determiner d, denotes an EXIST quantifier D(A). This model is
not indicative of scope dominance if the global determiner D that d denotes, when applied to
a different set A′, leads to a non-EXIST quantifier D(A′). To ensure that the set argument of
each determiner leads to a “most general” behavior of the determiner, we keep for each lexical
determiner a value that is called lowest general cardinality (lgc). This is the minimal cardinality
in N ∪ {ℵ0} of set arguments for which the determiner displays its “most general” behavior in
terms of scope dominance. Consider for example the determiner expression at least three. The
generalized quantifier at least 3 ′(A) is neither EXIST nor UNIV for any A s.t. |A| ≥ 4. For
smaller cardinalities of A, the quantifier is either UNIV (when |A| = 3) or empty, hence EXIST
(when |A| ≤ 2). Thus, the value of lgc for at least three is 4. Similarly for |A| ≤ 2, the
quantifier at least half ′(A) is UNIV (when |A| = 0 or |A| = 1) or EXIST (when |A| = 1 or
|A| = 2). But for |A| > 2 this quantifier is neither UNIV nor EXIST. Hence the lgc value of at
least half is 3.

Formally, the lgc value of a determiner is defined as follows.

Definition 2 (lowest general cardinality) Let D be a global ISOM determiner. The lowest
general cardinality (lgc) of D is the minimal value in N ∪ {ℵ0} s.t. the class of generalized
quantifiers DE(A) with A ⊆ E and |A| ≥ lgc is contained in (exactly) one of the following four
classes of GQs: TRIV, EXIST \ TRIV, UNIV \ TRIV or EXIST ∪ UNIV.

It is easy to verify that lgc is well-defined for any ISOM determiner (though not necessarily
for other determiners). Table 2 shows the values of gdet, inf det, and lgc for the (monotone)
determiner expressions that are treated as lexical in the fragment of the next section. Note that
although in theory the lgc value of a determiner is determined by the gdet and inf det values, its
specification in the lexicon is required in order for it to be easily computable.

Determiner gdet(n) inf det lgc
every, each, all n all but lt 1 2
some 1 at least 1 2

at least m m at least m

{

0 m = 0

m + 1 otherwise
more than m m + 1 at least m + 1 m + 2
at least half dn/2e undefined 3
more than half d(n + 1)/2e undefined 3
all but at most m max(n−m, 0) all but lt m + 1 m + 2
infinitely many n + 1 infinitely many ℵ0

all but finitely many 0 all but fin many ℵ0

Table 2: Values of gdet, inf det, and lgc for some determiner expressions

A priori, we could think that the lgc value of a determiner underspecifies its “most general”
behavior. This is because lgc is defined as a minimal cardinality for this behavior, and in smaller
cardinalities of its set argument, the determiner can still behave in an arbitrary manner. How-
ever, we do not anticipate such cases to appear in natural languages. Consider for instance the
following global determiner D0:

10

D0(A)
def
=

{

at least 3 ′(A) |A| ≤ 5
℘(E) |A| > 5

This determiner behaves like the determiner at least three for any set argument of cardinality
≤ 5, but it returns the trivial powerset quantifier for any argument of a larger cardinality. While
this kind of determiners is not ruled out by the standard constraints in Assumption 1, it is not ex-
pected in any natural language (cf. Keenan and Westerståhl (1996)) — a determiner that returns
a TRIV1 quantifier only when its argument exceeds a certain cardinality is quite “unnatural”.
We say that any natural language determiner is expected to be downward consistent with respect
to triviality.5 Formally, we define downward consistency as follows.

Definition 3 (downward consistency) A global determiner D is downward consistent with re-
spect to a property F of GQs if for all A ⊆ B ⊆ E, if DE(B) satisfies F then DE(A) satisfies
F as well.

This definition raises the following question: what are the properties F of GQs with respect to
which natural language determiners are downward consistent? We will not try to address this
question in its generality, but only suggest the following hypothesis about downward consis-
tency, which will be useful in the rest of this paper.

Assumption 2 Lexical determiners in natural language are downward consistent with respect
to the following properties: (U), (FLT), (FIN), (DCC), (TRIV0) and (TRIV1).

For example, consider the determiners D1 and D2 below. These determiners, which mix non-
trivial EXIST and UNIV quantifiers, are also ruled out by Assumption 2, as is D0 above.

D1(A)
def
=

{

some′(A) |A| ≤ 5
every′(A) |A| > 5

D2(A)
def
=

{

every′(A) |A| ≤ 5
some′(A) |A| > 5

Here, the determiner D1 is not downward consistent for the filter property, whereas D2 is not
downward consistent for (U).

Note that Assumption 2 does not rule out the possibility of non-lexical determiners that are
not downward consistent with respect to one of the above properties. For instance, the dis-
junctive determiner every or infinitely many is not downward consistent with respect to the (U)
property. In this paper we do not treat such boolean compounds of determiners, and therefore
Assumption 2 holds of all the determiners in the fragment of the following section.

3 Computing scope dominance in a simple fragment

It is easy to use Theorem 3 for computing scope dominance relations between simple NPs —
noun phrases of the structure Determiner-Nominal. This can be done directly by using the
lexical information on determiners that was specified in Table 2. However, in order to deal with
more substantial parts of natural language, certain non-trivial problems have to be tackled with.
In this section we introduce a method for computing scope dominance in a simple fragment of
natural language that includes NP coordinations, cardinality presuppositions about nouns, and
containment relations between them. After defining the problem and introducing the main ideas
of the algorithm, we describe in detail its main parts and give their correctness claims, which
are proven in Appendix A. The section is concluded by a discussion of some of the limitations
of the algorithm.

5This would be incorrect for the (TRIV0) property in a Russellian treatment of definite articles as determiners.
The Russellian determiner denotation of the leads to an empty quantifier for any argument that is not a singleton.
Hence this determiner function is not downward consistent for (TRIV0). The presuppositional analysis of definites
that we use in this paper avoids such counterexamples.

11

3.1 The fragment and definition of the problem

The grammar and lexicon in Figure 1 specify a fragment which involves simple upward mono-
tone NPs (possibly involving cardinality presuppositions) and their and/or coordinations. In
addition, the lexicon specifies which pairs of common nouns in it stand in a containment rela-
tion to one another.

1. S → NP V NP

2. NP → DetP N / NP and NP / NP or NP

3. DetP → Det’

4. DetP → Det’ of the NUM

5. Det’ → D / F NUM

V: saw, visited, graded . . .

N: student(s), teacher(s), person(s), . . .

NUM: one, two, three, . . .

D: every, all, some, at least half, more than half, infinitely many, all but finitely many

F: at least, more than, all but at most

Containment relation: 〈student , person〉, 〈teacher , person〉, . . .

Figure 1: simple grammar and lexicon

Information about cardinality of denotations of nominal expressions in a given sentence may
come from the context or from presuppositions that are induced by NPs in the same sentence.
Cardinality presuppositions are induced by the constructions like the following:

1. Definite (numeral) NPs such as the (ten) students;

2. Partitive NPs such as all/some/at least three of the ten students;

3. Proper names.

4. Proportional NPs such as at least half of the students, which we assume contribute a
finiteness presupposition about the denotation of students.

Of these four types of NPs, only 2 and 4 are represented in the fragment above. This simplifi-
cation is innocuous, however, because a definite numeral like the (ten) students can be simply
represented for the purposes of scope dominance as equivalent to the partitive each of the ten
students. Similarly, a proper name like Mary can be represented as equivalent to the partitive
numeral at least one of the one mary, where mary is an artificial common noun.

Cardinality information is crucial for our purposes because it may create more scope dom-
inance relations than what is predicted from the semantics of the determiners in the sentence.
To see that, consider the following example. Suppose that in some academic unit, there are
two folders for storing reviews of research proposals: one for internal reviews and the other for
external reviews. In a certain occasion, proposals for review were given to five internal referees.
Consider now the following discourse.

12

(9) A: Could you check for me what’s going on with the reviews we are expecting?

B: Well, let me check first the internal referees: more than four of them have already
reviewed each proposal.

B’s reaction is completely acceptable, assuming she is unaware that there were only five ref-
erees, all of which are internal. However, once also taking this background knowledge into
account, we can conclude that the two readings of B’s utterance are equivalent. This is because
the noun phrase more than four of them is interpreted as equivalent to every referee. Note that
without the information about the number of referees, the two readings of B’s utterance would
not be equivalent. This is an example of how downward consistency and the lgc value of a de-
terminer affect its participation in scope dominance relations: since the lgc of more than four is
6, with the information that there are only five referees the noun phrase more than four referees
does not exhibit its most general behavior with respect to scope dominance, as we saw is the
case in B’s sentence above.

A similar example is illustrated more concisely by the following sentence.

(10) At least two of the three persons in this room admire more than two students in this room.

In this sentence there is a presupposition that the total number of people in the room is three.
Consequently, given the containment between students and persons, the noun phrase more than
two students in this room is either empty (in case there are not more than two students in the
room) or universal (in case the three people in the room are all students). According to Theorem
3, in both cases the subject quantifier is scopally dominant over the object quantifier under any
model that respects the given cardinality presuppositions and containment relations between
nouns. Again, without any cardinality presuppositions or containment relations about N1 and
N2, there is no scope dominance of NPs of the form at least two of N1 over NPs of the form
more than two N2.

