Class 3

Plurals and Distributivity

Yoad Winter

ESSLLI 2019, Riga

Challenges

- I Plural individuals in the entity domain
- II Distributive vs. collective predication
- III Structured individuals
- IV Non-atomic distribution

Challenge I - the entity domain

- (1) The girl is/*are singing.
- (2) The girls are/*is singing.
- (3) Mary is/*are singing.
- (4) Mary and Sue are/*is singing.

Intuitive idea:

Singular NPs (*the girl, Mary*) denote arbitrary entities: by default **atomic.** Plural NPs (*the girls, Mary and Sue*) denote **collections** of such entities.

Problem:

The standard treatment of NPs using entities/quantifiers takes all NP denotations to range over arbitrary entities.

"arbitrary entities" = besides (non-)identity, no relation is given between entities \rightarrow no entity represents a collection of other entities

Changing the domain of entities

Let *E* be a non-empty arbitrary set of entities. D_e is defined by:

$$D_{SG} = \{\{x\} : x \in E\}$$

$$D_{PL} = \{A \subseteq E : |A| \ge 2\}$$

$$D_e = D_{SG} \cup D_{PL} = \{A \subseteq E : A \neq \emptyset\}$$

 D_{SG} and D_{PL} are the sub-domains of atomic/plural entities.

Lattice-theoretical notation:

- i. Instead of $\{x\}$ ' for atomic elements of D_{SG} , write 'x'.
- ii. Instead of $(A \cup B)$ for the union of sets $A, B \in D_e$, write (A+B).
- iii. Instead of ' $\bigcup A$ ' for the union of sets in $A \subseteq D$, write ' $\oplus A$ '.
- iv. Instead of ' $A \subseteq B$ ' for sets $A, B \in D_e$, write ' $A \leq B$ '.

Rationale: No empty set in D_e ; we only use <u>unions</u> of entities.

 \rightarrow no intersection and complementation $\rightarrow D_e$ is a **join semi-lattice**.

Collective predication

Collective predicates:

meet, lift the piano together, be a nice team, like each other

```
(1) Sue and Mary met - meet(sue+mary)
sue, mary \in D_{SG} sue+mary \in D_{PL}
meet \in D_{et}
```

(2) The girls met - meet(G)
girl ∈ D_t<sup>D_{SG}: characterizes a set with at least two girls
[[the girls]] = G = ⊕ {x ∈ D_{SG} : girl(x)}
meet ∈ D_{et}
</sup>

Note: the group/#girl met – meet(g), where $g \in D_{SG}$

Plural nouns and definites

Singular nouns – girl, group – denote in $D_t^{D_{SG}}$ Singular def. NPs – the girl/group – denote in D_{SG} Plural nouns – girls, groups – denote in $D_t^{D_{PL}}$ Plural def. NPs – the girls/groups – denote in D_{PL}

Note: "*f* denotes in $D_t^{D_{SG''}} = f(x)$ is undefined/trivially false for $x \notin D_{SG}$ We choose the former ("undefined"), hence assume $f \in D_t^{D_{SG}}$.

Example:

- ▶ girl characterizes the set {*t*, *m*, *s*}
- girls characterizes the set $\{t+m+s, t+m, t+s, m+s\}$
- the(girl) is undefined
- the(girls) = G = t + m + s

Plural nouns - formally

For every singular noun N_{sg} denoting a predicate $P_{et} \in D_t^{D_{SG}}$, the plural form N_{pl} denotes the predicate $*P \in D_t^{D_{PL}}$, defined by:

$$*P = \lambda y_e. y \in D_{PL} \land y \leq \bigoplus \{x \in D_e : P(x)\}$$

In words: N_{pl} denotes the predicate that holds of entities y made of at least two elements in the set characterized by N_{sg} 's denotation.

Examples:

girl characterizes $\{t, m, s\}$	\rightarrow	* girl characterizes { $t+m+s$, $t+m$, $t+s$, $m+s$ }
girl characterizes $\{t, m\}$	\rightarrow	* girl characterizes $\{t, m\}$
girl characterizes $\{t\}$	\rightarrow	*girl characterizes the empty set
$\ensuremath{\operatorname{\textbf{girl}}}$ characterizes the empty set	\rightarrow	*girl characterizes the empty set

Note: the commonly assumed star operator (cf. Champollion's *Distributivity in formal semantics*) admits atomic members *P – replace " $y \in D_{PL}$ " by " $y \in D_e$ " in definition.