Now we can formally define the requirements from a system for computing scope domi-
nance in sentences of the fragment in Figure 1. For simplicity, we will not model here possible
contextual information about cardinality of noun denotations, which does not add any signifi-
cant complications to the problems exhibited by cardinality presuppositions. The implementa-
tion that is described in the next section, however, takes into account this information as well.

Let NOM be the set of all common nouns in the lexicon, and let cont ⊆ NOM × NOM be
the lexical containment relation between them. When 〈n1, n2〉 ∈ cont holds, this is interpreted
as meaning that the denotation of n1 is contained in the denotation of n2 in every model. Let
M be an extensional model: a pair 〈E, I〉, where E is a non-empty set of entities, and I is an
interpretation function of non-logical constants.6 Let s be a sentence in the language L(G) that
is generated by the grammar G in Figure 1. Consider the following conditions on a model M
for the language L(G).

(11) a. For all 〈n1, n2〉 ∈ cont: Jn1KM ⊆ Jn2KM;

b. For each parse tree Ts in G of s, for each subtree of Ts of the form
[NP[DetP[Det′ ...]of the [NUMnum][Nn]]] (generated by Rule 4 in G) the cardinality
| JnKM | is the natural number expressed by the numeral expression num.

c. For each parse tree Ts in G of s, for each subtree of Ts of the form
[NP[DetPd][Nn]]] (generated by Rule 3 in G), the cardinality | JnKM | is finite if d

is more than half or at least half.

6We skip here the routine technical details about the definition of I and its extension for denotations in M.

13

The conditions in (11) guarantee that the model satisfies the containment relations of the lexi-
con, the background information about cardinality of nouns, and the cardinality presuppositions
about nouns in the sentence.7 Let T be a parse tree of a sentence NP1 V NP2 that is generated
by the fragment in Figure 1. Let T1 and T2 be the subtrees of T for the subject NP1 and the
object NP2 respectively. We say that T exhibits scope dominance of the subject over the ob-
ject if for every model M that satisfies the conditions in (11), the quantifier JT1KM is scopally
dominant over the quantifier JT2KM. Symmetrically for scope dominance of the object over the
subject.

The algorithm we describe in this section is developed according to the following input-
output specification.

(12) Input:

• Grammar G of Figure 1.

• Lexicon L for this grammar, plus a containment relation cont over its common nouns
(NOM).

• The information on determiners in Table 2.

• An input string s.

(13) Output:

The algorithm first verifies that s is in the language of G and L, and that there is no contra-
diction the between the containment and cardinality information about nouns, as specified
by the relation cont and the cardinality presuppositions of s.

If this is the case, then for each parse tree T of s in G, for each direction of scope domi-
nance (subject over object or vice versa), the algorithm outputs the following:

• “Yes”, “No” or “Undecided” if T exhibits scope dominance (in the respective di-
rection), does not exhibit scope dominance, or the algorithm fails to determine that,
respectively.

• If the output is “No” and there is a finite model that demonstrates that, the algorithm
outputs such a model.

3.2 Overview: on the generation of an indicative model

The algorithm that is described below generates a model M which is indicative of scope dom-
inance relations in the given sentence. Such a model M, if found, guarantees that computing
scope dominance between the GQ denotations it assigns to the NPs in the sentence is an indica-
tion of scope dominance under any model.

Finding an indicative model for sentences in the fragment with only simple (i.e. non-coordinate)
NPs is straightforward once observing the following fact, which is a direct result of Theorem 3
and our assumptions about the downward consistency of determiners.

Fact 6 Let D1 and D2 be global determiners that satisfy Assumptions 1 and 2. Assume that
over a countable domain E1 with A1, B1 ⊆ E1, the following hold:

(i) either |A1| = lgc(D1) < ℵ0 and |B1| = lgc(D2) < ℵ0, or
|A1| = ℵ0 and |B1| = ℵ0;

7Note that in this grammar, different parse trees of a sentence always agree on its cardinality presuppositions.

14

(ii) D1(A1) is scopally dominant over D2(B1);

(iii) D1(∅) is scopally dominant over D2(∅).

Then D1(A) is scopally dominant over D2(B) for all A, B ⊆ E, where E is countable.

This fact means that in transitive sentences with only simple NPs, denoted by D1(A) and
D2(B), in order to decide about scope dominance it is sufficient to consider two models:

(14) a. A model M1 where A and B’s cardinalities are the lgc values of the respective
determiners (if these lgc values are both finite), or where A and B are of cardinality
ℵ0 (if one of the lgc values is infinite).

b. A model M2 where A = B = ∅.

In such a pair of models we can compute the relevant properties of the determiners using the
gdet and inf det values and apply Theorem 3. Since the model M2 is needed only for checking
the trivial borderline cases of Theorem 3, it is appropriate to say that a model like M1, if it
exists, is indicative of scope dominance.

Note however that cardinality presuppositions on nouns, possibly combined with contain-
ment relations between them, can put restrictions on nominals that rule out such models as M1

and M2 for the interpretation of the sentence. This is illustrated by example (10) above, and
a similar point holds for example (9), when contextual information about cardinality of noun
denotations is taken into account. In sentence (10), for example, it is impossible to assign the
nominal students in this room a set denotation of cardinality four, as the lgc value of the deter-
miner at least two would require. This is because of the cardinality presupposition about the
nominal persons in this room. Similarly, of course, it is impossible to assume that the cardinality
of the denotation of students in this room is infinite. Thus, a model such as M1 would violate
the cardinality presupposition of sentence (10). A model such as M2 would also be illegitimate
for similar reasons.

To solve this problem, the algorithm we propose searches for two models with the following
properties, which generalize the properties in (14).

(15) a. A model M1 that satisfies:

• If lgc(D1) and lgc(D2) are both finite then A’s (B’s) cardinality is greater or
equal to the minimum between lgc(A) (lgc(B), respectively), and any possible
cardinality for A (B) that satisfies the presupposition and containment require-
ments of the sentence.

• If lgc(D1) or lgc(D2) is infinite then A and B are of the maximal cardinality
possible for them.

b. A model M2 where A’s and B’s cardinalities are the minimal cardinalities that
satisfy the presupposition and containment requirements of the sentence.

By putting these requirements on the indicative models, the correctness proof of the algorithm
in Section 3.5 will show that such a pair of models as M1 and M2 is sufficient for deciding
about scope dominance in simple sentences with quantifiers D1(A) and D2(B), when taking
into account also the cardinality restrictions on A and B. This proof will follow quite directly
from the definition of lgc and our assumptions about downward consistency.

Moving on to NP coordinations, the following two simple facts are crucial for the computa-
tion of their semantic properties that affect scope dominance according to Theorem 3.

15

Fact 7 Let Q1 and Q2 be two GQs. Then, the following hold:

1. If both Q1 and Q2 satisfy (DCC)/(FIN)/(FLT) then Q1∩Q2 satisfies (DCC)/(FIN)/(FLT)
respectively.

2. If both Q1 and Q2 satisfy (DCC)/(FIN)/(U) then Q1 ∪Q2 satisfies (DCC)/(FIN)/(U)
respectively.

Fact 8 Let Q1 and Q2 be two non-trivial GQs. Assume that there are live on sets A1 and A2 for
Q1 and Q2 respectively s.t. A1 and A2 are disjoint. Then, the following hold:

1. If Q1∩Q2 satisfies (DCC)/(FIN)/(FLT), then both Q1 and Q2 satisfy (DCC)/(FIN)/(FLT)
respectively.

2. Q1 ∩Q2 does not satisfy (U).

3. If Q1 ∪Q2 satisfies (DCC)/(FIN)/(U), then both Q1 and Q2 satisfy (DCC)/(FIN)/(U)
respectively.

4. Q1 ∪Q2 does not satisfy (FLT).

These two facts together guarantee that the four properties that are relevant for characteriz-
ing scope dominance can be completely determined recursively once the nouns in the sentence
are assigned pairwise disjoint set denotations, and the requirements generalizing those in (15)
are met for these set denotations. Hence, when it is possible to assign the nouns disjoint sets
of the cardinalities that are required in (15), the problem of coordinate NPs is reducible to the
problem of simple NPs.

However, it is sometimes impossible to guarantee that sets that are assigned in this way are
disjoint. This is problematic, since the disjointness assumption in Fact 8 is necessary for this
fact to hold. Consider for instance the following noun phrase.

(16) every teacher and at least two authors

Suppose that we know that there are at least three people in the model who are both authors
and teachers. The conjoined NP in (16) is equivalent to every teacher under any such model,
and therefore this NP denotes a filter although the second conjunct at least two authors does
not. Thus, the conditions in Fact 8 do not necessarily characterize the four relevant properties
in situations where the live on sets of conjuncts in coordinate NPs are not disjoint. Thus, we
will not be able to use this fact for characterizing scope dominance in such situations. The
limitations that ensue for the generality of the algorithm we present will be discussed, and
partly reduced, in Section 3.7.

The algorithm itself works in four stages:

• Preparation: Collecting the required noun cardinalities and cardinality presuppositions
from the sentence, for each noun that appears in it.

• Stage 1: Assigning “representative” sets and minimum cardinalities to the nouns in the
sentence.

• Stage 2: Checking whether the sets and minimum cardinalities that are assigned in Stage
1 support scope dominance in the sentence.

• Stage 3: In case not— constructing a finite model that shows this, if such a model exists.

The following subsections give more details about each of these stages and give their correctness
claims, which are proven in Appendix A.

16

3.3 Preparation stage

Let s be the input sentence, and let X ⊆ NOM be the (finite) set of common nouns in s. For any
noun n ∈ X , let us define the following set:8

LGC (n)
def
= {lgc(d) : [NP[DetP[Det′ d ... [N n]]]] appears as an NP in s}.

We compute the following values for each n ∈ X:

1. A “recommended” minimal cardinality card(n) for the denotation of n, defined as
max(LGC (n)).

2. A “recommended” minimal finite cardinality fincard(n) for the denotation of n, defined
as max ({0} ∪ LGC (n) \ {ℵ0}).

Thus, when card(n) is finite, fincard(n) is equal to card(n). When card(n) is infinite,
fincard(n) is the maximal finite lgc for determiners appearing with n, if such a finite lgc

exists. If not, fincard(n) is zero.

3. A “presupposed” cardinality pres(n) for the denotation of n, defined as having one of
three values:

• n ∈ N – if all the occurrences of NUM that appear in Det’ of the NUM n construc-
tions in the sentence have the same value n;

• FIN – if there are no such occurrences, and the noun n appears in determiner-noun
constructions dn in the sentence where inf det is undefined for d (in the given lexicon,
this is the case only for more than half and at least half).

• φ (“don’t care”) – if all occurrences of n are in constructions d n, where inf det is
defined for d.

In other cases the sentence exhibits a presupposition failure, as in the sentence the three
students saw one of the four students. When such a failure is recognized, the system halts
with a proper output.

We henceforth assume an order ‘<’ on the possible values of pres(n) that satisfies n <
FIN < ℵ0 for all n ∈ N.

Example 1: Consider for example the following sentence, which will be used as a running
example throughout the rest of this section.

(17) All of the three persons admire more than two teachers or some dog.

In this sentence, pres(person) = 3, while pres(teacher) and pres(dog) are φ. The card
values (which are identical to the fincard values) are taken directly from Table 2, and are:
card(person) = 2, card(teacher) = 4, and card(dog) = 2.

8Similarly to the fact that was mentioned above in footnote 7, in the given grammar, different parse trees of a
sentence always agree on the LGC (n) value of a noun n ∈ X .

17

3.4 Stage 1: Set assignment

In this stage it is checked if it is possible to assign each noun n in the input sentence a set
S(n) such that the restrictions imposed by cont and pres are preserved. If the presuppositions
in pres do not agree with the containment relation cont, then set assignment fails. If they do, a
set assignment is generated that, under certain limitations, encodes a model that is indicative of
scope dominance in the input sentence.

Formally, the algorithm generates a domain E and a function S : X → ℘(E) that satisfy
the following conditions:

(18) (i) For all 〈n, m〉 ∈ cont: S(n) ⊆ S(m).

(ii) For every n ∈ X: if pres(n) is a number (i.e. it is not “don’t care” or FIN) then
|S(n)| = pres(n); if pres(n) = FIN then |S(n)| < ℵ0.

Clauses (i) and (ii) describe the restrictions imposed by cont and pres respectively (cf. (11)). In
addition, the set assignment S and the function mincard : X → N that the algorithm computes
satisfy the following conditions:

(18) (iii) For every n ∈ X and for all domains E ′ and set assignments S ′ : X → ℘(E ′)
that satisfy (i) and (ii): if |S ′′(n)| = ℵ0 for some domain E ′′ and set assignment
S ′′ : X → ℘(E ′′) that satisfy (i) and (ii), then |S(n)| ≥ min{card(n), |S ′(n)|}.
Otherwise, |S(n)| ≥ min{fincard(n), |S ′(n)|}.

(iv) If for every n ∈ X: card(n) < ℵ0, then for every m ∈ X: |S(m)| < ℵ0.

(v) If |S(n)| = ℵ0 for some n ∈ X , then for every m ∈ X: if for some domain E ′′

and set assignment S ′′ : X → ℘(E ′′) that satisfy (i) and (ii): |S ′′(m)| = ℵ0, then
|S(m)| = ℵ0.

(vi) For every n ∈ X and for all domains E ′ and set assignments S ′ : X → ℘(E ′) that
satisfy (i) and (ii): |S ′(n)| ≥ mincard(n).

(vii) There exist some domain E ′ and some set assignment S ′ : X → ℘(E ′) that satisfy
(i) and (ii) and for all n ∈ X: |S ′(n)| = mincard(n).

These additional conditions are necessary in order to guarantee that the set assignment S is
indicative of scope dominance in the sentence as to be computed in Stage 2 of the algorithm.
Clause (iii) adopts the following policy for “recommended” cardinalities:

• If it is possible to reach an infinite cardinality for a noun n given the restrictions in Clauses
(i) and (ii), adopt card(n) as the “recommended” cardinality for n.

• Otherwise, adopt fincard(n) as the “recommended” cardinality for n.

Then, the cardinality of the set S(n) that is assigned to n is required to be be either greater or
equal than the recommended cardinality (if this is possible given Clauses (i) and (ii)) or the
maximal cardinality possible below the recommended cardinality (otherwise).

Clause (iv) helps to ensure finite sets and a finite domain when possible, in order to allow
the generation of a finite counter-example. Clause (v) ensures that when an infinite domain is
generated, all the nouns that can be assigned an infinite set (given the restrictions in Clauses (i)
and (ii)) are indeed assigned such infinite sets. This is required because under infinite domains,

18

assigning non-maximal finite denotations to nouns may lead to non-indicative models.9 Clause
(vi) ensures that mincard(n) will be a lower bound for the size of assigned sets, and Clause
(vii) ensures that this bound is attainable. This minimal bound is used to check dominance
when both the subject and the object NPs denote trivial quantifiers.

An algorithm for computing a set assignment function that satisfies the requirements in (18)
is given below. Let us briefly describe the operation of this algorithm. Step 1 verifies that the
presuppositions can be met given the cont relation. Step 2 eliminates circuits in cont, which
represent synonyms. The directed acyclic graph (DAG) G that this circuit elimination creates
is sorted by increasing and decreasing topological sorts (Step 3), and then the minimum and
maximum cardinality limitations as imposed by the presuppositions are applied (Steps 4-6).
This is done by first (Step 4) updating the minimal and maximal cardinalities that are allowed
by pres(n) for each node n. These values are used in Steps 5 and 6 to compute the minimal and
maximal cardinalities imposed by the graph structure, in the order of the two increasing and
decreasing topological sorts, respectively. Step 7 splits the set M of nodes in G that are affected
by presuppositions into connected components. In each of these components, the algorithm
assigns the maximally allowed number of elements to each node while making sure that sets
of cardinality c contain all sets of cardinality less than c (Steps 8-9). Step 10 guarantees that
if an infinite domain is required, all nouns are assigned a maximal number of elements, taking
into account finiteness presuppositions. Step 11 completes the algorithm by assigning sets to
the nodes in M (the nodes in G that are not in M). These nodes do not have any maximal
cardinality required for them. Thus, all that is needed is to add a sufficient number of elements
to the union of elements already assigned to nodes that represent subsets of the sets for the nodes
in M . Note that this may require assigning infinite sets. The representation of such infinite sets
is described in Section 4.

Algorithm 1 (Set Assignment):
Let X ⊆ NOM be the set of nouns in the sentence, with the functions pres from X to
N ∪ {FIN, φ} and card from X to N ∪ {ℵ0}. Let cont be the transitive-reflexive closure of
the containment relation cont ⊆ NOM × NOM.

1. If there is 〈n, m〉 ∈ cont s.t. both pres(n) and pres(m) have numerical values and
pres(n) > pres(m), output “impossible” and stop.

2. Create a DAG G from X and cont: unify circuits C ⊆ X in cont into single nodes
n(C) in G, and create an arc from n(C1) to n(C2) in G whenever 〈n, m〉 ∈ cont for
some n ∈ C1 and m ∈ C2.

3. Sort G into two lists using topological sorts:

Lsubset: each element n in Lsubset is a node in G s.t. for all nodes m in G for which
there is an arc from m to n: m precedes n in Lsubset

Lsupset: each element n in Lsupset a node in G s.t. for all nodes m in G for which
there is an arc from n to m: m precedes n in Lsupset

9Consider for example the following sentence: some circle contains infinitely many dots. If we assume a finite
number of circles, then the two readings of the sentence are equivalent. However, if there can be an infinite number
of circles, each dot may be contained in a different circle, and thus the OWS reading of the sentence does not entail
its ONS reading.

19

4. For each node n in G, define minpres(n) and maxpres(n) as follows:

minpres(n) :=

{

0 pres(n) ∈ {FIN, φ}

pres(n) otherwise

maxpres(n) :=

{

ℵ0 pres(n) = φ

pres(n) otherwise

5. Update mincard(n) for each node n in G, in the order of Lsubset:
mincard(n) := max({minpres(n)} ∪ {mincard(m) : m ∈ Y }), where Y is the set
of nodes m with an outgoing arc into n.

6. (Similarly) update maxcard(n) for each node n in G, in the order of Lsupset:
maxcard(n) := min({maxpres(n)} ∪ {maxcard(m) : m ∈ Y }), where Y is the set
of nodes m with an incoming arc from n.