pro our approach:straightforward (next slide)cons:no girls arrived, either the girls or Dan are thieves

Definites – formally

For every singular/plural noun N, the definite noun phrase the N denotes the *unique maximal element of* [[N]], if it exists. Otherwise, the denotation of *the N* is undefined.

the = λP_{et} . $\begin{cases} x \qquad P(x) \text{ and for every } y: P(y) \rightarrow y \leq x \\ \text{undefined} \quad \text{no such } x \text{ exists} \end{cases}$

Examples:

* girl characterizes { $t+m+s$, $t+m$, $t+s$, $m+s$ }	\rightarrow	the (* girl) = $t+m+s$
* girl characterizes $\{t+m\}$	\rightarrow	$\mathbf{the}(*\mathbf{girl}) = t + m$
* girl characterizes the empty set	\rightarrow	the(*girl) is undefined
girl characterizes $\{t, m, s\}/\{t, m\}$	\rightarrow	the (girl) is undefined

girl characterizes {*t*}

girl characterizes the empty set

- \rightarrow the(girl) = t
- \rightarrow **the**(girl) is undefined

Challenge II: Distributive predication

Distributive predicates: *sleep, wear a blue dress, have a baby, be vegetarian, be champions*

Problem – assuming that *sleep*, like *meet*, denotes in D_{et} , we get:

- (1) Sue and Mary slept sleep(sue+mary)
- (2) The girls slept sleep(G)

Are these meanings adequate?

Approach taken here:

Distributive inferences from lexical predicates are a subtle matter – soft inferences from lexical meanings.

- Meanings in (1) and (2) are OK.
- Quantificational distributive meanings on top of (1) and (2) obtained using operator (next...)
- Only distributive **nouns** obligatorily identify atoms (and allow the star operator); verbs and adjectives do not. This group is (#a) vegetarian

Lexical distributivity - alternative approach

- All distributive predicates nouns, verbs and adjectives basically range over entities in D_{sG}.
- Their actual lexical denotations are uniformly obtained by the star operator.

Example:

```
sleep \in D_t^{D_{SG}}
suppose that sleep characterizes \{t, m, s, j\}
the(girls) = G = t+m+s
*sleep(G) = *sleep(t+m+s) = sleep(t) \land sleep(m) \land sleep(s)
```

Challenge: the townspeople are asleep

Phrasal distributivity

Distributivity is not only a matter of lexical predicates like sleep.

- (1) The girls sang or danced.
 - True (at least) if each girl either sang or danced.
- (2) The girls are wearing a blue dress.
 - True (at least) if each girl is wearing a different blue dress.
- (3) The girls won.
 - True if each girl won (but also if one team of the girls won, or even if several teams of girls won).
 - Indecisive evidence, under the approach taking here.

The distributivity operator

For every predicate P in D_{et} , the distributed predicate D(P) holds of every entity x s.t. P holds of every atomic member of x.

$$D(P_{et}) = \lambda x_e. \forall y \in D_{SG}. y \le x \to P(y)$$

(1) The girls sang or danced.

- a. $OR^{et}(sing, dance)(G)$ collective $\Leftrightarrow sing(G) \lor dance(G)$
- b. $D(OR^{et}(sing, dance))(G)$ distributive $\Leftrightarrow \forall y \in D_{SG}, y \leq G \rightarrow (sing(y) \lor dance(y))$ $\Leftrightarrow \forall y \in G. (sing(y) \lor dance(y))$

The distributivity operator (cont.)

(2) The girls are wearing a blue dress.

- a. $(\lambda y.\exists x.\mathbf{blue_dress}(x) \land \mathbf{wear}(y,x))(G)$ collective $\Rightarrow \exists x.\mathbf{blue_dress}(x) \land \mathbf{wear}(G,x)$
- b. $D(\lambda y.\exists x.blue_dress(x) \land wear(y,x))(G)$ distributive $\Leftrightarrow \forall y \in D_{SG}. y \leq G \rightarrow \exists x.blue_dress(x) \land wear(y,x)$ $\Leftrightarrow \forall y \in G. \exists x.blue_dress(x) \land wear(y,x)$

The distributivity operator (cont. 2)

(3) The girls won.

- a. win(G) collective
- b. D(win)(G) distributive

In a specific model:

win characterizes the set $\{t+m+s, t, s\}$ G = t+m+s $(3a) = win(G) \Leftrightarrow win(t+m+s) - true$ $(3b) = D(win)(G) \Leftrightarrow win(t) \land win(m) \land win(s) - false$

"Mixed" predicates

- (1) Dylan wrote many hits.
- (2) The Beatles wrote many hits.
- (3) Simon and Grafunkel wrote many hits.
- (4) Mary and Sue wrote many hits.

Sentence (4) is clearly true both if Mary and Sue wrote many hits as a team, or if each of them wrote many hits individually.

Many predicates in natural language are "mixed" in the same way.

Summary – morphological, lexical and phrasal distributivity

girls	morphological	* girl $\in D_t^{D_{PL}}$, where girl $\in D_t^{D_{SG}}$		
slept	lexical inference	sleep $\in D_{et}$	the girl/group/townspeople slept	
met	-	meet $\in D_{et}$	the group met col. reading of the two groups met	
won	-	win $\in D_{et}$	col. reading of the girls won	
[_{VP} slept]	phrasal	D(sleep)	the two girls slept	
[_{VP} met]	phrasal	D(meet)	dist. reading of the two groups met	
[_{VP} win]	phrasal	D(win)	dist. reading of the girls won	

Related topics

Reciprocity: morphological (*friends*), lexical (*the boys hugged*), phrasal/derivational (*the boys hit each other*).

Floating "each": the boys each ate a pizza

Multiplicity of events/Pluractional markers:

Kaqchikel (Mayan): X- in- kan- ala' jun wuj PERF- 1sS- search- PLURAC a book "I looked for a book several times" (Henderson 2011: 219)

"Pluractional adverbials": Sue ate the cake piece by piece.

Challenge III - structured individuals?

Problem 1:

- (1) The girls and the boys were separated.
- (2) The young children and the other children were separated.

We consider models where:

- G+B=C: the girls and the boys are the children (C)
- YC+OC=C: the young children and the other children are the same children

In these models: were_separated(G+B) = were_separated(YC+OC)

(1) and (2) do not seem equivalent under these conditions

the girls and the boys are just the children; the girls and the boys were separated $\stackrel{?}{\Rightarrow}$ the young children and the other children were separated

Tentative conclusion 1: there are models such that **girl** \cup **boy** = **child** but [[*the girls and the boys*]] \neq [[*the children*]].

Challenge III – structured individuals? (cont.)

Problem 2:

- (1) a. The girls are group A.b. The boys are group B.
- (2) Group A and group B are of the same size.
 - a. Group A is of the same size as group B.
 - b. Group A and group B (together or separately) are of the same size mentioned earlier.
- (3) The children are of the same size.
 - a. Each child is of the same size.
 - b. The children (together or separately) are of the same size mentioned earlier.

Tentative conclusion 2: there are models such that **girl boy** = **child**, and groups A and B have the members in **girl** and **boy** (pretheoretically), but [[group A and group B]] \neq [[the children]]. **Impure atom principle**: An NP denotation like [[the girls]] is a plural individual $G \in D_{PL}$, which can be freely mapped to a contextually determined member of the set of *"impure" atoms* in D_{SG} (groups, teams, committees, bands etc.) made of the members of G. We denote this selected impure atom by $\uparrow G \in D_{SG}$.

 \uparrow is used with precedence over other operators: $\uparrow A + B = (\uparrow A) + B$.

Impure atoms (cont.)

Example 1:

(1) The girls and the boys were separated.

a. separated(G+B)"the children were separated"b. separated($\uparrow G + \uparrow B$)"an impure atom made of G and an

impure atom made of B were separated"

(2) The young children and the other children were separated.
a. separated(YC+OC) "the children were separated"
b. separated(↑YC+↑OC) "an impure atom made of YC and an impure atom made of OC were separated"

G+B = YC+OC, but $\uparrow G+\uparrow B \neq \uparrow YC+\uparrow OC$.

Readings (1b) and (2b) are prominent for (1) and (2), hence the perceived lack of equivalence.

Impure atoms (cont. 2)

Example 2:

(1) a. The girls are group A. ↑G = group_A
b. The boys are group B. ↑B = group_B
[[be of the same size]] = λx_e. ∀y, z ∈ D_{SG}. y, z ≤ x → size(y) = size(z)

(2) Group A and group B are of the same size. $\forall x, y \in \text{group}_A + \text{group}_B.size(x) = size(y)$ $\Leftrightarrow size(\text{group}_A) = size(\text{group}_B)$

(3) The children are of the same size.
 ∀x, y ∈ C.size(x) = size(y)

Challenge IV – non-atomic distribution?

See Champollion's article Distributivity in formal semantics