7. Let M be the set of all nodes n in G s.t. maxcard(n) < FIN. Let GM be the subgraph
induced by M in the undirected version of G. Let C1, C2, . . . Cn ⊆ M be the sets of
nodes in each connected component of GM .

8. For each connected component Ci, let mi := max{maxcard(n) : n ∈ Ci}. Update Si

as an ordered set of mi fresh elements.

9. For each connected component Ci, for every node n ∈ Ci: let S(n) be the set of the
first maxcard(n) elements from Si.

10. If for some n ∈ X , card(n) = maxcard(n) = ℵ0, then update for all n ∈ X:

card′(n) :=

{

fincard(n) maxcard(n) = FIN

ℵ0 otherwise.

Otherwise, update for all n:

card′(n) :=

{

fincard(n) maxcard(n) = FIN

card(n) otherwise.

11. Update S(n) for each node n in G for which S(n) is undefined, in the order of Lsubset:

(a) U :=
⋃

there is an arc from m to n
S(m)

(b) S(n) := U

(c) if card′(n) > |U |, add card′(n)− |U | fresh elements to S(n).

Example 2: Consider for example the graph in Figure 2, which represents a containment rela-
tion cont, with values for pres and card. Note that mincard(n) ≤ maxcard(n) for all nodes
n. The connected components of Step 7 with more than one node are marked as C1 and

20

snake

person

man

John

student

dog

bulldog

animal

mammal

(8)

(2) (6)

card = 2

pres = 3
(3)

(3)

pres = 3
(3)

(2)

(1)

card = 2 card = 2

pres = 1

pres = 2card = 4

card = 7

(3)

3 ℵ0

ℵ00 3 ℵ0

3

31

1

2

3

2

3

0 3

3

1

C1

C2

Figure 2: Example of the set assignment algorithm
Each node in the graph represents a noun, with the value of pres(n) (or card(n) if pres(n) = φ). The
values of mincard and maxcard are above each node on left and right respectively. The number in
parenthesis (at the bottom of each node) is the cardinality of the set ultimately assigned to the noun.

21

C2. In C1, the maximum pres is 3, and thus m1 = 3, and three fresh elements are assigned
as S1 = {1, 2, 3} in Step 8. Similarly, m2 = 3, and three different elements are issued for
S2 = {4, 5, 6}. In Step 9, the nodes are assigned sets according to their maxcard value. Thus,
for C1: S(person) = S(man) = {1, 2, 3}, S(student) = {1, 2}, and S(John) = {1}, and for
C2: S(dog) = S(bulldog) = {4, 5, 6}. Finally, in Step 11, sets are assigned to “free” nodes
(unaffected by presuppositions), and thus S(snake) = {7, 8}, S(mammal) = {1, 2, 3, 4, 5, 6},
and S(animal) = {1, 2, 3, 4, 5, 6, 7, 8}.

Example 1 (cont.): In sentence (17), the nouns affected by presuppositions are teacher and
person. Both are assigned the same three elements: S(person) = S(teacher) = {1, 2, 3}. The
noun dog is then assigned card(dog) = 2 fresh elements, thus S(dog) = {4, 5}. The mincard

values are mincard(person) = 3 and mincard(teacher) = mincard(dog) = 0.

That the set assignment algorithm satisfies the requirements in (18) is formally claimed
below.

Claim 9 For given X , card, fincard, pres, and cont, Algorithm 1 generates a set assignment
that satisfies (18) if and only if such a set assignment function exists. Otherwise, Algorithm 1
outputs “impossible”.

For the proof see Appendix A.

3.5 Stage 2: Checking scope dominance

Stage 1 computes for each noun n in the sentence a set S(n) and a value mincard(n). In
checking whether the sentence exhibits scope dominance, the set S(n) is used as indicative for
the “most general” behavior of the determiner-noun constructions d n in which n appears. The
value mincard(n) is used to test whether these NPs are trivial under any model. Using these two
values for the nouns in the sentence, we shall see that it is possible, under certain limitations, to
determine whether the sentence exhibits scope dominance.

Step 2 of Algorithm 2 below, which is its main part, computes the features (U), (FLT), (FIN),
(DCC), (TRIV0) and (TRIV1) of the NPs in the sentence under the set assignment S of Stage
1. In addition, this step computes the following two features of NPs, using the mincard values
of Stage 1:

TRIV¬
0 (NP)

def
⇔ TRIV0(JNP KM) does not hold for any model M.

TRIV¬
1 (NP)

def
⇔ TRIV1(JNP KM) does not hold for any model M.

To determine these six features for simple NPs of the form DetP N, Sub-step 2a directly
uses the lexical information on determiners in Table 2. In order to determine the same features
for NP conjunctions and disjunctions, Sub-step 2a also keeps for each simple noun phrase its
minimal live-on set under S, which is denoted mlos[NP]. This, due to the conservativity of
determiners, is simply the set that S assigns to the noun within the NP.

Sub-steps 2b and 2c use Facts 7 and 8 for computing the above properties for NP con-
junctions and disjunctions. The minimal live-on sets of constituent NPs are used to determine
whether Fact 8 applies, and they are recursively computed (correctly) by unioning the live-on
sets of constituent NPs.

The rest of the algorithm is a direct application of Theorem 3 for deciding whether the sen-
tence exhibits scope dominance under the computed set assignment S. Whenever the minimal

22

live-on sets of coordinated NPs are disjoint under S, it follows from Fact 8 that the quantifiers
in the sentence (under S) exhibit the relevant properties iff Step 2 assigns these properties to
them. On the other hand, when non-disjoint live-on sets are generated, it is only guaranteed
(by Fact 7) that the properties are exhibited if (but not only if) Step 2 computes them. Conse-
quently under non-disjoint live-on sets, the set assignment S can be used only as indicative for
existence of scope dominance in the sentence, and not for non-existence of scope dominance.
Thus, when the live-on sets are not disjoint, a “yes” answer is given if the computed properties
support scope dominance, but if the computed properties do not support scope dominance, an
“indeterminate” answer is given.

The algorithm for checking scope dominance is given below.

Algorithm 2 (Checking scope dominance):
Let S be a set assignment function satisfying the conditions in (18).

1. Initialize disjoint := 1. \\ a flag for marking that all coordinated quantifiers live on
disjoint sets.

2. For each parse of the input sentence according to the grammar in Figure 1, assign the
features TRIV0, TRIV1, TRIV¬

0 , TRIV¬
1 , U, FLT, FIN, DCC and a set mlos to the

constituent NPs in the sentence according to the following rules.

(a) For NP → DetP N :
Let d be the determiner represented by DetP , with the given lexical values gdet

and inf det. Let n be the noun represented by N , let c be |S(n)|, and let m be

23

mincard(n). Then:

TRIV0[NP]
def
⇔

{

inf det = all but lt 0 c = ℵ0

gdet(c) > c otherwise

TRIV1[NP]
def
⇔

{

inf det = at least 0 c = ℵ0

gdet(c) < 1 otherwise

TRIV[NP]
def
⇔ TRIV0[NP] ∨ TRIV1[NP]

U[NP]
def
⇔ TRIV[NP] ∨











inf det ∈ { at least 1,

infinitely many}

c = ℵ0

gdet(c) = 1 otherwise

FLT[NP]
def
⇔ TRIV[NP] ∨











inf det ∈ { all but lt 1,

all but fin many}

c = ℵ0

gdet(c) = c otherwise

FIN[NP]
def
⇔ TRIV[NP] ∨ c < ℵ0 ∨

inf det ∈ {at least n : n ∈ N}

DCC[NP]
def
⇔ TRIV[NP] ∨ c < ℵ0 ∨

inf det ∈ {all but lt n : n ∈ N}

TRIV¬
0 [NP]

def
⇔ gdet(m) ≤ m

TRIV¬
1 [NP]

def
⇔ gdet(m) ≥ 1

mlos[NP]
def
= S(n)

(b) For NP → NP1 and NP2:

i. If mlos[NP1] ∩mlos[NP2] 6= ∅, set disjoint := 0.

ii. If either TRIV0[NP1] or TRIV0[NP2] is 1, then TRIV0[NP] :=
TRIV¬

1 [NP] := U[NP] := FLT[NP] := FIN[NP] := DCC[NP] := 1,
TRIV1[NP] := TRIV¬

0 [NP] := 0, and mlos[NP] := ∅.

iii. Otherwise, if TRIV1[NP1] is 1, then the features of NP2 are copied to NP .

iv. Otherwise, if TRIV1[NP2] is 1, then the features of NP1 are copied to NP .

24

v. Otherwise:

TRIV0[NP] := TRIV1[NP] := 0

U[NP] := 0

FLT[NP] := FLT[NP1] ∧ FLT[NP2]

FIN[NP] := FIN[NP1] ∧ FIN[NP2]

DCC[NP] := DCC[NP1] ∧ DCC[NP2]

TRIV¬
0 [NP] := TRIV¬

0 [NP1] ∧ TRIV¬
0 [NP2]

TRIV¬
1 [NP] := TRIV¬

1 [NP1] ∨ TRIV¬
1 [NP2]

mlos[NP] := mlos[NP1] ∪mlos[NP2]

(c) For NP → NP1 or NP2:

i. If mlos[NP1] ∩mlos[NP2] 6= ∅, set disjoint := 0.

ii. If either TRIV1[NP1] or TRIV1[NP2] is 1, then TRIV1[NP] :=
TRIV¬

0 [NP] := U[NP] := FLT[NP] := FIN[NP] := DCC[NP] := 1,
TRIV0[NP] := TRIV¬

1 [NP] := 0, and mlos[NP] := ∅.

iii. Otherwise, if TRIV0[NP1] is 1, then the features of NP2 are copied to NP .

iv. Otherwise, if TRIV0[NP2] is 1, then the features of NP1 are copied to NP .

v. Otherwise,

TRIV0[NP] := TRIV1[NP] := 0

FLT[NP] := 0

U[NP] := U[NP1] ∧ U[NP2]

FIN[NP] := FIN[NP1] ∧ FIN[NP2]

DCC[NP] := DCC[NP1] ∧ DCC[NP2]

TRIV¬
0 [NP] := TRIV¬

0 [NP1] ∨ TRIV¬
0 [NP2]

TRIV¬
1 [NP] := TRIV¬

1 [NP1] ∧ TRIV¬
1 [NP2]

mlos[NP] := mlos[NP1] ∪mlos[NP2]

3. Let NP1 and NP2 be the parse trees of the subject and the object NPs in the sentence.

(a) If TRIV¬
1 [NP1] = 0 and TRIV¬

0 [NP2] = 0, output “no” and stop.

(b) Otherwise, compute:

val[S] := (FIN[NP1] ∨DCC[NP2]) ∧ (U[NP1] ∨ FLT[NP2])

4. If disjoint = 1: if val[S] = 1 output “yes”, otherwise output “no”.

5. If disjoint = 0: if val[S] = 1 output “yes”, otherwise output “indeterminate”.

Example 1 (cont.): In sentence (17), under the set assignment from Stage 1, the NP “All of the
three persons” satisfies TRIV¬

0 , TRIV¬
1 , (FLT), (FIN), and (DCC); “more than two teachers”

satisfies TRIV¬
1 , (FLT), (FIN), and (DCC); and “some dog” satisfies TRIV¬

1 , (U), (FIN), and

25

(DCC). Based on the sets and denotations assigned above, the NPs “more than two teachers” and
“some dog” live on the sets {1, 2, 3} and {4, 5} respectively. Therefore, their or coordination is
an NP that satisfies TRIV¬

1 , (FIN) and (DCC) and no other of the relevant features. Applying
Theorem 3, we conclude that under the set assignment from Stage 1, the object quantifier is
dominant over the subject quantifier, but not vice versa. As will be shown below, the way that
the set assignment is chosen guarantees that the OWS reading entails the ONS reading, but not
vice versa, as it is indeed the case.

The following two claims state that whenever Stage 2 gives a determinate (“yes”/“no”)
response, this is the correct response, and the sentence exhibits or does not exhibit scope dom-
inance accordingly. Claim 10 follows directly from the set assignment stage and Theorem 3.
The proof of Claim 11 is more intricate. Both proofs are given in the appendix.

Claim 10 Given a parse of the input sentence NP1 V NP2 and the domain E, set assignment S,
and mincard from Algorithm 1, if Algorithm 2 returns a “no” response, then the parse of the
input sentence does not exhibit scope dominance.

Claim 11 Given a parse of the input sentence NP1 V NP2, and the domain E and set assignment
S from Algorithm 1, if Algorithm 2 responds with a “yes” response, then the parse of the input
sentence exhibits scope dominance.

3.6 Stage 3: Generating a counterexample

In this stage we generate a finite model M, under which the ONS reading of the input sentence
does not entail its OWS reading, if such finite model exists. This stage is performed only if the
result of the previous stage is “no”. According to Claim 10 above, this occurs only if there is a
model where the sentence does not support scope dominance. Such a model is either simply the
model that is generated in Stage 1, or (in case the condition in Step 3a of Algorithm 2 holds), it
is a model where the subject and object denote trivial quantifiers.

An algorithm for generating such model is given below. We assume a simple procedure
handle triv that assigns features to coordinations involving trivial quantifiers as in Step 2 of
Algorithm 2. We also assume that the TRIV0 and TRIV1 features from Stage 2 are kept. The
algorithm itself works as follows. Step 1 handles the case where the counterexample involves
trivial subject and object. Step 2 ensures a finite model by re-running the previous stages if one
of the determiners in the sentence has an infinite lgc. If this is the case, all such determiners are
reassigned a zero lgc value. The assignment of a finite model is a direct result of requirement
(18iv) on the set assignment algorithm. This model is indicative of scope dominance with regard
to finite domains, because we assume that every determiner d in the lexicon with lgc(d) = ℵ0 is
trivial over finite domains. Hence the behavior of such determiners with lgc(d) = 0 is indicative
of their behavior over finite domains. Step 3 generates a counter-example based on the direct
proof of Fact 1, and the properties of conjunction and disjunction of Fact 8. Recall that the
denotation of the verb for the counter-example is a binary relation R = ({a} × B1) ∪ ((A1 \
{a}) × B2), where A1 is a minimal set in JNP1K s.t. |A1| > 1, a ∈ A1 is some element, and
B1, B2 are sets such that B1, B2 ∈ JNP2K but B1 ∩ B2 /∈ JNP2K. This relation is assigned as
the denotation of the main verb in Step 4.

Algorithm 3 (Generating a counter-example):
Assume a parse for the input sentence NP1 V NP2 for which Algorithm 2 responded “no”.

26

1. If the condition in Step 3a of Algorithm 2 holds, return the following model M :=
〈E, J·K〉, where E := {1, 2, . . . , maxn∈X mincard(n)}, and

JxK :=

{

∅ x is the verb V in the sentence

{1, 2, . . . ,mincard(x)} otherwise (x is a noun).

2. Otherwise, if the domain assigned in Stage 1 is infinite, re-run the preparation stage
and Stages 1 and 2, while assigning LGC (d) = 0 for any determiner d for which
LGC (d) = ℵ0. If Stage 2 did not respond with “no”, stop.

3. Let S be the set assignment from the latest run of Stage 1. Recursively construct the
sets A[NP], B1[NP], and B2[NP] for each NP in the sentence as listed below. If a
set cannot be constructed at some step, it is marked as undefined.

(a) If NP is of the form D N , then let n be the noun represented by N , and let d be
the determiner represented by D, with a lexical value gdet. A[NP] is an arbitrary
subset of S(n) of cardinality gdet(|S(n)|), and the sets B1[NP] and B2[NP] are
arbitrary subsets of S(n) of cardinality gdet(|S(n)|), s.t. B1 6= B2, if such sets
exist (otherwise – they are undefined).

(b) If NP is of the form NP1 and NP2:

• If either TRIV[NP1] or TRIV[NP2] is 1, call handle triv(NP1 and NP2).
Otherwise:

– A[NP] := A[NP1] ∪ A[NP2].

– If B1[NP1] is defined then: B1[NP] := B1[NP1] ∪mlos[NP2].
Otherwise: B1[NP] := B1[NP2] ∪mlos[NP1],
and similarly for B2[NP].

(c) If NP is of the form NP1 or NP2:

• If either TRIV[NP1] or TRIV[NP2] is 1, call handle triv(NP1 or NP2).
Otherwise:

– A[NP] is the set between A[NP1] and A[NP2] which is of bigger
cardinality.

– B1[NP] := mlos[NP1].

– B2[NP] := mlos[NP2].

4. Let a be some element in A[NP1]. Return a model M := 〈E, J·K〉, where E is the
domain returned by the latest run of Stage 1, and J·K assigns to each noun n in X
the set S(n), and for the main verb V in the sentence, JV K := ({a} × B1[NP2]) ∪
((A[NP1] \ {a})× B2[NP2]).

Example 1 (cont.): The sets A, B1, B2, and mlos generated for the NPs in sentence (17) are
displayed in Figure 3, with the resulting denotation for the verb admire. Indeed, this denotation
for the verb admire with the assigned sets from Stage 1 demonstrate a situation where the ONS
reading is true while the OWS reading is false.

27

admire more than two students some dogorAll of the three persons

A = {1, 2, 3}

B1 = {1, 2, 3}, B2 = {4, 5}

mlos = {1, 2, 3, 4, 5}

mlos = {1, 2, 3} mlos = {1, 2, 3}

B1, B2 undefined

A = {1, 2, 3}

B1, B2 undefined

A = {1, 2, 3}

mlos = {4, 5}

B1 = {4}, B2 = {5}

A = {4}

R = {(1, 1), (1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 5)}

Figure 3: Generation of a counter-example

In the following correctness claim for Algorithm 3, we call a global determiner D trivial for
finite domains if for all A ⊆ E s.t. E is finite: DE(A) is a trivial quantifier. Clearly, the two
determiners in the lexicon (finitely many and all but finitely many) for which lgc = ℵ0 are both
trivial for finite domains.

Claim 12 Let NP1 V NP2 be a sentence where every determiner d for which lgc(d) = ℵ0 is
trivial for finite domains. Assume the result from Stage 2 was “no”, and there exists a finite
model M that satisfies the conditions in (11) s.t. for Q1 = JNP1KM, Q2 = JNP2KM, and
R = JV KM: Q1Q2R is true, but Q2Q1R

−1 is false. Then, Stage 3 finds such a model M.

3.7 Limitations of the algorithm and a heuristic improvement

The main limitation of the proposed procedure for computation of scope dominance appears
when the set assignment algorithm generates non-disjoint sets for nouns that appear in the same
coordination. As we remarked in Section 3.5, if in such cases the generated model is classi-
fied as refuting scope dominance, this is not necessarily indicative of scope dominance across
models. Therefore, in such cases the algorithm fails to decide on whether the sentence exhibits
scope dominance. For instance, consider the following sentence, with the noun phrase of (16):

(19) Some student saw every teacher and at least two authors.

Provided that there are at least three people who are both teachers and authors, this sentence
exhibits scope dominance. However, our algorithm fails to identify this, as it is based on the
conditions in Fact 7, which are not necessary conditions for scope dominance when the live on
sets of two quantifiers in a coordination are not disjoint.

A simple sufficient condition for the set assignment algorithm to assign disjoint sets to any
two nouns is the following.

Fact 13 Algorithm 1 satisfies S(n)∩ S(m) = ∅ for any two different nodes n, m in G whenever
the following conditions hold:

• n and m have no common ancestor in G; and

• For all nodes n′, m′ in M (i.e. maxcard(n′),maxcard(m′) < FIN) s.t. (n′ = n or n′ is an
ancestor of n) and (m′ = m or m′ is an ancestor of m): n′ and m′ are not in the same
connected component Ci of GM .

28

Non-disjoint sets may be assigned due to two major reasons. One reason is that a con-
tainment relation directly forces two sets in the same NP coordination not to be disjoint. For
example, consider the following sentence.

(20) Some student and every person saw at least two dogs.

Since any student is a person, these two nouns must be assigned non-disjoint sets. Thus, we
cannot deduce the semantic features of the subject NP under any set assignment that is indicative
of the behavior of the noun phrase some student. A different kind of problem arises when a noun
has a cardinality presupposition, and two nouns whose denotation must be contained in it are
forced not to be disjoint by the set assignment algorithm. For example, consider the following
sentence.

(21) The four persons saw some man and some woman.

In this case, Algorithm 1 assigns the same set to the nouns man, woman, and person, and thus
the sets for man and woman are not disjoint. This situation can be improved: in this case there
is no reason not to let man and woman denote disjoint doubleton sets, which are still indicative
of scope dominance, as the card value of some is 2. Of course, other cases may be more
problematic. If the four persons in (21) is replaced by the three persons, the sets assigned to
man and woman cannot be disjoint while satisfying the card requirement.

As mentioned above, dealing with conjunctions of quantifiers that require non-disjoint min-
imal live-on sets in order to achieve an indicative model is an open problem. However, cases
like (21), which do not raise such a non-disjointness requirement, can be handled using the fol-
lowing simple heuristics. This heuristics is designed to allow more disjoint sets to be generated.
In the cases where it fails to meet maximum cardinality requirements, the set assignment stage
is restarted using Algorithm 1.

Algorithm 4 (Set Assignment Heuristics):

1. Perform Steps 1–6 of Algorithm 1.

2. Assign a set S(n) to each node n in G, in the order of Lsubset:

(a) U :=
⋃

there is an arc from m to n
S(m)

(b) if |U | > maxcard(n), restart with Algorithm 1.

(c) S(n) := U

(d) let asscard(n) := min{card(n),maxcard(n)}. If maxcard(n) = FIN and
card(n) = ℵ0, assign asscard(n) := fincard(n) instead.

(e) if asscard(n) > |U |, add asscard(n)− |U | fresh elements to S(n).

It is easy to see that this heuristics is correct when Step 2b in it does not fail. To improve the
implementation further, Step 2 could be applied separately for each equivalence class. In this
way, failure in Step 2b for a node n would only entail resorting to Algorithm 1 for the nodes
in n’s component within the graph, and not for the whole graph. In experimenting with the
working implementation, the heuristics above proves rather useful in overcoming some of the
main shortcomings of the more principled set assignment algorithm above.

29

4 Notes on the demo implementation

A system that is based on the algorithms of the previous section was implemented in Standard
ML of New Jersey,10 and a web interface to the system (illustrated in Figure 4) is accessible
at http://yeda.cs.technion.ac.il/˜alon_a/, where the full source code is also
available.

Figure 4: Screenshot of the system’s web interface

The actual grammar that is used in the implementation is given below. This is a simpli-
fied version of the grammar in Figure 1, which also includes proper names. The parsing of
determiners such as “at least three” is performed at the lexical level.

1. S → Q1 V Q2

2. Q → D N’ |D OF NUM N′ |PN |Q1 C Q2

3. N′ → N

The lexicon in the system is:

D all but finitely many, some and every, some or every, some, a, an, every, all, each,
most, infinitely many, at least half, the, at least n, more than n, all but at most n,
all but n, the n

10This is a variant of standard ML (Milner et al. (1997)) that is available at http://www.smlnj.org/.

30

N dog, cat, student, teacher, person, man, woman, city, priest, animal, mamal, fish,
referee, abstract, officer, outpost, circle, square, dot, shape, child

PN john, mary, bill, sue, dave, eve, alice, bob

V saw, visited, graded, likes, occupied, occupies, admire, admires, read, reads, like,
love, loves, contain, contains

C and, or

NUM one, two, three, four, five, six, seven, eight, nine, ten, 0, 1, 2, ...

OF of the

Infinite sets are not directly represented in the system, but rather are implemented as a list of
elements included in the set, combined with a list of all subsets of the set. This representation is
easily generated during the set assignment stage, while allowing to check for disjointness and
unify sets, as required for the implementation of Stage 2.

The set assignment algorithm that is implemented is the heuristic improvement of Algorithm
1 that was described in Subsection 3.7. The implementation allows the user to specify additional
cardinality restrictions on noun denotations. These are minimum and/or maximum cardinalities
for lexical nouns. These values are collected in the preparation stage and used to initialize
mincard and maxcard for the set assignment stage.

More details about the implementation appear in the website of the system.

5 Conclusions and directions for further research

In this paper, some recent results on logical relations with scopally ambiguous sentences were
used in order to develop a system that computes such relations in a small fragment of English.
As we saw, the logical characterization of scope dominance between GQs in one model can be
used as the key for identifying entailments between different readings of a sentence. In addi-
tion to this characterization, the algorithm that was developed takes into account containment
relations between nominals and presuppositional/contextual information about cardinality. The
main part of the algorithm, the set assignment stage, uses this information in order to construct
a model that is indicative of scope dominance – scope dominance between the quantifiers in
this model implies (under certain conditions) an entailment between the different readings of
the sentence. Well-established properties of determiners from GQ theory such as Extension,
Isomorphism-invariance and Conservativity, in addition to a new assumption concerning the
downward consistency of natural language determiners, were crucial for establishing the cor-
rectness of the algorithm. The SML-based system that we developed is a demo that illustrates
one possible way to implement the main ideas of this work.

We believe that the possible contribution of this work is in two different but inter-related
research avenues. One is the logical study of scope dominance between generalized quantifiers.
As mentioned in Section 2, previous works have studied only partial aspects of this general
question. The characterization of scope dominance between quantifiers that are not necessarily
upward monotone is still an open question, which has recently received some more attention
in Ben-Avi and Winter (2004). Another avenue for pursuing our approach is to study further
the usage of entailments between readings as a way for improving underspecified represen-
tations and techniques for reasoning under ambiguity. One especially interesting question is

31

entailments between different readings of ambiguous sentences that are ambiguous but not with
respect to their quantifier scope. For instance, in a sentence like Mary and John or Bill smiled
one of the two bracketings (Mary and [John or Bill]) for the coordination generates a stronger
reading than the other bracketing. The system that we developed cannot find such dominant
readings. This calls for a more general characterization of entailments between readings of
other kinds of ambiguity besides scope ambiguity.

This research leaves some other open questions as well. One of them is the characterization
of scope dominance between NP coordinations that involve non-disjoint live-on sets. Another
question involves scope dominance relations that appear due to logical properties of n-ary pred-
icates. For instance, in the sentence at least one of the two students is taller than every girl, the
OWS reading entails the ONS reading (only) due to the transitivity of the relation taller than.
Since such properties of predicates were not taken into account in this paper, the system that we
developed does not detect such scope dominance relations.

The questions that were mentioned above and related ones pose interesting challenges for
formal and computational semantics of natural language. We hope to have shown that these
are tenable challenges, and that by addressing them we may improve our understanding of
computable logical relations in natural language that go beyond first order logic.

Acknowledgments
The authors were partly supported by grant no. 1999210 (”Extensions and Implementations of
Natural Logic”) from the United States-Israel Binational Science Foundation (BSF), Jerusalem,
Israel. The second author was also supported by an NWO grant for visiting the Utrecht Uni-
versity in summer 2003. We are grateful to Gilad Ben-Avi, Nissim Francez, Fred Landman and
Ya’acov Peterzil for remarks and discussions. The second author is also grateful to the ILLC of
the University of Amsterdam, where part of this research was carried out. We are grateful to two
anonymous reviewers of Research on Language and Computation for their helpful comments
on this paper.

A Appendix: proofs of correctness claims
Proof of Claim 9 If Algorithm 1 outputs “impossible”, it is easy to see that there are presuppositions that conflict
with the containment relation (Step 1), hence there is no set assignment that satisfies (18i) and (18ii). Otherwise,
we shall see that Algorithm 1 finds a set assignment S that satisfies (18).

1. For Clause (18i), let n and m be two elements in X . Assume 〈n, m〉 ∈ cont. If both n and m were
assigned sets in Step 9, n and m must be of the same connected component Ci, and by Step 6, |S(n)| =
maxcard(n) ≤ maxcard(m) = |S(m)|, thus S(n) ⊆ S(m) (by Step 9). Otherwise, m was assigned in
Step 11, and by the definition of U , S(n) ⊆ U ⊆ S(m).

2. For Clause (18ii), if pres(n) ∈ N, then maxpres(n) = pres(n) and from Steps 1 and 6, maxcard(n) =
pres(n) as well, thus the correct number of elements is assigned in Step 9. For pres(n) = FIN, the
presupposition is satisfied because for all m ∈ X s.t. 〈m, n〉 ∈ cont: either maxcard(m) < FIN or (by
Steps 6 and 10) card′(m) = fincard(m) < ℵ0, and thus (by Step 11) |S(m)| < ℵ0, and consequently
|S(n)| < ℵ0.

3. For Clause (18iii), let n be some element in X . Let S ′ be a set assignment that satisfies (18i) and (18ii).
If S(n) was assigned in Step 11, we know that |S(n)| ≥ card′(n). If maxcard(n) = ℵ0, then |S(n)| ≥
card′(n) ≥ card(n) as required. Otherwise, there is some m ∈ X s.t. 〈n, m〉 ∈ cont and pres(m) =
maxcard(n) = FIN. Thus for all domains E ′′ and for all set assignments S ′′ that satisfy (18i) and (18ii),
|S′′(m)| < ℵ0, and (due to Step 11) |S(n)| ≥ card′(n) = fincard(n) as required for this case in Clause
(18iii).
If S(n) was assigned in Step 9, |S(n)| = maxcard(n). By Step 6, there exists some m ∈ X s.t. 〈n, m〉 ∈
cont and pres(m) = maxcard(n). Because S ′ satisfies (18i) and (18ii), |S ′(n)| ≤ |S′(m)| = pres(m) =
maxcard(n) = |S(n)|, as required.

32

4. For Clause (18iv), let n be some element in X . If S(n) was assigned in Step 9, |S(n)| ≤ maxcard(n) < ℵ0,
as required. Otherwise, maxcard(n) ∈ {FIN,ℵ0} and S(n) was assigned in Step 11. If maxcard(n) =
FIN, from (18ii), |S(n)| < ℵ0. If maxcard(n) = ℵ0, assume for contradiction that |S(n)| = ℵ0. By Step
11, there is some m ∈ X s.t. 〈m, n〉 ∈ cont and card′(m) = ℵ0. By Step 10, there is some r ∈ X s.t.
card(r) = maxcard(r) = ℵ0, in contradiction to the assumption that card(r) < ℵ0.

5. For Clause (18v), assume that there exists n ∈ X s.t. |S(n)| = ℵ0. S(n) was assigned in Step 11 where
maxcard(n) = card′(n) = ℵ0. In this case, card′(m) = ℵ0 for all m ∈ X s.t. maxcard(m) 6= FIN, and
card′(m) = fincard(m) for all m ∈ X s.t. maxcard(m) = FIN. Now Clause (18v) follows directly from
the proof of Clause (18iii) applied to card′ instead of card.

6. For Clause (18vi), let n be some element in X . Let S ′ be a set assignment that satisfies (18i) and (18ii). If
mincard (n) > 0, then by Steps 1, 4 and 5, there is some m s.t. 〈m, n〉 ∈ cont and pres(m) = mincard(n).
As S′ satisfies (18i) and (18ii), |S ′(n)| ≥ |S′(m)| = pres(m) = mincard (n).

7. For Clause (18vii), let E ′ = N and let S′ be the following set assignment:

S′(n) = {1, 2, . . . ,mincard(n)}.

Trivially, |S′(n)| = mincard(n). For 〈n, m〉 ∈ cont, mincard(n) ≤ mincard(m), and thus S ′(n) ⊆ S′(m).
If pres(n) is a number then mincard(n) = pres(n), and thus |S ′(n)| = pres(n). Thus, S ′ satisfies Clauses
(18i) and (18ii), so Clause (18vii) is satisfied.

2

Proof of Claim 10 Let NP1 and NP2 be the parses of the subject and the object in the sentence. There are two
cases in which the algorithm outputs “no”:

1. Step 2 of the algorithm assigns TRIV¬
1
[NP1] = TRIV¬

0
[NP2] = 0. In this case, let M be a model in

which the domain is N (the natural numbers) and the interpretation function J·K satisfies: For each noun n

in the sentence: JnK = {1, 2, . . . ,mincard(n)}. From condition (18vii) on mincard , the modelM satisfies
(11).

By condition (18vi) on mincard and the assignment of TRIV¬
0

and TRIV¬
1

in Step 2 of Algorithm 2, and
downward consistency for (TRIV0) and (TRIV1), we conclude that JNP1K = ℘(N) and JNP2K = ∅, thus
the sentence does not exhibit scope dominance.

2. Step 2 of the algorithm assigns TRIV¬
1
[NP1] ∨ TRIV¬

0
[NP2] = 1, val[S] = 0, and disjoint = 1. In

this case, let M be a model in which the domain is E, and the interpretation function for the nouns assigns
each noun n to the set S(n) assigned by Algorithm 1. By requirements (18i) and (18ii) of Algorithm 1, M
satisfies the requirements in (11).

It is easy to see that the (U)/(FLT)/(FIN)/(DCC) properties assigned in Step 2a hold for the denotations
under the modelM of NPs of the form DetPN . Since disjoint = 1, all coordinations of NPs are between
quantifiers in M that live on disjoint sets. Fact 8 thus holds for these quantifiers, and therefore each of the
features in (U), (FLT), (FIN), (DCC), (TRIV0) and (TRIV1) holds for JNP1KM and JNP2KM iff they were
assigned to NP1 and NP2 respectively. Applying Theorem 3, we conclude that JNP1KM is not scopally
dominant over JNP2KM.

2

Proof of Claim 11 Given that Algorithm 2 returned a “yes” response, we will show that the input sentence exhibits
scope dominance. Let M be model in which the domain is EM is the one generated by Algorithm 1, and the
interpretation function assigns each noun n the set S(n) that was generated by Algorithm 1. Let M′ be a model
that satisfies the requirements in (11). Let S ′(n) = JnK

M′ for all n ∈ X be the set assignment function induced
by M′. Note that S′(n) satisfies requirements (18i) and (18ii). We will now show that JNP1KM′ is dominant over
JNP2KM′ .

Assume that EM is finite. Thus, Step 2 of Algorithm 2 assigns the features (FIN) and (DCC) to all the NPs in
the sentence; and for every NP in the sentence, JNP K

M
trivially satisfies (FIN) and (DCC). Let us use the notation

‘EXIST1’ and ‘UNIV0’ to denote (over a given domain E) the classes of quantifiers EXIST∪{℘(E)} and UNIV∪
{∅} respectively. By definition of gdet and finiteness of EM, if Step 2a assigns (U) or (FLT) to some simple NP
(of the form DetP N), then JNPK

M
satisfies EXIST1 or UNIV0 respectively. Because S satisfies (18iii) and S ′

satisfies (18i) and (18ii), then for all n ∈ X : |S(n)| ≥ min{card(n), |S ′(n)|}, or |S(n)| ≥ min{fincard(n), S ′(n)}

33

and |S′(n)| < ℵ0. By downward consistency for (U) and (FLT), and definitions of card and fincard, we conclude
that for every simple NP in the sentence, if JNP K

M
satisfies EXIST1 or UNIV0, then JNP K

M′ also satisfies
EXIST1 or UNIV0 respectively. Because EM is finite, for every simple NP in the sentence, if JNP K

M
satisfies

(U) or (FLT), then JNP K
M′ satisfies EXIST1 or UNIV0 respectively. Therefore, if Step 2 of Algorithm 2 assigns

(U) or (FLT) to some simple NP, JNP K
M ′ satisfies EXIST1 or UNIV0 respectively. By recursive application of

Fact 7 to Steps 2b–2c of Algorithm 2, this is true for all NPs in the sentence. Since the algorithm answered with a
“yes” response, it must assign (U) to NP1 or (FLT) to NP2, as well as TRIV¬

1
to NP1 or TRIV¬

0
to NP2. From

condition (18vi) on mincard , |S ′(n)| ≥ mincard(n) for all n. By the assignment of TRIV¬
0

and TRIV¬
1

in Step
2 of Algorithm 2 and downward consistency for (TRIV0) and (TRIV1), JNP1KM′ 6= ℘(EM ′) or JNP2KM′ 6= ∅.
Thus, JNP1KM′ is EXIST, JNP2KM′ is UNIV, or exactly one of them is trivial, and thus the sentence exhibits
scope dominance.

Now assume EM is infinite. By the definitions of gdet and inf
det

, if Step 2a of Algorithm 2 assigns a
feature (U)/(FLT)/(FIN)/(DCC) to some simple NP, JNPK

M
satisfies that feature. Because EM is infinite and

S satisfies (18v) and (18iii), for all n ∈ X : |S(n)| = ℵ0 ≥ |S′(n)|, or |S(n)| ≥ min{fincard(n), |S ′(n)|} and
|S′(n)| < ℵ0. Therefore, by downward consistency, and the definition of fincard, if Step 2a of Algorithm 2 assigns
a feature (U)/(FLT)/(FIN)/(DCC) to some simple NP, then JNP K

M′ also satisfies that feature. By recursive
application of Fact 7 to Steps 2b–2c of Algorithm 2, this is true for the sub-parses of all the NPs in the parse of
the sentence. Further, if Step 2 assigns TRIV¬

0
or TRIV¬

1
to some NP , by condition (18vi) on mincard , and

downward consistency for (TRIV0) and (TRIV1), JNP K
M′ is not ∅ or ℘(EM′) respectively. Since the algorithm

answered with a “yes” response, the fact that the sentence exhibits scope dominance is a direct result of Theorem
3. 2

Proof of Claim 12 In this proof we refer to the re-run of Stage n in Step 2 of Algorithm 3 as Stage nfin . To prove
the claim there are two facts we need to establish:

A. In case Stage 2 generated an infinite domain, then its rerun (Stage 2fin) will react by “no” if there is a finite
model where the sentence exhibits scope dominance.

B. Whenever Stage 2 or 2fin reacts with “no” and generates a finite domain, Stage 3 generates a finite model
that illustrates lack of scope dominance in the input sentence.

Fact A: Assume for contradiction that Stage 2fin was re-run and did not return “no”. Let S be the set assignment
from Stage 1 and let Sfin be the set assignment from Stage 1fin . Note that the values of lgc affect (after the
preparation stage) only the values of card. Thus, the runs of Stage 1 and Stage 1fin would be exactly the same up
to the end of Step 9. Therefore, for all n s.t. maxcard(n) < FIN: S(n) = Sfin (n). Let card(n) and card′(n) be
the card(n) and card′(n) values from Stage 1, and let cardfin (n) and card′fin (n) be the card(n) and card′(n) values
from Stage 1fin respectively. It is easy to see that cardfin (n) ≤ card(n) for all n ∈ X . By Step 10 of Algorithm 1,
card′fin (n) ≤ card′(n) for all n ∈ X . By Step 11 of Algorithm 1, for all n, m ∈ X : if Sfin (n) ⊆ Sfin (m) then also
S(n) ⊆ S(m).

We shall now prove that any disjoint sets assigned in Stage 1 must also be disjoint in Stage 1fin . Let n, m ∈ X
be nouns s.t. Sfin (n)∩Sfin (m) 6= ∅. If Sfin (n) was assigned in Step 11, then because any set containing the freshly
added elements contains U as well, there is some n

′ ∈ X s.t. Sfin (n′) ∩ Sfin (m) 6= ∅, ∅ ⊂ Sfin(n′) ⊆ Sfin (n)
and either Sfin (n′) was assigned in Step 9, or all elements in Sfin (n′) are fresh elements (i.e. U = ∅). If n was
assigned in Step 9, the same claim is trivially true for n

′ = n. Similarly, there is m
′ ∈ X s.t. Sfin (n′)∩Sfin (m′) 6= ∅,

∅ ⊂ Sfin (m′) ⊆ Sfin (m) and either Sfin (m′) was assigned in Step 9, or all elements in Sfin (m′) are fresh elements.
If both Sfin(n′) and Sfin (m′) were assigned in Step 9, then Sfin (n′) = S(n′) and Sfin (m′) = S(m′), and thus
S(n′) ∩ S(m′) 6= ∅. So also, S(n) ∩ S(m) 6= ∅. Otherwise, Sfin (n′) or Sfin(m′) are assigned in Step 11, and thus
only contain fresh elements. Therefore, Sfin (n′) ⊆ Sfin (m′) or Sfin (m′) ⊆ Sfin (n′), so there is some r

′ ∈ {n′, m′}
s.t. Sfin (r′) ⊆ Sfin (n′)∩Sfin (m′) ⊆ Sfin (n)∩Sfin (m). Because |S(r′)| ≥ |Sfin (r′)| > 0 and S(r′) ⊆ S(n)∩S(m),
S(n) ∩ S(m) 6= ∅.

Therefore, any disjoint sets assigned in Stage 1 must also be disjoint in Stage 1fin . Thus, given that in Stage
2 all the coordinated quantifiers live on disjoint sets, it follows that the same holds for Stage 2fin . Therefore, the
result of Stage 2fin must be “yes” (rather than “indeterminate”). Thus, by application of the proof of Claim 11 to
finite models, and by the triviality for finite domains of the determiners for which the lgc value was modified, the
sentence exhibits scope dominance for any finite model.

Fact B: We show that Stage 3 finds a finite model M for which Algorithm 2 returned a “no” response. Let Stage
2last be Stage 2fin (if there was a second run), or Stage 2 (if not). From Step 3 in Algorithm 2 and the finiteness of
M, we conclude that in Stage 2last , either the feature (U) was not assigned to NP1 and the feature (FLT) was not
assigned to NP2, or neither TRIV¬

0
was assigned to NP1, nor TRIV¬

1
was assigned to NP2. In the latter case,

34

by the proof of Claim 10, M trivially demonstrates lack of dominance. For the former case, we will prove that
the sets A[NP1], B1[NP2], and B2[NP2] fulfill the requirements for the relation from the proof of Fact 1, thus
ensuring that Q1Q2R is true while Q2Q1R

−1 is false as required.
We will show first that for every NP for which the feature (U) was not assigned in Stage 2last , the set A[NP]

is a minimal set in Q = JNPK
M

s.t. |A[NP]| ≥ 2:

• By the assignment of (U) in Step 2a of Algorithm 2 and the definition of gdet, the cardinality of each
minimal set in Q is at least 2, and thus the sets A[NP] assigned by Step 3a in Algorithm 3 satisfies the
requirement.

• For Step 3b in Algorithm 3, the union of minimal sets in two nontrivial quantifiers is a minimal set in their
intersection, and assuming the coordinated quantifiers live on disjoint sets, the cardinality of the union must
be at least 2, thus the set A[NP] that is assigned by Step 3b satisfies the requirement |A[NP]| ≥ 2.

• For Step 3c, each minimal set in the two quantifiers Q1 = JNP1KM and Q2 = JNP2KM is a minimal set in
their union Q1 ∪ Q2, and thus if at least one of the quantifiers has a minimal set A′ s.t. |A′| ≥ 2, then also
the cardinality of the set A[NP] assigned by Step 3c is at least 2, thus satisfying the requirement.

Now, we will show that for every NP for which the feature (FLT) was not assigned in Stage 2last , the sets B1[NP]
and B2[NP] are in Q = JNPK

M
, but B1[NP] ∩ B2[NP] /∈ Q.

• By the assignment of (FLT) in Step 2a of Algorithm 2 and the definition of gdet, there are at least two
distinct minimal sets in Q, and thus sets B1[NP], B2[NP] assigned by Step 3a satisfy the requirement.

• For Step 3b in Algorithm 3, let Q1 and Q2 be JNP1KM and JNP2KM respectively. For every set B ∈
Q1: B ∪ mlos(Q2) ∈ Q1 ∩ Q2, and because Q1 and Q2 live on disjoint sets, for every set C /∈ Q1:
C ∪mlos(Q2) /∈ Q2, thus sets B1[NP], B2[NP] assigned by Step 3b satisfy the requirement. The sets are
not undefined because of the application of Fact 8 in Stage 2last .

• For Step 3c, from nontriviality, for every Q′, mlos(Q′) ∈ Q′, so B1[NP], B2[NP] ∈ Q. Because the
quantifiers denoted by the NPs live on disjoint sets, B1[NP]∩B2[NP] = ∅, and from nontriviality, ∅ /∈ Q,
and thus the sets B1[NP], B2[NP] assigned by Step 3c satisfy the requirement.

2

References
Altman, A., Peterzil, Y., and Winter, Y. (2002). Scope dominance with upward monotone quantifiers. Un-
published ms., Technion and Haifa University. Downloadable at http://www.cs.technion.ac.il/
˜winter/.

Barwise, J. and Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy,
4:159–219.

Ben-Avi, G. and Winter, Y. (2004). Scope dominance with monotone quantifiers over finite domains. To appear
in Journal of Logic, Language and Information.

Comfort, W. W. and Negrepontis, S. (1974). The Theory of Ultrfilters. Springer-Verlag, Berlin.

Keenan, E. and Stavi, J. (1986). A semantic characterization of natural language determiners. Linguistics and
Philosophy, 9:253–326.

Keenan, E. and Westerståhl, D. (1996). Generalized quantifiers in linguistics and logic. In Van Benthem, J. and
Ter Meulen, A., editors, Handbook of Logic and Language. Elsevier, Amsterdam.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. (1997). The Definition of Standard ML – Revised. MIT
Press, Cambridge, Massachusetts.

Väänänen, J. and Westerståhl, D. (2001). On the expressive power of monotone natural language quantifiers
over finite sets. To appear in Journal of Philosophical Logic.

Van Benthem, J. (1984). Questions about quantifiers. Journal of Symbolic Logic, 49:443–466.

Westerståhl, D. (1986). On the order between quantifiers. In Furberg, M. et al., editors, Acta Universitatis
Gothoburgensis, pages 273–285. Göteborg University.

35

Westerståhl, D. (1996). Self-commuting quantifiers. The Journal of Symbolic Logic, 61:212–224.

Zimmermann, T. E. (1993). Scopeless quantifiers and operators. Journal of Philosophical Logic, 22:545–561.

Computer Science

Technion - Israel Institute of Technology

Haifa 32000

Israel

E-mail: {alon@vipe,winter@cs}.technion.ac.il

36

